Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  gendisk handling
   3 */
   4
   5#include <linux/module.h>
   6#include <linux/fs.h>
   7#include <linux/genhd.h>
   8#include <linux/kdev_t.h>
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
 
  11#include <linux/init.h>
  12#include <linux/spinlock.h>
  13#include <linux/proc_fs.h>
  14#include <linux/seq_file.h>
  15#include <linux/slab.h>
  16#include <linux/kmod.h>
  17#include <linux/kobj_map.h>
  18#include <linux/buffer_head.h>
  19#include <linux/mutex.h>
  20#include <linux/idr.h>
  21#include <linux/log2.h>
 
 
  22
  23#include "blk.h"
  24
  25static DEFINE_MUTEX(block_class_lock);
  26struct kobject *block_depr;
  27
  28/* for extended dynamic devt allocation, currently only one major is used */
  29#define MAX_EXT_DEVT		(1 << MINORBITS)
  30
  31/* For extended devt allocation.  ext_devt_mutex prevents look up
  32 * results from going away underneath its user.
  33 */
  34static DEFINE_MUTEX(ext_devt_mutex);
  35static DEFINE_IDR(ext_devt_idr);
  36
  37static struct device_type disk_type;
  38
 
 
 
  39static void disk_add_events(struct gendisk *disk);
  40static void disk_del_events(struct gendisk *disk);
  41static void disk_release_events(struct gendisk *disk);
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/**
  44 * disk_get_part - get partition
  45 * @disk: disk to look partition from
  46 * @partno: partition number
  47 *
  48 * Look for partition @partno from @disk.  If found, increment
  49 * reference count and return it.
  50 *
  51 * CONTEXT:
  52 * Don't care.
  53 *
  54 * RETURNS:
  55 * Pointer to the found partition on success, NULL if not found.
  56 */
  57struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
  58{
  59	struct hd_struct *part = NULL;
  60	struct disk_part_tbl *ptbl;
  61
  62	if (unlikely(partno < 0))
  63		return NULL;
  64
  65	rcu_read_lock();
  66
  67	ptbl = rcu_dereference(disk->part_tbl);
  68	if (likely(partno < ptbl->len)) {
  69		part = rcu_dereference(ptbl->part[partno]);
  70		if (part)
  71			get_device(part_to_dev(part));
  72	}
  73
  74	rcu_read_unlock();
  75
  76	return part;
  77}
  78EXPORT_SYMBOL_GPL(disk_get_part);
  79
  80/**
  81 * disk_part_iter_init - initialize partition iterator
  82 * @piter: iterator to initialize
  83 * @disk: disk to iterate over
  84 * @flags: DISK_PITER_* flags
  85 *
  86 * Initialize @piter so that it iterates over partitions of @disk.
  87 *
  88 * CONTEXT:
  89 * Don't care.
  90 */
  91void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
  92			  unsigned int flags)
  93{
  94	struct disk_part_tbl *ptbl;
  95
  96	rcu_read_lock();
  97	ptbl = rcu_dereference(disk->part_tbl);
  98
  99	piter->disk = disk;
 100	piter->part = NULL;
 101
 102	if (flags & DISK_PITER_REVERSE)
 103		piter->idx = ptbl->len - 1;
 104	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
 105		piter->idx = 0;
 106	else
 107		piter->idx = 1;
 108
 109	piter->flags = flags;
 110
 111	rcu_read_unlock();
 112}
 113EXPORT_SYMBOL_GPL(disk_part_iter_init);
 114
 115/**
 116 * disk_part_iter_next - proceed iterator to the next partition and return it
 117 * @piter: iterator of interest
 118 *
 119 * Proceed @piter to the next partition and return it.
 120 *
 121 * CONTEXT:
 122 * Don't care.
 123 */
 124struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
 125{
 126	struct disk_part_tbl *ptbl;
 127	int inc, end;
 128
 129	/* put the last partition */
 130	disk_put_part(piter->part);
 131	piter->part = NULL;
 132
 133	/* get part_tbl */
 134	rcu_read_lock();
 135	ptbl = rcu_dereference(piter->disk->part_tbl);
 136
 137	/* determine iteration parameters */
 138	if (piter->flags & DISK_PITER_REVERSE) {
 139		inc = -1;
 140		if (piter->flags & (DISK_PITER_INCL_PART0 |
 141				    DISK_PITER_INCL_EMPTY_PART0))
 142			end = -1;
 143		else
 144			end = 0;
 145	} else {
 146		inc = 1;
 147		end = ptbl->len;
 148	}
 149
 150	/* iterate to the next partition */
 151	for (; piter->idx != end; piter->idx += inc) {
 152		struct hd_struct *part;
 153
 154		part = rcu_dereference(ptbl->part[piter->idx]);
 155		if (!part)
 156			continue;
 157		if (!part->nr_sects &&
 158		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
 159		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
 160		      piter->idx == 0))
 161			continue;
 162
 163		get_device(part_to_dev(part));
 164		piter->part = part;
 165		piter->idx += inc;
 166		break;
 167	}
 168
 169	rcu_read_unlock();
 170
 171	return piter->part;
 172}
 173EXPORT_SYMBOL_GPL(disk_part_iter_next);
 174
 175/**
 176 * disk_part_iter_exit - finish up partition iteration
 177 * @piter: iter of interest
 178 *
 179 * Called when iteration is over.  Cleans up @piter.
 180 *
 181 * CONTEXT:
 182 * Don't care.
 183 */
 184void disk_part_iter_exit(struct disk_part_iter *piter)
 185{
 186	disk_put_part(piter->part);
 187	piter->part = NULL;
 188}
 189EXPORT_SYMBOL_GPL(disk_part_iter_exit);
 190
 191static inline int sector_in_part(struct hd_struct *part, sector_t sector)
 192{
 193	return part->start_sect <= sector &&
 194		sector < part->start_sect + part->nr_sects;
 195}
 196
 197/**
 198 * disk_map_sector_rcu - map sector to partition
 199 * @disk: gendisk of interest
 200 * @sector: sector to map
 201 *
 202 * Find out which partition @sector maps to on @disk.  This is
 203 * primarily used for stats accounting.
 204 *
 205 * CONTEXT:
 206 * RCU read locked.  The returned partition pointer is valid only
 207 * while preemption is disabled.
 208 *
 209 * RETURNS:
 210 * Found partition on success, part0 is returned if no partition matches
 211 */
 212struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
 213{
 214	struct disk_part_tbl *ptbl;
 215	struct hd_struct *part;
 216	int i;
 217
 218	ptbl = rcu_dereference(disk->part_tbl);
 219
 220	part = rcu_dereference(ptbl->last_lookup);
 221	if (part && sector_in_part(part, sector))
 222		return part;
 223
 224	for (i = 1; i < ptbl->len; i++) {
 225		part = rcu_dereference(ptbl->part[i]);
 226
 227		if (part && sector_in_part(part, sector)) {
 228			rcu_assign_pointer(ptbl->last_lookup, part);
 229			return part;
 230		}
 231	}
 232	return &disk->part0;
 233}
 234EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
 235
 236/*
 237 * Can be deleted altogether. Later.
 238 *
 239 */
 
 240static struct blk_major_name {
 241	struct blk_major_name *next;
 242	int major;
 243	char name[16];
 244} *major_names[BLKDEV_MAJOR_HASH_SIZE];
 245
 246/* index in the above - for now: assume no multimajor ranges */
 247static inline int major_to_index(unsigned major)
 248{
 249	return major % BLKDEV_MAJOR_HASH_SIZE;
 250}
 251
 252#ifdef CONFIG_PROC_FS
 253void blkdev_show(struct seq_file *seqf, off_t offset)
 254{
 255	struct blk_major_name *dp;
 256
 257	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
 258		mutex_lock(&block_class_lock);
 259		for (dp = major_names[offset]; dp; dp = dp->next)
 260			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
 261		mutex_unlock(&block_class_lock);
 262	}
 263}
 264#endif /* CONFIG_PROC_FS */
 265
 266/**
 267 * register_blkdev - register a new block device
 268 *
 269 * @major: the requested major device number [1..255]. If @major=0, try to
 270 *         allocate any unused major number.
 271 * @name: the name of the new block device as a zero terminated string
 272 *
 273 * The @name must be unique within the system.
 274 *
 275 * The return value depends on the @major input parameter.
 276 *  - if a major device number was requested in range [1..255] then the
 277 *    function returns zero on success, or a negative error code
 278 *  - if any unused major number was requested with @major=0 parameter
 
 279 *    then the return value is the allocated major number in range
 280 *    [1..255] or a negative error code otherwise
 
 
 
 281 */
 282int register_blkdev(unsigned int major, const char *name)
 283{
 284	struct blk_major_name **n, *p;
 285	int index, ret = 0;
 286
 287	mutex_lock(&block_class_lock);
 288
 289	/* temporary */
 290	if (major == 0) {
 291		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
 292			if (major_names[index] == NULL)
 293				break;
 294		}
 295
 296		if (index == 0) {
 297			printk("register_blkdev: failed to get major for %s\n",
 298			       name);
 299			ret = -EBUSY;
 300			goto out;
 301		}
 302		major = index;
 303		ret = major;
 304	}
 305
 
 
 
 
 
 
 
 
 306	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
 307	if (p == NULL) {
 308		ret = -ENOMEM;
 309		goto out;
 310	}
 311
 312	p->major = major;
 313	strlcpy(p->name, name, sizeof(p->name));
 314	p->next = NULL;
 315	index = major_to_index(major);
 316
 317	for (n = &major_names[index]; *n; n = &(*n)->next) {
 318		if ((*n)->major == major)
 319			break;
 320	}
 321	if (!*n)
 322		*n = p;
 323	else
 324		ret = -EBUSY;
 325
 326	if (ret < 0) {
 327		printk("register_blkdev: cannot get major %d for %s\n",
 328		       major, name);
 329		kfree(p);
 330	}
 331out:
 332	mutex_unlock(&block_class_lock);
 333	return ret;
 334}
 335
 336EXPORT_SYMBOL(register_blkdev);
 337
 338void unregister_blkdev(unsigned int major, const char *name)
 339{
 340	struct blk_major_name **n;
 341	struct blk_major_name *p = NULL;
 342	int index = major_to_index(major);
 343
 344	mutex_lock(&block_class_lock);
 345	for (n = &major_names[index]; *n; n = &(*n)->next)
 346		if ((*n)->major == major)
 347			break;
 348	if (!*n || strcmp((*n)->name, name)) {
 349		WARN_ON(1);
 350	} else {
 351		p = *n;
 352		*n = p->next;
 353	}
 354	mutex_unlock(&block_class_lock);
 355	kfree(p);
 356}
 357
 358EXPORT_SYMBOL(unregister_blkdev);
 359
 360static struct kobj_map *bdev_map;
 361
 362/**
 363 * blk_mangle_minor - scatter minor numbers apart
 364 * @minor: minor number to mangle
 365 *
 366 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
 367 * is enabled.  Mangling twice gives the original value.
 368 *
 369 * RETURNS:
 370 * Mangled value.
 371 *
 372 * CONTEXT:
 373 * Don't care.
 374 */
 375static int blk_mangle_minor(int minor)
 376{
 377#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
 378	int i;
 379
 380	for (i = 0; i < MINORBITS / 2; i++) {
 381		int low = minor & (1 << i);
 382		int high = minor & (1 << (MINORBITS - 1 - i));
 383		int distance = MINORBITS - 1 - 2 * i;
 384
 385		minor ^= low | high;	/* clear both bits */
 386		low <<= distance;	/* swap the positions */
 387		high >>= distance;
 388		minor |= low | high;	/* and set */
 389	}
 390#endif
 391	return minor;
 392}
 393
 394/**
 395 * blk_alloc_devt - allocate a dev_t for a partition
 396 * @part: partition to allocate dev_t for
 397 * @devt: out parameter for resulting dev_t
 398 *
 399 * Allocate a dev_t for block device.
 400 *
 401 * RETURNS:
 402 * 0 on success, allocated dev_t is returned in *@devt.  -errno on
 403 * failure.
 404 *
 405 * CONTEXT:
 406 * Might sleep.
 407 */
 408int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
 409{
 410	struct gendisk *disk = part_to_disk(part);
 411	int idx, rc;
 412
 413	/* in consecutive minor range? */
 414	if (part->partno < disk->minors) {
 415		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
 416		return 0;
 417	}
 418
 419	/* allocate ext devt */
 420	do {
 421		if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL))
 422			return -ENOMEM;
 423		rc = idr_get_new(&ext_devt_idr, part, &idx);
 424	} while (rc == -EAGAIN);
 425
 426	if (rc)
 427		return rc;
 428
 429	if (idx > MAX_EXT_DEVT) {
 430		idr_remove(&ext_devt_idr, idx);
 431		return -EBUSY;
 432	}
 433
 434	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
 435	return 0;
 436}
 437
 438/**
 439 * blk_free_devt - free a dev_t
 440 * @devt: dev_t to free
 441 *
 442 * Free @devt which was allocated using blk_alloc_devt().
 443 *
 444 * CONTEXT:
 445 * Might sleep.
 446 */
 447void blk_free_devt(dev_t devt)
 448{
 449	might_sleep();
 450
 451	if (devt == MKDEV(0, 0))
 452		return;
 453
 454	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 455		mutex_lock(&ext_devt_mutex);
 456		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 457		mutex_unlock(&ext_devt_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 458	}
 459}
 460
 461static char *bdevt_str(dev_t devt, char *buf)
 462{
 463	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
 464		char tbuf[BDEVT_SIZE];
 465		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
 466		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
 467	} else
 468		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
 469
 470	return buf;
 471}
 472
 473/*
 474 * Register device numbers dev..(dev+range-1)
 475 * range must be nonzero
 476 * The hash chain is sorted on range, so that subranges can override.
 477 */
 478void blk_register_region(dev_t devt, unsigned long range, struct module *module,
 479			 struct kobject *(*probe)(dev_t, int *, void *),
 480			 int (*lock)(dev_t, void *), void *data)
 481{
 482	kobj_map(bdev_map, devt, range, module, probe, lock, data);
 483}
 484
 485EXPORT_SYMBOL(blk_register_region);
 486
 487void blk_unregister_region(dev_t devt, unsigned long range)
 488{
 489	kobj_unmap(bdev_map, devt, range);
 490}
 491
 492EXPORT_SYMBOL(blk_unregister_region);
 493
 494static struct kobject *exact_match(dev_t devt, int *partno, void *data)
 495{
 496	struct gendisk *p = data;
 497
 498	return &disk_to_dev(p)->kobj;
 499}
 500
 501static int exact_lock(dev_t devt, void *data)
 502{
 503	struct gendisk *p = data;
 504
 505	if (!get_disk(p))
 506		return -1;
 507	return 0;
 508}
 509
 510void register_disk(struct gendisk *disk)
 
 511{
 512	struct device *ddev = disk_to_dev(disk);
 513	struct block_device *bdev;
 514	struct disk_part_iter piter;
 515	struct hd_struct *part;
 516	int err;
 517
 518	ddev->parent = disk->driverfs_dev;
 519
 520	dev_set_name(ddev, disk->disk_name);
 521
 522	/* delay uevents, until we scanned partition table */
 523	dev_set_uevent_suppress(ddev, 1);
 524
 
 
 
 
 525	if (device_add(ddev))
 526		return;
 527	if (!sysfs_deprecated) {
 528		err = sysfs_create_link(block_depr, &ddev->kobj,
 529					kobject_name(&ddev->kobj));
 530		if (err) {
 531			device_del(ddev);
 532			return;
 533		}
 534	}
 
 
 
 
 
 
 
 
 535	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
 536	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
 537
 
 
 
 
 
 538	/* No minors to use for partitions */
 539	if (!disk_partitionable(disk))
 540		goto exit;
 541
 542	/* No such device (e.g., media were just removed) */
 543	if (!get_capacity(disk))
 544		goto exit;
 545
 546	bdev = bdget_disk(disk, 0);
 547	if (!bdev)
 548		goto exit;
 549
 550	bdev->bd_invalidated = 1;
 551	err = blkdev_get(bdev, FMODE_READ, NULL);
 552	if (err < 0)
 553		goto exit;
 554	blkdev_put(bdev, FMODE_READ);
 555
 556exit:
 557	/* announce disk after possible partitions are created */
 558	dev_set_uevent_suppress(ddev, 0);
 559	kobject_uevent(&ddev->kobj, KOBJ_ADD);
 560
 561	/* announce possible partitions */
 562	disk_part_iter_init(&piter, disk, 0);
 563	while ((part = disk_part_iter_next(&piter)))
 564		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
 565	disk_part_iter_exit(&piter);
 
 
 
 
 
 
 
 566}
 567
 568/**
 569 * add_disk - add partitioning information to kernel list
 
 570 * @disk: per-device partitioning information
 
 
 571 *
 572 * This function registers the partitioning information in @disk
 573 * with the kernel.
 574 *
 575 * FIXME: error handling
 576 */
 577void add_disk(struct gendisk *disk)
 
 
 578{
 579	struct backing_dev_info *bdi;
 580	dev_t devt;
 581	int retval;
 582
 
 
 
 
 
 
 
 
 
 583	/* minors == 0 indicates to use ext devt from part0 and should
 584	 * be accompanied with EXT_DEVT flag.  Make sure all
 585	 * parameters make sense.
 586	 */
 587	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
 588	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
 
 589
 590	disk->flags |= GENHD_FL_UP;
 591
 592	retval = blk_alloc_devt(&disk->part0, &devt);
 593	if (retval) {
 594		WARN_ON(1);
 595		return;
 596	}
 597	disk_to_dev(disk)->devt = devt;
 598
 599	/* ->major and ->first_minor aren't supposed to be
 600	 * dereferenced from here on, but set them just in case.
 601	 */
 602	disk->major = MAJOR(devt);
 603	disk->first_minor = MINOR(devt);
 604
 605	/* Register BDI before referencing it from bdev */
 606	bdi = &disk->queue->backing_dev_info;
 607	bdi_register_dev(bdi, disk_devt(disk));
 608
 609	blk_register_region(disk_devt(disk), disk->minors, NULL,
 610			    exact_match, exact_lock, disk);
 611	register_disk(disk);
 612	blk_register_queue(disk);
 613
 614	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
 615				   "bdi");
 616	WARN_ON(retval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	disk_add_events(disk);
 
 619}
 620EXPORT_SYMBOL(add_disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622void del_gendisk(struct gendisk *disk)
 623{
 624	struct disk_part_iter piter;
 625	struct hd_struct *part;
 626
 
 627	disk_del_events(disk);
 628
 
 
 
 
 
 629	/* invalidate stuff */
 630	disk_part_iter_init(&piter, disk,
 631			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
 632	while ((part = disk_part_iter_next(&piter))) {
 633		invalidate_partition(disk, part->partno);
 
 634		delete_partition(disk, part->partno);
 635	}
 636	disk_part_iter_exit(&piter);
 637
 638	invalidate_partition(disk, 0);
 639	blk_free_devt(disk_to_dev(disk)->devt);
 640	set_capacity(disk, 0);
 641	disk->flags &= ~GENHD_FL_UP;
 
 642
 643	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
 644	bdi_unregister(&disk->queue->backing_dev_info);
 645	blk_unregister_queue(disk);
 646	blk_unregister_region(disk_devt(disk), disk->minors);
 
 
 
 
 
 
 
 
 
 647
 648	part_stat_set_all(&disk->part0, 0);
 649	disk->part0.stamp = 0;
 
 
 
 
 
 
 
 650
 651	kobject_put(disk->part0.holder_dir);
 652	kobject_put(disk->slave_dir);
 653	disk->driverfs_dev = NULL;
 
 
 654	if (!sysfs_deprecated)
 655		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
 
 656	device_del(disk_to_dev(disk));
 657}
 658EXPORT_SYMBOL(del_gendisk);
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660/**
 661 * get_gendisk - get partitioning information for a given device
 662 * @devt: device to get partitioning information for
 663 * @partno: returned partition index
 664 *
 665 * This function gets the structure containing partitioning
 666 * information for the given device @devt.
 667 */
 668struct gendisk *get_gendisk(dev_t devt, int *partno)
 669{
 670	struct gendisk *disk = NULL;
 671
 672	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
 673		struct kobject *kobj;
 674
 675		kobj = kobj_lookup(bdev_map, devt, partno);
 676		if (kobj)
 677			disk = dev_to_disk(kobj_to_dev(kobj));
 678	} else {
 679		struct hd_struct *part;
 680
 681		mutex_lock(&ext_devt_mutex);
 682		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 683		if (part && get_disk(part_to_disk(part))) {
 684			*partno = part->partno;
 685			disk = part_to_disk(part);
 686		}
 687		mutex_unlock(&ext_devt_mutex);
 688	}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690	return disk;
 691}
 692EXPORT_SYMBOL(get_gendisk);
 693
 694/**
 695 * bdget_disk - do bdget() by gendisk and partition number
 696 * @disk: gendisk of interest
 697 * @partno: partition number
 698 *
 699 * Find partition @partno from @disk, do bdget() on it.
 700 *
 701 * CONTEXT:
 702 * Don't care.
 703 *
 704 * RETURNS:
 705 * Resulting block_device on success, NULL on failure.
 706 */
 707struct block_device *bdget_disk(struct gendisk *disk, int partno)
 708{
 709	struct hd_struct *part;
 710	struct block_device *bdev = NULL;
 711
 712	part = disk_get_part(disk, partno);
 713	if (part)
 714		bdev = bdget(part_devt(part));
 715	disk_put_part(part);
 716
 717	return bdev;
 718}
 719EXPORT_SYMBOL(bdget_disk);
 720
 721/*
 722 * print a full list of all partitions - intended for places where the root
 723 * filesystem can't be mounted and thus to give the victim some idea of what
 724 * went wrong
 725 */
 726void __init printk_all_partitions(void)
 727{
 728	struct class_dev_iter iter;
 729	struct device *dev;
 730
 731	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
 732	while ((dev = class_dev_iter_next(&iter))) {
 733		struct gendisk *disk = dev_to_disk(dev);
 734		struct disk_part_iter piter;
 735		struct hd_struct *part;
 736		char name_buf[BDEVNAME_SIZE];
 737		char devt_buf[BDEVT_SIZE];
 738		u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1];
 739
 740		/*
 741		 * Don't show empty devices or things that have been
 742		 * suppressed
 743		 */
 744		if (get_capacity(disk) == 0 ||
 745		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
 746			continue;
 747
 748		/*
 749		 * Note, unlike /proc/partitions, I am showing the
 750		 * numbers in hex - the same format as the root=
 751		 * option takes.
 752		 */
 753		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
 754		while ((part = disk_part_iter_next(&piter))) {
 755			bool is_part0 = part == &disk->part0;
 756
 757			uuid[0] = 0;
 758			if (part->info)
 759				part_unpack_uuid(part->info->uuid, uuid);
 760
 761			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
 762			       bdevt_str(part_devt(part), devt_buf),
 763			       (unsigned long long)part->nr_sects >> 1,
 764			       disk_name(disk, part->partno, name_buf), uuid);
 
 765			if (is_part0) {
 766				if (disk->driverfs_dev != NULL &&
 767				    disk->driverfs_dev->driver != NULL)
 768					printk(" driver: %s\n",
 769					      disk->driverfs_dev->driver->name);
 770				else
 771					printk(" (driver?)\n");
 772			} else
 773				printk("\n");
 774		}
 775		disk_part_iter_exit(&piter);
 776	}
 777	class_dev_iter_exit(&iter);
 778}
 779
 780#ifdef CONFIG_PROC_FS
 781/* iterator */
 782static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
 783{
 784	loff_t skip = *pos;
 785	struct class_dev_iter *iter;
 786	struct device *dev;
 787
 788	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
 789	if (!iter)
 790		return ERR_PTR(-ENOMEM);
 791
 792	seqf->private = iter;
 793	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
 794	do {
 795		dev = class_dev_iter_next(iter);
 796		if (!dev)
 797			return NULL;
 798	} while (skip--);
 799
 800	return dev_to_disk(dev);
 801}
 802
 803static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
 804{
 805	struct device *dev;
 806
 807	(*pos)++;
 808	dev = class_dev_iter_next(seqf->private);
 809	if (dev)
 810		return dev_to_disk(dev);
 811
 812	return NULL;
 813}
 814
 815static void disk_seqf_stop(struct seq_file *seqf, void *v)
 816{
 817	struct class_dev_iter *iter = seqf->private;
 818
 819	/* stop is called even after start failed :-( */
 820	if (iter) {
 821		class_dev_iter_exit(iter);
 822		kfree(iter);
 
 823	}
 824}
 825
 826static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
 827{
 828	static void *p;
 829
 830	p = disk_seqf_start(seqf, pos);
 831	if (!IS_ERR_OR_NULL(p) && !*pos)
 832		seq_puts(seqf, "major minor  #blocks  name\n\n");
 833	return p;
 834}
 835
 836static int show_partition(struct seq_file *seqf, void *v)
 837{
 838	struct gendisk *sgp = v;
 839	struct disk_part_iter piter;
 840	struct hd_struct *part;
 841	char buf[BDEVNAME_SIZE];
 842
 843	/* Don't show non-partitionable removeable devices or empty devices */
 844	if (!get_capacity(sgp) || (!disk_partitionable(sgp) &&
 845				   (sgp->flags & GENHD_FL_REMOVABLE)))
 846		return 0;
 847	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
 848		return 0;
 849
 850	/* show the full disk and all non-0 size partitions of it */
 851	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
 852	while ((part = disk_part_iter_next(&piter)))
 853		seq_printf(seqf, "%4d  %7d %10llu %s\n",
 854			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
 855			   (unsigned long long)part->nr_sects >> 1,
 856			   disk_name(sgp, part->partno, buf));
 857	disk_part_iter_exit(&piter);
 858
 859	return 0;
 860}
 861
 862static const struct seq_operations partitions_op = {
 863	.start	= show_partition_start,
 864	.next	= disk_seqf_next,
 865	.stop	= disk_seqf_stop,
 866	.show	= show_partition
 867};
 868
 869static int partitions_open(struct inode *inode, struct file *file)
 870{
 871	return seq_open(file, &partitions_op);
 872}
 873
 874static const struct file_operations proc_partitions_operations = {
 875	.open		= partitions_open,
 876	.read		= seq_read,
 877	.llseek		= seq_lseek,
 878	.release	= seq_release,
 879};
 880#endif
 881
 882
 883static struct kobject *base_probe(dev_t devt, int *partno, void *data)
 884{
 885	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
 886		/* Make old-style 2.4 aliases work */
 887		request_module("block-major-%d", MAJOR(devt));
 888	return NULL;
 889}
 890
 891static int __init genhd_device_init(void)
 892{
 893	int error;
 894
 895	block_class.dev_kobj = sysfs_dev_block_kobj;
 896	error = class_register(&block_class);
 897	if (unlikely(error))
 898		return error;
 899	bdev_map = kobj_map_init(base_probe, &block_class_lock);
 900	blk_dev_init();
 901
 902	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
 903
 904	/* create top-level block dir */
 905	if (!sysfs_deprecated)
 906		block_depr = kobject_create_and_add("block", NULL);
 907	return 0;
 908}
 909
 910subsys_initcall(genhd_device_init);
 911
 912static ssize_t disk_range_show(struct device *dev,
 913			       struct device_attribute *attr, char *buf)
 914{
 915	struct gendisk *disk = dev_to_disk(dev);
 916
 917	return sprintf(buf, "%d\n", disk->minors);
 918}
 919
 920static ssize_t disk_ext_range_show(struct device *dev,
 921				   struct device_attribute *attr, char *buf)
 922{
 923	struct gendisk *disk = dev_to_disk(dev);
 924
 925	return sprintf(buf, "%d\n", disk_max_parts(disk));
 926}
 927
 928static ssize_t disk_removable_show(struct device *dev,
 929				   struct device_attribute *attr, char *buf)
 930{
 931	struct gendisk *disk = dev_to_disk(dev);
 932
 933	return sprintf(buf, "%d\n",
 934		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
 935}
 936
 
 
 
 
 
 
 
 
 
 937static ssize_t disk_ro_show(struct device *dev,
 938				   struct device_attribute *attr, char *buf)
 939{
 940	struct gendisk *disk = dev_to_disk(dev);
 941
 942	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
 943}
 944
 945static ssize_t disk_capability_show(struct device *dev,
 946				    struct device_attribute *attr, char *buf)
 947{
 948	struct gendisk *disk = dev_to_disk(dev);
 949
 950	return sprintf(buf, "%x\n", disk->flags);
 951}
 952
 953static ssize_t disk_alignment_offset_show(struct device *dev,
 954					  struct device_attribute *attr,
 955					  char *buf)
 956{
 957	struct gendisk *disk = dev_to_disk(dev);
 958
 959	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
 960}
 961
 962static ssize_t disk_discard_alignment_show(struct device *dev,
 963					   struct device_attribute *attr,
 964					   char *buf)
 965{
 966	struct gendisk *disk = dev_to_disk(dev);
 967
 968	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
 969}
 970
 971static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
 972static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
 973static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
 974static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
 975static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
 976static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
 977static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
 978		   NULL);
 979static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
 980static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
 981static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
 
 982#ifdef CONFIG_FAIL_MAKE_REQUEST
 983static struct device_attribute dev_attr_fail =
 984	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
 985#endif
 986#ifdef CONFIG_FAIL_IO_TIMEOUT
 987static struct device_attribute dev_attr_fail_timeout =
 988	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
 989		part_timeout_store);
 990#endif
 991
 992static struct attribute *disk_attrs[] = {
 993	&dev_attr_range.attr,
 994	&dev_attr_ext_range.attr,
 995	&dev_attr_removable.attr,
 
 996	&dev_attr_ro.attr,
 997	&dev_attr_size.attr,
 998	&dev_attr_alignment_offset.attr,
 999	&dev_attr_discard_alignment.attr,
1000	&dev_attr_capability.attr,
1001	&dev_attr_stat.attr,
1002	&dev_attr_inflight.attr,
 
1003#ifdef CONFIG_FAIL_MAKE_REQUEST
1004	&dev_attr_fail.attr,
1005#endif
1006#ifdef CONFIG_FAIL_IO_TIMEOUT
1007	&dev_attr_fail_timeout.attr,
1008#endif
1009	NULL
1010};
1011
 
 
 
 
 
 
 
 
 
 
1012static struct attribute_group disk_attr_group = {
1013	.attrs = disk_attrs,
 
1014};
1015
1016static const struct attribute_group *disk_attr_groups[] = {
1017	&disk_attr_group,
1018	NULL
1019};
1020
1021/**
1022 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1023 * @disk: disk to replace part_tbl for
1024 * @new_ptbl: new part_tbl to install
1025 *
1026 * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1027 * original ptbl is freed using RCU callback.
1028 *
1029 * LOCKING:
1030 * Matching bd_mutx locked.
1031 */
1032static void disk_replace_part_tbl(struct gendisk *disk,
1033				  struct disk_part_tbl *new_ptbl)
1034{
1035	struct disk_part_tbl *old_ptbl = disk->part_tbl;
 
1036
1037	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1038
1039	if (old_ptbl) {
1040		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1041		kfree_rcu(old_ptbl, rcu_head);
1042	}
1043}
1044
1045/**
1046 * disk_expand_part_tbl - expand disk->part_tbl
1047 * @disk: disk to expand part_tbl for
1048 * @partno: expand such that this partno can fit in
1049 *
1050 * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1051 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1052 *
1053 * LOCKING:
1054 * Matching bd_mutex locked, might sleep.
 
1055 *
1056 * RETURNS:
1057 * 0 on success, -errno on failure.
1058 */
1059int disk_expand_part_tbl(struct gendisk *disk, int partno)
1060{
1061	struct disk_part_tbl *old_ptbl = disk->part_tbl;
 
1062	struct disk_part_tbl *new_ptbl;
1063	int len = old_ptbl ? old_ptbl->len : 0;
1064	int target = partno + 1;
1065	size_t size;
1066	int i;
 
 
 
 
 
 
1067
1068	/* disk_max_parts() is zero during initialization, ignore if so */
1069	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1070		return -EINVAL;
1071
1072	if (target <= len)
1073		return 0;
1074
1075	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1076	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1077	if (!new_ptbl)
1078		return -ENOMEM;
1079
1080	new_ptbl->len = target;
1081
1082	for (i = 0; i < len; i++)
1083		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1084
1085	disk_replace_part_tbl(disk, new_ptbl);
1086	return 0;
1087}
1088
1089static void disk_release(struct device *dev)
1090{
1091	struct gendisk *disk = dev_to_disk(dev);
1092
 
1093	disk_release_events(disk);
1094	kfree(disk->random);
1095	disk_replace_part_tbl(disk, NULL);
1096	free_part_stats(&disk->part0);
1097	free_part_info(&disk->part0);
 
1098	kfree(disk);
1099}
1100struct class block_class = {
1101	.name		= "block",
1102};
1103
1104static char *block_devnode(struct device *dev, mode_t *mode)
 
1105{
1106	struct gendisk *disk = dev_to_disk(dev);
1107
1108	if (disk->devnode)
1109		return disk->devnode(disk, mode);
1110	return NULL;
1111}
1112
1113static struct device_type disk_type = {
1114	.name		= "disk",
1115	.groups		= disk_attr_groups,
1116	.release	= disk_release,
1117	.devnode	= block_devnode,
1118};
1119
1120#ifdef CONFIG_PROC_FS
1121/*
1122 * aggregate disk stat collector.  Uses the same stats that the sysfs
1123 * entries do, above, but makes them available through one seq_file.
1124 *
1125 * The output looks suspiciously like /proc/partitions with a bunch of
1126 * extra fields.
1127 */
1128static int diskstats_show(struct seq_file *seqf, void *v)
1129{
1130	struct gendisk *gp = v;
1131	struct disk_part_iter piter;
1132	struct hd_struct *hd;
1133	char buf[BDEVNAME_SIZE];
1134	int cpu;
1135
1136	/*
1137	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1138		seq_puts(seqf,	"major minor name"
1139				"     rio rmerge rsect ruse wio wmerge "
1140				"wsect wuse running use aveq"
1141				"\n\n");
1142	*/
1143
1144	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1145	while ((hd = disk_part_iter_next(&piter))) {
1146		cpu = part_stat_lock();
1147		part_round_stats(cpu, hd);
1148		part_stat_unlock();
1149		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1150			   "%u %lu %lu %lu %u %u %u %u\n",
 
1151			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1152			   disk_name(gp, hd->partno, buf),
1153			   part_stat_read(hd, ios[READ]),
1154			   part_stat_read(hd, merges[READ]),
1155			   part_stat_read(hd, sectors[READ]),
1156			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1157			   part_stat_read(hd, ios[WRITE]),
1158			   part_stat_read(hd, merges[WRITE]),
1159			   part_stat_read(hd, sectors[WRITE]),
1160			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1161			   part_in_flight(hd),
1162			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1163			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
 
 
 
 
1164			);
1165	}
1166	disk_part_iter_exit(&piter);
1167
1168	return 0;
1169}
1170
1171static const struct seq_operations diskstats_op = {
1172	.start	= disk_seqf_start,
1173	.next	= disk_seqf_next,
1174	.stop	= disk_seqf_stop,
1175	.show	= diskstats_show
1176};
1177
1178static int diskstats_open(struct inode *inode, struct file *file)
1179{
1180	return seq_open(file, &diskstats_op);
1181}
1182
1183static const struct file_operations proc_diskstats_operations = {
1184	.open		= diskstats_open,
1185	.read		= seq_read,
1186	.llseek		= seq_lseek,
1187	.release	= seq_release,
1188};
1189
1190static int __init proc_genhd_init(void)
1191{
1192	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1193	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1194	return 0;
1195}
1196module_init(proc_genhd_init);
1197#endif /* CONFIG_PROC_FS */
1198
1199dev_t blk_lookup_devt(const char *name, int partno)
1200{
1201	dev_t devt = MKDEV(0, 0);
1202	struct class_dev_iter iter;
1203	struct device *dev;
1204
1205	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1206	while ((dev = class_dev_iter_next(&iter))) {
1207		struct gendisk *disk = dev_to_disk(dev);
1208		struct hd_struct *part;
1209
1210		if (strcmp(dev_name(dev), name))
1211			continue;
1212
1213		if (partno < disk->minors) {
1214			/* We need to return the right devno, even
1215			 * if the partition doesn't exist yet.
1216			 */
1217			devt = MKDEV(MAJOR(dev->devt),
1218				     MINOR(dev->devt) + partno);
1219			break;
1220		}
1221		part = disk_get_part(disk, partno);
1222		if (part) {
1223			devt = part_devt(part);
1224			disk_put_part(part);
1225			break;
1226		}
1227		disk_put_part(part);
1228	}
1229	class_dev_iter_exit(&iter);
1230	return devt;
1231}
1232EXPORT_SYMBOL(blk_lookup_devt);
1233
1234struct gendisk *alloc_disk(int minors)
1235{
1236	return alloc_disk_node(minors, -1);
1237}
1238EXPORT_SYMBOL(alloc_disk);
1239
1240struct gendisk *alloc_disk_node(int minors, int node_id)
1241{
1242	struct gendisk *disk;
 
 
 
 
 
 
 
 
1243
1244	disk = kmalloc_node(sizeof(struct gendisk),
1245				GFP_KERNEL | __GFP_ZERO, node_id);
1246	if (disk) {
1247		if (!init_part_stats(&disk->part0)) {
1248			kfree(disk);
1249			return NULL;
1250		}
 
1251		disk->node_id = node_id;
1252		if (disk_expand_part_tbl(disk, 0)) {
1253			free_part_stats(&disk->part0);
1254			kfree(disk);
1255			return NULL;
1256		}
1257		disk->part_tbl->part[0] = &disk->part0;
 
1258
1259		hd_ref_init(&disk->part0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261		disk->minors = minors;
1262		rand_initialize_disk(disk);
1263		disk_to_dev(disk)->class = &block_class;
1264		disk_to_dev(disk)->type = &disk_type;
1265		device_initialize(disk_to_dev(disk));
1266	}
1267	return disk;
1268}
1269EXPORT_SYMBOL(alloc_disk_node);
1270
1271struct kobject *get_disk(struct gendisk *disk)
1272{
1273	struct module *owner;
1274	struct kobject *kobj;
1275
1276	if (!disk->fops)
1277		return NULL;
1278	owner = disk->fops->owner;
1279	if (owner && !try_module_get(owner))
1280		return NULL;
1281	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1282	if (kobj == NULL) {
1283		module_put(owner);
1284		return NULL;
1285	}
1286	return kobj;
1287
1288}
1289
1290EXPORT_SYMBOL(get_disk);
1291
1292void put_disk(struct gendisk *disk)
1293{
1294	if (disk)
1295		kobject_put(&disk_to_dev(disk)->kobj);
1296}
1297
1298EXPORT_SYMBOL(put_disk);
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1301{
1302	char event[] = "DISK_RO=1";
1303	char *envp[] = { event, NULL };
1304
1305	if (!ro)
1306		event[8] = '0';
1307	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1308}
1309
1310void set_device_ro(struct block_device *bdev, int flag)
1311{
1312	bdev->bd_part->policy = flag;
1313}
1314
1315EXPORT_SYMBOL(set_device_ro);
1316
1317void set_disk_ro(struct gendisk *disk, int flag)
1318{
1319	struct disk_part_iter piter;
1320	struct hd_struct *part;
1321
1322	if (disk->part0.policy != flag) {
1323		set_disk_ro_uevent(disk, flag);
1324		disk->part0.policy = flag;
1325	}
1326
1327	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1328	while ((part = disk_part_iter_next(&piter)))
1329		part->policy = flag;
1330	disk_part_iter_exit(&piter);
1331}
1332
1333EXPORT_SYMBOL(set_disk_ro);
1334
1335int bdev_read_only(struct block_device *bdev)
1336{
1337	if (!bdev)
1338		return 0;
1339	return bdev->bd_part->policy;
1340}
1341
1342EXPORT_SYMBOL(bdev_read_only);
1343
1344int invalidate_partition(struct gendisk *disk, int partno)
1345{
1346	int res = 0;
1347	struct block_device *bdev = bdget_disk(disk, partno);
1348	if (bdev) {
1349		fsync_bdev(bdev);
1350		res = __invalidate_device(bdev, true);
1351		bdput(bdev);
1352	}
1353	return res;
1354}
1355
1356EXPORT_SYMBOL(invalidate_partition);
1357
1358/*
1359 * Disk events - monitor disk events like media change and eject request.
1360 */
1361struct disk_events {
1362	struct list_head	node;		/* all disk_event's */
1363	struct gendisk		*disk;		/* the associated disk */
1364	spinlock_t		lock;
1365
1366	struct mutex		block_mutex;	/* protects blocking */
1367	int			block;		/* event blocking depth */
1368	unsigned int		pending;	/* events already sent out */
1369	unsigned int		clearing;	/* events being cleared */
1370
1371	long			poll_msecs;	/* interval, -1 for default */
1372	struct delayed_work	dwork;
1373};
1374
1375static const char *disk_events_strs[] = {
1376	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1377	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1378};
1379
1380static char *disk_uevents[] = {
1381	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1382	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1383};
1384
1385/* list of all disk_events */
1386static DEFINE_MUTEX(disk_events_mutex);
1387static LIST_HEAD(disk_events);
1388
1389/* disable in-kernel polling by default */
1390static unsigned long disk_events_dfl_poll_msecs	= 0;
1391
1392static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1393{
1394	struct disk_events *ev = disk->ev;
1395	long intv_msecs = 0;
1396
1397	/*
1398	 * If device-specific poll interval is set, always use it.  If
1399	 * the default is being used, poll iff there are events which
1400	 * can't be monitored asynchronously.
1401	 */
1402	if (ev->poll_msecs >= 0)
1403		intv_msecs = ev->poll_msecs;
1404	else if (disk->events & ~disk->async_events)
1405		intv_msecs = disk_events_dfl_poll_msecs;
1406
1407	return msecs_to_jiffies(intv_msecs);
1408}
1409
1410/**
1411 * disk_block_events - block and flush disk event checking
1412 * @disk: disk to block events for
1413 *
1414 * On return from this function, it is guaranteed that event checking
1415 * isn't in progress and won't happen until unblocked by
1416 * disk_unblock_events().  Events blocking is counted and the actual
1417 * unblocking happens after the matching number of unblocks are done.
1418 *
1419 * Note that this intentionally does not block event checking from
1420 * disk_clear_events().
1421 *
1422 * CONTEXT:
1423 * Might sleep.
1424 */
1425void disk_block_events(struct gendisk *disk)
1426{
1427	struct disk_events *ev = disk->ev;
1428	unsigned long flags;
1429	bool cancel;
1430
1431	if (!ev)
1432		return;
1433
1434	/*
1435	 * Outer mutex ensures that the first blocker completes canceling
1436	 * the event work before further blockers are allowed to finish.
1437	 */
1438	mutex_lock(&ev->block_mutex);
1439
1440	spin_lock_irqsave(&ev->lock, flags);
1441	cancel = !ev->block++;
1442	spin_unlock_irqrestore(&ev->lock, flags);
1443
1444	if (cancel)
1445		cancel_delayed_work_sync(&disk->ev->dwork);
1446
1447	mutex_unlock(&ev->block_mutex);
1448}
1449
1450static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1451{
1452	struct disk_events *ev = disk->ev;
1453	unsigned long intv;
1454	unsigned long flags;
1455
1456	spin_lock_irqsave(&ev->lock, flags);
1457
1458	if (WARN_ON_ONCE(ev->block <= 0))
1459		goto out_unlock;
1460
1461	if (--ev->block)
1462		goto out_unlock;
1463
1464	/*
1465	 * Not exactly a latency critical operation, set poll timer
1466	 * slack to 25% and kick event check.
1467	 */
1468	intv = disk_events_poll_jiffies(disk);
1469	set_timer_slack(&ev->dwork.timer, intv / 4);
1470	if (check_now)
1471		queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
 
1472	else if (intv)
1473		queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
 
1474out_unlock:
1475	spin_unlock_irqrestore(&ev->lock, flags);
1476}
1477
1478/**
1479 * disk_unblock_events - unblock disk event checking
1480 * @disk: disk to unblock events for
1481 *
1482 * Undo disk_block_events().  When the block count reaches zero, it
1483 * starts events polling if configured.
1484 *
1485 * CONTEXT:
1486 * Don't care.  Safe to call from irq context.
1487 */
1488void disk_unblock_events(struct gendisk *disk)
1489{
1490	if (disk->ev)
1491		__disk_unblock_events(disk, false);
1492}
1493
1494/**
1495 * disk_flush_events - schedule immediate event checking and flushing
1496 * @disk: disk to check and flush events for
1497 * @mask: events to flush
1498 *
1499 * Schedule immediate event checking on @disk if not blocked.  Events in
1500 * @mask are scheduled to be cleared from the driver.  Note that this
1501 * doesn't clear the events from @disk->ev.
1502 *
1503 * CONTEXT:
1504 * If @mask is non-zero must be called with bdev->bd_mutex held.
1505 */
1506void disk_flush_events(struct gendisk *disk, unsigned int mask)
1507{
1508	struct disk_events *ev = disk->ev;
1509
1510	if (!ev)
1511		return;
1512
1513	spin_lock_irq(&ev->lock);
1514	ev->clearing |= mask;
1515	if (!ev->block) {
1516		cancel_delayed_work(&ev->dwork);
1517		queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1518	}
1519	spin_unlock_irq(&ev->lock);
1520}
1521
1522/**
1523 * disk_clear_events - synchronously check, clear and return pending events
1524 * @disk: disk to fetch and clear events from
1525 * @mask: mask of events to be fetched and clearted
1526 *
1527 * Disk events are synchronously checked and pending events in @mask
1528 * are cleared and returned.  This ignores the block count.
1529 *
1530 * CONTEXT:
1531 * Might sleep.
1532 */
1533unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1534{
1535	const struct block_device_operations *bdops = disk->fops;
1536	struct disk_events *ev = disk->ev;
1537	unsigned int pending;
 
1538
1539	if (!ev) {
1540		/* for drivers still using the old ->media_changed method */
1541		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1542		    bdops->media_changed && bdops->media_changed(disk))
1543			return DISK_EVENT_MEDIA_CHANGE;
1544		return 0;
1545	}
1546
1547	/* tell the workfn about the events being cleared */
 
 
 
 
 
 
1548	spin_lock_irq(&ev->lock);
1549	ev->clearing |= mask;
 
1550	spin_unlock_irq(&ev->lock);
1551
1552	/* uncondtionally schedule event check and wait for it to finish */
1553	disk_block_events(disk);
1554	queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1555	flush_delayed_work(&ev->dwork);
1556	__disk_unblock_events(disk, false);
 
1557
1558	/* then, fetch and clear pending events */
1559	spin_lock_irq(&ev->lock);
1560	WARN_ON_ONCE(ev->clearing & mask);	/* cleared by workfn */
1561	pending = ev->pending & mask;
1562	ev->pending &= ~mask;
1563	spin_unlock_irq(&ev->lock);
 
1564
1565	return pending;
1566}
1567
 
 
 
 
1568static void disk_events_workfn(struct work_struct *work)
1569{
1570	struct delayed_work *dwork = to_delayed_work(work);
1571	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
 
 
 
 
 
 
 
1572	struct gendisk *disk = ev->disk;
1573	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1574	unsigned int clearing = ev->clearing;
1575	unsigned int events;
1576	unsigned long intv;
1577	int nr_events = 0, i;
1578
1579	/* check events */
1580	events = disk->fops->check_events(disk, clearing);
1581
1582	/* accumulate pending events and schedule next poll if necessary */
1583	spin_lock_irq(&ev->lock);
1584
1585	events &= ~ev->pending;
1586	ev->pending |= events;
1587	ev->clearing &= ~clearing;
1588
1589	intv = disk_events_poll_jiffies(disk);
1590	if (!ev->block && intv)
1591		queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
 
1592
1593	spin_unlock_irq(&ev->lock);
1594
1595	/*
1596	 * Tell userland about new events.  Only the events listed in
1597	 * @disk->events are reported.  Unlisted events are processed the
1598	 * same internally but never get reported to userland.
 
1599	 */
1600	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1601		if (events & disk->events & (1 << i))
 
1602			envp[nr_events++] = disk_uevents[i];
1603
1604	if (nr_events)
1605		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1606}
1607
1608/*
1609 * A disk events enabled device has the following sysfs nodes under
1610 * its /sys/block/X/ directory.
1611 *
1612 * events		: list of all supported events
1613 * events_async		: list of events which can be detected w/o polling
 
1614 * events_poll_msecs	: polling interval, 0: disable, -1: system default
1615 */
1616static ssize_t __disk_events_show(unsigned int events, char *buf)
1617{
1618	const char *delim = "";
1619	ssize_t pos = 0;
1620	int i;
1621
1622	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1623		if (events & (1 << i)) {
1624			pos += sprintf(buf + pos, "%s%s",
1625				       delim, disk_events_strs[i]);
1626			delim = " ";
1627		}
1628	if (pos)
1629		pos += sprintf(buf + pos, "\n");
1630	return pos;
1631}
1632
1633static ssize_t disk_events_show(struct device *dev,
1634				struct device_attribute *attr, char *buf)
1635{
1636	struct gendisk *disk = dev_to_disk(dev);
1637
 
 
 
1638	return __disk_events_show(disk->events, buf);
1639}
1640
1641static ssize_t disk_events_async_show(struct device *dev,
1642				      struct device_attribute *attr, char *buf)
1643{
1644	struct gendisk *disk = dev_to_disk(dev);
1645
1646	return __disk_events_show(disk->async_events, buf);
1647}
1648
1649static ssize_t disk_events_poll_msecs_show(struct device *dev,
1650					   struct device_attribute *attr,
1651					   char *buf)
1652{
1653	struct gendisk *disk = dev_to_disk(dev);
1654
 
 
 
1655	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1656}
1657
1658static ssize_t disk_events_poll_msecs_store(struct device *dev,
1659					    struct device_attribute *attr,
1660					    const char *buf, size_t count)
1661{
1662	struct gendisk *disk = dev_to_disk(dev);
1663	long intv;
1664
1665	if (!count || !sscanf(buf, "%ld", &intv))
1666		return -EINVAL;
1667
1668	if (intv < 0 && intv != -1)
1669		return -EINVAL;
1670
 
 
 
1671	disk_block_events(disk);
1672	disk->ev->poll_msecs = intv;
1673	__disk_unblock_events(disk, true);
1674
1675	return count;
1676}
1677
1678static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1679static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1680static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1681			 disk_events_poll_msecs_show,
1682			 disk_events_poll_msecs_store);
1683
1684static const struct attribute *disk_events_attrs[] = {
1685	&dev_attr_events.attr,
1686	&dev_attr_events_async.attr,
1687	&dev_attr_events_poll_msecs.attr,
1688	NULL,
1689};
1690
1691/*
1692 * The default polling interval can be specified by the kernel
1693 * parameter block.events_dfl_poll_msecs which defaults to 0
1694 * (disable).  This can also be modified runtime by writing to
1695 * /sys/module/block/events_dfl_poll_msecs.
1696 */
1697static int disk_events_set_dfl_poll_msecs(const char *val,
1698					  const struct kernel_param *kp)
1699{
1700	struct disk_events *ev;
1701	int ret;
1702
1703	ret = param_set_ulong(val, kp);
1704	if (ret < 0)
1705		return ret;
1706
1707	mutex_lock(&disk_events_mutex);
1708
1709	list_for_each_entry(ev, &disk_events, node)
1710		disk_flush_events(ev->disk, 0);
1711
1712	mutex_unlock(&disk_events_mutex);
1713
1714	return 0;
1715}
1716
1717static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1718	.set	= disk_events_set_dfl_poll_msecs,
1719	.get	= param_get_ulong,
1720};
1721
1722#undef MODULE_PARAM_PREFIX
1723#define MODULE_PARAM_PREFIX	"block."
1724
1725module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1726		&disk_events_dfl_poll_msecs, 0644);
1727
1728/*
1729 * disk_{add|del|release}_events - initialize and destroy disk_events.
1730 */
1731static void disk_add_events(struct gendisk *disk)
1732{
1733	struct disk_events *ev;
1734
1735	if (!disk->fops->check_events)
1736		return;
1737
1738	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1739	if (!ev) {
1740		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1741		return;
1742	}
1743
1744	if (sysfs_create_files(&disk_to_dev(disk)->kobj,
1745			       disk_events_attrs) < 0) {
1746		pr_warn("%s: failed to create sysfs files for events\n",
1747			disk->disk_name);
1748		kfree(ev);
1749		return;
1750	}
1751
1752	disk->ev = ev;
1753
1754	INIT_LIST_HEAD(&ev->node);
1755	ev->disk = disk;
1756	spin_lock_init(&ev->lock);
1757	mutex_init(&ev->block_mutex);
1758	ev->block = 1;
1759	ev->poll_msecs = -1;
1760	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1761
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	mutex_lock(&disk_events_mutex);
1763	list_add_tail(&ev->node, &disk_events);
1764	mutex_unlock(&disk_events_mutex);
1765
1766	/*
1767	 * Block count is initialized to 1 and the following initial
1768	 * unblock kicks it into action.
1769	 */
1770	__disk_unblock_events(disk, true);
1771}
1772
1773static void disk_del_events(struct gendisk *disk)
1774{
1775	if (!disk->ev)
1776		return;
1777
1778	disk_block_events(disk);
1779
1780	mutex_lock(&disk_events_mutex);
1781	list_del_init(&disk->ev->node);
1782	mutex_unlock(&disk_events_mutex);
 
1783
1784	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1785}
1786
1787static void disk_release_events(struct gendisk *disk)
1788{
1789	/* the block count should be 1 from disk_del_events() */
1790	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1791	kfree(disk->ev);
1792}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  gendisk handling
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/fs.h>
   8#include <linux/genhd.h>
   9#include <linux/kdev_t.h>
  10#include <linux/kernel.h>
  11#include <linux/blkdev.h>
  12#include <linux/backing-dev.h>
  13#include <linux/init.h>
  14#include <linux/spinlock.h>
  15#include <linux/proc_fs.h>
  16#include <linux/seq_file.h>
  17#include <linux/slab.h>
  18#include <linux/kmod.h>
  19#include <linux/kobj_map.h>
 
  20#include <linux/mutex.h>
  21#include <linux/idr.h>
  22#include <linux/log2.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/badblocks.h>
  25
  26#include "blk.h"
  27
  28static DEFINE_MUTEX(block_class_lock);
  29struct kobject *block_depr;
  30
  31/* for extended dynamic devt allocation, currently only one major is used */
  32#define NR_EXT_DEVT		(1 << MINORBITS)
  33
  34/* For extended devt allocation.  ext_devt_lock prevents look up
  35 * results from going away underneath its user.
  36 */
  37static DEFINE_SPINLOCK(ext_devt_lock);
  38static DEFINE_IDR(ext_devt_idr);
  39
  40static const struct device_type disk_type;
  41
  42static void disk_check_events(struct disk_events *ev,
  43			      unsigned int *clearing_ptr);
  44static void disk_alloc_events(struct gendisk *disk);
  45static void disk_add_events(struct gendisk *disk);
  46static void disk_del_events(struct gendisk *disk);
  47static void disk_release_events(struct gendisk *disk);
  48
  49void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
  50{
  51	if (queue_is_mq(q))
  52		return;
  53
  54	part_stat_local_inc(part, in_flight[rw]);
  55	if (part->partno)
  56		part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]);
  57}
  58
  59void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
  60{
  61	if (queue_is_mq(q))
  62		return;
  63
  64	part_stat_local_dec(part, in_flight[rw]);
  65	if (part->partno)
  66		part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]);
  67}
  68
  69unsigned int part_in_flight(struct request_queue *q, struct hd_struct *part)
  70{
  71	int cpu;
  72	unsigned int inflight;
  73
  74	if (queue_is_mq(q)) {
  75		return blk_mq_in_flight(q, part);
  76	}
  77
  78	inflight = 0;
  79	for_each_possible_cpu(cpu) {
  80		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
  81			    part_stat_local_read_cpu(part, in_flight[1], cpu);
  82	}
  83	if ((int)inflight < 0)
  84		inflight = 0;
  85
  86	return inflight;
  87}
  88
  89void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
  90		       unsigned int inflight[2])
  91{
  92	int cpu;
  93
  94	if (queue_is_mq(q)) {
  95		blk_mq_in_flight_rw(q, part, inflight);
  96		return;
  97	}
  98
  99	inflight[0] = 0;
 100	inflight[1] = 0;
 101	for_each_possible_cpu(cpu) {
 102		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
 103		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
 104	}
 105	if ((int)inflight[0] < 0)
 106		inflight[0] = 0;
 107	if ((int)inflight[1] < 0)
 108		inflight[1] = 0;
 109}
 110
 111struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
 112{
 113	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
 114
 115	if (unlikely(partno < 0 || partno >= ptbl->len))
 116		return NULL;
 117	return rcu_dereference(ptbl->part[partno]);
 118}
 119
 120/**
 121 * disk_get_part - get partition
 122 * @disk: disk to look partition from
 123 * @partno: partition number
 124 *
 125 * Look for partition @partno from @disk.  If found, increment
 126 * reference count and return it.
 127 *
 128 * CONTEXT:
 129 * Don't care.
 130 *
 131 * RETURNS:
 132 * Pointer to the found partition on success, NULL if not found.
 133 */
 134struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
 135{
 136	struct hd_struct *part;
 
 
 
 
 137
 138	rcu_read_lock();
 139	part = __disk_get_part(disk, partno);
 140	if (part)
 141		get_device(part_to_dev(part));
 
 
 
 
 
 142	rcu_read_unlock();
 143
 144	return part;
 145}
 146EXPORT_SYMBOL_GPL(disk_get_part);
 147
 148/**
 149 * disk_part_iter_init - initialize partition iterator
 150 * @piter: iterator to initialize
 151 * @disk: disk to iterate over
 152 * @flags: DISK_PITER_* flags
 153 *
 154 * Initialize @piter so that it iterates over partitions of @disk.
 155 *
 156 * CONTEXT:
 157 * Don't care.
 158 */
 159void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
 160			  unsigned int flags)
 161{
 162	struct disk_part_tbl *ptbl;
 163
 164	rcu_read_lock();
 165	ptbl = rcu_dereference(disk->part_tbl);
 166
 167	piter->disk = disk;
 168	piter->part = NULL;
 169
 170	if (flags & DISK_PITER_REVERSE)
 171		piter->idx = ptbl->len - 1;
 172	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
 173		piter->idx = 0;
 174	else
 175		piter->idx = 1;
 176
 177	piter->flags = flags;
 178
 179	rcu_read_unlock();
 180}
 181EXPORT_SYMBOL_GPL(disk_part_iter_init);
 182
 183/**
 184 * disk_part_iter_next - proceed iterator to the next partition and return it
 185 * @piter: iterator of interest
 186 *
 187 * Proceed @piter to the next partition and return it.
 188 *
 189 * CONTEXT:
 190 * Don't care.
 191 */
 192struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
 193{
 194	struct disk_part_tbl *ptbl;
 195	int inc, end;
 196
 197	/* put the last partition */
 198	disk_put_part(piter->part);
 199	piter->part = NULL;
 200
 201	/* get part_tbl */
 202	rcu_read_lock();
 203	ptbl = rcu_dereference(piter->disk->part_tbl);
 204
 205	/* determine iteration parameters */
 206	if (piter->flags & DISK_PITER_REVERSE) {
 207		inc = -1;
 208		if (piter->flags & (DISK_PITER_INCL_PART0 |
 209				    DISK_PITER_INCL_EMPTY_PART0))
 210			end = -1;
 211		else
 212			end = 0;
 213	} else {
 214		inc = 1;
 215		end = ptbl->len;
 216	}
 217
 218	/* iterate to the next partition */
 219	for (; piter->idx != end; piter->idx += inc) {
 220		struct hd_struct *part;
 221
 222		part = rcu_dereference(ptbl->part[piter->idx]);
 223		if (!part)
 224			continue;
 225		if (!part_nr_sects_read(part) &&
 226		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
 227		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
 228		      piter->idx == 0))
 229			continue;
 230
 231		get_device(part_to_dev(part));
 232		piter->part = part;
 233		piter->idx += inc;
 234		break;
 235	}
 236
 237	rcu_read_unlock();
 238
 239	return piter->part;
 240}
 241EXPORT_SYMBOL_GPL(disk_part_iter_next);
 242
 243/**
 244 * disk_part_iter_exit - finish up partition iteration
 245 * @piter: iter of interest
 246 *
 247 * Called when iteration is over.  Cleans up @piter.
 248 *
 249 * CONTEXT:
 250 * Don't care.
 251 */
 252void disk_part_iter_exit(struct disk_part_iter *piter)
 253{
 254	disk_put_part(piter->part);
 255	piter->part = NULL;
 256}
 257EXPORT_SYMBOL_GPL(disk_part_iter_exit);
 258
 259static inline int sector_in_part(struct hd_struct *part, sector_t sector)
 260{
 261	return part->start_sect <= sector &&
 262		sector < part->start_sect + part_nr_sects_read(part);
 263}
 264
 265/**
 266 * disk_map_sector_rcu - map sector to partition
 267 * @disk: gendisk of interest
 268 * @sector: sector to map
 269 *
 270 * Find out which partition @sector maps to on @disk.  This is
 271 * primarily used for stats accounting.
 272 *
 273 * CONTEXT:
 274 * RCU read locked.  The returned partition pointer is valid only
 275 * while preemption is disabled.
 276 *
 277 * RETURNS:
 278 * Found partition on success, part0 is returned if no partition matches
 279 */
 280struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
 281{
 282	struct disk_part_tbl *ptbl;
 283	struct hd_struct *part;
 284	int i;
 285
 286	ptbl = rcu_dereference(disk->part_tbl);
 287
 288	part = rcu_dereference(ptbl->last_lookup);
 289	if (part && sector_in_part(part, sector))
 290		return part;
 291
 292	for (i = 1; i < ptbl->len; i++) {
 293		part = rcu_dereference(ptbl->part[i]);
 294
 295		if (part && sector_in_part(part, sector)) {
 296			rcu_assign_pointer(ptbl->last_lookup, part);
 297			return part;
 298		}
 299	}
 300	return &disk->part0;
 301}
 302EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
 303
 304/*
 305 * Can be deleted altogether. Later.
 306 *
 307 */
 308#define BLKDEV_MAJOR_HASH_SIZE 255
 309static struct blk_major_name {
 310	struct blk_major_name *next;
 311	int major;
 312	char name[16];
 313} *major_names[BLKDEV_MAJOR_HASH_SIZE];
 314
 315/* index in the above - for now: assume no multimajor ranges */
 316static inline int major_to_index(unsigned major)
 317{
 318	return major % BLKDEV_MAJOR_HASH_SIZE;
 319}
 320
 321#ifdef CONFIG_PROC_FS
 322void blkdev_show(struct seq_file *seqf, off_t offset)
 323{
 324	struct blk_major_name *dp;
 325
 326	mutex_lock(&block_class_lock);
 327	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
 328		if (dp->major == offset)
 329			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
 330	mutex_unlock(&block_class_lock);
 
 331}
 332#endif /* CONFIG_PROC_FS */
 333
 334/**
 335 * register_blkdev - register a new block device
 336 *
 337 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
 338 *         @major = 0, try to allocate any unused major number.
 339 * @name: the name of the new block device as a zero terminated string
 340 *
 341 * The @name must be unique within the system.
 342 *
 343 * The return value depends on the @major input parameter:
 344 *
 345 *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
 346 *    then the function returns zero on success, or a negative error code
 347 *  - if any unused major number was requested with @major = 0 parameter
 348 *    then the return value is the allocated major number in range
 349 *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
 350 *
 351 * See Documentation/admin-guide/devices.txt for the list of allocated
 352 * major numbers.
 353 */
 354int register_blkdev(unsigned int major, const char *name)
 355{
 356	struct blk_major_name **n, *p;
 357	int index, ret = 0;
 358
 359	mutex_lock(&block_class_lock);
 360
 361	/* temporary */
 362	if (major == 0) {
 363		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
 364			if (major_names[index] == NULL)
 365				break;
 366		}
 367
 368		if (index == 0) {
 369			printk("%s: failed to get major for %s\n",
 370			       __func__, name);
 371			ret = -EBUSY;
 372			goto out;
 373		}
 374		major = index;
 375		ret = major;
 376	}
 377
 378	if (major >= BLKDEV_MAJOR_MAX) {
 379		pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
 380		       __func__, major, BLKDEV_MAJOR_MAX-1, name);
 381
 382		ret = -EINVAL;
 383		goto out;
 384	}
 385
 386	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
 387	if (p == NULL) {
 388		ret = -ENOMEM;
 389		goto out;
 390	}
 391
 392	p->major = major;
 393	strlcpy(p->name, name, sizeof(p->name));
 394	p->next = NULL;
 395	index = major_to_index(major);
 396
 397	for (n = &major_names[index]; *n; n = &(*n)->next) {
 398		if ((*n)->major == major)
 399			break;
 400	}
 401	if (!*n)
 402		*n = p;
 403	else
 404		ret = -EBUSY;
 405
 406	if (ret < 0) {
 407		printk("register_blkdev: cannot get major %u for %s\n",
 408		       major, name);
 409		kfree(p);
 410	}
 411out:
 412	mutex_unlock(&block_class_lock);
 413	return ret;
 414}
 415
 416EXPORT_SYMBOL(register_blkdev);
 417
 418void unregister_blkdev(unsigned int major, const char *name)
 419{
 420	struct blk_major_name **n;
 421	struct blk_major_name *p = NULL;
 422	int index = major_to_index(major);
 423
 424	mutex_lock(&block_class_lock);
 425	for (n = &major_names[index]; *n; n = &(*n)->next)
 426		if ((*n)->major == major)
 427			break;
 428	if (!*n || strcmp((*n)->name, name)) {
 429		WARN_ON(1);
 430	} else {
 431		p = *n;
 432		*n = p->next;
 433	}
 434	mutex_unlock(&block_class_lock);
 435	kfree(p);
 436}
 437
 438EXPORT_SYMBOL(unregister_blkdev);
 439
 440static struct kobj_map *bdev_map;
 441
 442/**
 443 * blk_mangle_minor - scatter minor numbers apart
 444 * @minor: minor number to mangle
 445 *
 446 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
 447 * is enabled.  Mangling twice gives the original value.
 448 *
 449 * RETURNS:
 450 * Mangled value.
 451 *
 452 * CONTEXT:
 453 * Don't care.
 454 */
 455static int blk_mangle_minor(int minor)
 456{
 457#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
 458	int i;
 459
 460	for (i = 0; i < MINORBITS / 2; i++) {
 461		int low = minor & (1 << i);
 462		int high = minor & (1 << (MINORBITS - 1 - i));
 463		int distance = MINORBITS - 1 - 2 * i;
 464
 465		minor ^= low | high;	/* clear both bits */
 466		low <<= distance;	/* swap the positions */
 467		high >>= distance;
 468		minor |= low | high;	/* and set */
 469	}
 470#endif
 471	return minor;
 472}
 473
 474/**
 475 * blk_alloc_devt - allocate a dev_t for a partition
 476 * @part: partition to allocate dev_t for
 477 * @devt: out parameter for resulting dev_t
 478 *
 479 * Allocate a dev_t for block device.
 480 *
 481 * RETURNS:
 482 * 0 on success, allocated dev_t is returned in *@devt.  -errno on
 483 * failure.
 484 *
 485 * CONTEXT:
 486 * Might sleep.
 487 */
 488int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
 489{
 490	struct gendisk *disk = part_to_disk(part);
 491	int idx;
 492
 493	/* in consecutive minor range? */
 494	if (part->partno < disk->minors) {
 495		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
 496		return 0;
 497	}
 498
 499	/* allocate ext devt */
 500	idr_preload(GFP_KERNEL);
 501
 502	spin_lock_bh(&ext_devt_lock);
 503	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
 504	spin_unlock_bh(&ext_devt_lock);
 505
 506	idr_preload_end();
 507	if (idx < 0)
 508		return idx == -ENOSPC ? -EBUSY : idx;
 
 
 
 
 509
 510	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
 511	return 0;
 512}
 513
 514/**
 515 * blk_free_devt - free a dev_t
 516 * @devt: dev_t to free
 517 *
 518 * Free @devt which was allocated using blk_alloc_devt().
 519 *
 520 * CONTEXT:
 521 * Might sleep.
 522 */
 523void blk_free_devt(dev_t devt)
 524{
 
 
 525	if (devt == MKDEV(0, 0))
 526		return;
 527
 528	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 529		spin_lock_bh(&ext_devt_lock);
 530		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 531		spin_unlock_bh(&ext_devt_lock);
 532	}
 533}
 534
 535/*
 536 * We invalidate devt by assigning NULL pointer for devt in idr.
 537 */
 538void blk_invalidate_devt(dev_t devt)
 539{
 540	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 541		spin_lock_bh(&ext_devt_lock);
 542		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
 543		spin_unlock_bh(&ext_devt_lock);
 544	}
 545}
 546
 547static char *bdevt_str(dev_t devt, char *buf)
 548{
 549	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
 550		char tbuf[BDEVT_SIZE];
 551		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
 552		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
 553	} else
 554		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
 555
 556	return buf;
 557}
 558
 559/*
 560 * Register device numbers dev..(dev+range-1)
 561 * range must be nonzero
 562 * The hash chain is sorted on range, so that subranges can override.
 563 */
 564void blk_register_region(dev_t devt, unsigned long range, struct module *module,
 565			 struct kobject *(*probe)(dev_t, int *, void *),
 566			 int (*lock)(dev_t, void *), void *data)
 567{
 568	kobj_map(bdev_map, devt, range, module, probe, lock, data);
 569}
 570
 571EXPORT_SYMBOL(blk_register_region);
 572
 573void blk_unregister_region(dev_t devt, unsigned long range)
 574{
 575	kobj_unmap(bdev_map, devt, range);
 576}
 577
 578EXPORT_SYMBOL(blk_unregister_region);
 579
 580static struct kobject *exact_match(dev_t devt, int *partno, void *data)
 581{
 582	struct gendisk *p = data;
 583
 584	return &disk_to_dev(p)->kobj;
 585}
 586
 587static int exact_lock(dev_t devt, void *data)
 588{
 589	struct gendisk *p = data;
 590
 591	if (!get_disk_and_module(p))
 592		return -1;
 593	return 0;
 594}
 595
 596static void register_disk(struct device *parent, struct gendisk *disk,
 597			  const struct attribute_group **groups)
 598{
 599	struct device *ddev = disk_to_dev(disk);
 600	struct block_device *bdev;
 601	struct disk_part_iter piter;
 602	struct hd_struct *part;
 603	int err;
 604
 605	ddev->parent = parent;
 606
 607	dev_set_name(ddev, "%s", disk->disk_name);
 608
 609	/* delay uevents, until we scanned partition table */
 610	dev_set_uevent_suppress(ddev, 1);
 611
 612	if (groups) {
 613		WARN_ON(ddev->groups);
 614		ddev->groups = groups;
 615	}
 616	if (device_add(ddev))
 617		return;
 618	if (!sysfs_deprecated) {
 619		err = sysfs_create_link(block_depr, &ddev->kobj,
 620					kobject_name(&ddev->kobj));
 621		if (err) {
 622			device_del(ddev);
 623			return;
 624		}
 625	}
 626
 627	/*
 628	 * avoid probable deadlock caused by allocating memory with
 629	 * GFP_KERNEL in runtime_resume callback of its all ancestor
 630	 * devices
 631	 */
 632	pm_runtime_set_memalloc_noio(ddev, true);
 633
 634	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
 635	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
 636
 637	if (disk->flags & GENHD_FL_HIDDEN) {
 638		dev_set_uevent_suppress(ddev, 0);
 639		return;
 640	}
 641
 642	/* No minors to use for partitions */
 643	if (!disk_part_scan_enabled(disk))
 644		goto exit;
 645
 646	/* No such device (e.g., media were just removed) */
 647	if (!get_capacity(disk))
 648		goto exit;
 649
 650	bdev = bdget_disk(disk, 0);
 651	if (!bdev)
 652		goto exit;
 653
 654	bdev->bd_invalidated = 1;
 655	err = blkdev_get(bdev, FMODE_READ, NULL);
 656	if (err < 0)
 657		goto exit;
 658	blkdev_put(bdev, FMODE_READ);
 659
 660exit:
 661	/* announce disk after possible partitions are created */
 662	dev_set_uevent_suppress(ddev, 0);
 663	kobject_uevent(&ddev->kobj, KOBJ_ADD);
 664
 665	/* announce possible partitions */
 666	disk_part_iter_init(&piter, disk, 0);
 667	while ((part = disk_part_iter_next(&piter)))
 668		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
 669	disk_part_iter_exit(&piter);
 670
 671	if (disk->queue->backing_dev_info->dev) {
 672		err = sysfs_create_link(&ddev->kobj,
 673			  &disk->queue->backing_dev_info->dev->kobj,
 674			  "bdi");
 675		WARN_ON(err);
 676	}
 677}
 678
 679/**
 680 * __device_add_disk - add disk information to kernel list
 681 * @parent: parent device for the disk
 682 * @disk: per-device partitioning information
 683 * @groups: Additional per-device sysfs groups
 684 * @register_queue: register the queue if set to true
 685 *
 686 * This function registers the partitioning information in @disk
 687 * with the kernel.
 688 *
 689 * FIXME: error handling
 690 */
 691static void __device_add_disk(struct device *parent, struct gendisk *disk,
 692			      const struct attribute_group **groups,
 693			      bool register_queue)
 694{
 
 695	dev_t devt;
 696	int retval;
 697
 698	/*
 699	 * The disk queue should now be all set with enough information about
 700	 * the device for the elevator code to pick an adequate default
 701	 * elevator if one is needed, that is, for devices requesting queue
 702	 * registration.
 703	 */
 704	if (register_queue)
 705		elevator_init_mq(disk->queue);
 706
 707	/* minors == 0 indicates to use ext devt from part0 and should
 708	 * be accompanied with EXT_DEVT flag.  Make sure all
 709	 * parameters make sense.
 710	 */
 711	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
 712	WARN_ON(!disk->minors &&
 713		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
 714
 715	disk->flags |= GENHD_FL_UP;
 716
 717	retval = blk_alloc_devt(&disk->part0, &devt);
 718	if (retval) {
 719		WARN_ON(1);
 720		return;
 721	}
 
 
 
 
 
 722	disk->major = MAJOR(devt);
 723	disk->first_minor = MINOR(devt);
 724
 725	disk_alloc_events(disk);
 726
 727	if (disk->flags & GENHD_FL_HIDDEN) {
 728		/*
 729		 * Don't let hidden disks show up in /proc/partitions,
 730		 * and don't bother scanning for partitions either.
 731		 */
 732		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
 733		disk->flags |= GENHD_FL_NO_PART_SCAN;
 734	} else {
 735		int ret;
 736
 737		/* Register BDI before referencing it from bdev */
 738		disk_to_dev(disk)->devt = devt;
 739		ret = bdi_register_owner(disk->queue->backing_dev_info,
 740						disk_to_dev(disk));
 741		WARN_ON(ret);
 742		blk_register_region(disk_devt(disk), disk->minors, NULL,
 743				    exact_match, exact_lock, disk);
 744	}
 745	register_disk(parent, disk, groups);
 746	if (register_queue)
 747		blk_register_queue(disk);
 748
 749	/*
 750	 * Take an extra ref on queue which will be put on disk_release()
 751	 * so that it sticks around as long as @disk is there.
 752	 */
 753	WARN_ON_ONCE(!blk_get_queue(disk->queue));
 754
 755	disk_add_events(disk);
 756	blk_integrity_add(disk);
 757}
 758
 759void device_add_disk(struct device *parent, struct gendisk *disk,
 760		     const struct attribute_group **groups)
 761
 762{
 763	__device_add_disk(parent, disk, groups, true);
 764}
 765EXPORT_SYMBOL(device_add_disk);
 766
 767void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
 768{
 769	__device_add_disk(parent, disk, NULL, false);
 770}
 771EXPORT_SYMBOL(device_add_disk_no_queue_reg);
 772
 773void del_gendisk(struct gendisk *disk)
 774{
 775	struct disk_part_iter piter;
 776	struct hd_struct *part;
 777
 778	blk_integrity_del(disk);
 779	disk_del_events(disk);
 780
 781	/*
 782	 * Block lookups of the disk until all bdevs are unhashed and the
 783	 * disk is marked as dead (GENHD_FL_UP cleared).
 784	 */
 785	down_write(&disk->lookup_sem);
 786	/* invalidate stuff */
 787	disk_part_iter_init(&piter, disk,
 788			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
 789	while ((part = disk_part_iter_next(&piter))) {
 790		invalidate_partition(disk, part->partno);
 791		bdev_unhash_inode(part_devt(part));
 792		delete_partition(disk, part->partno);
 793	}
 794	disk_part_iter_exit(&piter);
 795
 796	invalidate_partition(disk, 0);
 797	bdev_unhash_inode(disk_devt(disk));
 798	set_capacity(disk, 0);
 799	disk->flags &= ~GENHD_FL_UP;
 800	up_write(&disk->lookup_sem);
 801
 802	if (!(disk->flags & GENHD_FL_HIDDEN))
 803		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
 804	if (disk->queue) {
 805		/*
 806		 * Unregister bdi before releasing device numbers (as they can
 807		 * get reused and we'd get clashes in sysfs).
 808		 */
 809		if (!(disk->flags & GENHD_FL_HIDDEN))
 810			bdi_unregister(disk->queue->backing_dev_info);
 811		blk_unregister_queue(disk);
 812	} else {
 813		WARN_ON(1);
 814	}
 815
 816	if (!(disk->flags & GENHD_FL_HIDDEN))
 817		blk_unregister_region(disk_devt(disk), disk->minors);
 818	/*
 819	 * Remove gendisk pointer from idr so that it cannot be looked up
 820	 * while RCU period before freeing gendisk is running to prevent
 821	 * use-after-free issues. Note that the device number stays
 822	 * "in-use" until we really free the gendisk.
 823	 */
 824	blk_invalidate_devt(disk_devt(disk));
 825
 826	kobject_put(disk->part0.holder_dir);
 827	kobject_put(disk->slave_dir);
 828
 829	part_stat_set_all(&disk->part0, 0);
 830	disk->part0.stamp = 0;
 831	if (!sysfs_deprecated)
 832		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
 833	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
 834	device_del(disk_to_dev(disk));
 835}
 836EXPORT_SYMBOL(del_gendisk);
 837
 838/* sysfs access to bad-blocks list. */
 839static ssize_t disk_badblocks_show(struct device *dev,
 840					struct device_attribute *attr,
 841					char *page)
 842{
 843	struct gendisk *disk = dev_to_disk(dev);
 844
 845	if (!disk->bb)
 846		return sprintf(page, "\n");
 847
 848	return badblocks_show(disk->bb, page, 0);
 849}
 850
 851static ssize_t disk_badblocks_store(struct device *dev,
 852					struct device_attribute *attr,
 853					const char *page, size_t len)
 854{
 855	struct gendisk *disk = dev_to_disk(dev);
 856
 857	if (!disk->bb)
 858		return -ENXIO;
 859
 860	return badblocks_store(disk->bb, page, len, 0);
 861}
 862
 863/**
 864 * get_gendisk - get partitioning information for a given device
 865 * @devt: device to get partitioning information for
 866 * @partno: returned partition index
 867 *
 868 * This function gets the structure containing partitioning
 869 * information for the given device @devt.
 870 */
 871struct gendisk *get_gendisk(dev_t devt, int *partno)
 872{
 873	struct gendisk *disk = NULL;
 874
 875	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
 876		struct kobject *kobj;
 877
 878		kobj = kobj_lookup(bdev_map, devt, partno);
 879		if (kobj)
 880			disk = dev_to_disk(kobj_to_dev(kobj));
 881	} else {
 882		struct hd_struct *part;
 883
 884		spin_lock_bh(&ext_devt_lock);
 885		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 886		if (part && get_disk_and_module(part_to_disk(part))) {
 887			*partno = part->partno;
 888			disk = part_to_disk(part);
 889		}
 890		spin_unlock_bh(&ext_devt_lock);
 891	}
 892
 893	if (!disk)
 894		return NULL;
 895
 896	/*
 897	 * Synchronize with del_gendisk() to not return disk that is being
 898	 * destroyed.
 899	 */
 900	down_read(&disk->lookup_sem);
 901	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
 902		     !(disk->flags & GENHD_FL_UP))) {
 903		up_read(&disk->lookup_sem);
 904		put_disk_and_module(disk);
 905		disk = NULL;
 906	} else {
 907		up_read(&disk->lookup_sem);
 908	}
 909	return disk;
 910}
 911EXPORT_SYMBOL(get_gendisk);
 912
 913/**
 914 * bdget_disk - do bdget() by gendisk and partition number
 915 * @disk: gendisk of interest
 916 * @partno: partition number
 917 *
 918 * Find partition @partno from @disk, do bdget() on it.
 919 *
 920 * CONTEXT:
 921 * Don't care.
 922 *
 923 * RETURNS:
 924 * Resulting block_device on success, NULL on failure.
 925 */
 926struct block_device *bdget_disk(struct gendisk *disk, int partno)
 927{
 928	struct hd_struct *part;
 929	struct block_device *bdev = NULL;
 930
 931	part = disk_get_part(disk, partno);
 932	if (part)
 933		bdev = bdget(part_devt(part));
 934	disk_put_part(part);
 935
 936	return bdev;
 937}
 938EXPORT_SYMBOL(bdget_disk);
 939
 940/*
 941 * print a full list of all partitions - intended for places where the root
 942 * filesystem can't be mounted and thus to give the victim some idea of what
 943 * went wrong
 944 */
 945void __init printk_all_partitions(void)
 946{
 947	struct class_dev_iter iter;
 948	struct device *dev;
 949
 950	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
 951	while ((dev = class_dev_iter_next(&iter))) {
 952		struct gendisk *disk = dev_to_disk(dev);
 953		struct disk_part_iter piter;
 954		struct hd_struct *part;
 955		char name_buf[BDEVNAME_SIZE];
 956		char devt_buf[BDEVT_SIZE];
 
 957
 958		/*
 959		 * Don't show empty devices or things that have been
 960		 * suppressed
 961		 */
 962		if (get_capacity(disk) == 0 ||
 963		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
 964			continue;
 965
 966		/*
 967		 * Note, unlike /proc/partitions, I am showing the
 968		 * numbers in hex - the same format as the root=
 969		 * option takes.
 970		 */
 971		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
 972		while ((part = disk_part_iter_next(&piter))) {
 973			bool is_part0 = part == &disk->part0;
 974
 
 
 
 
 975			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
 976			       bdevt_str(part_devt(part), devt_buf),
 977			       (unsigned long long)part_nr_sects_read(part) >> 1
 978			       , disk_name(disk, part->partno, name_buf),
 979			       part->info ? part->info->uuid : "");
 980			if (is_part0) {
 981				if (dev->parent && dev->parent->driver)
 
 982					printk(" driver: %s\n",
 983					      dev->parent->driver->name);
 984				else
 985					printk(" (driver?)\n");
 986			} else
 987				printk("\n");
 988		}
 989		disk_part_iter_exit(&piter);
 990	}
 991	class_dev_iter_exit(&iter);
 992}
 993
 994#ifdef CONFIG_PROC_FS
 995/* iterator */
 996static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
 997{
 998	loff_t skip = *pos;
 999	struct class_dev_iter *iter;
1000	struct device *dev;
1001
1002	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1003	if (!iter)
1004		return ERR_PTR(-ENOMEM);
1005
1006	seqf->private = iter;
1007	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1008	do {
1009		dev = class_dev_iter_next(iter);
1010		if (!dev)
1011			return NULL;
1012	} while (skip--);
1013
1014	return dev_to_disk(dev);
1015}
1016
1017static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1018{
1019	struct device *dev;
1020
1021	(*pos)++;
1022	dev = class_dev_iter_next(seqf->private);
1023	if (dev)
1024		return dev_to_disk(dev);
1025
1026	return NULL;
1027}
1028
1029static void disk_seqf_stop(struct seq_file *seqf, void *v)
1030{
1031	struct class_dev_iter *iter = seqf->private;
1032
1033	/* stop is called even after start failed :-( */
1034	if (iter) {
1035		class_dev_iter_exit(iter);
1036		kfree(iter);
1037		seqf->private = NULL;
1038	}
1039}
1040
1041static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1042{
1043	void *p;
1044
1045	p = disk_seqf_start(seqf, pos);
1046	if (!IS_ERR_OR_NULL(p) && !*pos)
1047		seq_puts(seqf, "major minor  #blocks  name\n\n");
1048	return p;
1049}
1050
1051static int show_partition(struct seq_file *seqf, void *v)
1052{
1053	struct gendisk *sgp = v;
1054	struct disk_part_iter piter;
1055	struct hd_struct *part;
1056	char buf[BDEVNAME_SIZE];
1057
1058	/* Don't show non-partitionable removeable devices or empty devices */
1059	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1060				   (sgp->flags & GENHD_FL_REMOVABLE)))
1061		return 0;
1062	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1063		return 0;
1064
1065	/* show the full disk and all non-0 size partitions of it */
1066	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1067	while ((part = disk_part_iter_next(&piter)))
1068		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1069			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1070			   (unsigned long long)part_nr_sects_read(part) >> 1,
1071			   disk_name(sgp, part->partno, buf));
1072	disk_part_iter_exit(&piter);
1073
1074	return 0;
1075}
1076
1077static const struct seq_operations partitions_op = {
1078	.start	= show_partition_start,
1079	.next	= disk_seqf_next,
1080	.stop	= disk_seqf_stop,
1081	.show	= show_partition
1082};
 
 
 
 
 
 
 
 
 
 
 
 
1083#endif
1084
1085
1086static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1087{
1088	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1089		/* Make old-style 2.4 aliases work */
1090		request_module("block-major-%d", MAJOR(devt));
1091	return NULL;
1092}
1093
1094static int __init genhd_device_init(void)
1095{
1096	int error;
1097
1098	block_class.dev_kobj = sysfs_dev_block_kobj;
1099	error = class_register(&block_class);
1100	if (unlikely(error))
1101		return error;
1102	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1103	blk_dev_init();
1104
1105	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1106
1107	/* create top-level block dir */
1108	if (!sysfs_deprecated)
1109		block_depr = kobject_create_and_add("block", NULL);
1110	return 0;
1111}
1112
1113subsys_initcall(genhd_device_init);
1114
1115static ssize_t disk_range_show(struct device *dev,
1116			       struct device_attribute *attr, char *buf)
1117{
1118	struct gendisk *disk = dev_to_disk(dev);
1119
1120	return sprintf(buf, "%d\n", disk->minors);
1121}
1122
1123static ssize_t disk_ext_range_show(struct device *dev,
1124				   struct device_attribute *attr, char *buf)
1125{
1126	struct gendisk *disk = dev_to_disk(dev);
1127
1128	return sprintf(buf, "%d\n", disk_max_parts(disk));
1129}
1130
1131static ssize_t disk_removable_show(struct device *dev,
1132				   struct device_attribute *attr, char *buf)
1133{
1134	struct gendisk *disk = dev_to_disk(dev);
1135
1136	return sprintf(buf, "%d\n",
1137		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1138}
1139
1140static ssize_t disk_hidden_show(struct device *dev,
1141				   struct device_attribute *attr, char *buf)
1142{
1143	struct gendisk *disk = dev_to_disk(dev);
1144
1145	return sprintf(buf, "%d\n",
1146		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1147}
1148
1149static ssize_t disk_ro_show(struct device *dev,
1150				   struct device_attribute *attr, char *buf)
1151{
1152	struct gendisk *disk = dev_to_disk(dev);
1153
1154	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1155}
1156
1157static ssize_t disk_capability_show(struct device *dev,
1158				    struct device_attribute *attr, char *buf)
1159{
1160	struct gendisk *disk = dev_to_disk(dev);
1161
1162	return sprintf(buf, "%x\n", disk->flags);
1163}
1164
1165static ssize_t disk_alignment_offset_show(struct device *dev,
1166					  struct device_attribute *attr,
1167					  char *buf)
1168{
1169	struct gendisk *disk = dev_to_disk(dev);
1170
1171	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1172}
1173
1174static ssize_t disk_discard_alignment_show(struct device *dev,
1175					   struct device_attribute *attr,
1176					   char *buf)
1177{
1178	struct gendisk *disk = dev_to_disk(dev);
1179
1180	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1181}
1182
1183static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1184static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1185static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1186static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1187static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1188static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1189static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1190static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1191static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1192static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1193static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1194static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1195#ifdef CONFIG_FAIL_MAKE_REQUEST
1196static struct device_attribute dev_attr_fail =
1197	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1198#endif
1199#ifdef CONFIG_FAIL_IO_TIMEOUT
1200static struct device_attribute dev_attr_fail_timeout =
1201	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
 
1202#endif
1203
1204static struct attribute *disk_attrs[] = {
1205	&dev_attr_range.attr,
1206	&dev_attr_ext_range.attr,
1207	&dev_attr_removable.attr,
1208	&dev_attr_hidden.attr,
1209	&dev_attr_ro.attr,
1210	&dev_attr_size.attr,
1211	&dev_attr_alignment_offset.attr,
1212	&dev_attr_discard_alignment.attr,
1213	&dev_attr_capability.attr,
1214	&dev_attr_stat.attr,
1215	&dev_attr_inflight.attr,
1216	&dev_attr_badblocks.attr,
1217#ifdef CONFIG_FAIL_MAKE_REQUEST
1218	&dev_attr_fail.attr,
1219#endif
1220#ifdef CONFIG_FAIL_IO_TIMEOUT
1221	&dev_attr_fail_timeout.attr,
1222#endif
1223	NULL
1224};
1225
1226static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1227{
1228	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1229	struct gendisk *disk = dev_to_disk(dev);
1230
1231	if (a == &dev_attr_badblocks.attr && !disk->bb)
1232		return 0;
1233	return a->mode;
1234}
1235
1236static struct attribute_group disk_attr_group = {
1237	.attrs = disk_attrs,
1238	.is_visible = disk_visible,
1239};
1240
1241static const struct attribute_group *disk_attr_groups[] = {
1242	&disk_attr_group,
1243	NULL
1244};
1245
1246/**
1247 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1248 * @disk: disk to replace part_tbl for
1249 * @new_ptbl: new part_tbl to install
1250 *
1251 * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1252 * original ptbl is freed using RCU callback.
1253 *
1254 * LOCKING:
1255 * Matching bd_mutex locked or the caller is the only user of @disk.
1256 */
1257static void disk_replace_part_tbl(struct gendisk *disk,
1258				  struct disk_part_tbl *new_ptbl)
1259{
1260	struct disk_part_tbl *old_ptbl =
1261		rcu_dereference_protected(disk->part_tbl, 1);
1262
1263	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1264
1265	if (old_ptbl) {
1266		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1267		kfree_rcu(old_ptbl, rcu_head);
1268	}
1269}
1270
1271/**
1272 * disk_expand_part_tbl - expand disk->part_tbl
1273 * @disk: disk to expand part_tbl for
1274 * @partno: expand such that this partno can fit in
1275 *
1276 * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1277 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1278 *
1279 * LOCKING:
1280 * Matching bd_mutex locked or the caller is the only user of @disk.
1281 * Might sleep.
1282 *
1283 * RETURNS:
1284 * 0 on success, -errno on failure.
1285 */
1286int disk_expand_part_tbl(struct gendisk *disk, int partno)
1287{
1288	struct disk_part_tbl *old_ptbl =
1289		rcu_dereference_protected(disk->part_tbl, 1);
1290	struct disk_part_tbl *new_ptbl;
1291	int len = old_ptbl ? old_ptbl->len : 0;
1292	int i, target;
1293
1294	/*
1295	 * check for int overflow, since we can get here from blkpg_ioctl()
1296	 * with a user passed 'partno'.
1297	 */
1298	target = partno + 1;
1299	if (target < 0)
1300		return -EINVAL;
1301
1302	/* disk_max_parts() is zero during initialization, ignore if so */
1303	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1304		return -EINVAL;
1305
1306	if (target <= len)
1307		return 0;
1308
1309	new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1310				disk->node_id);
1311	if (!new_ptbl)
1312		return -ENOMEM;
1313
1314	new_ptbl->len = target;
1315
1316	for (i = 0; i < len; i++)
1317		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1318
1319	disk_replace_part_tbl(disk, new_ptbl);
1320	return 0;
1321}
1322
1323static void disk_release(struct device *dev)
1324{
1325	struct gendisk *disk = dev_to_disk(dev);
1326
1327	blk_free_devt(dev->devt);
1328	disk_release_events(disk);
1329	kfree(disk->random);
1330	disk_replace_part_tbl(disk, NULL);
1331	hd_free_part(&disk->part0);
1332	if (disk->queue)
1333		blk_put_queue(disk->queue);
1334	kfree(disk);
1335}
1336struct class block_class = {
1337	.name		= "block",
1338};
1339
1340static char *block_devnode(struct device *dev, umode_t *mode,
1341			   kuid_t *uid, kgid_t *gid)
1342{
1343	struct gendisk *disk = dev_to_disk(dev);
1344
1345	if (disk->devnode)
1346		return disk->devnode(disk, mode);
1347	return NULL;
1348}
1349
1350static const struct device_type disk_type = {
1351	.name		= "disk",
1352	.groups		= disk_attr_groups,
1353	.release	= disk_release,
1354	.devnode	= block_devnode,
1355};
1356
1357#ifdef CONFIG_PROC_FS
1358/*
1359 * aggregate disk stat collector.  Uses the same stats that the sysfs
1360 * entries do, above, but makes them available through one seq_file.
1361 *
1362 * The output looks suspiciously like /proc/partitions with a bunch of
1363 * extra fields.
1364 */
1365static int diskstats_show(struct seq_file *seqf, void *v)
1366{
1367	struct gendisk *gp = v;
1368	struct disk_part_iter piter;
1369	struct hd_struct *hd;
1370	char buf[BDEVNAME_SIZE];
1371	unsigned int inflight;
1372
1373	/*
1374	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1375		seq_puts(seqf,	"major minor name"
1376				"     rio rmerge rsect ruse wio wmerge "
1377				"wsect wuse running use aveq"
1378				"\n\n");
1379	*/
1380
1381	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1382	while ((hd = disk_part_iter_next(&piter))) {
1383		inflight = part_in_flight(gp->queue, hd);
1384		seq_printf(seqf, "%4d %7d %s "
1385			   "%lu %lu %lu %u "
1386			   "%lu %lu %lu %u "
1387			   "%u %u %u "
1388			   "%lu %lu %lu %u\n",
1389			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1390			   disk_name(gp, hd->partno, buf),
1391			   part_stat_read(hd, ios[STAT_READ]),
1392			   part_stat_read(hd, merges[STAT_READ]),
1393			   part_stat_read(hd, sectors[STAT_READ]),
1394			   (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1395			   part_stat_read(hd, ios[STAT_WRITE]),
1396			   part_stat_read(hd, merges[STAT_WRITE]),
1397			   part_stat_read(hd, sectors[STAT_WRITE]),
1398			   (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1399			   inflight,
1400			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1401			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1402			   part_stat_read(hd, ios[STAT_DISCARD]),
1403			   part_stat_read(hd, merges[STAT_DISCARD]),
1404			   part_stat_read(hd, sectors[STAT_DISCARD]),
1405			   (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD)
1406			);
1407	}
1408	disk_part_iter_exit(&piter);
1409
1410	return 0;
1411}
1412
1413static const struct seq_operations diskstats_op = {
1414	.start	= disk_seqf_start,
1415	.next	= disk_seqf_next,
1416	.stop	= disk_seqf_stop,
1417	.show	= diskstats_show
1418};
1419
 
 
 
 
 
 
 
 
 
 
 
 
1420static int __init proc_genhd_init(void)
1421{
1422	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1423	proc_create_seq("partitions", 0, NULL, &partitions_op);
1424	return 0;
1425}
1426module_init(proc_genhd_init);
1427#endif /* CONFIG_PROC_FS */
1428
1429dev_t blk_lookup_devt(const char *name, int partno)
1430{
1431	dev_t devt = MKDEV(0, 0);
1432	struct class_dev_iter iter;
1433	struct device *dev;
1434
1435	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1436	while ((dev = class_dev_iter_next(&iter))) {
1437		struct gendisk *disk = dev_to_disk(dev);
1438		struct hd_struct *part;
1439
1440		if (strcmp(dev_name(dev), name))
1441			continue;
1442
1443		if (partno < disk->minors) {
1444			/* We need to return the right devno, even
1445			 * if the partition doesn't exist yet.
1446			 */
1447			devt = MKDEV(MAJOR(dev->devt),
1448				     MINOR(dev->devt) + partno);
1449			break;
1450		}
1451		part = disk_get_part(disk, partno);
1452		if (part) {
1453			devt = part_devt(part);
1454			disk_put_part(part);
1455			break;
1456		}
1457		disk_put_part(part);
1458	}
1459	class_dev_iter_exit(&iter);
1460	return devt;
1461}
1462EXPORT_SYMBOL(blk_lookup_devt);
1463
1464struct gendisk *__alloc_disk_node(int minors, int node_id)
 
 
 
 
 
 
1465{
1466	struct gendisk *disk;
1467	struct disk_part_tbl *ptbl;
1468
1469	if (minors > DISK_MAX_PARTS) {
1470		printk(KERN_ERR
1471			"block: can't allocate more than %d partitions\n",
1472			DISK_MAX_PARTS);
1473		minors = DISK_MAX_PARTS;
1474	}
1475
1476	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
 
1477	if (disk) {
1478		if (!init_part_stats(&disk->part0)) {
1479			kfree(disk);
1480			return NULL;
1481		}
1482		init_rwsem(&disk->lookup_sem);
1483		disk->node_id = node_id;
1484		if (disk_expand_part_tbl(disk, 0)) {
1485			free_part_stats(&disk->part0);
1486			kfree(disk);
1487			return NULL;
1488		}
1489		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1490		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1491
1492		/*
1493		 * set_capacity() and get_capacity() currently don't use
1494		 * seqcounter to read/update the part0->nr_sects. Still init
1495		 * the counter as we can read the sectors in IO submission
1496		 * patch using seqence counters.
1497		 *
1498		 * TODO: Ideally set_capacity() and get_capacity() should be
1499		 * converted to make use of bd_mutex and sequence counters.
1500		 */
1501		seqcount_init(&disk->part0.nr_sects_seq);
1502		if (hd_ref_init(&disk->part0)) {
1503			hd_free_part(&disk->part0);
1504			kfree(disk);
1505			return NULL;
1506		}
1507
1508		disk->minors = minors;
1509		rand_initialize_disk(disk);
1510		disk_to_dev(disk)->class = &block_class;
1511		disk_to_dev(disk)->type = &disk_type;
1512		device_initialize(disk_to_dev(disk));
1513	}
1514	return disk;
1515}
1516EXPORT_SYMBOL(__alloc_disk_node);
1517
1518struct kobject *get_disk_and_module(struct gendisk *disk)
1519{
1520	struct module *owner;
1521	struct kobject *kobj;
1522
1523	if (!disk->fops)
1524		return NULL;
1525	owner = disk->fops->owner;
1526	if (owner && !try_module_get(owner))
1527		return NULL;
1528	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1529	if (kobj == NULL) {
1530		module_put(owner);
1531		return NULL;
1532	}
1533	return kobj;
1534
1535}
1536EXPORT_SYMBOL(get_disk_and_module);
 
1537
1538void put_disk(struct gendisk *disk)
1539{
1540	if (disk)
1541		kobject_put(&disk_to_dev(disk)->kobj);
1542}
 
1543EXPORT_SYMBOL(put_disk);
1544
1545/*
1546 * This is a counterpart of get_disk_and_module() and thus also of
1547 * get_gendisk().
1548 */
1549void put_disk_and_module(struct gendisk *disk)
1550{
1551	if (disk) {
1552		struct module *owner = disk->fops->owner;
1553
1554		put_disk(disk);
1555		module_put(owner);
1556	}
1557}
1558EXPORT_SYMBOL(put_disk_and_module);
1559
1560static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1561{
1562	char event[] = "DISK_RO=1";
1563	char *envp[] = { event, NULL };
1564
1565	if (!ro)
1566		event[8] = '0';
1567	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1568}
1569
1570void set_device_ro(struct block_device *bdev, int flag)
1571{
1572	bdev->bd_part->policy = flag;
1573}
1574
1575EXPORT_SYMBOL(set_device_ro);
1576
1577void set_disk_ro(struct gendisk *disk, int flag)
1578{
1579	struct disk_part_iter piter;
1580	struct hd_struct *part;
1581
1582	if (disk->part0.policy != flag) {
1583		set_disk_ro_uevent(disk, flag);
1584		disk->part0.policy = flag;
1585	}
1586
1587	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1588	while ((part = disk_part_iter_next(&piter)))
1589		part->policy = flag;
1590	disk_part_iter_exit(&piter);
1591}
1592
1593EXPORT_SYMBOL(set_disk_ro);
1594
1595int bdev_read_only(struct block_device *bdev)
1596{
1597	if (!bdev)
1598		return 0;
1599	return bdev->bd_part->policy;
1600}
1601
1602EXPORT_SYMBOL(bdev_read_only);
1603
1604int invalidate_partition(struct gendisk *disk, int partno)
1605{
1606	int res = 0;
1607	struct block_device *bdev = bdget_disk(disk, partno);
1608	if (bdev) {
1609		fsync_bdev(bdev);
1610		res = __invalidate_device(bdev, true);
1611		bdput(bdev);
1612	}
1613	return res;
1614}
1615
1616EXPORT_SYMBOL(invalidate_partition);
1617
1618/*
1619 * Disk events - monitor disk events like media change and eject request.
1620 */
1621struct disk_events {
1622	struct list_head	node;		/* all disk_event's */
1623	struct gendisk		*disk;		/* the associated disk */
1624	spinlock_t		lock;
1625
1626	struct mutex		block_mutex;	/* protects blocking */
1627	int			block;		/* event blocking depth */
1628	unsigned int		pending;	/* events already sent out */
1629	unsigned int		clearing;	/* events being cleared */
1630
1631	long			poll_msecs;	/* interval, -1 for default */
1632	struct delayed_work	dwork;
1633};
1634
1635static const char *disk_events_strs[] = {
1636	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1637	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1638};
1639
1640static char *disk_uevents[] = {
1641	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1642	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1643};
1644
1645/* list of all disk_events */
1646static DEFINE_MUTEX(disk_events_mutex);
1647static LIST_HEAD(disk_events);
1648
1649/* disable in-kernel polling by default */
1650static unsigned long disk_events_dfl_poll_msecs;
1651
1652static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1653{
1654	struct disk_events *ev = disk->ev;
1655	long intv_msecs = 0;
1656
1657	/*
1658	 * If device-specific poll interval is set, always use it.  If
1659	 * the default is being used, poll if the POLL flag is set.
 
1660	 */
1661	if (ev->poll_msecs >= 0)
1662		intv_msecs = ev->poll_msecs;
1663	else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1664		intv_msecs = disk_events_dfl_poll_msecs;
1665
1666	return msecs_to_jiffies(intv_msecs);
1667}
1668
1669/**
1670 * disk_block_events - block and flush disk event checking
1671 * @disk: disk to block events for
1672 *
1673 * On return from this function, it is guaranteed that event checking
1674 * isn't in progress and won't happen until unblocked by
1675 * disk_unblock_events().  Events blocking is counted and the actual
1676 * unblocking happens after the matching number of unblocks are done.
1677 *
1678 * Note that this intentionally does not block event checking from
1679 * disk_clear_events().
1680 *
1681 * CONTEXT:
1682 * Might sleep.
1683 */
1684void disk_block_events(struct gendisk *disk)
1685{
1686	struct disk_events *ev = disk->ev;
1687	unsigned long flags;
1688	bool cancel;
1689
1690	if (!ev)
1691		return;
1692
1693	/*
1694	 * Outer mutex ensures that the first blocker completes canceling
1695	 * the event work before further blockers are allowed to finish.
1696	 */
1697	mutex_lock(&ev->block_mutex);
1698
1699	spin_lock_irqsave(&ev->lock, flags);
1700	cancel = !ev->block++;
1701	spin_unlock_irqrestore(&ev->lock, flags);
1702
1703	if (cancel)
1704		cancel_delayed_work_sync(&disk->ev->dwork);
1705
1706	mutex_unlock(&ev->block_mutex);
1707}
1708
1709static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1710{
1711	struct disk_events *ev = disk->ev;
1712	unsigned long intv;
1713	unsigned long flags;
1714
1715	spin_lock_irqsave(&ev->lock, flags);
1716
1717	if (WARN_ON_ONCE(ev->block <= 0))
1718		goto out_unlock;
1719
1720	if (--ev->block)
1721		goto out_unlock;
1722
 
 
 
 
1723	intv = disk_events_poll_jiffies(disk);
 
1724	if (check_now)
1725		queue_delayed_work(system_freezable_power_efficient_wq,
1726				&ev->dwork, 0);
1727	else if (intv)
1728		queue_delayed_work(system_freezable_power_efficient_wq,
1729				&ev->dwork, intv);
1730out_unlock:
1731	spin_unlock_irqrestore(&ev->lock, flags);
1732}
1733
1734/**
1735 * disk_unblock_events - unblock disk event checking
1736 * @disk: disk to unblock events for
1737 *
1738 * Undo disk_block_events().  When the block count reaches zero, it
1739 * starts events polling if configured.
1740 *
1741 * CONTEXT:
1742 * Don't care.  Safe to call from irq context.
1743 */
1744void disk_unblock_events(struct gendisk *disk)
1745{
1746	if (disk->ev)
1747		__disk_unblock_events(disk, false);
1748}
1749
1750/**
1751 * disk_flush_events - schedule immediate event checking and flushing
1752 * @disk: disk to check and flush events for
1753 * @mask: events to flush
1754 *
1755 * Schedule immediate event checking on @disk if not blocked.  Events in
1756 * @mask are scheduled to be cleared from the driver.  Note that this
1757 * doesn't clear the events from @disk->ev.
1758 *
1759 * CONTEXT:
1760 * If @mask is non-zero must be called with bdev->bd_mutex held.
1761 */
1762void disk_flush_events(struct gendisk *disk, unsigned int mask)
1763{
1764	struct disk_events *ev = disk->ev;
1765
1766	if (!ev)
1767		return;
1768
1769	spin_lock_irq(&ev->lock);
1770	ev->clearing |= mask;
1771	if (!ev->block)
1772		mod_delayed_work(system_freezable_power_efficient_wq,
1773				&ev->dwork, 0);
 
1774	spin_unlock_irq(&ev->lock);
1775}
1776
1777/**
1778 * disk_clear_events - synchronously check, clear and return pending events
1779 * @disk: disk to fetch and clear events from
1780 * @mask: mask of events to be fetched and cleared
1781 *
1782 * Disk events are synchronously checked and pending events in @mask
1783 * are cleared and returned.  This ignores the block count.
1784 *
1785 * CONTEXT:
1786 * Might sleep.
1787 */
1788unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1789{
1790	const struct block_device_operations *bdops = disk->fops;
1791	struct disk_events *ev = disk->ev;
1792	unsigned int pending;
1793	unsigned int clearing = mask;
1794
1795	if (!ev) {
1796		/* for drivers still using the old ->media_changed method */
1797		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1798		    bdops->media_changed && bdops->media_changed(disk))
1799			return DISK_EVENT_MEDIA_CHANGE;
1800		return 0;
1801	}
1802
1803	disk_block_events(disk);
1804
1805	/*
1806	 * store the union of mask and ev->clearing on the stack so that the
1807	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1808	 * can still be modified even if events are blocked).
1809	 */
1810	spin_lock_irq(&ev->lock);
1811	clearing |= ev->clearing;
1812	ev->clearing = 0;
1813	spin_unlock_irq(&ev->lock);
1814
1815	disk_check_events(ev, &clearing);
1816	/*
1817	 * if ev->clearing is not 0, the disk_flush_events got called in the
1818	 * middle of this function, so we want to run the workfn without delay.
1819	 */
1820	__disk_unblock_events(disk, ev->clearing ? true : false);
1821
1822	/* then, fetch and clear pending events */
1823	spin_lock_irq(&ev->lock);
 
1824	pending = ev->pending & mask;
1825	ev->pending &= ~mask;
1826	spin_unlock_irq(&ev->lock);
1827	WARN_ON_ONCE(clearing & mask);
1828
1829	return pending;
1830}
1831
1832/*
1833 * Separate this part out so that a different pointer for clearing_ptr can be
1834 * passed in for disk_clear_events.
1835 */
1836static void disk_events_workfn(struct work_struct *work)
1837{
1838	struct delayed_work *dwork = to_delayed_work(work);
1839	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1840
1841	disk_check_events(ev, &ev->clearing);
1842}
1843
1844static void disk_check_events(struct disk_events *ev,
1845			      unsigned int *clearing_ptr)
1846{
1847	struct gendisk *disk = ev->disk;
1848	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1849	unsigned int clearing = *clearing_ptr;
1850	unsigned int events;
1851	unsigned long intv;
1852	int nr_events = 0, i;
1853
1854	/* check events */
1855	events = disk->fops->check_events(disk, clearing);
1856
1857	/* accumulate pending events and schedule next poll if necessary */
1858	spin_lock_irq(&ev->lock);
1859
1860	events &= ~ev->pending;
1861	ev->pending |= events;
1862	*clearing_ptr &= ~clearing;
1863
1864	intv = disk_events_poll_jiffies(disk);
1865	if (!ev->block && intv)
1866		queue_delayed_work(system_freezable_power_efficient_wq,
1867				&ev->dwork, intv);
1868
1869	spin_unlock_irq(&ev->lock);
1870
1871	/*
1872	 * Tell userland about new events.  Only the events listed in
1873	 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
1874	 * is set. Otherwise, events are processed internally but never
1875	 * get reported to userland.
1876	 */
1877	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1878		if ((events & disk->events & (1 << i)) &&
1879		    (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
1880			envp[nr_events++] = disk_uevents[i];
1881
1882	if (nr_events)
1883		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1884}
1885
1886/*
1887 * A disk events enabled device has the following sysfs nodes under
1888 * its /sys/block/X/ directory.
1889 *
1890 * events		: list of all supported events
1891 * events_async		: list of events which can be detected w/o polling
1892 *			  (always empty, only for backwards compatibility)
1893 * events_poll_msecs	: polling interval, 0: disable, -1: system default
1894 */
1895static ssize_t __disk_events_show(unsigned int events, char *buf)
1896{
1897	const char *delim = "";
1898	ssize_t pos = 0;
1899	int i;
1900
1901	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1902		if (events & (1 << i)) {
1903			pos += sprintf(buf + pos, "%s%s",
1904				       delim, disk_events_strs[i]);
1905			delim = " ";
1906		}
1907	if (pos)
1908		pos += sprintf(buf + pos, "\n");
1909	return pos;
1910}
1911
1912static ssize_t disk_events_show(struct device *dev,
1913				struct device_attribute *attr, char *buf)
1914{
1915	struct gendisk *disk = dev_to_disk(dev);
1916
1917	if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
1918		return 0;
1919
1920	return __disk_events_show(disk->events, buf);
1921}
1922
1923static ssize_t disk_events_async_show(struct device *dev,
1924				      struct device_attribute *attr, char *buf)
1925{
1926	return 0;
 
 
1927}
1928
1929static ssize_t disk_events_poll_msecs_show(struct device *dev,
1930					   struct device_attribute *attr,
1931					   char *buf)
1932{
1933	struct gendisk *disk = dev_to_disk(dev);
1934
1935	if (!disk->ev)
1936		return sprintf(buf, "-1\n");
1937
1938	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1939}
1940
1941static ssize_t disk_events_poll_msecs_store(struct device *dev,
1942					    struct device_attribute *attr,
1943					    const char *buf, size_t count)
1944{
1945	struct gendisk *disk = dev_to_disk(dev);
1946	long intv;
1947
1948	if (!count || !sscanf(buf, "%ld", &intv))
1949		return -EINVAL;
1950
1951	if (intv < 0 && intv != -1)
1952		return -EINVAL;
1953
1954	if (!disk->ev)
1955		return -ENODEV;
1956
1957	disk_block_events(disk);
1958	disk->ev->poll_msecs = intv;
1959	__disk_unblock_events(disk, true);
1960
1961	return count;
1962}
1963
1964static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1965static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1966static const DEVICE_ATTR(events_poll_msecs, 0644,
1967			 disk_events_poll_msecs_show,
1968			 disk_events_poll_msecs_store);
1969
1970static const struct attribute *disk_events_attrs[] = {
1971	&dev_attr_events.attr,
1972	&dev_attr_events_async.attr,
1973	&dev_attr_events_poll_msecs.attr,
1974	NULL,
1975};
1976
1977/*
1978 * The default polling interval can be specified by the kernel
1979 * parameter block.events_dfl_poll_msecs which defaults to 0
1980 * (disable).  This can also be modified runtime by writing to
1981 * /sys/module/block/parameters/events_dfl_poll_msecs.
1982 */
1983static int disk_events_set_dfl_poll_msecs(const char *val,
1984					  const struct kernel_param *kp)
1985{
1986	struct disk_events *ev;
1987	int ret;
1988
1989	ret = param_set_ulong(val, kp);
1990	if (ret < 0)
1991		return ret;
1992
1993	mutex_lock(&disk_events_mutex);
1994
1995	list_for_each_entry(ev, &disk_events, node)
1996		disk_flush_events(ev->disk, 0);
1997
1998	mutex_unlock(&disk_events_mutex);
1999
2000	return 0;
2001}
2002
2003static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2004	.set	= disk_events_set_dfl_poll_msecs,
2005	.get	= param_get_ulong,
2006};
2007
2008#undef MODULE_PARAM_PREFIX
2009#define MODULE_PARAM_PREFIX	"block."
2010
2011module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2012		&disk_events_dfl_poll_msecs, 0644);
2013
2014/*
2015 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2016 */
2017static void disk_alloc_events(struct gendisk *disk)
2018{
2019	struct disk_events *ev;
2020
2021	if (!disk->fops->check_events || !disk->events)
2022		return;
2023
2024	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2025	if (!ev) {
2026		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2027		return;
2028	}
2029
 
 
 
 
 
 
 
 
 
 
2030	INIT_LIST_HEAD(&ev->node);
2031	ev->disk = disk;
2032	spin_lock_init(&ev->lock);
2033	mutex_init(&ev->block_mutex);
2034	ev->block = 1;
2035	ev->poll_msecs = -1;
2036	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2037
2038	disk->ev = ev;
2039}
2040
2041static void disk_add_events(struct gendisk *disk)
2042{
2043	/* FIXME: error handling */
2044	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2045		pr_warn("%s: failed to create sysfs files for events\n",
2046			disk->disk_name);
2047
2048	if (!disk->ev)
2049		return;
2050
2051	mutex_lock(&disk_events_mutex);
2052	list_add_tail(&disk->ev->node, &disk_events);
2053	mutex_unlock(&disk_events_mutex);
2054
2055	/*
2056	 * Block count is initialized to 1 and the following initial
2057	 * unblock kicks it into action.
2058	 */
2059	__disk_unblock_events(disk, true);
2060}
2061
2062static void disk_del_events(struct gendisk *disk)
2063{
2064	if (disk->ev) {
2065		disk_block_events(disk);
 
 
2066
2067		mutex_lock(&disk_events_mutex);
2068		list_del_init(&disk->ev->node);
2069		mutex_unlock(&disk_events_mutex);
2070	}
2071
2072	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2073}
2074
2075static void disk_release_events(struct gendisk *disk)
2076{
2077	/* the block count should be 1 from disk_del_events() */
2078	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2079	kfree(disk->ev);
2080}