Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2020 Intel Corporation. */
   3
   4#define _GNU_SOURCE
   5#include <poll.h>
   6#include <pthread.h>
   7#include <signal.h>
   8#include <sched.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <string.h>
  12#include <sys/mman.h>
  13#include <sys/resource.h>
  14#include <sys/socket.h>
  15#include <sys/types.h>
  16#include <time.h>
  17#include <unistd.h>
  18#include <getopt.h>
  19#include <netinet/ether.h>
  20#include <net/if.h>
  21
  22#include <linux/bpf.h>
  23#include <linux/if_link.h>
  24#include <linux/if_xdp.h>
  25
  26#include <bpf/libbpf.h>
  27#include <bpf/xsk.h>
  28#include <bpf/bpf.h>
  29
  30#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  31
  32typedef __u64 u64;
  33typedef __u32 u32;
  34typedef __u16 u16;
  35typedef __u8  u8;
  36
  37/* This program illustrates the packet forwarding between multiple AF_XDP
  38 * sockets in multi-threaded environment. All threads are sharing a common
  39 * buffer pool, with each socket having its own private buffer cache.
  40 *
  41 * Example 1: Single thread handling two sockets. The packets received by socket
  42 * A (interface IFA, queue QA) are forwarded to socket B (interface IFB, queue
  43 * QB), while the packets received by socket B are forwarded to socket A. The
  44 * thread is running on CPU core X:
  45 *
  46 *         ./xsk_fwd -i IFA -q QA -i IFB -q QB -c X
  47 *
  48 * Example 2: Two threads, each handling two sockets. The thread running on CPU
  49 * core X forwards all the packets received by socket A to socket B, and all the
  50 * packets received by socket B to socket A. The thread running on CPU core Y is
  51 * performing the same packet forwarding between sockets C and D:
  52 *
  53 *         ./xsk_fwd -i IFA -q QA -i IFB -q QB -i IFC -q QC -i IFD -q QD
  54 *         -c CX -c CY
  55 */
  56
  57/*
  58 * Buffer pool and buffer cache
  59 *
  60 * For packet forwarding, the packet buffers are typically allocated from the
  61 * pool for packet reception and freed back to the pool for further reuse once
  62 * the packet transmission is completed.
  63 *
  64 * The buffer pool is shared between multiple threads. In order to minimize the
  65 * access latency to the shared buffer pool, each thread creates one (or
  66 * several) buffer caches, which, unlike the buffer pool, are private to the
  67 * thread that creates them and therefore cannot be shared with other threads.
  68 * The access to the shared pool is only needed either (A) when the cache gets
  69 * empty due to repeated buffer allocations and it needs to be replenished from
  70 * the pool, or (B) when the cache gets full due to repeated buffer free and it
  71 * needs to be flushed back to the pull.
  72 *
  73 * In a packet forwarding system, a packet received on any input port can
  74 * potentially be transmitted on any output port, depending on the forwarding
  75 * configuration. For AF_XDP sockets, for this to work with zero-copy of the
  76 * packet buffers when, it is required that the buffer pool memory fits into the
  77 * UMEM area shared by all the sockets.
  78 */
  79
  80struct bpool_params {
  81	u32 n_buffers;
  82	u32 buffer_size;
  83	int mmap_flags;
  84
  85	u32 n_users_max;
  86	u32 n_buffers_per_slab;
  87};
  88
  89/* This buffer pool implementation organizes the buffers into equally sized
  90 * slabs of *n_buffers_per_slab*. Initially, there are *n_slabs* slabs in the
  91 * pool that are completely filled with buffer pointers (full slabs).
  92 *
  93 * Each buffer cache has a slab for buffer allocation and a slab for buffer
  94 * free, with both of these slabs initially empty. When the cache's allocation
  95 * slab goes empty, it is swapped with one of the available full slabs from the
  96 * pool, if any is available. When the cache's free slab goes full, it is
  97 * swapped for one of the empty slabs from the pool, which is guaranteed to
  98 * succeed.
  99 *
 100 * Partially filled slabs never get traded between the cache and the pool
 101 * (except when the cache itself is destroyed), which enables fast operation
 102 * through pointer swapping.
 103 */
 104struct bpool {
 105	struct bpool_params params;
 106	pthread_mutex_t lock;
 107	void *addr;
 108
 109	u64 **slabs;
 110	u64 **slabs_reserved;
 111	u64 *buffers;
 112	u64 *buffers_reserved;
 113
 114	u64 n_slabs;
 115	u64 n_slabs_reserved;
 116	u64 n_buffers;
 117
 118	u64 n_slabs_available;
 119	u64 n_slabs_reserved_available;
 120
 121	struct xsk_umem_config umem_cfg;
 122	struct xsk_ring_prod umem_fq;
 123	struct xsk_ring_cons umem_cq;
 124	struct xsk_umem *umem;
 125};
 126
 127static struct bpool *
 128bpool_init(struct bpool_params *params,
 129	   struct xsk_umem_config *umem_cfg)
 130{
 131	struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY};
 132	u64 n_slabs, n_slabs_reserved, n_buffers, n_buffers_reserved;
 133	u64 slabs_size, slabs_reserved_size;
 134	u64 buffers_size, buffers_reserved_size;
 135	u64 total_size, i;
 136	struct bpool *bp;
 137	u8 *p;
 138	int status;
 139
 140	/* mmap prep. */
 141	if (setrlimit(RLIMIT_MEMLOCK, &r))
 142		return NULL;
 143
 144	/* bpool internals dimensioning. */
 145	n_slabs = (params->n_buffers + params->n_buffers_per_slab - 1) /
 146		params->n_buffers_per_slab;
 147	n_slabs_reserved = params->n_users_max * 2;
 148	n_buffers = n_slabs * params->n_buffers_per_slab;
 149	n_buffers_reserved = n_slabs_reserved * params->n_buffers_per_slab;
 150
 151	slabs_size = n_slabs * sizeof(u64 *);
 152	slabs_reserved_size = n_slabs_reserved * sizeof(u64 *);
 153	buffers_size = n_buffers * sizeof(u64);
 154	buffers_reserved_size = n_buffers_reserved * sizeof(u64);
 155
 156	total_size = sizeof(struct bpool) +
 157		slabs_size + slabs_reserved_size +
 158		buffers_size + buffers_reserved_size;
 159
 160	/* bpool memory allocation. */
 161	p = calloc(total_size, sizeof(u8));
 162	if (!p)
 163		return NULL;
 164
 165	/* bpool memory initialization. */
 166	bp = (struct bpool *)p;
 167	memcpy(&bp->params, params, sizeof(*params));
 168	bp->params.n_buffers = n_buffers;
 169
 170	bp->slabs = (u64 **)&p[sizeof(struct bpool)];
 171	bp->slabs_reserved = (u64 **)&p[sizeof(struct bpool) +
 172		slabs_size];
 173	bp->buffers = (u64 *)&p[sizeof(struct bpool) +
 174		slabs_size + slabs_reserved_size];
 175	bp->buffers_reserved = (u64 *)&p[sizeof(struct bpool) +
 176		slabs_size + slabs_reserved_size + buffers_size];
 177
 178	bp->n_slabs = n_slabs;
 179	bp->n_slabs_reserved = n_slabs_reserved;
 180	bp->n_buffers = n_buffers;
 181
 182	for (i = 0; i < n_slabs; i++)
 183		bp->slabs[i] = &bp->buffers[i * params->n_buffers_per_slab];
 184	bp->n_slabs_available = n_slabs;
 185
 186	for (i = 0; i < n_slabs_reserved; i++)
 187		bp->slabs_reserved[i] = &bp->buffers_reserved[i *
 188			params->n_buffers_per_slab];
 189	bp->n_slabs_reserved_available = n_slabs_reserved;
 190
 191	for (i = 0; i < n_buffers; i++)
 192		bp->buffers[i] = i * params->buffer_size;
 193
 194	/* lock. */
 195	status = pthread_mutex_init(&bp->lock, NULL);
 196	if (status) {
 197		free(p);
 198		return NULL;
 199	}
 200
 201	/* mmap. */
 202	bp->addr = mmap(NULL,
 203			n_buffers * params->buffer_size,
 204			PROT_READ | PROT_WRITE,
 205			MAP_PRIVATE | MAP_ANONYMOUS | params->mmap_flags,
 206			-1,
 207			0);
 208	if (bp->addr == MAP_FAILED) {
 209		pthread_mutex_destroy(&bp->lock);
 210		free(p);
 211		return NULL;
 212	}
 213
 214	/* umem. */
 215	status = xsk_umem__create(&bp->umem,
 216				  bp->addr,
 217				  bp->params.n_buffers * bp->params.buffer_size,
 218				  &bp->umem_fq,
 219				  &bp->umem_cq,
 220				  umem_cfg);
 221	if (status) {
 222		munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
 223		pthread_mutex_destroy(&bp->lock);
 224		free(p);
 225		return NULL;
 226	}
 227	memcpy(&bp->umem_cfg, umem_cfg, sizeof(*umem_cfg));
 228
 229	return bp;
 230}
 231
 232static void
 233bpool_free(struct bpool *bp)
 234{
 235	if (!bp)
 236		return;
 237
 238	xsk_umem__delete(bp->umem);
 239	munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
 240	pthread_mutex_destroy(&bp->lock);
 241	free(bp);
 242}
 243
 244struct bcache {
 245	struct bpool *bp;
 246
 247	u64 *slab_cons;
 248	u64 *slab_prod;
 249
 250	u64 n_buffers_cons;
 251	u64 n_buffers_prod;
 252};
 253
 254static u32
 255bcache_slab_size(struct bcache *bc)
 256{
 257	struct bpool *bp = bc->bp;
 258
 259	return bp->params.n_buffers_per_slab;
 260}
 261
 262static struct bcache *
 263bcache_init(struct bpool *bp)
 264{
 265	struct bcache *bc;
 266
 267	bc = calloc(1, sizeof(struct bcache));
 268	if (!bc)
 269		return NULL;
 270
 271	bc->bp = bp;
 272	bc->n_buffers_cons = 0;
 273	bc->n_buffers_prod = 0;
 274
 275	pthread_mutex_lock(&bp->lock);
 276	if (bp->n_slabs_reserved_available == 0) {
 277		pthread_mutex_unlock(&bp->lock);
 278		free(bc);
 279		return NULL;
 280	}
 281
 282	bc->slab_cons = bp->slabs_reserved[bp->n_slabs_reserved_available - 1];
 283	bc->slab_prod = bp->slabs_reserved[bp->n_slabs_reserved_available - 2];
 284	bp->n_slabs_reserved_available -= 2;
 285	pthread_mutex_unlock(&bp->lock);
 286
 287	return bc;
 288}
 289
 290static void
 291bcache_free(struct bcache *bc)
 292{
 293	struct bpool *bp;
 294
 295	if (!bc)
 296		return;
 297
 298	/* In order to keep this example simple, the case of freeing any
 299	 * existing buffers from the cache back to the pool is ignored.
 300	 */
 301
 302	bp = bc->bp;
 303	pthread_mutex_lock(&bp->lock);
 304	bp->slabs_reserved[bp->n_slabs_reserved_available] = bc->slab_prod;
 305	bp->slabs_reserved[bp->n_slabs_reserved_available + 1] = bc->slab_cons;
 306	bp->n_slabs_reserved_available += 2;
 307	pthread_mutex_unlock(&bp->lock);
 308
 309	free(bc);
 310}
 311
 312/* To work correctly, the implementation requires that the *n_buffers* input
 313 * argument is never greater than the buffer pool's *n_buffers_per_slab*. This
 314 * is typically the case, with one exception taking place when large number of
 315 * buffers are allocated at init time (e.g. for the UMEM fill queue setup).
 316 */
 317static inline u32
 318bcache_cons_check(struct bcache *bc, u32 n_buffers)
 319{
 320	struct bpool *bp = bc->bp;
 321	u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
 322	u64 n_buffers_cons = bc->n_buffers_cons;
 323	u64 n_slabs_available;
 324	u64 *slab_full;
 325
 326	/*
 327	 * Consumer slab is not empty: Use what's available locally. Do not
 328	 * look for more buffers from the pool when the ask can only be
 329	 * partially satisfied.
 330	 */
 331	if (n_buffers_cons)
 332		return (n_buffers_cons < n_buffers) ?
 333			n_buffers_cons :
 334			n_buffers;
 335
 336	/*
 337	 * Consumer slab is empty: look to trade the current consumer slab
 338	 * (full) for a full slab from the pool, if any is available.
 339	 */
 340	pthread_mutex_lock(&bp->lock);
 341	n_slabs_available = bp->n_slabs_available;
 342	if (!n_slabs_available) {
 343		pthread_mutex_unlock(&bp->lock);
 344		return 0;
 345	}
 346
 347	n_slabs_available--;
 348	slab_full = bp->slabs[n_slabs_available];
 349	bp->slabs[n_slabs_available] = bc->slab_cons;
 350	bp->n_slabs_available = n_slabs_available;
 351	pthread_mutex_unlock(&bp->lock);
 352
 353	bc->slab_cons = slab_full;
 354	bc->n_buffers_cons = n_buffers_per_slab;
 355	return n_buffers;
 356}
 357
 358static inline u64
 359bcache_cons(struct bcache *bc)
 360{
 361	u64 n_buffers_cons = bc->n_buffers_cons - 1;
 362	u64 buffer;
 363
 364	buffer = bc->slab_cons[n_buffers_cons];
 365	bc->n_buffers_cons = n_buffers_cons;
 366	return buffer;
 367}
 368
 369static inline void
 370bcache_prod(struct bcache *bc, u64 buffer)
 371{
 372	struct bpool *bp = bc->bp;
 373	u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
 374	u64 n_buffers_prod = bc->n_buffers_prod;
 375	u64 n_slabs_available;
 376	u64 *slab_empty;
 377
 378	/*
 379	 * Producer slab is not yet full: store the current buffer to it.
 380	 */
 381	if (n_buffers_prod < n_buffers_per_slab) {
 382		bc->slab_prod[n_buffers_prod] = buffer;
 383		bc->n_buffers_prod = n_buffers_prod + 1;
 384		return;
 385	}
 386
 387	/*
 388	 * Producer slab is full: trade the cache's current producer slab
 389	 * (full) for an empty slab from the pool, then store the current
 390	 * buffer to the new producer slab. As one full slab exists in the
 391	 * cache, it is guaranteed that there is at least one empty slab
 392	 * available in the pool.
 393	 */
 394	pthread_mutex_lock(&bp->lock);
 395	n_slabs_available = bp->n_slabs_available;
 396	slab_empty = bp->slabs[n_slabs_available];
 397	bp->slabs[n_slabs_available] = bc->slab_prod;
 398	bp->n_slabs_available = n_slabs_available + 1;
 399	pthread_mutex_unlock(&bp->lock);
 400
 401	slab_empty[0] = buffer;
 402	bc->slab_prod = slab_empty;
 403	bc->n_buffers_prod = 1;
 404}
 405
 406/*
 407 * Port
 408 *
 409 * Each of the forwarding ports sits on top of an AF_XDP socket. In order for
 410 * packet forwarding to happen with no packet buffer copy, all the sockets need
 411 * to share the same UMEM area, which is used as the buffer pool memory.
 412 */
 413#ifndef MAX_BURST_RX
 414#define MAX_BURST_RX 64
 415#endif
 416
 417#ifndef MAX_BURST_TX
 418#define MAX_BURST_TX 64
 419#endif
 420
 421struct burst_rx {
 422	u64 addr[MAX_BURST_RX];
 423	u32 len[MAX_BURST_RX];
 424};
 425
 426struct burst_tx {
 427	u64 addr[MAX_BURST_TX];
 428	u32 len[MAX_BURST_TX];
 429	u32 n_pkts;
 430};
 431
 432struct port_params {
 433	struct xsk_socket_config xsk_cfg;
 434	struct bpool *bp;
 435	const char *iface;
 436	u32 iface_queue;
 437};
 438
 439struct port {
 440	struct port_params params;
 441
 442	struct bcache *bc;
 443
 444	struct xsk_ring_cons rxq;
 445	struct xsk_ring_prod txq;
 446	struct xsk_ring_prod umem_fq;
 447	struct xsk_ring_cons umem_cq;
 448	struct xsk_socket *xsk;
 449	int umem_fq_initialized;
 450
 451	u64 n_pkts_rx;
 452	u64 n_pkts_tx;
 453};
 454
 455static void
 456port_free(struct port *p)
 457{
 458	if (!p)
 459		return;
 460
 461	/* To keep this example simple, the code to free the buffers from the
 462	 * socket's receive and transmit queues, as well as from the UMEM fill
 463	 * and completion queues, is not included.
 464	 */
 465
 466	if (p->xsk)
 467		xsk_socket__delete(p->xsk);
 468
 469	bcache_free(p->bc);
 470
 471	free(p);
 472}
 473
 474static struct port *
 475port_init(struct port_params *params)
 476{
 477	struct port *p;
 478	u32 umem_fq_size, pos = 0;
 479	int status, i;
 480
 481	/* Memory allocation and initialization. */
 482	p = calloc(sizeof(struct port), 1);
 483	if (!p)
 484		return NULL;
 485
 486	memcpy(&p->params, params, sizeof(p->params));
 487	umem_fq_size = params->bp->umem_cfg.fill_size;
 488
 489	/* bcache. */
 490	p->bc = bcache_init(params->bp);
 491	if (!p->bc ||
 492	    (bcache_slab_size(p->bc) < umem_fq_size) ||
 493	    (bcache_cons_check(p->bc, umem_fq_size) < umem_fq_size)) {
 494		port_free(p);
 495		return NULL;
 496	}
 497
 498	/* xsk socket. */
 499	status = xsk_socket__create_shared(&p->xsk,
 500					   params->iface,
 501					   params->iface_queue,
 502					   params->bp->umem,
 503					   &p->rxq,
 504					   &p->txq,
 505					   &p->umem_fq,
 506					   &p->umem_cq,
 507					   &params->xsk_cfg);
 508	if (status) {
 509		port_free(p);
 510		return NULL;
 511	}
 512
 513	/* umem fq. */
 514	xsk_ring_prod__reserve(&p->umem_fq, umem_fq_size, &pos);
 515
 516	for (i = 0; i < umem_fq_size; i++)
 517		*xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
 518			bcache_cons(p->bc);
 519
 520	xsk_ring_prod__submit(&p->umem_fq, umem_fq_size);
 521	p->umem_fq_initialized = 1;
 522
 523	return p;
 524}
 525
 526static inline u32
 527port_rx_burst(struct port *p, struct burst_rx *b)
 528{
 529	u32 n_pkts, pos, i;
 530
 531	/* Free buffers for FQ replenish. */
 532	n_pkts = ARRAY_SIZE(b->addr);
 533
 534	n_pkts = bcache_cons_check(p->bc, n_pkts);
 535	if (!n_pkts)
 536		return 0;
 537
 538	/* RXQ. */
 539	n_pkts = xsk_ring_cons__peek(&p->rxq, n_pkts, &pos);
 540	if (!n_pkts) {
 541		if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
 542			struct pollfd pollfd = {
 543				.fd = xsk_socket__fd(p->xsk),
 544				.events = POLLIN,
 545			};
 546
 547			poll(&pollfd, 1, 0);
 548		}
 549		return 0;
 550	}
 551
 552	for (i = 0; i < n_pkts; i++) {
 553		b->addr[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->addr;
 554		b->len[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->len;
 555	}
 556
 557	xsk_ring_cons__release(&p->rxq, n_pkts);
 558	p->n_pkts_rx += n_pkts;
 559
 560	/* UMEM FQ. */
 561	for ( ; ; ) {
 562		int status;
 563
 564		status = xsk_ring_prod__reserve(&p->umem_fq, n_pkts, &pos);
 565		if (status == n_pkts)
 566			break;
 567
 568		if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
 569			struct pollfd pollfd = {
 570				.fd = xsk_socket__fd(p->xsk),
 571				.events = POLLIN,
 572			};
 573
 574			poll(&pollfd, 1, 0);
 575		}
 576	}
 577
 578	for (i = 0; i < n_pkts; i++)
 579		*xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
 580			bcache_cons(p->bc);
 581
 582	xsk_ring_prod__submit(&p->umem_fq, n_pkts);
 583
 584	return n_pkts;
 585}
 586
 587static inline void
 588port_tx_burst(struct port *p, struct burst_tx *b)
 589{
 590	u32 n_pkts, pos, i;
 591	int status;
 592
 593	/* UMEM CQ. */
 594	n_pkts = p->params.bp->umem_cfg.comp_size;
 595
 596	n_pkts = xsk_ring_cons__peek(&p->umem_cq, n_pkts, &pos);
 597
 598	for (i = 0; i < n_pkts; i++) {
 599		u64 addr = *xsk_ring_cons__comp_addr(&p->umem_cq, pos + i);
 600
 601		bcache_prod(p->bc, addr);
 602	}
 603
 604	xsk_ring_cons__release(&p->umem_cq, n_pkts);
 605
 606	/* TXQ. */
 607	n_pkts = b->n_pkts;
 608
 609	for ( ; ; ) {
 610		status = xsk_ring_prod__reserve(&p->txq, n_pkts, &pos);
 611		if (status == n_pkts)
 612			break;
 613
 614		if (xsk_ring_prod__needs_wakeup(&p->txq))
 615			sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT,
 616			       NULL, 0);
 617	}
 618
 619	for (i = 0; i < n_pkts; i++) {
 620		xsk_ring_prod__tx_desc(&p->txq, pos + i)->addr = b->addr[i];
 621		xsk_ring_prod__tx_desc(&p->txq, pos + i)->len = b->len[i];
 622	}
 623
 624	xsk_ring_prod__submit(&p->txq, n_pkts);
 625	if (xsk_ring_prod__needs_wakeup(&p->txq))
 626		sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
 627	p->n_pkts_tx += n_pkts;
 628}
 629
 630/*
 631 * Thread
 632 *
 633 * Packet forwarding threads.
 634 */
 635#ifndef MAX_PORTS_PER_THREAD
 636#define MAX_PORTS_PER_THREAD 16
 637#endif
 638
 639struct thread_data {
 640	struct port *ports_rx[MAX_PORTS_PER_THREAD];
 641	struct port *ports_tx[MAX_PORTS_PER_THREAD];
 642	u32 n_ports_rx;
 643	struct burst_rx burst_rx;
 644	struct burst_tx burst_tx[MAX_PORTS_PER_THREAD];
 645	u32 cpu_core_id;
 646	int quit;
 647};
 648
 649static void swap_mac_addresses(void *data)
 650{
 651	struct ether_header *eth = (struct ether_header *)data;
 652	struct ether_addr *src_addr = (struct ether_addr *)&eth->ether_shost;
 653	struct ether_addr *dst_addr = (struct ether_addr *)&eth->ether_dhost;
 654	struct ether_addr tmp;
 655
 656	tmp = *src_addr;
 657	*src_addr = *dst_addr;
 658	*dst_addr = tmp;
 659}
 660
 661static void *
 662thread_func(void *arg)
 663{
 664	struct thread_data *t = arg;
 665	cpu_set_t cpu_cores;
 666	u32 i;
 667
 668	CPU_ZERO(&cpu_cores);
 669	CPU_SET(t->cpu_core_id, &cpu_cores);
 670	pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_cores);
 671
 672	for (i = 0; !t->quit; i = (i + 1) & (t->n_ports_rx - 1)) {
 673		struct port *port_rx = t->ports_rx[i];
 674		struct port *port_tx = t->ports_tx[i];
 675		struct burst_rx *brx = &t->burst_rx;
 676		struct burst_tx *btx = &t->burst_tx[i];
 677		u32 n_pkts, j;
 678
 679		/* RX. */
 680		n_pkts = port_rx_burst(port_rx, brx);
 681		if (!n_pkts)
 682			continue;
 683
 684		/* Process & TX. */
 685		for (j = 0; j < n_pkts; j++) {
 686			u64 addr = xsk_umem__add_offset_to_addr(brx->addr[j]);
 687			u8 *pkt = xsk_umem__get_data(port_rx->params.bp->addr,
 688						     addr);
 689
 690			swap_mac_addresses(pkt);
 691
 692			btx->addr[btx->n_pkts] = brx->addr[j];
 693			btx->len[btx->n_pkts] = brx->len[j];
 694			btx->n_pkts++;
 695
 696			if (btx->n_pkts == MAX_BURST_TX) {
 697				port_tx_burst(port_tx, btx);
 698				btx->n_pkts = 0;
 699			}
 700		}
 701	}
 702
 703	return NULL;
 704}
 705
 706/*
 707 * Process
 708 */
 709static const struct bpool_params bpool_params_default = {
 710	.n_buffers = 64 * 1024,
 711	.buffer_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
 712	.mmap_flags = 0,
 713
 714	.n_users_max = 16,
 715	.n_buffers_per_slab = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
 716};
 717
 718static const struct xsk_umem_config umem_cfg_default = {
 719	.fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
 720	.comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
 721	.frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
 722	.frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM,
 723	.flags = 0,
 724};
 725
 726static const struct port_params port_params_default = {
 727	.xsk_cfg = {
 728		.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
 729		.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS,
 730		.libbpf_flags = 0,
 731		.xdp_flags = XDP_FLAGS_DRV_MODE,
 732		.bind_flags = XDP_USE_NEED_WAKEUP | XDP_ZEROCOPY,
 733	},
 734
 735	.bp = NULL,
 736	.iface = NULL,
 737	.iface_queue = 0,
 738};
 739
 740#ifndef MAX_PORTS
 741#define MAX_PORTS 64
 742#endif
 743
 744#ifndef MAX_THREADS
 745#define MAX_THREADS 64
 746#endif
 747
 748static struct bpool_params bpool_params;
 749static struct xsk_umem_config umem_cfg;
 750static struct bpool *bp;
 751
 752static struct port_params port_params[MAX_PORTS];
 753static struct port *ports[MAX_PORTS];
 754static u64 n_pkts_rx[MAX_PORTS];
 755static u64 n_pkts_tx[MAX_PORTS];
 756static int n_ports;
 757
 758static pthread_t threads[MAX_THREADS];
 759static struct thread_data thread_data[MAX_THREADS];
 760static int n_threads;
 761
 762static void
 763print_usage(char *prog_name)
 764{
 765	const char *usage =
 766		"Usage:\n"
 767		"\t%s [ -b SIZE ] -c CORE -i INTERFACE [ -q QUEUE ]\n"
 768		"\n"
 769		"-c CORE        CPU core to run a packet forwarding thread\n"
 770		"               on. May be invoked multiple times.\n"
 771		"\n"
 772		"-b SIZE        Number of buffers in the buffer pool shared\n"
 773		"               by all the forwarding threads. Default: %u.\n"
 774		"\n"
 775		"-i INTERFACE   Network interface. Each (INTERFACE, QUEUE)\n"
 776		"               pair specifies one forwarding port. May be\n"
 777		"               invoked multiple times.\n"
 778		"\n"
 779		"-q QUEUE       Network interface queue for RX and TX. Each\n"
 780		"               (INTERFACE, QUEUE) pair specified one\n"
 781		"               forwarding port. Default: %u. May be invoked\n"
 782		"               multiple times.\n"
 783		"\n";
 784	printf(usage,
 785	       prog_name,
 786	       bpool_params_default.n_buffers,
 787	       port_params_default.iface_queue);
 788}
 789
 790static int
 791parse_args(int argc, char **argv)
 792{
 793	struct option lgopts[] = {
 794		{ NULL,  0, 0, 0 }
 795	};
 796	int opt, option_index;
 797
 798	/* Parse the input arguments. */
 799	for ( ; ;) {
 800		opt = getopt_long(argc, argv, "c:i:q:", lgopts, &option_index);
 801		if (opt == EOF)
 802			break;
 803
 804		switch (opt) {
 805		case 'b':
 806			bpool_params.n_buffers = atoi(optarg);
 807			break;
 808
 809		case 'c':
 810			if (n_threads == MAX_THREADS) {
 811				printf("Max number of threads (%d) reached.\n",
 812				       MAX_THREADS);
 813				return -1;
 814			}
 815
 816			thread_data[n_threads].cpu_core_id = atoi(optarg);
 817			n_threads++;
 818			break;
 819
 820		case 'i':
 821			if (n_ports == MAX_PORTS) {
 822				printf("Max number of ports (%d) reached.\n",
 823				       MAX_PORTS);
 824				return -1;
 825			}
 826
 827			port_params[n_ports].iface = optarg;
 828			port_params[n_ports].iface_queue = 0;
 829			n_ports++;
 830			break;
 831
 832		case 'q':
 833			if (n_ports == 0) {
 834				printf("No port specified for queue.\n");
 835				return -1;
 836			}
 837			port_params[n_ports - 1].iface_queue = atoi(optarg);
 838			break;
 839
 840		default:
 841			printf("Illegal argument.\n");
 842			return -1;
 843		}
 844	}
 845
 846	optind = 1; /* reset getopt lib */
 847
 848	/* Check the input arguments. */
 849	if (!n_ports) {
 850		printf("No ports specified.\n");
 851		return -1;
 852	}
 853
 854	if (!n_threads) {
 855		printf("No threads specified.\n");
 856		return -1;
 857	}
 858
 859	if (n_ports % n_threads) {
 860		printf("Ports cannot be evenly distributed to threads.\n");
 861		return -1;
 862	}
 863
 864	return 0;
 865}
 866
 867static void
 868print_port(u32 port_id)
 869{
 870	struct port *port = ports[port_id];
 871
 872	printf("Port %u: interface = %s, queue = %u\n",
 873	       port_id, port->params.iface, port->params.iface_queue);
 874}
 875
 876static void
 877print_thread(u32 thread_id)
 878{
 879	struct thread_data *t = &thread_data[thread_id];
 880	u32 i;
 881
 882	printf("Thread %u (CPU core %u): ",
 883	       thread_id, t->cpu_core_id);
 884
 885	for (i = 0; i < t->n_ports_rx; i++) {
 886		struct port *port_rx = t->ports_rx[i];
 887		struct port *port_tx = t->ports_tx[i];
 888
 889		printf("(%s, %u) -> (%s, %u), ",
 890		       port_rx->params.iface,
 891		       port_rx->params.iface_queue,
 892		       port_tx->params.iface,
 893		       port_tx->params.iface_queue);
 894	}
 895
 896	printf("\n");
 897}
 898
 899static void
 900print_port_stats_separator(void)
 901{
 902	printf("+-%4s-+-%12s-+-%13s-+-%12s-+-%13s-+\n",
 903	       "----",
 904	       "------------",
 905	       "-------------",
 906	       "------------",
 907	       "-------------");
 908}
 909
 910static void
 911print_port_stats_header(void)
 912{
 913	print_port_stats_separator();
 914	printf("| %4s | %12s | %13s | %12s | %13s |\n",
 915	       "Port",
 916	       "RX packets",
 917	       "RX rate (pps)",
 918	       "TX packets",
 919	       "TX_rate (pps)");
 920	print_port_stats_separator();
 921}
 922
 923static void
 924print_port_stats_trailer(void)
 925{
 926	print_port_stats_separator();
 927	printf("\n");
 928}
 929
 930static void
 931print_port_stats(int port_id, u64 ns_diff)
 932{
 933	struct port *p = ports[port_id];
 934	double rx_pps, tx_pps;
 935
 936	rx_pps = (p->n_pkts_rx - n_pkts_rx[port_id]) * 1000000000. / ns_diff;
 937	tx_pps = (p->n_pkts_tx - n_pkts_tx[port_id]) * 1000000000. / ns_diff;
 938
 939	printf("| %4d | %12llu | %13.0f | %12llu | %13.0f |\n",
 940	       port_id,
 941	       p->n_pkts_rx,
 942	       rx_pps,
 943	       p->n_pkts_tx,
 944	       tx_pps);
 945
 946	n_pkts_rx[port_id] = p->n_pkts_rx;
 947	n_pkts_tx[port_id] = p->n_pkts_tx;
 948}
 949
 950static void
 951print_port_stats_all(u64 ns_diff)
 952{
 953	int i;
 954
 955	print_port_stats_header();
 956	for (i = 0; i < n_ports; i++)
 957		print_port_stats(i, ns_diff);
 958	print_port_stats_trailer();
 959}
 960
 961static int quit;
 962
 963static void
 964signal_handler(int sig)
 965{
 966	quit = 1;
 967}
 968
 969static void remove_xdp_program(void)
 970{
 971	int i;
 972
 973	for (i = 0 ; i < n_ports; i++)
 974		bpf_set_link_xdp_fd(if_nametoindex(port_params[i].iface), -1,
 975				    port_params[i].xsk_cfg.xdp_flags);
 976}
 977
 978int main(int argc, char **argv)
 979{
 980	struct timespec time;
 981	u64 ns0;
 982	int i;
 983
 984	/* Parse args. */
 985	memcpy(&bpool_params, &bpool_params_default,
 986	       sizeof(struct bpool_params));
 987	memcpy(&umem_cfg, &umem_cfg_default,
 988	       sizeof(struct xsk_umem_config));
 989	for (i = 0; i < MAX_PORTS; i++)
 990		memcpy(&port_params[i], &port_params_default,
 991		       sizeof(struct port_params));
 992
 993	if (parse_args(argc, argv)) {
 994		print_usage(argv[0]);
 995		return -1;
 996	}
 997
 998	/* Buffer pool initialization. */
 999	bp = bpool_init(&bpool_params, &umem_cfg);
1000	if (!bp) {
1001		printf("Buffer pool initialization failed.\n");
1002		return -1;
1003	}
1004	printf("Buffer pool created successfully.\n");
1005
1006	/* Ports initialization. */
1007	for (i = 0; i < MAX_PORTS; i++)
1008		port_params[i].bp = bp;
1009
1010	for (i = 0; i < n_ports; i++) {
1011		ports[i] = port_init(&port_params[i]);
1012		if (!ports[i]) {
1013			printf("Port %d initialization failed.\n", i);
1014			return -1;
1015		}
1016		print_port(i);
1017	}
1018	printf("All ports created successfully.\n");
1019
1020	/* Threads. */
1021	for (i = 0; i < n_threads; i++) {
1022		struct thread_data *t = &thread_data[i];
1023		u32 n_ports_per_thread = n_ports / n_threads, j;
1024
1025		for (j = 0; j < n_ports_per_thread; j++) {
1026			t->ports_rx[j] = ports[i * n_ports_per_thread + j];
1027			t->ports_tx[j] = ports[i * n_ports_per_thread +
1028				(j + 1) % n_ports_per_thread];
1029		}
1030
1031		t->n_ports_rx = n_ports_per_thread;
1032
1033		print_thread(i);
1034	}
1035
1036	for (i = 0; i < n_threads; i++) {
1037		int status;
1038
1039		status = pthread_create(&threads[i],
1040					NULL,
1041					thread_func,
1042					&thread_data[i]);
1043		if (status) {
1044			printf("Thread %d creation failed.\n", i);
1045			return -1;
1046		}
1047	}
1048	printf("All threads created successfully.\n");
1049
1050	/* Print statistics. */
1051	signal(SIGINT, signal_handler);
1052	signal(SIGTERM, signal_handler);
1053	signal(SIGABRT, signal_handler);
1054
1055	clock_gettime(CLOCK_MONOTONIC, &time);
1056	ns0 = time.tv_sec * 1000000000UL + time.tv_nsec;
1057	for ( ; !quit; ) {
1058		u64 ns1, ns_diff;
1059
1060		sleep(1);
1061		clock_gettime(CLOCK_MONOTONIC, &time);
1062		ns1 = time.tv_sec * 1000000000UL + time.tv_nsec;
1063		ns_diff = ns1 - ns0;
1064		ns0 = ns1;
1065
1066		print_port_stats_all(ns_diff);
1067	}
1068
1069	/* Threads completion. */
1070	printf("Quit.\n");
1071	for (i = 0; i < n_threads; i++)
1072		thread_data[i].quit = 1;
1073
1074	for (i = 0; i < n_threads; i++)
1075		pthread_join(threads[i], NULL);
1076
1077	for (i = 0; i < n_ports; i++)
1078		port_free(ports[i]);
1079
1080	bpool_free(bp);
1081
1082	remove_xdp_program();
1083
1084	return 0;
1085}