Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
  3 *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
  4 *
  5 *  An implementation of the DCCP protocol
  6 *
  7 *  This code has been developed by the University of Waikato WAND
  8 *  research group. For further information please see http://www.wand.net.nz/
  9 *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
 10 *
 11 *  This code also uses code from Lulea University, rereleased as GPL by its
 12 *  authors:
 13 *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
 14 *
 15 *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
 16 *  and to make it work as a loadable module in the DCCP stack written by
 17 *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
 18 *
 19 *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 20 *
 21 *  This program is free software; you can redistribute it and/or modify
 22 *  it under the terms of the GNU General Public License as published by
 23 *  the Free Software Foundation; either version 2 of the License, or
 24 *  (at your option) any later version.
 25 *
 26 *  This program is distributed in the hope that it will be useful,
 27 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 28 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 29 *  GNU General Public License for more details.
 30 *
 31 *  You should have received a copy of the GNU General Public License
 32 *  along with this program; if not, write to the Free Software
 33 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 34 */
 35
 36#include <linux/string.h>
 37#include <linux/slab.h>
 38#include "packet_history.h"
 39#include "../../dccp.h"
 40
 41/*
 42 * Transmitter History Routines
 43 */
 44static struct kmem_cache *tfrc_tx_hist_slab;
 45
 46int __init tfrc_tx_packet_history_init(void)
 47{
 48	tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
 49					      sizeof(struct tfrc_tx_hist_entry),
 50					      0, SLAB_HWCACHE_ALIGN, NULL);
 51	return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
 52}
 53
 54void tfrc_tx_packet_history_exit(void)
 55{
 56	if (tfrc_tx_hist_slab != NULL) {
 57		kmem_cache_destroy(tfrc_tx_hist_slab);
 58		tfrc_tx_hist_slab = NULL;
 59	}
 60}
 61
 62int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
 63{
 64	struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
 65
 66	if (entry == NULL)
 67		return -ENOBUFS;
 68	entry->seqno = seqno;
 69	entry->stamp = ktime_get_real();
 70	entry->next  = *headp;
 71	*headp	     = entry;
 72	return 0;
 73}
 74
 75void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
 76{
 77	struct tfrc_tx_hist_entry *head = *headp;
 78
 79	while (head != NULL) {
 80		struct tfrc_tx_hist_entry *next = head->next;
 81
 82		kmem_cache_free(tfrc_tx_hist_slab, head);
 83		head = next;
 84	}
 85
 86	*headp = NULL;
 87}
 88
 89/*
 90 *	Receiver History Routines
 91 */
 92static struct kmem_cache *tfrc_rx_hist_slab;
 93
 94int __init tfrc_rx_packet_history_init(void)
 95{
 96	tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
 97					      sizeof(struct tfrc_rx_hist_entry),
 98					      0, SLAB_HWCACHE_ALIGN, NULL);
 99	return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
100}
101
102void tfrc_rx_packet_history_exit(void)
103{
104	if (tfrc_rx_hist_slab != NULL) {
105		kmem_cache_destroy(tfrc_rx_hist_slab);
106		tfrc_rx_hist_slab = NULL;
107	}
108}
109
110static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
111					       const struct sk_buff *skb,
112					       const u64 ndp)
113{
114	const struct dccp_hdr *dh = dccp_hdr(skb);
115
116	entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
117	entry->tfrchrx_ccval = dh->dccph_ccval;
118	entry->tfrchrx_type  = dh->dccph_type;
119	entry->tfrchrx_ndp   = ndp;
120	entry->tfrchrx_tstamp = ktime_get_real();
121}
122
123void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
124			     const struct sk_buff *skb,
125			     const u64 ndp)
126{
127	struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
128
129	tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
130}
131
132/* has the packet contained in skb been seen before? */
133int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
134{
135	const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
136	int i;
137
138	if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
139		return 1;
140
141	for (i = 1; i <= h->loss_count; i++)
142		if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
143			return 1;
144
145	return 0;
146}
147
148static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
149{
150	const u8 idx_a = tfrc_rx_hist_index(h, a),
151		 idx_b = tfrc_rx_hist_index(h, b);
152	struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
153
154	h->ring[idx_a] = h->ring[idx_b];
155	h->ring[idx_b] = tmp;
156}
157
158/*
159 * Private helper functions for loss detection.
160 *
161 * In the descriptions, `Si' refers to the sequence number of entry number i,
162 * whose NDP count is `Ni' (lower case is used for variables).
163 * Note: All __xxx_loss functions expect that a test against duplicates has been
164 *       performed already: the seqno of the skb must not be less than the seqno
165 *       of loss_prev; and it must not equal that of any valid history entry.
166 */
167static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
168{
169	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
170	    s1 = DCCP_SKB_CB(skb)->dccpd_seq;
171
172	if (!dccp_loss_free(s0, s1, n1)) {	/* gap between S0 and S1 */
173		h->loss_count = 1;
174		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
175	}
176}
177
178static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
179{
180	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
181	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
182	    s2 = DCCP_SKB_CB(skb)->dccpd_seq;
183
184	if (likely(dccp_delta_seqno(s1, s2) > 0)) {	/* S1  <  S2 */
185		h->loss_count = 2;
186		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
187		return;
188	}
189
190	/* S0  <  S2  <  S1 */
191
192	if (dccp_loss_free(s0, s2, n2)) {
193		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
194
195		if (dccp_loss_free(s2, s1, n1)) {
196			/* hole is filled: S0, S2, and S1 are consecutive */
197			h->loss_count = 0;
198			h->loss_start = tfrc_rx_hist_index(h, 1);
199		} else
200			/* gap between S2 and S1: just update loss_prev */
201			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
202
203	} else {	/* gap between S0 and S2 */
204		/*
205		 * Reorder history to insert S2 between S0 and S1
206		 */
207		tfrc_rx_hist_swap(h, 0, 3);
208		h->loss_start = tfrc_rx_hist_index(h, 3);
209		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
210		h->loss_count = 2;
211	}
212}
213
214/* return 1 if a new loss event has been identified */
215static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
216{
217	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
218	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
219	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
220	    s3 = DCCP_SKB_CB(skb)->dccpd_seq;
221
222	if (likely(dccp_delta_seqno(s2, s3) > 0)) {	/* S2  <  S3 */
223		h->loss_count = 3;
224		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
225		return 1;
226	}
227
228	/* S3  <  S2 */
229
230	if (dccp_delta_seqno(s1, s3) > 0) {		/* S1  <  S3  <  S2 */
231		/*
232		 * Reorder history to insert S3 between S1 and S2
233		 */
234		tfrc_rx_hist_swap(h, 2, 3);
235		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
236		h->loss_count = 3;
237		return 1;
238	}
239
240	/* S0  <  S3  <  S1 */
241
242	if (dccp_loss_free(s0, s3, n3)) {
243		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
244
245		if (dccp_loss_free(s3, s1, n1)) {
246			/* hole between S0 and S1 filled by S3 */
247			u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
248
249			if (dccp_loss_free(s1, s2, n2)) {
250				/* entire hole filled by S0, S3, S1, S2 */
251				h->loss_start = tfrc_rx_hist_index(h, 2);
252				h->loss_count = 0;
253			} else {
254				/* gap remains between S1 and S2 */
255				h->loss_start = tfrc_rx_hist_index(h, 1);
256				h->loss_count = 1;
257			}
258
259		} else /* gap exists between S3 and S1, loss_count stays at 2 */
260			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
261
262		return 0;
263	}
264
265	/*
266	 * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
267	 * Reorder history to insert S3 between S0 and S1.
268	 */
269	tfrc_rx_hist_swap(h, 0, 3);
270	h->loss_start = tfrc_rx_hist_index(h, 3);
271	tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
272	h->loss_count = 3;
273
274	return 1;
275}
276
277/* recycle RX history records to continue loss detection if necessary */
278static void __three_after_loss(struct tfrc_rx_hist *h)
279{
280	/*
281	 * At this stage we know already that there is a gap between S0 and S1
282	 * (since S0 was the highest sequence number received before detecting
283	 * the loss). To recycle the loss record, it is	thus only necessary to
284	 * check for other possible gaps between S1/S2 and between S2/S3.
285	 */
286	u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
287	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
288	    s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
289	u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
290	    n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
291
292	if (dccp_loss_free(s1, s2, n2)) {
293
294		if (dccp_loss_free(s2, s3, n3)) {
295			/* no gap between S2 and S3: entire hole is filled */
296			h->loss_start = tfrc_rx_hist_index(h, 3);
297			h->loss_count = 0;
298		} else {
299			/* gap between S2 and S3 */
300			h->loss_start = tfrc_rx_hist_index(h, 2);
301			h->loss_count = 1;
302		}
303
304	} else {	/* gap between S1 and S2 */
305		h->loss_start = tfrc_rx_hist_index(h, 1);
306		h->loss_count = 2;
307	}
308}
309
310/**
311 *  tfrc_rx_handle_loss  -  Loss detection and further processing
312 *  @h:		    The non-empty RX history object
313 *  @lh:	    Loss Intervals database to update
314 *  @skb:	    Currently received packet
315 *  @ndp:	    The NDP count belonging to @skb
316 *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
317 *  @sk:	    Used by @calc_first_li (see tfrc_lh_interval_add)
 
318 *  Chooses action according to pending loss, updates LI database when a new
319 *  loss was detected, and does required post-processing. Returns 1 when caller
320 *  should send feedback, 0 otherwise.
321 *  Since it also takes care of reordering during loss detection and updates the
322 *  records accordingly, the caller should not perform any more RX history
323 *  operations when loss_count is greater than 0 after calling this function.
324 */
325int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
326			struct tfrc_loss_hist *lh,
327			struct sk_buff *skb, const u64 ndp,
328			u32 (*calc_first_li)(struct sock *), struct sock *sk)
329{
330	int is_new_loss = 0;
331
332	if (h->loss_count == 0) {
333		__do_track_loss(h, skb, ndp);
334	} else if (h->loss_count == 1) {
335		__one_after_loss(h, skb, ndp);
336	} else if (h->loss_count != 2) {
337		DCCP_BUG("invalid loss_count %d", h->loss_count);
338	} else if (__two_after_loss(h, skb, ndp)) {
339		/*
340		 * Update Loss Interval database and recycle RX records
341		 */
342		is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
343		__three_after_loss(h);
344	}
345	return is_new_loss;
346}
347
348int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
349{
350	int i;
351
352	for (i = 0; i <= TFRC_NDUPACK; i++) {
353		h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
354		if (h->ring[i] == NULL)
355			goto out_free;
356	}
357
358	h->loss_count = h->loss_start = 0;
359	return 0;
360
361out_free:
362	while (i-- != 0) {
363		kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
364		h->ring[i] = NULL;
365	}
366	return -ENOBUFS;
367}
368
369void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
370{
371	int i;
372
373	for (i = 0; i <= TFRC_NDUPACK; ++i)
374		if (h->ring[i] != NULL) {
375			kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
376			h->ring[i] = NULL;
377		}
378}
379
380/**
381 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
 
382 */
383static inline struct tfrc_rx_hist_entry *
384			tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
385{
386	return h->ring[0];
387}
388
389/**
390 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
 
391 */
392static inline struct tfrc_rx_hist_entry *
393			tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
394{
395	return h->ring[h->rtt_sample_prev];
396}
397
398/**
399 * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
 
 
 
400 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
401 * to compute a sample with given data - calling function should check this.
402 */
403u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
404{
405	u32 sample = 0,
406	    delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
407			    tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
408
409	if (delta_v < 1 || delta_v > 4) {	/* unsuitable CCVal delta */
410		if (h->rtt_sample_prev == 2) {	/* previous candidate stored */
411			sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
412				       tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
413			if (sample)
414				sample = 4 / sample *
415				         ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
416							tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
417			else    /*
418				 * FIXME: This condition is in principle not
419				 * possible but occurs when CCID is used for
420				 * two-way data traffic. I have tried to trace
421				 * it, but the cause does not seem to be here.
422				 */
423				DCCP_BUG("please report to dccp@vger.kernel.org"
424					 " => prev = %u, last = %u",
425					 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
426					 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
427		} else if (delta_v < 1) {
428			h->rtt_sample_prev = 1;
429			goto keep_ref_for_next_time;
430		}
431
432	} else if (delta_v == 4) /* optimal match */
433		sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
434	else {			 /* suboptimal match */
435		h->rtt_sample_prev = 2;
436		goto keep_ref_for_next_time;
437	}
438
439	if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
440		DCCP_WARN("RTT sample %u too large, using max\n", sample);
441		sample = DCCP_SANE_RTT_MAX;
442	}
443
444	h->rtt_sample_prev = 0;	       /* use current entry as next reference */
445keep_ref_for_next_time:
446
447	return sample;
448}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
  4 *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
  5 *
  6 *  An implementation of the DCCP protocol
  7 *
  8 *  This code has been developed by the University of Waikato WAND
  9 *  research group. For further information please see https://www.wand.net.nz/
 10 *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
 11 *
 12 *  This code also uses code from Lulea University, rereleased as GPL by its
 13 *  authors:
 14 *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
 15 *
 16 *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
 17 *  and to make it work as a loadable module in the DCCP stack written by
 18 *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
 19 *
 20 *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21 */
 22
 23#include <linux/string.h>
 24#include <linux/slab.h>
 25#include "packet_history.h"
 26#include "../../dccp.h"
 27
 28/*
 29 * Transmitter History Routines
 30 */
 31static struct kmem_cache *tfrc_tx_hist_slab;
 32
 33int __init tfrc_tx_packet_history_init(void)
 34{
 35	tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
 36					      sizeof(struct tfrc_tx_hist_entry),
 37					      0, SLAB_HWCACHE_ALIGN, NULL);
 38	return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
 39}
 40
 41void tfrc_tx_packet_history_exit(void)
 42{
 43	if (tfrc_tx_hist_slab != NULL) {
 44		kmem_cache_destroy(tfrc_tx_hist_slab);
 45		tfrc_tx_hist_slab = NULL;
 46	}
 47}
 48
 49int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
 50{
 51	struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
 52
 53	if (entry == NULL)
 54		return -ENOBUFS;
 55	entry->seqno = seqno;
 56	entry->stamp = ktime_get_real();
 57	entry->next  = *headp;
 58	*headp	     = entry;
 59	return 0;
 60}
 61
 62void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
 63{
 64	struct tfrc_tx_hist_entry *head = *headp;
 65
 66	while (head != NULL) {
 67		struct tfrc_tx_hist_entry *next = head->next;
 68
 69		kmem_cache_free(tfrc_tx_hist_slab, head);
 70		head = next;
 71	}
 72
 73	*headp = NULL;
 74}
 75
 76/*
 77 *	Receiver History Routines
 78 */
 79static struct kmem_cache *tfrc_rx_hist_slab;
 80
 81int __init tfrc_rx_packet_history_init(void)
 82{
 83	tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
 84					      sizeof(struct tfrc_rx_hist_entry),
 85					      0, SLAB_HWCACHE_ALIGN, NULL);
 86	return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
 87}
 88
 89void tfrc_rx_packet_history_exit(void)
 90{
 91	if (tfrc_rx_hist_slab != NULL) {
 92		kmem_cache_destroy(tfrc_rx_hist_slab);
 93		tfrc_rx_hist_slab = NULL;
 94	}
 95}
 96
 97static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
 98					       const struct sk_buff *skb,
 99					       const u64 ndp)
100{
101	const struct dccp_hdr *dh = dccp_hdr(skb);
102
103	entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
104	entry->tfrchrx_ccval = dh->dccph_ccval;
105	entry->tfrchrx_type  = dh->dccph_type;
106	entry->tfrchrx_ndp   = ndp;
107	entry->tfrchrx_tstamp = ktime_get_real();
108}
109
110void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
111			     const struct sk_buff *skb,
112			     const u64 ndp)
113{
114	struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
115
116	tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
117}
118
119/* has the packet contained in skb been seen before? */
120int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
121{
122	const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
123	int i;
124
125	if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
126		return 1;
127
128	for (i = 1; i <= h->loss_count; i++)
129		if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
130			return 1;
131
132	return 0;
133}
134
135static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
136{
137	const u8 idx_a = tfrc_rx_hist_index(h, a),
138		 idx_b = tfrc_rx_hist_index(h, b);
 
139
140	swap(h->ring[idx_a], h->ring[idx_b]);
 
141}
142
143/*
144 * Private helper functions for loss detection.
145 *
146 * In the descriptions, `Si' refers to the sequence number of entry number i,
147 * whose NDP count is `Ni' (lower case is used for variables).
148 * Note: All __xxx_loss functions expect that a test against duplicates has been
149 *       performed already: the seqno of the skb must not be less than the seqno
150 *       of loss_prev; and it must not equal that of any valid history entry.
151 */
152static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
153{
154	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
155	    s1 = DCCP_SKB_CB(skb)->dccpd_seq;
156
157	if (!dccp_loss_free(s0, s1, n1)) {	/* gap between S0 and S1 */
158		h->loss_count = 1;
159		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
160	}
161}
162
163static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
164{
165	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
166	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
167	    s2 = DCCP_SKB_CB(skb)->dccpd_seq;
168
169	if (likely(dccp_delta_seqno(s1, s2) > 0)) {	/* S1  <  S2 */
170		h->loss_count = 2;
171		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
172		return;
173	}
174
175	/* S0  <  S2  <  S1 */
176
177	if (dccp_loss_free(s0, s2, n2)) {
178		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
179
180		if (dccp_loss_free(s2, s1, n1)) {
181			/* hole is filled: S0, S2, and S1 are consecutive */
182			h->loss_count = 0;
183			h->loss_start = tfrc_rx_hist_index(h, 1);
184		} else
185			/* gap between S2 and S1: just update loss_prev */
186			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
187
188	} else {	/* gap between S0 and S2 */
189		/*
190		 * Reorder history to insert S2 between S0 and S1
191		 */
192		tfrc_rx_hist_swap(h, 0, 3);
193		h->loss_start = tfrc_rx_hist_index(h, 3);
194		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
195		h->loss_count = 2;
196	}
197}
198
199/* return 1 if a new loss event has been identified */
200static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
201{
202	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
203	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
204	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
205	    s3 = DCCP_SKB_CB(skb)->dccpd_seq;
206
207	if (likely(dccp_delta_seqno(s2, s3) > 0)) {	/* S2  <  S3 */
208		h->loss_count = 3;
209		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
210		return 1;
211	}
212
213	/* S3  <  S2 */
214
215	if (dccp_delta_seqno(s1, s3) > 0) {		/* S1  <  S3  <  S2 */
216		/*
217		 * Reorder history to insert S3 between S1 and S2
218		 */
219		tfrc_rx_hist_swap(h, 2, 3);
220		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
221		h->loss_count = 3;
222		return 1;
223	}
224
225	/* S0  <  S3  <  S1 */
226
227	if (dccp_loss_free(s0, s3, n3)) {
228		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
229
230		if (dccp_loss_free(s3, s1, n1)) {
231			/* hole between S0 and S1 filled by S3 */
232			u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
233
234			if (dccp_loss_free(s1, s2, n2)) {
235				/* entire hole filled by S0, S3, S1, S2 */
236				h->loss_start = tfrc_rx_hist_index(h, 2);
237				h->loss_count = 0;
238			} else {
239				/* gap remains between S1 and S2 */
240				h->loss_start = tfrc_rx_hist_index(h, 1);
241				h->loss_count = 1;
242			}
243
244		} else /* gap exists between S3 and S1, loss_count stays at 2 */
245			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
246
247		return 0;
248	}
249
250	/*
251	 * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
252	 * Reorder history to insert S3 between S0 and S1.
253	 */
254	tfrc_rx_hist_swap(h, 0, 3);
255	h->loss_start = tfrc_rx_hist_index(h, 3);
256	tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
257	h->loss_count = 3;
258
259	return 1;
260}
261
262/* recycle RX history records to continue loss detection if necessary */
263static void __three_after_loss(struct tfrc_rx_hist *h)
264{
265	/*
266	 * At this stage we know already that there is a gap between S0 and S1
267	 * (since S0 was the highest sequence number received before detecting
268	 * the loss). To recycle the loss record, it is	thus only necessary to
269	 * check for other possible gaps between S1/S2 and between S2/S3.
270	 */
271	u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
272	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
273	    s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
274	u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
275	    n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
276
277	if (dccp_loss_free(s1, s2, n2)) {
278
279		if (dccp_loss_free(s2, s3, n3)) {
280			/* no gap between S2 and S3: entire hole is filled */
281			h->loss_start = tfrc_rx_hist_index(h, 3);
282			h->loss_count = 0;
283		} else {
284			/* gap between S2 and S3 */
285			h->loss_start = tfrc_rx_hist_index(h, 2);
286			h->loss_count = 1;
287		}
288
289	} else {	/* gap between S1 and S2 */
290		h->loss_start = tfrc_rx_hist_index(h, 1);
291		h->loss_count = 2;
292	}
293}
294
295/**
296 *  tfrc_rx_handle_loss  -  Loss detection and further processing
297 *  @h:		    The non-empty RX history object
298 *  @lh:	    Loss Intervals database to update
299 *  @skb:	    Currently received packet
300 *  @ndp:	    The NDP count belonging to @skb
301 *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
302 *  @sk:	    Used by @calc_first_li (see tfrc_lh_interval_add)
303 *
304 *  Chooses action according to pending loss, updates LI database when a new
305 *  loss was detected, and does required post-processing. Returns 1 when caller
306 *  should send feedback, 0 otherwise.
307 *  Since it also takes care of reordering during loss detection and updates the
308 *  records accordingly, the caller should not perform any more RX history
309 *  operations when loss_count is greater than 0 after calling this function.
310 */
311int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
312			struct tfrc_loss_hist *lh,
313			struct sk_buff *skb, const u64 ndp,
314			u32 (*calc_first_li)(struct sock *), struct sock *sk)
315{
316	int is_new_loss = 0;
317
318	if (h->loss_count == 0) {
319		__do_track_loss(h, skb, ndp);
320	} else if (h->loss_count == 1) {
321		__one_after_loss(h, skb, ndp);
322	} else if (h->loss_count != 2) {
323		DCCP_BUG("invalid loss_count %d", h->loss_count);
324	} else if (__two_after_loss(h, skb, ndp)) {
325		/*
326		 * Update Loss Interval database and recycle RX records
327		 */
328		is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
329		__three_after_loss(h);
330	}
331	return is_new_loss;
332}
333
334int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
335{
336	int i;
337
338	for (i = 0; i <= TFRC_NDUPACK; i++) {
339		h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
340		if (h->ring[i] == NULL)
341			goto out_free;
342	}
343
344	h->loss_count = h->loss_start = 0;
345	return 0;
346
347out_free:
348	while (i-- != 0) {
349		kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
350		h->ring[i] = NULL;
351	}
352	return -ENOBUFS;
353}
354
355void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
356{
357	int i;
358
359	for (i = 0; i <= TFRC_NDUPACK; ++i)
360		if (h->ring[i] != NULL) {
361			kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
362			h->ring[i] = NULL;
363		}
364}
365
366/**
367 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
368 * @h:	The non-empty RX history object
369 */
370static inline struct tfrc_rx_hist_entry *
371			tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
372{
373	return h->ring[0];
374}
375
376/**
377 * tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
378 * @h:	The non-empty RX history object
379 */
380static inline struct tfrc_rx_hist_entry *
381			tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
382{
383	return h->ring[h->rtt_sample_prev];
384}
385
386/**
387 * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
388 * @h: receive histogram
389 * @skb: packet containing timestamp.
390 *
391 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
392 * to compute a sample with given data - calling function should check this.
393 */
394u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
395{
396	u32 sample = 0,
397	    delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
398			    tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
399
400	if (delta_v < 1 || delta_v > 4) {	/* unsuitable CCVal delta */
401		if (h->rtt_sample_prev == 2) {	/* previous candidate stored */
402			sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
403				       tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
404			if (sample)
405				sample = 4 / sample *
406				         ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
407							tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
408			else    /*
409				 * FIXME: This condition is in principle not
410				 * possible but occurs when CCID is used for
411				 * two-way data traffic. I have tried to trace
412				 * it, but the cause does not seem to be here.
413				 */
414				DCCP_BUG("please report to dccp@vger.kernel.org"
415					 " => prev = %u, last = %u",
416					 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
417					 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
418		} else if (delta_v < 1) {
419			h->rtt_sample_prev = 1;
420			goto keep_ref_for_next_time;
421		}
422
423	} else if (delta_v == 4) /* optimal match */
424		sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
425	else {			 /* suboptimal match */
426		h->rtt_sample_prev = 2;
427		goto keep_ref_for_next_time;
428	}
429
430	if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
431		DCCP_WARN("RTT sample %u too large, using max\n", sample);
432		sample = DCCP_SANE_RTT_MAX;
433	}
434
435	h->rtt_sample_prev = 0;	       /* use current entry as next reference */
436keep_ref_for_next_time:
437
438	return sample;
439}