Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/init.h>
  3#include <linux/clocksource.h>
  4#include <linux/clockchips.h>
  5#include <linux/interrupt.h>
  6#include <linux/irq.h>
  7
  8#include <linux/clk.h>
  9#include <linux/delay.h>
 10#include <linux/err.h>
 11#include <linux/ioport.h>
 12#include <linux/io.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/sched_clock.h>
 16#include <linux/syscore_ops.h>
 17#include <soc/at91/atmel_tcb.h>
 18
 19
 20/*
 21 * We're configured to use a specific TC block, one that's not hooked
 22 * up to external hardware, to provide a time solution:
 23 *
 24 *   - Two channels combine to create a free-running 32 bit counter
 25 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 26 *     resolution better than 200 nsec).
 27 *   - Some chips support 32 bit counter. A single channel is used for
 28 *     this 32 bit free-running counter. the second channel is not used.
 29 *
 30 *   - The third channel may be used to provide a 16-bit clockevent
 31 *     source, used in either periodic or oneshot mode.  This runs
 32 *     at 32 KiHZ, and can handle delays of up to two seconds.
 33 *
 34 * REVISIT behavior during system suspend states... we should disable
 35 * all clocks and save the power.  Easily done for clockevent devices,
 36 * but clocksources won't necessarily get the needed notifications.
 37 * For deeper system sleep states, this will be mandatory...
 38 */
 39
 40static void __iomem *tcaddr;
 41static struct
 42{
 43	u32 cmr;
 44	u32 imr;
 45	u32 rc;
 46	bool clken;
 47} tcb_cache[3];
 48static u32 bmr_cache;
 49
 50static u64 tc_get_cycles(struct clocksource *cs)
 51{
 52	unsigned long	flags;
 53	u32		lower, upper;
 54
 55	raw_local_irq_save(flags);
 56	do {
 57		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
 58		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 59	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
 60
 61	raw_local_irq_restore(flags);
 62	return (upper << 16) | lower;
 63}
 64
 65static u64 tc_get_cycles32(struct clocksource *cs)
 66{
 67	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 68}
 69
 70static void tc_clksrc_suspend(struct clocksource *cs)
 71{
 72	int i;
 73
 74	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 75		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
 76		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
 77		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
 78		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
 79					ATMEL_TC_CLKSTA);
 80	}
 81
 82	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
 83}
 84
 85static void tc_clksrc_resume(struct clocksource *cs)
 86{
 87	int i;
 88
 89	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 90		/* Restore registers for the channel, RA and RB are not used  */
 91		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
 92		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
 93		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
 94		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
 95		/* Disable all the interrupts */
 96		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
 97		/* Reenable interrupts that were enabled before suspending */
 98		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
 99		/* Start the clock if it was used */
100		if (tcb_cache[i].clken)
101			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
102	}
103
104	/* Dual channel, chain channels */
105	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
106	/* Finally, trigger all the channels*/
107	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
108}
109
110static struct clocksource clksrc = {
111	.rating         = 200,
112	.read           = tc_get_cycles,
113	.mask           = CLOCKSOURCE_MASK(32),
114	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
115	.suspend	= tc_clksrc_suspend,
116	.resume		= tc_clksrc_resume,
117};
118
119static u64 notrace tc_sched_clock_read(void)
120{
121	return tc_get_cycles(&clksrc);
122}
123
124static u64 notrace tc_sched_clock_read32(void)
125{
126	return tc_get_cycles32(&clksrc);
127}
128
129static struct delay_timer tc_delay_timer;
130
131static unsigned long tc_delay_timer_read(void)
132{
133	return tc_get_cycles(&clksrc);
134}
135
136static unsigned long notrace tc_delay_timer_read32(void)
137{
138	return tc_get_cycles32(&clksrc);
139}
140
141#ifdef CONFIG_GENERIC_CLOCKEVENTS
142
143struct tc_clkevt_device {
144	struct clock_event_device	clkevt;
145	struct clk			*clk;
146	void __iomem			*regs;
147};
148
149static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
150{
151	return container_of(clkevt, struct tc_clkevt_device, clkevt);
152}
153
154/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
155 * because using one of the divided clocks would usually mean the
156 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
157 *
158 * A divided clock could be good for high resolution timers, since
159 * 30.5 usec resolution can seem "low".
160 */
161static u32 timer_clock;
162
163static int tc_shutdown(struct clock_event_device *d)
164{
165	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
166	void __iomem		*regs = tcd->regs;
167
168	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
169	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
170	if (!clockevent_state_detached(d))
171		clk_disable(tcd->clk);
172
173	return 0;
174}
175
176static int tc_set_oneshot(struct clock_event_device *d)
177{
178	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
179	void __iomem		*regs = tcd->regs;
180
181	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
182		tc_shutdown(d);
183
184	clk_enable(tcd->clk);
185
186	/* slow clock, count up to RC, then irq and stop */
187	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
188		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
189	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
190
191	/* set_next_event() configures and starts the timer */
192	return 0;
193}
194
195static int tc_set_periodic(struct clock_event_device *d)
196{
197	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
198	void __iomem		*regs = tcd->regs;
199
200	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
201		tc_shutdown(d);
202
203	/* By not making the gentime core emulate periodic mode on top
204	 * of oneshot, we get lower overhead and improved accuracy.
205	 */
206	clk_enable(tcd->clk);
207
208	/* slow clock, count up to RC, then irq and restart */
209	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
210		     regs + ATMEL_TC_REG(2, CMR));
211	writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
212
213	/* Enable clock and interrupts on RC compare */
214	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
215
216	/* go go gadget! */
217	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
218		     ATMEL_TC_REG(2, CCR));
219	return 0;
220}
221
222static int tc_next_event(unsigned long delta, struct clock_event_device *d)
223{
224	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
225
226	/* go go gadget! */
227	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
228			tcaddr + ATMEL_TC_REG(2, CCR));
229	return 0;
230}
231
232static struct tc_clkevt_device clkevt = {
233	.clkevt	= {
234		.features		= CLOCK_EVT_FEAT_PERIODIC |
235					  CLOCK_EVT_FEAT_ONESHOT,
236		/* Should be lower than at91rm9200's system timer */
237		.rating			= 125,
238		.set_next_event		= tc_next_event,
239		.set_state_shutdown	= tc_shutdown,
240		.set_state_periodic	= tc_set_periodic,
241		.set_state_oneshot	= tc_set_oneshot,
242	},
243};
244
245static irqreturn_t ch2_irq(int irq, void *handle)
246{
247	struct tc_clkevt_device	*dev = handle;
248	unsigned int		sr;
249
250	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
251	if (sr & ATMEL_TC_CPCS) {
252		dev->clkevt.event_handler(&dev->clkevt);
253		return IRQ_HANDLED;
254	}
255
256	return IRQ_NONE;
257}
258
259static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
260{
261	int ret;
262	struct clk *t2_clk = tc->clk[2];
263	int irq = tc->irq[2];
264
265	ret = clk_prepare_enable(tc->slow_clk);
266	if (ret)
267		return ret;
268
269	/* try to enable t2 clk to avoid future errors in mode change */
270	ret = clk_prepare_enable(t2_clk);
271	if (ret) {
272		clk_disable_unprepare(tc->slow_clk);
273		return ret;
274	}
275
276	clk_disable(t2_clk);
277
278	clkevt.regs = tc->regs;
279	clkevt.clk = t2_clk;
280
281	timer_clock = clk32k_divisor_idx;
282
283	clkevt.clkevt.cpumask = cpumask_of(0);
284
285	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
286	if (ret) {
287		clk_unprepare(t2_clk);
288		clk_disable_unprepare(tc->slow_clk);
289		return ret;
290	}
291
292	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
293
294	return ret;
295}
296
297#else /* !CONFIG_GENERIC_CLOCKEVENTS */
298
299static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
300{
301	/* NOTHING */
302	return 0;
303}
304
305#endif
306
307static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
308{
309	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
310	writel(mck_divisor_idx			/* likely divide-by-8 */
311			| ATMEL_TC_WAVE
312			| ATMEL_TC_WAVESEL_UP		/* free-run */
313			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
314			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
315			tcaddr + ATMEL_TC_REG(0, CMR));
316	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
317	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
318	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
319	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
320
321	/* channel 1:  waveform mode, input TIOA0 */
322	writel(ATMEL_TC_XC1			/* input: TIOA0 */
323			| ATMEL_TC_WAVE
324			| ATMEL_TC_WAVESEL_UP,		/* free-run */
325			tcaddr + ATMEL_TC_REG(1, CMR));
326	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
327	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
328
329	/* chain channel 0 to channel 1*/
330	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
331	/* then reset all the timers */
332	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
333}
334
335static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
336{
337	/* channel 0:  waveform mode, input mclk/8 */
338	writel(mck_divisor_idx			/* likely divide-by-8 */
339			| ATMEL_TC_WAVE
340			| ATMEL_TC_WAVESEL_UP,		/* free-run */
341			tcaddr + ATMEL_TC_REG(0, CMR));
342	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
343	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
344
345	/* then reset all the timers */
346	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
347}
348
349static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
350
351static const struct of_device_id atmel_tcb_of_match[] = {
352	{ .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
353	{ .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
354	{ /* sentinel */ }
355};
356
357static int __init tcb_clksrc_init(struct device_node *node)
358{
359	struct atmel_tc tc;
360	struct clk *t0_clk;
361	const struct of_device_id *match;
362	u64 (*tc_sched_clock)(void);
363	u32 rate, divided_rate = 0;
364	int best_divisor_idx = -1;
365	int clk32k_divisor_idx = -1;
366	int bits;
367	int i;
368	int ret;
369
370	/* Protect against multiple calls */
371	if (tcaddr)
372		return 0;
373
374	tc.regs = of_iomap(node->parent, 0);
375	if (!tc.regs)
376		return -ENXIO;
377
378	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
379	if (IS_ERR(t0_clk))
380		return PTR_ERR(t0_clk);
381
382	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
383	if (IS_ERR(tc.slow_clk))
384		return PTR_ERR(tc.slow_clk);
385
386	tc.clk[0] = t0_clk;
387	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
388	if (IS_ERR(tc.clk[1]))
389		tc.clk[1] = t0_clk;
390	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
391	if (IS_ERR(tc.clk[2]))
392		tc.clk[2] = t0_clk;
393
394	tc.irq[2] = of_irq_get(node->parent, 2);
395	if (tc.irq[2] <= 0) {
396		tc.irq[2] = of_irq_get(node->parent, 0);
397		if (tc.irq[2] <= 0)
398			return -EINVAL;
399	}
400
401	match = of_match_node(atmel_tcb_of_match, node->parent);
402	bits = (uintptr_t)match->data;
403
404	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
405		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
406
407	ret = clk_prepare_enable(t0_clk);
408	if (ret) {
409		pr_debug("can't enable T0 clk\n");
410		return ret;
411	}
412
413	/* How fast will we be counting?  Pick something over 5 MHz.  */
414	rate = (u32) clk_get_rate(t0_clk);
415	for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
416		unsigned divisor = atmel_tcb_divisors[i];
417		unsigned tmp;
418
419		/* remember 32 KiHz clock for later */
420		if (!divisor) {
421			clk32k_divisor_idx = i;
422			continue;
423		}
424
425		tmp = rate / divisor;
426		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
427		if (best_divisor_idx > 0) {
428			if (tmp < 5 * 1000 * 1000)
429				continue;
430		}
431		divided_rate = tmp;
432		best_divisor_idx = i;
433	}
434
435	clksrc.name = kbasename(node->parent->full_name);
436	clkevt.clkevt.name = kbasename(node->parent->full_name);
437	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
438			((divided_rate % 1000000) + 500) / 1000);
439
440	tcaddr = tc.regs;
441
442	if (bits == 32) {
443		/* use apropriate function to read 32 bit counter */
444		clksrc.read = tc_get_cycles32;
445		/* setup ony channel 0 */
446		tcb_setup_single_chan(&tc, best_divisor_idx);
447		tc_sched_clock = tc_sched_clock_read32;
448		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
449	} else {
450		/* we have three clocks no matter what the
451		 * underlying platform supports.
452		 */
453		ret = clk_prepare_enable(tc.clk[1]);
454		if (ret) {
455			pr_debug("can't enable T1 clk\n");
456			goto err_disable_t0;
457		}
458		/* setup both channel 0 & 1 */
459		tcb_setup_dual_chan(&tc, best_divisor_idx);
460		tc_sched_clock = tc_sched_clock_read;
461		tc_delay_timer.read_current_timer = tc_delay_timer_read;
462	}
463
464	/* and away we go! */
465	ret = clocksource_register_hz(&clksrc, divided_rate);
466	if (ret)
467		goto err_disable_t1;
468
469	/* channel 2:  periodic and oneshot timer support */
470	ret = setup_clkevents(&tc, clk32k_divisor_idx);
471	if (ret)
472		goto err_unregister_clksrc;
473
474	sched_clock_register(tc_sched_clock, 32, divided_rate);
475
476	tc_delay_timer.freq = divided_rate;
477	register_current_timer_delay(&tc_delay_timer);
478
479	return 0;
480
481err_unregister_clksrc:
482	clocksource_unregister(&clksrc);
483
484err_disable_t1:
485	if (bits != 32)
486		clk_disable_unprepare(tc.clk[1]);
487
488err_disable_t0:
489	clk_disable_unprepare(t0_clk);
490
491	tcaddr = NULL;
492
493	return ret;
494}
495TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);