Linux Audio

Check our new training course

Loading...
v3.1
 
  1#include <linux/proc_fs.h>
  2#include <linux/seq_file.h>
 
  3#include <linux/suspend.h>
  4#include <linux/bcd.h>
  5#include <asm/uaccess.h>
  6
  7#include <acpi/acpi_bus.h>
  8#include <acpi/acpi_drivers.h>
  9
 10#ifdef CONFIG_X86
 11#include <linux/mc146818rtc.h>
 12#endif
 13
 14#include "sleep.h"
 
 15
 16#define _COMPONENT		ACPI_SYSTEM_COMPONENT
 17
 18/*
 19 * this file provides support for:
 20 * /proc/acpi/alarm
 21 * /proc/acpi/wakeup
 22 */
 23
 24ACPI_MODULE_NAME("sleep")
 25
 26#if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || !defined(CONFIG_X86)
 27/* use /sys/class/rtc/rtcX/wakealarm instead; it's not ACPI-specific */
 28#else
 29#define	HAVE_ACPI_LEGACY_ALARM
 30#endif
 31
 32#ifdef	HAVE_ACPI_LEGACY_ALARM
 33
 34static u32 cmos_bcd_read(int offset, int rtc_control);
 35
 36static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset)
 37{
 38	u32 sec, min, hr;
 39	u32 day, mo, yr, cent = 0;
 40	u32 today = 0;
 41	unsigned char rtc_control = 0;
 42	unsigned long flags;
 43
 44	spin_lock_irqsave(&rtc_lock, flags);
 45
 46	rtc_control = CMOS_READ(RTC_CONTROL);
 47	sec = cmos_bcd_read(RTC_SECONDS_ALARM, rtc_control);
 48	min = cmos_bcd_read(RTC_MINUTES_ALARM, rtc_control);
 49	hr = cmos_bcd_read(RTC_HOURS_ALARM, rtc_control);
 50
 51	/* If we ever get an FACP with proper values... */
 52	if (acpi_gbl_FADT.day_alarm) {
 53		/* ACPI spec: only low 6 its should be cared */
 54		day = CMOS_READ(acpi_gbl_FADT.day_alarm) & 0x3F;
 55		if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 56			day = bcd2bin(day);
 57	} else
 58		day = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
 59	if (acpi_gbl_FADT.month_alarm)
 60		mo = cmos_bcd_read(acpi_gbl_FADT.month_alarm, rtc_control);
 61	else {
 62		mo = cmos_bcd_read(RTC_MONTH, rtc_control);
 63		today = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
 64	}
 65	if (acpi_gbl_FADT.century)
 66		cent = cmos_bcd_read(acpi_gbl_FADT.century, rtc_control);
 67
 68	yr = cmos_bcd_read(RTC_YEAR, rtc_control);
 69
 70	spin_unlock_irqrestore(&rtc_lock, flags);
 71
 72	/* we're trusting the FADT (see above) */
 73	if (!acpi_gbl_FADT.century)
 74		/* If we're not trusting the FADT, we should at least make it
 75		 * right for _this_ century... ehm, what is _this_ century?
 76		 *
 77		 * TBD:
 78		 *  ASAP: find piece of code in the kernel, e.g. star tracker driver,
 79		 *        which we can trust to determine the century correctly. Atom
 80		 *        watch driver would be nice, too...
 81		 *
 82		 *  if that has not happened, change for first release in 2050:
 83		 *        if (yr<50)
 84		 *                yr += 2100;
 85		 *        else
 86		 *                yr += 2000;   // current line of code
 87		 *
 88		 *  if that has not happened either, please do on 2099/12/31:23:59:59
 89		 *        s/2000/2100
 90		 *
 91		 */
 92		yr += 2000;
 93	else
 94		yr += cent * 100;
 95
 96	/*
 97	 * Show correct dates for alarms up to a month into the future.
 98	 * This solves issues for nearly all situations with the common
 99	 * 30-day alarm clocks in PC hardware.
100	 */
101	if (day < today) {
102		if (mo < 12) {
103			mo += 1;
104		} else {
105			mo = 1;
106			yr += 1;
107		}
108	}
109
110	seq_printf(seq, "%4.4u-", yr);
111	(mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo);
112	(day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day);
113	(hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr);
114	(min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min);
115	(sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec);
116
117	return 0;
118}
119
120static int acpi_system_alarm_open_fs(struct inode *inode, struct file *file)
121{
122	return single_open(file, acpi_system_alarm_seq_show, PDE(inode)->data);
123}
124
125static int get_date_field(char **p, u32 * value)
126{
127	char *next = NULL;
128	char *string_end = NULL;
129	int result = -EINVAL;
130
131	/*
132	 * Try to find delimeter, only to insert null.  The end of the
133	 * string won't have one, but is still valid.
134	 */
135	if (*p == NULL)
136		return result;
137
138	next = strpbrk(*p, "- :");
139	if (next)
140		*next++ = '\0';
141
142	*value = simple_strtoul(*p, &string_end, 10);
143
144	/* Signal success if we got a good digit */
145	if (string_end != *p)
146		result = 0;
147
148	if (next)
149		*p = next;
150	else
151		*p = NULL;
152
153	return result;
154}
155
156/* Read a possibly BCD register, always return binary */
157static u32 cmos_bcd_read(int offset, int rtc_control)
158{
159	u32 val = CMOS_READ(offset);
160	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
161		val = bcd2bin(val);
162	return val;
163}
164
165/* Write binary value into possibly BCD register */
166static void cmos_bcd_write(u32 val, int offset, int rtc_control)
167{
168	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
169		val = bin2bcd(val);
170	CMOS_WRITE(val, offset);
171}
172
173static ssize_t
174acpi_system_write_alarm(struct file *file,
175			const char __user * buffer, size_t count, loff_t * ppos)
176{
177	int result = 0;
178	char alarm_string[30] = { '\0' };
179	char *p = alarm_string;
180	u32 sec, min, hr, day, mo, yr;
181	int adjust = 0;
182	unsigned char rtc_control = 0;
183
184	if (count > sizeof(alarm_string) - 1)
185		return -EINVAL;
186
187	if (copy_from_user(alarm_string, buffer, count))
188		return -EFAULT;
189
190	alarm_string[count] = '\0';
191
192	/* check for time adjustment */
193	if (alarm_string[0] == '+') {
194		p++;
195		adjust = 1;
196	}
197
198	if ((result = get_date_field(&p, &yr)))
199		goto end;
200	if ((result = get_date_field(&p, &mo)))
201		goto end;
202	if ((result = get_date_field(&p, &day)))
203		goto end;
204	if ((result = get_date_field(&p, &hr)))
205		goto end;
206	if ((result = get_date_field(&p, &min)))
207		goto end;
208	if ((result = get_date_field(&p, &sec)))
209		goto end;
210
211	spin_lock_irq(&rtc_lock);
212
213	rtc_control = CMOS_READ(RTC_CONTROL);
214
215	if (adjust) {
216		yr += cmos_bcd_read(RTC_YEAR, rtc_control);
217		mo += cmos_bcd_read(RTC_MONTH, rtc_control);
218		day += cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control);
219		hr += cmos_bcd_read(RTC_HOURS, rtc_control);
220		min += cmos_bcd_read(RTC_MINUTES, rtc_control);
221		sec += cmos_bcd_read(RTC_SECONDS, rtc_control);
222	}
223
224	spin_unlock_irq(&rtc_lock);
225
226	if (sec > 59) {
227		min += sec/60;
228		sec = sec%60;
229	}
230	if (min > 59) {
231		hr += min/60;
232		min = min%60;
233	}
234	if (hr > 23) {
235		day += hr/24;
236		hr = hr%24;
237	}
238	if (day > 31) {
239		mo += day/32;
240		day = day%32;
241	}
242	if (mo > 12) {
243		yr += mo/13;
244		mo = mo%13;
245	}
246
247	spin_lock_irq(&rtc_lock);
248	/*
249	 * Disable alarm interrupt before setting alarm timer or else
250	 * when ACPI_EVENT_RTC is enabled, a spurious ACPI interrupt occurs
251	 */
252	rtc_control &= ~RTC_AIE;
253	CMOS_WRITE(rtc_control, RTC_CONTROL);
254	CMOS_READ(RTC_INTR_FLAGS);
255
256	/* write the fields the rtc knows about */
257	cmos_bcd_write(hr, RTC_HOURS_ALARM, rtc_control);
258	cmos_bcd_write(min, RTC_MINUTES_ALARM, rtc_control);
259	cmos_bcd_write(sec, RTC_SECONDS_ALARM, rtc_control);
260
261	/*
262	 * If the system supports an enhanced alarm it will have non-zero
263	 * offsets into the CMOS RAM here -- which for some reason are pointing
264	 * to the RTC area of memory.
265	 */
266	if (acpi_gbl_FADT.day_alarm)
267		cmos_bcd_write(day, acpi_gbl_FADT.day_alarm, rtc_control);
268	if (acpi_gbl_FADT.month_alarm)
269		cmos_bcd_write(mo, acpi_gbl_FADT.month_alarm, rtc_control);
270	if (acpi_gbl_FADT.century) {
271		if (adjust)
272			yr += cmos_bcd_read(acpi_gbl_FADT.century, rtc_control) * 100;
273		cmos_bcd_write(yr / 100, acpi_gbl_FADT.century, rtc_control);
274	}
275	/* enable the rtc alarm interrupt */
276	rtc_control |= RTC_AIE;
277	CMOS_WRITE(rtc_control, RTC_CONTROL);
278	CMOS_READ(RTC_INTR_FLAGS);
279
280	spin_unlock_irq(&rtc_lock);
281
282	acpi_clear_event(ACPI_EVENT_RTC);
283	acpi_enable_event(ACPI_EVENT_RTC, 0);
284
285	*ppos += count;
286
287	result = 0;
288      end:
289	return result ? result : count;
290}
291#endif				/* HAVE_ACPI_LEGACY_ALARM */
292
293static int
294acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset)
295{
296	struct list_head *node, *next;
297
298	seq_printf(seq, "Device\tS-state\t  Status   Sysfs node\n");
299
300	mutex_lock(&acpi_device_lock);
301	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
302		struct acpi_device *dev =
303		    container_of(node, struct acpi_device, wakeup_list);
304		struct device *ldev;
305
306		if (!dev->wakeup.flags.valid)
307			continue;
308
309		ldev = acpi_get_physical_device(dev->handle);
310		seq_printf(seq, "%s\t  S%d\t%c%-8s  ",
311			   dev->pnp.bus_id,
312			   (u32) dev->wakeup.sleep_state,
313			   dev->wakeup.flags.run_wake ? '*' : ' ',
314			   (device_may_wakeup(&dev->dev)
315			     || (ldev && device_may_wakeup(ldev))) ?
316			       "enabled" : "disabled");
317		if (ldev)
318			seq_printf(seq, "%s:%s",
319				   ldev->bus ? ldev->bus->name : "no-bus",
320				   dev_name(ldev));
321		seq_printf(seq, "\n");
322		put_device(ldev);
323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324	}
325	mutex_unlock(&acpi_device_lock);
326	return 0;
327}
328
329static void physical_device_enable_wakeup(struct acpi_device *adev)
330{
331	struct device *dev = acpi_get_physical_device(adev->handle);
332
333	if (dev && device_can_wakeup(dev)) {
334		bool enable = !device_may_wakeup(dev);
335		device_set_wakeup_enable(dev, enable);
336	}
 
 
 
 
 
 
337}
338
339static ssize_t
340acpi_system_write_wakeup_device(struct file *file,
341				const char __user * buffer,
342				size_t count, loff_t * ppos)
343{
344	struct list_head *node, *next;
345	char strbuf[5];
346	char str[5] = "";
347	unsigned int len = count;
348
349	if (len > 4)
350		len = 4;
351	if (len < 0)
352		return -EFAULT;
353
354	if (copy_from_user(strbuf, buffer, len))
355		return -EFAULT;
356	strbuf[len] = '\0';
357	sscanf(strbuf, "%s", str);
358
359	mutex_lock(&acpi_device_lock);
360	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
361		struct acpi_device *dev =
362		    container_of(node, struct acpi_device, wakeup_list);
363		if (!dev->wakeup.flags.valid)
364			continue;
365
366		if (!strncmp(dev->pnp.bus_id, str, 4)) {
367			if (device_can_wakeup(&dev->dev)) {
368				bool enable = !device_may_wakeup(&dev->dev);
369				device_set_wakeup_enable(&dev->dev, enable);
370			} else {
371				physical_device_enable_wakeup(dev);
372			}
373			break;
374		}
375	}
376	mutex_unlock(&acpi_device_lock);
377	return count;
378}
379
380static int
381acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file)
382{
383	return single_open(file, acpi_system_wakeup_device_seq_show,
384			   PDE(inode)->data);
385}
386
387static const struct file_operations acpi_system_wakeup_device_fops = {
388	.owner = THIS_MODULE,
389	.open = acpi_system_wakeup_device_open_fs,
390	.read = seq_read,
391	.write = acpi_system_write_wakeup_device,
392	.llseek = seq_lseek,
393	.release = single_release,
394};
395
396#ifdef	HAVE_ACPI_LEGACY_ALARM
397static const struct file_operations acpi_system_alarm_fops = {
398	.owner = THIS_MODULE,
399	.open = acpi_system_alarm_open_fs,
400	.read = seq_read,
401	.write = acpi_system_write_alarm,
402	.llseek = seq_lseek,
403	.release = single_release,
404};
405
406static u32 rtc_handler(void *context)
407{
408	acpi_clear_event(ACPI_EVENT_RTC);
409	acpi_disable_event(ACPI_EVENT_RTC, 0);
410
411	return ACPI_INTERRUPT_HANDLED;
412}
413#endif				/* HAVE_ACPI_LEGACY_ALARM */
414
415int __init acpi_sleep_proc_init(void)
416{
417#ifdef	HAVE_ACPI_LEGACY_ALARM
418	/* 'alarm' [R/W] */
419	proc_create("alarm", S_IFREG | S_IRUGO | S_IWUSR,
420		    acpi_root_dir, &acpi_system_alarm_fops);
421
422	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
423	/*
424	 * Disable the RTC event after installing RTC handler.
425	 * Only when RTC alarm is set will it be enabled.
426	 */
427	acpi_clear_event(ACPI_EVENT_RTC);
428	acpi_disable_event(ACPI_EVENT_RTC, 0);
429#endif				/* HAVE_ACPI_LEGACY_ALARM */
430
431	/* 'wakeup device' [R/W] */
432	proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR,
433		    acpi_root_dir, &acpi_system_wakeup_device_fops);
434
435	return 0;
436}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/proc_fs.h>
  3#include <linux/seq_file.h>
  4#include <linux/export.h>
  5#include <linux/suspend.h>
  6#include <linux/bcd.h>
  7#include <linux/acpi.h>
  8#include <linux/uaccess.h>
 
 
 
 
 
 
  9
 10#include "sleep.h"
 11#include "internal.h"
 12
 13#define _COMPONENT		ACPI_SYSTEM_COMPONENT
 14
 15/*
 16 * this file provides support for:
 
 17 * /proc/acpi/wakeup
 18 */
 19
 20ACPI_MODULE_NAME("sleep")
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22static int
 23acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset)
 24{
 25	struct list_head *node, *next;
 26
 27	seq_printf(seq, "Device\tS-state\t  Status   Sysfs node\n");
 28
 29	mutex_lock(&acpi_device_lock);
 30	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
 31		struct acpi_device *dev =
 32		    container_of(node, struct acpi_device, wakeup_list);
 33		struct acpi_device_physical_node *entry;
 34
 35		if (!dev->wakeup.flags.valid)
 36			continue;
 37
 38		seq_printf(seq, "%s\t  S%d\t",
 
 39			   dev->pnp.bus_id,
 40			   (u32) dev->wakeup.sleep_state);
 41
 42		mutex_lock(&dev->physical_node_lock);
 
 
 
 
 
 
 
 
 43
 44		if (!dev->physical_node_count) {
 45			seq_printf(seq, "%c%-8s\n",
 46				dev->wakeup.flags.valid ? '*' : ' ',
 47				device_may_wakeup(&dev->dev) ?
 48					"enabled" : "disabled");
 49		} else {
 50			struct device *ldev;
 51			list_for_each_entry(entry, &dev->physical_node_list,
 52					node) {
 53				ldev = get_device(entry->dev);
 54				if (!ldev)
 55					continue;
 56
 57				if (&entry->node !=
 58						dev->physical_node_list.next)
 59					seq_printf(seq, "\t\t");
 60
 61				seq_printf(seq, "%c%-8s  %s:%s\n",
 62					dev->wakeup.flags.valid ? '*' : ' ',
 63					(device_may_wakeup(&dev->dev) ||
 64					device_may_wakeup(ldev)) ?
 65					"enabled" : "disabled",
 66					ldev->bus ? ldev->bus->name :
 67					"no-bus", dev_name(ldev));
 68				put_device(ldev);
 69			}
 70		}
 71
 72		mutex_unlock(&dev->physical_node_lock);
 73	}
 74	mutex_unlock(&acpi_device_lock);
 75	return 0;
 76}
 77
 78static void physical_device_enable_wakeup(struct acpi_device *adev)
 79{
 80	struct acpi_device_physical_node *entry;
 81
 82	mutex_lock(&adev->physical_node_lock);
 83
 84	list_for_each_entry(entry,
 85		&adev->physical_node_list, node)
 86		if (entry->dev && device_can_wakeup(entry->dev)) {
 87			bool enable = !device_may_wakeup(entry->dev);
 88			device_set_wakeup_enable(entry->dev, enable);
 89		}
 90
 91	mutex_unlock(&adev->physical_node_lock);
 92}
 93
 94static ssize_t
 95acpi_system_write_wakeup_device(struct file *file,
 96				const char __user * buffer,
 97				size_t count, loff_t * ppos)
 98{
 99	struct list_head *node, *next;
100	char strbuf[5];
101	char str[5] = "";
 
102
103	if (count > 4)
104		count = 4;
 
 
105
106	if (copy_from_user(strbuf, buffer, count))
107		return -EFAULT;
108	strbuf[count] = '\0';
109	sscanf(strbuf, "%s", str);
110
111	mutex_lock(&acpi_device_lock);
112	list_for_each_safe(node, next, &acpi_wakeup_device_list) {
113		struct acpi_device *dev =
114		    container_of(node, struct acpi_device, wakeup_list);
115		if (!dev->wakeup.flags.valid)
116			continue;
117
118		if (!strncmp(dev->pnp.bus_id, str, 4)) {
119			if (device_can_wakeup(&dev->dev)) {
120				bool enable = !device_may_wakeup(&dev->dev);
121				device_set_wakeup_enable(&dev->dev, enable);
122			} else {
123				physical_device_enable_wakeup(dev);
124			}
125			break;
126		}
127	}
128	mutex_unlock(&acpi_device_lock);
129	return count;
130}
131
132static int
133acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file)
134{
135	return single_open(file, acpi_system_wakeup_device_seq_show,
136			   PDE_DATA(inode));
137}
138
139static const struct file_operations acpi_system_wakeup_device_fops = {
140	.owner = THIS_MODULE,
141	.open = acpi_system_wakeup_device_open_fs,
142	.read = seq_read,
143	.write = acpi_system_write_wakeup_device,
144	.llseek = seq_lseek,
145	.release = single_release,
146};
147
148void __init acpi_sleep_proc_init(void)
 
 
 
 
 
 
 
 
 
 
149{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150	/* 'wakeup device' [R/W] */
151	proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR,
152		    acpi_root_dir, &acpi_system_wakeup_device_fops);
 
 
153}