Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 
 
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 
 
 
 
 
 
 
 
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 40	struct hrtimer		timer;
 41	ktime_t			(*gettime)(void);
 42	clockid_t		base_clockid;
 43} alarm_bases[ALARM_NUMTYPE];
 44
 45/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 
 
 
 46static ktime_t freezer_delta;
 47static DEFINE_SPINLOCK(freezer_delta_lock);
 
 48
 49#ifdef CONFIG_RTC_CLASS
 50/* rtc timer and device for setting alarm wakeups at suspend */
 51static struct rtc_timer		rtctimer;
 52static struct rtc_device	*rtcdev;
 53static DEFINE_SPINLOCK(rtcdev_lock);
 54
 55/**
 56 * has_wakealarm - check rtc device has wakealarm ability
 57 * @dev: current device
 58 * @name_ptr: name to be returned
 59 *
 60 * This helper function checks to see if the rtc device can wake
 61 * from suspend.
 62 */
 63static int has_wakealarm(struct device *dev, void *name_ptr)
 64{
 65	struct rtc_device *candidate = to_rtc_device(dev);
 
 66
 67	if (!candidate->ops->set_alarm)
 68		return 0;
 69	if (!device_may_wakeup(candidate->dev.parent))
 70		return 0;
 71
 72	*(const char **)name_ptr = dev_name(dev);
 73	return 1;
 74}
 
 75
 76/**
 77 * alarmtimer_get_rtcdev - Return selected rtcdevice
 78 *
 79 * This function returns the rtc device to use for wakealarms.
 80 * If one has not already been chosen, it checks to see if a
 81 * functional rtc device is available.
 82 */
 83static struct rtc_device *alarmtimer_get_rtcdev(void)
 84{
 85	struct device *dev;
 86	char *str;
 87	unsigned long flags;
 88	struct rtc_device *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89
 90	spin_lock_irqsave(&rtcdev_lock, flags);
 91	if (!rtcdev) {
 92		/* Find an rtc device and init the rtc_timer */
 93		dev = class_find_device(rtc_class, NULL, &str, has_wakealarm);
 94		/* If we have a device then str is valid. See has_wakealarm() */
 95		if (dev) {
 96			rtcdev = rtc_class_open(str);
 97			/*
 98			 * Drop the reference we got in class_find_device,
 99			 * rtc_open takes its own.
100			 */
101			put_device(dev);
102			rtc_timer_init(&rtctimer, NULL, NULL);
103		}
 
 
 
 
 
 
 
104	}
105	ret = rtcdev;
106	spin_unlock_irqrestore(&rtcdev_lock, flags);
107
 
 
108	return ret;
109}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110#else
111#define alarmtimer_get_rtcdev() (0)
112#define rtcdev (0)
 
113#endif
114
115
116/**
117 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
118 * @base: pointer to the base where the timer is being run
119 * @alarm: pointer to alarm being enqueued.
120 *
121 * Adds alarm to a alarm_base timerqueue and if necessary sets
122 * an hrtimer to run.
123 *
124 * Must hold base->lock when calling.
125 */
126static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
127{
 
 
 
128	timerqueue_add(&base->timerqueue, &alarm->node);
129	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
130		hrtimer_try_to_cancel(&base->timer);
131		hrtimer_start(&base->timer, alarm->node.expires,
132				HRTIMER_MODE_ABS);
133	}
134}
135
136/**
137 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
138 * @base: pointer to the base where the timer is running
139 * @alarm: pointer to alarm being removed
140 *
141 * Removes alarm to a alarm_base timerqueue and if necessary sets
142 * a new timer to run.
143 *
144 * Must hold base->lock when calling.
145 */
146static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
147{
148	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
 
149
150	timerqueue_del(&base->timerqueue, &alarm->node);
151	if (next == &alarm->node) {
152		hrtimer_try_to_cancel(&base->timer);
153		next = timerqueue_getnext(&base->timerqueue);
154		if (!next)
155			return;
156		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
157	}
158}
159
160
161/**
162 * alarmtimer_fired - Handles alarm hrtimer being fired.
163 * @timer: pointer to hrtimer being run
164 *
165 * When a alarm timer fires, this runs through the timerqueue to
166 * see which alarms expired, and runs those. If there are more alarm
167 * timers queued for the future, we set the hrtimer to fire when
168 * when the next future alarm timer expires.
169 */
170static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
171{
172	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
173	struct timerqueue_node *next;
174	unsigned long flags;
175	ktime_t now;
176	int ret = HRTIMER_NORESTART;
 
177
178	spin_lock_irqsave(&base->lock, flags);
179	now = base->gettime();
180	while ((next = timerqueue_getnext(&base->timerqueue))) {
181		struct alarm *alarm;
182		ktime_t expired = next->expires;
183
184		if (expired.tv64 >= now.tv64)
185			break;
186
187		alarm = container_of(next, struct alarm, node);
188
189		timerqueue_del(&base->timerqueue, &alarm->node);
190		alarm->enabled = 0;
191		/* Re-add periodic timers */
192		if (alarm->period.tv64) {
193			alarm->node.expires = ktime_add(expired, alarm->period);
194			timerqueue_add(&base->timerqueue, &alarm->node);
195			alarm->enabled = 1;
196		}
197		spin_unlock_irqrestore(&base->lock, flags);
198		if (alarm->function)
199			alarm->function(alarm);
200		spin_lock_irqsave(&base->lock, flags);
201	}
202
203	if (next) {
204		hrtimer_set_expires(&base->timer, next->expires);
 
 
205		ret = HRTIMER_RESTART;
206	}
207	spin_unlock_irqrestore(&base->lock, flags);
208
 
209	return ret;
210
211}
212
 
 
 
 
 
 
 
213#ifdef CONFIG_RTC_CLASS
214/**
215 * alarmtimer_suspend - Suspend time callback
216 * @dev: unused
217 * @state: unused
218 *
219 * When we are going into suspend, we look through the bases
220 * to see which is the soonest timer to expire. We then
221 * set an rtc timer to fire that far into the future, which
222 * will wake us from suspend.
223 */
224static int alarmtimer_suspend(struct device *dev)
225{
226	struct rtc_time tm;
227	ktime_t min, now;
228	unsigned long flags;
229	struct rtc_device *rtc;
230	int i;
 
231
232	spin_lock_irqsave(&freezer_delta_lock, flags);
233	min = freezer_delta;
234	freezer_delta = ktime_set(0, 0);
 
 
235	spin_unlock_irqrestore(&freezer_delta_lock, flags);
236
237	rtc = rtcdev;
238	/* If we have no rtcdev, just return */
239	if (!rtc)
240		return 0;
241
242	/* Find the soonest timer to expire*/
243	for (i = 0; i < ALARM_NUMTYPE; i++) {
244		struct alarm_base *base = &alarm_bases[i];
245		struct timerqueue_node *next;
246		ktime_t delta;
247
248		spin_lock_irqsave(&base->lock, flags);
249		next = timerqueue_getnext(&base->timerqueue);
250		spin_unlock_irqrestore(&base->lock, flags);
251		if (!next)
252			continue;
253		delta = ktime_sub(next->expires, base->gettime());
254		if (!min.tv64 || (delta.tv64 < min.tv64))
 
255			min = delta;
 
 
256	}
257	if (min.tv64 == 0)
258		return 0;
259
260	/* XXX - Should we enforce a minimum sleep time? */
261	WARN_ON(min.tv64 < NSEC_PER_SEC);
 
 
 
 
262
263	/* Setup an rtc timer to fire that far in the future */
264	rtc_timer_cancel(rtc, &rtctimer);
265	rtc_read_time(rtc, &tm);
266	now = rtc_tm_to_ktime(tm);
267	now = ktime_add(now, min);
268
269	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
 
 
 
 
 
270
 
 
 
 
 
 
 
271	return 0;
272}
 
273#else
274static int alarmtimer_suspend(struct device *dev)
275{
276	return 0;
277}
278#endif
279
280static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
281{
282	ktime_t delta;
283	unsigned long flags;
284	struct alarm_base *base = &alarm_bases[type];
285
286	delta = ktime_sub(absexp, base->gettime());
287
288	spin_lock_irqsave(&freezer_delta_lock, flags);
289	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
290		freezer_delta = delta;
291	spin_unlock_irqrestore(&freezer_delta_lock, flags);
292}
 
293
 
 
 
 
 
 
 
 
 
 
294
295/**
296 * alarm_init - Initialize an alarm structure
297 * @alarm: ptr to alarm to be initialized
298 * @type: the type of the alarm
299 * @function: callback that is run when the alarm fires
300 */
301void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
302		void (*function)(struct alarm *))
303{
304	timerqueue_init(&alarm->node);
305	alarm->period = ktime_set(0, 0);
306	alarm->function = function;
307	alarm->type = type;
308	alarm->enabled = 0;
309}
 
310
311/**
312 * alarm_start - Sets an alarm to fire
313 * @alarm: ptr to alarm to set
314 * @start: time to run the alarm
315 * @period: period at which the alarm will recur
316 */
317void alarm_start(struct alarm *alarm, ktime_t start, ktime_t period)
318{
319	struct alarm_base *base = &alarm_bases[alarm->type];
320	unsigned long flags;
321
322	spin_lock_irqsave(&base->lock, flags);
323	if (alarm->enabled)
324		alarmtimer_remove(base, alarm);
325	alarm->node.expires = start;
326	alarm->period = period;
327	alarmtimer_enqueue(base, alarm);
328	alarm->enabled = 1;
329	spin_unlock_irqrestore(&base->lock, flags);
 
 
330}
 
331
332/**
333 * alarm_cancel - Tries to cancel an alarm timer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334 * @alarm: ptr to alarm to be canceled
 
 
 
335 */
336void alarm_cancel(struct alarm *alarm)
337{
338	struct alarm_base *base = &alarm_bases[alarm->type];
339	unsigned long flags;
 
340
341	spin_lock_irqsave(&base->lock, flags);
342	if (alarm->enabled)
343		alarmtimer_remove(base, alarm);
344	alarm->enabled = 0;
345	spin_unlock_irqrestore(&base->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346}
 
 
 
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
349/**
350 * clock2alarm - helper that converts from clockid to alarmtypes
351 * @clockid: clockid.
352 */
353static enum alarmtimer_type clock2alarm(clockid_t clockid)
354{
355	if (clockid == CLOCK_REALTIME_ALARM)
356		return ALARM_REALTIME;
357	if (clockid == CLOCK_BOOTTIME_ALARM)
358		return ALARM_BOOTTIME;
359	return -1;
360}
361
362/**
363 * alarm_handle_timer - Callback for posix timers
364 * @alarm: alarm that fired
 
365 *
366 * Posix timer callback for expired alarm timers.
 
 
367 */
368static void alarm_handle_timer(struct alarm *alarm)
 
369{
370	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
371						it.alarmtimer);
372	if (posix_timer_event(ptr, 0) != 0)
373		ptr->it_overrun++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374}
375
376/**
377 * alarm_clock_getres - posix getres interface
378 * @which_clock: clockid
379 * @tp: timespec to fill
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380 *
381 * Returns the granularity of underlying alarm base clock
 
 
382 */
383static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
384{
385	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
 
386
387	if (!alarmtimer_get_rtcdev())
388		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
389
390	return hrtimer_get_res(baseid, tp);
 
 
 
 
 
391}
392
393/**
394 * alarm_clock_get - posix clock_get interface
395 * @which_clock: clockid
396 * @tp: timespec to fill.
397 *
398 * Provides the underlying alarm base time.
399 */
400static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
401{
402	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
403
404	if (!alarmtimer_get_rtcdev())
405		return -ENOTSUPP;
406
407	*tp = ktime_to_timespec(base->gettime());
 
408	return 0;
409}
410
411/**
412 * alarm_timer_create - posix timer_create interface
413 * @new_timer: k_itimer pointer to manage
 
414 *
415 * Initializes the k_itimer structure.
416 */
417static int alarm_timer_create(struct k_itimer *new_timer)
418{
419	enum  alarmtimer_type type;
420	struct alarm_base *base;
421
422	if (!alarmtimer_get_rtcdev())
423		return -ENOTSUPP;
424
425	if (!capable(CAP_WAKE_ALARM))
426		return -EPERM;
427
428	type = clock2alarm(new_timer->it_clock);
429	base = &alarm_bases[type];
430	alarm_init(&new_timer->it.alarmtimer, type, alarm_handle_timer);
431	return 0;
432}
433
434/**
435 * alarm_timer_get - posix timer_get interface
436 * @new_timer: k_itimer pointer
437 * @cur_setting: itimerspec data to fill
438 *
439 * Copies the itimerspec data out from the k_itimer
440 */
441static void alarm_timer_get(struct k_itimer *timr,
442				struct itimerspec *cur_setting)
443{
444	memset(cur_setting, 0, sizeof(struct itimerspec));
 
 
 
445
446	cur_setting->it_interval =
447			ktime_to_timespec(timr->it.alarmtimer.period);
448	cur_setting->it_value =
449			ktime_to_timespec(timr->it.alarmtimer.node.expires);
450	return;
451}
452
453/**
454 * alarm_timer_del - posix timer_del interface
455 * @timr: k_itimer pointer to be deleted
456 *
457 * Cancels any programmed alarms for the given timer.
458 */
459static int alarm_timer_del(struct k_itimer *timr)
460{
461	if (!rtcdev)
462		return -ENOTSUPP;
463
464	alarm_cancel(&timr->it.alarmtimer);
465	return 0;
466}
467
468/**
469 * alarm_timer_set - posix timer_set interface
470 * @timr: k_itimer pointer to be deleted
471 * @flags: timer flags
472 * @new_setting: itimerspec to be used
473 * @old_setting: itimerspec being replaced
474 *
475 * Sets the timer to new_setting, and starts the timer.
476 */
477static int alarm_timer_set(struct k_itimer *timr, int flags,
478				struct itimerspec *new_setting,
479				struct itimerspec *old_setting)
480{
481	if (!rtcdev)
482		return -ENOTSUPP;
483
484	/*
485	 * XXX HACK! Currently we can DOS a system if the interval
486	 * period on alarmtimers is too small. Cap the interval here
487	 * to 100us and solve this properly in a future patch! -jstultz
488	 */
489	if ((new_setting->it_interval.tv_sec == 0) &&
490			(new_setting->it_interval.tv_nsec < 100000))
491		new_setting->it_interval.tv_nsec = 100000;
492
493	if (old_setting)
494		alarm_timer_get(timr, old_setting);
495
496	/* If the timer was already set, cancel it */
497	alarm_cancel(&timr->it.alarmtimer);
498
499	/* start the timer */
500	alarm_start(&timr->it.alarmtimer,
501			timespec_to_ktime(new_setting->it_value),
502			timespec_to_ktime(new_setting->it_interval));
503	return 0;
504}
505
506/**
507 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
508 * @alarm: ptr to alarm that fired
 
509 *
510 * Wakes up the task that set the alarmtimer
 
 
511 */
512static void alarmtimer_nsleep_wakeup(struct alarm *alarm)
 
513{
514	struct task_struct *task = (struct task_struct *)alarm->data;
515
516	alarm->data = NULL;
517	if (task)
518		wake_up_process(task);
 
519}
520
521/**
522 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
523 * @alarm: ptr to alarmtimer
524 * @absexp: absolute expiration time
 
525 *
526 * Sets the alarm timer and sleeps until it is fired or interrupted.
527 */
528static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
 
529{
 
530	alarm->data = (void *)current;
531	do {
532		set_current_state(TASK_INTERRUPTIBLE);
533		alarm_start(alarm, absexp, ktime_set(0, 0));
534		if (likely(alarm->data))
535			schedule();
536
537		alarm_cancel(alarm);
538	} while (alarm->data && !signal_pending(current));
539
540	__set_current_state(TASK_RUNNING);
541
542	return (alarm->data == NULL);
543}
544
545
546/**
547 * update_rmtp - Update remaining timespec value
548 * @exp: expiration time
549 * @type: timer type
550 * @rmtp: user pointer to remaining timepsec value
551 *
552 * Helper function that fills in rmtp value with time between
553 * now and the exp value
554 */
555static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
556			struct timespec __user *rmtp)
557{
558	struct timespec rmt;
559	ktime_t rem;
560
561	rem = ktime_sub(exp, alarm_bases[type].gettime());
 
 
 
 
 
562
563	if (rem.tv64 <= 0)
564		return 0;
565	rmt = ktime_to_timespec(rem);
566
567	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
568		return -EFAULT;
 
569
570	return 1;
 
 
 
571
 
 
 
 
 
 
 
572}
573
574/**
575 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
576 * @restart: ptr to restart block
577 *
578 * Handles restarted clock_nanosleep calls
579 */
580static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
581{
582	enum  alarmtimer_type type = restart->nanosleep.clockid;
583	ktime_t exp;
584	struct timespec __user  *rmtp;
585	struct alarm alarm;
586	int ret = 0;
587
588	exp.tv64 = restart->nanosleep.expires;
589	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
590
591	if (alarmtimer_do_nsleep(&alarm, exp))
592		goto out;
593
594	if (freezing(current))
595		alarmtimer_freezerset(exp, type);
596
597	rmtp = restart->nanosleep.rmtp;
598	if (rmtp) {
599		ret = update_rmtp(exp, type, rmtp);
600		if (ret <= 0)
601			goto out;
602	}
603
604
605	/* The other values in restart are already filled in */
606	ret = -ERESTART_RESTARTBLOCK;
607out:
608	return ret;
609}
610
611/**
612 * alarm_timer_nsleep - alarmtimer nanosleep
613 * @which_clock: clockid
614 * @flags: determins abstime or relative
615 * @tsreq: requested sleep time (abs or rel)
616 * @rmtp: remaining sleep time saved
617 *
618 * Handles clock_nanosleep calls against _ALARM clockids
619 */
620static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
621		     struct timespec *tsreq, struct timespec __user *rmtp)
622{
623	enum  alarmtimer_type type = clock2alarm(which_clock);
 
624	struct alarm alarm;
625	ktime_t exp;
626	int ret = 0;
627	struct restart_block *restart;
628
629	if (!alarmtimer_get_rtcdev())
630		return -ENOTSUPP;
 
 
 
631
632	if (!capable(CAP_WAKE_ALARM))
633		return -EPERM;
634
635	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
636
637	exp = timespec_to_ktime(*tsreq);
638	/* Convert (if necessary) to absolute time */
639	if (flags != TIMER_ABSTIME) {
640		ktime_t now = alarm_bases[type].gettime();
641		exp = ktime_add(now, exp);
642	}
643
644	if (alarmtimer_do_nsleep(&alarm, exp))
645		goto out;
 
 
646
647	if (freezing(current))
648		alarmtimer_freezerset(exp, type);
 
649
650	/* abs timers don't set remaining time or restart */
651	if (flags == TIMER_ABSTIME) {
652		ret = -ERESTARTNOHAND;
653		goto out;
654	}
655
656	if (rmtp) {
657		ret = update_rmtp(exp, type, rmtp);
658		if (ret <= 0)
659			goto out;
660	}
661
662	restart = &current_thread_info()->restart_block;
663	restart->fn = alarm_timer_nsleep_restart;
664	restart->nanosleep.clockid = type;
665	restart->nanosleep.expires = exp.tv64;
666	restart->nanosleep.rmtp = rmtp;
667	ret = -ERESTART_RESTARTBLOCK;
668
669out:
670	return ret;
671}
672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673
674/* Suspend hook structures */
675static const struct dev_pm_ops alarmtimer_pm_ops = {
676	.suspend = alarmtimer_suspend,
 
677};
678
679static struct platform_driver alarmtimer_driver = {
680	.driver = {
681		.name = "alarmtimer",
682		.pm = &alarmtimer_pm_ops,
683	}
684};
685
 
 
 
 
 
 
686/**
687 * alarmtimer_init - Initialize alarm timer code
688 *
689 * This function initializes the alarm bases and registers
690 * the posix clock ids.
691 */
692static int __init alarmtimer_init(void)
693{
694	int error = 0;
695	int i;
696	struct k_clock alarm_clock = {
697		.clock_getres	= alarm_clock_getres,
698		.clock_get	= alarm_clock_get,
699		.timer_create	= alarm_timer_create,
700		.timer_set	= alarm_timer_set,
701		.timer_del	= alarm_timer_del,
702		.timer_get	= alarm_timer_get,
703		.nsleep		= alarm_timer_nsleep,
704	};
705
706	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
707	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
708
709	/* Initialize alarm bases */
710	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
711	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
 
712	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
713	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
 
714	for (i = 0; i < ALARM_NUMTYPE; i++) {
715		timerqueue_init_head(&alarm_bases[i].timerqueue);
716		spin_lock_init(&alarm_bases[i].lock);
717		hrtimer_init(&alarm_bases[i].timer,
718				alarm_bases[i].base_clockid,
719				HRTIMER_MODE_ABS);
720		alarm_bases[i].timer.function = alarmtimer_fired;
721	}
 
 
 
 
 
722	error = platform_driver_register(&alarmtimer_driver);
723	platform_device_register_simple("alarmtimer", -1, NULL, 0);
 
724
 
 
 
725	return error;
726}
727device_initcall(alarmtimer_init);
728
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Alarmtimer interface
  4 *
  5 * This interface provides a timer which is similar to hrtimers,
  6 * but triggers a RTC alarm if the box is suspend.
  7 *
  8 * This interface is influenced by the Android RTC Alarm timer
  9 * interface.
 10 *
 11 * Copyright (C) 2010 IBM Corporation
 12 *
 13 * Author: John Stultz <john.stultz@linaro.org>
 
 
 
 
 14 */
 15#include <linux/time.h>
 16#include <linux/hrtimer.h>
 17#include <linux/timerqueue.h>
 18#include <linux/rtc.h>
 19#include <linux/sched/signal.h>
 20#include <linux/sched/debug.h>
 21#include <linux/alarmtimer.h>
 22#include <linux/mutex.h>
 23#include <linux/platform_device.h>
 24#include <linux/posix-timers.h>
 25#include <linux/workqueue.h>
 26#include <linux/freezer.h>
 27#include <linux/compat.h>
 28#include <linux/module.h>
 29#include <linux/time_namespace.h>
 30
 31#include "posix-timers.h"
 32
 33#define CREATE_TRACE_POINTS
 34#include <trace/events/alarmtimer.h>
 35
 36/**
 37 * struct alarm_base - Alarm timer bases
 38 * @lock:		Lock for syncrhonized access to the base
 39 * @timerqueue:		Timerqueue head managing the list of events
 40 * @get_ktime:		Function to read the time correlating to the base
 41 * @get_timespec:	Function to read the namespace time correlating to the base
 42 * @base_clockid:	clockid for the base
 43 */
 44static struct alarm_base {
 45	spinlock_t		lock;
 46	struct timerqueue_head	timerqueue;
 47	ktime_t			(*get_ktime)(void);
 48	void			(*get_timespec)(struct timespec64 *tp);
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 59
 60#ifdef CONFIG_RTC_CLASS
 61/* rtc timer and device for setting alarm wakeups at suspend */
 62static struct rtc_timer		rtctimer;
 63static struct rtc_device	*rtcdev;
 64static DEFINE_SPINLOCK(rtcdev_lock);
 65
 66/**
 67 * alarmtimer_get_rtcdev - Return selected rtcdevice
 
 
 68 *
 69 * This function returns the rtc device to use for wakealarms.
 
 70 */
 71struct rtc_device *alarmtimer_get_rtcdev(void)
 72{
 73	unsigned long flags;
 74	struct rtc_device *ret;
 75
 76	spin_lock_irqsave(&rtcdev_lock, flags);
 77	ret = rtcdev;
 78	spin_unlock_irqrestore(&rtcdev_lock, flags);
 
 79
 80	return ret;
 
 81}
 82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 83
 84static int alarmtimer_rtc_add_device(struct device *dev,
 85				struct class_interface *class_intf)
 
 
 
 
 
 
 86{
 
 
 87	unsigned long flags;
 88	struct rtc_device *rtc = to_rtc_device(dev);
 89	struct platform_device *pdev;
 90	int ret = 0;
 91
 92	if (rtcdev)
 93		return -EBUSY;
 94
 95	if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 96		return -1;
 97	if (!device_may_wakeup(rtc->dev.parent))
 98		return -1;
 99
100	pdev = platform_device_register_data(dev, "alarmtimer",
101					     PLATFORM_DEVID_AUTO, NULL, 0);
102	if (!IS_ERR(pdev))
103		device_init_wakeup(&pdev->dev, true);
104
105	spin_lock_irqsave(&rtcdev_lock, flags);
106	if (!IS_ERR(pdev) && !rtcdev) {
107		if (!try_module_get(rtc->owner)) {
108			ret = -1;
109			goto unlock;
 
 
 
 
 
 
 
 
110		}
111
112		rtcdev = rtc;
113		/* hold a reference so it doesn't go away */
114		get_device(dev);
115		pdev = NULL;
116	} else {
117		ret = -1;
118	}
119unlock:
120	spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122	platform_device_unregister(pdev);
123
124	return ret;
125}
126
127static inline void alarmtimer_rtc_timer_init(void)
128{
129	rtc_timer_init(&rtctimer, NULL, NULL);
130}
131
132static struct class_interface alarmtimer_rtc_interface = {
133	.add_dev = &alarmtimer_rtc_add_device,
134};
135
136static int alarmtimer_rtc_interface_setup(void)
137{
138	alarmtimer_rtc_interface.class = rtc_class;
139	return class_interface_register(&alarmtimer_rtc_interface);
140}
141static void alarmtimer_rtc_interface_remove(void)
142{
143	class_interface_unregister(&alarmtimer_rtc_interface);
144}
145#else
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
 
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
 
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163		timerqueue_del(&base->timerqueue, &alarm->node);
164
165	timerqueue_add(&base->timerqueue, &alarm->node);
166	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
 
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
180	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181		return;
182
183	timerqueue_del(&base->timerqueue, &alarm->node);
184	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
 
 
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199	struct alarm *alarm = container_of(timer, struct alarm, timer);
200	struct alarm_base *base = &alarm_bases[alarm->type];
201	unsigned long flags;
 
202	int ret = HRTIMER_NORESTART;
203	int restart = ALARMTIMER_NORESTART;
204
205	spin_lock_irqsave(&base->lock, flags);
206	alarmtimer_dequeue(base, alarm);
207	spin_unlock_irqrestore(&base->lock, flags);
 
 
 
 
 
 
 
208
209	if (alarm->function)
210		restart = alarm->function(alarm, base->get_ktime());
 
 
 
 
 
 
 
 
 
 
 
211
212	spin_lock_irqsave(&base->lock, flags);
213	if (restart != ALARMTIMER_NORESTART) {
214		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215		alarmtimer_enqueue(base, alarm);
216		ret = HRTIMER_RESTART;
217	}
218	spin_unlock_irqrestore(&base->lock, flags);
219
220	trace_alarmtimer_fired(alarm, base->get_ktime());
221	return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227	struct alarm_base *base = &alarm_bases[alarm->type];
228	return ktime_sub(alarm->node.expires, base->get_ktime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
 
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244	ktime_t min, now, expires;
245	int i, ret, type;
 
246	struct rtc_device *rtc;
247	unsigned long flags;
248	struct rtc_time tm;
249
250	spin_lock_irqsave(&freezer_delta_lock, flags);
251	min = freezer_delta;
252	expires = freezer_expires;
253	type = freezer_alarmtype;
254	freezer_delta = 0;
255	spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257	rtc = alarmtimer_get_rtcdev();
258	/* If we have no rtcdev, just return */
259	if (!rtc)
260		return 0;
261
262	/* Find the soonest timer to expire*/
263	for (i = 0; i < ALARM_NUMTYPE; i++) {
264		struct alarm_base *base = &alarm_bases[i];
265		struct timerqueue_node *next;
266		ktime_t delta;
267
268		spin_lock_irqsave(&base->lock, flags);
269		next = timerqueue_getnext(&base->timerqueue);
270		spin_unlock_irqrestore(&base->lock, flags);
271		if (!next)
272			continue;
273		delta = ktime_sub(next->expires, base->get_ktime());
274		if (!min || (delta < min)) {
275			expires = next->expires;
276			min = delta;
277			type = i;
278		}
279	}
280	if (min == 0)
281		return 0;
282
283	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285		return -EBUSY;
286	}
287
288	trace_alarmtimer_suspend(expires, type);
289
290	/* Setup an rtc timer to fire that far in the future */
291	rtc_timer_cancel(rtc, &rtctimer);
292	rtc_read_time(rtc, &tm);
293	now = rtc_tm_to_ktime(tm);
294	now = ktime_add(now, min);
295
296	/* Set alarm, if in the past reject suspend briefly to handle */
297	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298	if (ret < 0)
299		pm_wakeup_event(dev, MSEC_PER_SEC);
300	return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305	struct rtc_device *rtc;
306
307	rtc = alarmtimer_get_rtcdev();
308	if (rtc)
309		rtc_timer_cancel(rtc, &rtctimer);
310	return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316	return 0;
317}
 
318
319static int alarmtimer_resume(struct device *dev)
320{
321	return 0;
 
 
 
 
 
 
 
 
 
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329	timerqueue_init(&alarm->node);
330	alarm->timer.function = alarmtimer_fired;
331	alarm->function = function;
332	alarm->type = type;
333	alarm->state = ALARMTIMER_STATE_INACTIVE;
334}
335
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346		     HRTIMER_MODE_ABS);
347	__alarm_init(alarm, type, function);
 
 
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
 
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358	struct alarm_base *base = &alarm_bases[alarm->type];
359	unsigned long flags;
360
361	spin_lock_irqsave(&base->lock, flags);
 
 
362	alarm->node.expires = start;
 
363	alarmtimer_enqueue(base, alarm);
364	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365	spin_unlock_irqrestore(&base->lock, flags);
366
367	trace_alarmtimer_start(alarm, base->get_ktime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378	struct alarm_base *base = &alarm_bases[alarm->type];
379
380	start = ktime_add_safe(start, base->get_ktime());
381	alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387	struct alarm_base *base = &alarm_bases[alarm->type];
388	unsigned long flags;
389
390	spin_lock_irqsave(&base->lock, flags);
391	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392	hrtimer_restart(&alarm->timer);
393	alarmtimer_enqueue(base, alarm);
394	spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407	struct alarm_base *base = &alarm_bases[alarm->type];
408	unsigned long flags;
409	int ret;
410
411	spin_lock_irqsave(&base->lock, flags);
412	ret = hrtimer_try_to_cancel(&alarm->timer);
413	if (ret >= 0)
414		alarmtimer_dequeue(base, alarm);
415	spin_unlock_irqrestore(&base->lock, flags);
416
417	trace_alarmtimer_cancel(alarm, base->get_ktime());
418	return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431	for (;;) {
432		int ret = alarm_try_to_cancel(alarm);
433		if (ret >= 0)
434			return ret;
435		hrtimer_cancel_wait_running(&alarm->timer);
436	}
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443	u64 overrun = 1;
444	ktime_t delta;
445
446	delta = ktime_sub(now, alarm->node.expires);
447
448	if (delta < 0)
449		return 0;
450
451	if (unlikely(delta >= interval)) {
452		s64 incr = ktime_to_ns(interval);
453
454		overrun = ktime_divns(delta, incr);
455
456		alarm->node.expires = ktime_add_ns(alarm->node.expires,
457							incr*overrun);
458
459		if (alarm->node.expires > now)
460			return overrun;
461		/*
462		 * This (and the ktime_add() below) is the
463		 * correction for exact:
464		 */
465		overrun++;
466	}
467
468	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469	return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474{
475	struct alarm_base *base = &alarm_bases[alarm->type];
476
477	return alarm_forward(alarm, base->get_ktime(), interval);
478}
479EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481#ifdef CONFIG_POSIX_TIMERS
482
483static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484{
485	struct alarm_base *base;
486	unsigned long flags;
487	ktime_t delta;
488
489	switch(type) {
490	case ALARM_REALTIME:
491		base = &alarm_bases[ALARM_REALTIME];
492		type = ALARM_REALTIME_FREEZER;
493		break;
494	case ALARM_BOOTTIME:
495		base = &alarm_bases[ALARM_BOOTTIME];
496		type = ALARM_BOOTTIME_FREEZER;
497		break;
498	default:
499		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500		return;
501	}
502
503	delta = ktime_sub(absexp, base->get_ktime());
504
505	spin_lock_irqsave(&freezer_delta_lock, flags);
506	if (!freezer_delta || (delta < freezer_delta)) {
507		freezer_delta = delta;
508		freezer_expires = absexp;
509		freezer_alarmtype = type;
510	}
511	spin_unlock_irqrestore(&freezer_delta_lock, flags);
512}
513
514/**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
518static enum alarmtimer_type clock2alarm(clockid_t clockid)
519{
520	if (clockid == CLOCK_REALTIME_ALARM)
521		return ALARM_REALTIME;
522	if (clockid == CLOCK_BOOTTIME_ALARM)
523		return ALARM_BOOTTIME;
524	return -1;
525}
526
527/**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 * @now: time at the timer expiration
531 *
532 * Posix timer callback for expired alarm timers.
533 *
534 * Return: whether the timer is to be restarted
535 */
536static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
537							ktime_t now)
538{
539	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
540					    it.alarm.alarmtimer);
541	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
542	unsigned long flags;
543	int si_private = 0;
544
545	spin_lock_irqsave(&ptr->it_lock, flags);
546
547	ptr->it_active = 0;
548	if (ptr->it_interval)
549		si_private = ++ptr->it_requeue_pending;
550
551	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
552		/*
553		 * Handle ignored signals and rearm the timer. This will go
554		 * away once we handle ignored signals proper.
555		 */
556		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
557		++ptr->it_requeue_pending;
558		ptr->it_active = 1;
559		result = ALARMTIMER_RESTART;
560	}
561	spin_unlock_irqrestore(&ptr->it_lock, flags);
562
563	return result;
564}
565
566/**
567 * alarm_timer_rearm - Posix timer callback for rearming timer
568 * @timr:	Pointer to the posixtimer data struct
569 */
570static void alarm_timer_rearm(struct k_itimer *timr)
571{
572	struct alarm *alarm = &timr->it.alarm.alarmtimer;
573
574	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
575	alarm_start(alarm, alarm->node.expires);
576}
577
578/**
579 * alarm_timer_forward - Posix timer callback for forwarding timer
580 * @timr:	Pointer to the posixtimer data struct
581 * @now:	Current time to forward the timer against
582 */
583static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
584{
585	struct alarm *alarm = &timr->it.alarm.alarmtimer;
586
587	return alarm_forward(alarm, timr->it_interval, now);
588}
589
590/**
591 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
592 * @timr:	Pointer to the posixtimer data struct
593 * @now:	Current time to calculate against
594 */
595static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
596{
597	struct alarm *alarm = &timr->it.alarm.alarmtimer;
598
599	return ktime_sub(alarm->node.expires, now);
600}
601
602/**
603 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
604 * @timr:	Pointer to the posixtimer data struct
605 */
606static int alarm_timer_try_to_cancel(struct k_itimer *timr)
607{
608	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
609}
610
611/**
612 * alarm_timer_wait_running - Posix timer callback to wait for a timer
613 * @timr:	Pointer to the posixtimer data struct
614 *
615 * Called from the core code when timer cancel detected that the callback
616 * is running. @timr is unlocked and rcu read lock is held to prevent it
617 * from being freed.
618 */
619static void alarm_timer_wait_running(struct k_itimer *timr)
620{
621	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
622}
623
624/**
625 * alarm_timer_arm - Posix timer callback to arm a timer
626 * @timr:	Pointer to the posixtimer data struct
627 * @expires:	The new expiry time
628 * @absolute:	Expiry value is absolute time
629 * @sigev_none:	Posix timer does not deliver signals
630 */
631static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
632			    bool absolute, bool sigev_none)
633{
634	struct alarm *alarm = &timr->it.alarm.alarmtimer;
635	struct alarm_base *base = &alarm_bases[alarm->type];
636
637	if (!absolute)
638		expires = ktime_add_safe(expires, base->get_ktime());
639	if (sigev_none)
640		alarm->node.expires = expires;
641	else
642		alarm_start(&timr->it.alarm.alarmtimer, expires);
643}
644
645/**
646 * alarm_clock_getres - posix getres interface
647 * @which_clock: clockid
648 * @tp: timespec to fill
649 *
650 * Returns the granularity of underlying alarm base clock
651 */
652static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
653{
 
 
654	if (!alarmtimer_get_rtcdev())
655		return -EINVAL;
656
657	tp->tv_sec = 0;
658	tp->tv_nsec = hrtimer_resolution;
659	return 0;
660}
661
662/**
663 * alarm_clock_get_timespec - posix clock_get_timespec interface
664 * @which_clock: clockid
665 * @tp: timespec to fill.
666 *
667 * Provides the underlying alarm base time in a tasks time namespace.
668 */
669static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
670{
671	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
 
672
673	if (!alarmtimer_get_rtcdev())
674		return -EINVAL;
675
676	base->get_timespec(tp);
 
677
 
 
 
678	return 0;
679}
680
681/**
682 * alarm_clock_get_ktime - posix clock_get_ktime interface
683 * @which_clock: clockid
 
684 *
685 * Provides the underlying alarm base time in the root namespace.
686 */
687static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
 
688{
689	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
690
691	if (!alarmtimer_get_rtcdev())
692		return -EINVAL;
693
694	return base->get_ktime();
 
 
 
 
695}
696
697/**
698 * alarm_timer_create - posix timer_create interface
699 * @new_timer: k_itimer pointer to manage
700 *
701 * Initializes the k_itimer structure.
702 */
703static int alarm_timer_create(struct k_itimer *new_timer)
704{
705	enum  alarmtimer_type type;
 
706
707	if (!alarmtimer_get_rtcdev())
708		return -EOPNOTSUPP;
 
709
710	if (!capable(CAP_WAKE_ALARM))
711		return -EPERM;
712
713	type = clock2alarm(new_timer->it_clock);
714	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715	return 0;
716}
717
718/**
719 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
720 * @alarm: ptr to alarm that fired
721 * @now: time at the timer expiration
722 *
723 * Wakes up the task that set the alarmtimer
724 *
725 * Return: ALARMTIMER_NORESTART
726 */
727static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
728								ktime_t now)
729{
730	struct task_struct *task = (struct task_struct *)alarm->data;
731
732	alarm->data = NULL;
733	if (task)
734		wake_up_process(task);
735	return ALARMTIMER_NORESTART;
736}
737
738/**
739 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
740 * @alarm: ptr to alarmtimer
741 * @absexp: absolute expiration time
742 * @type: alarm type (BOOTTIME/REALTIME).
743 *
744 * Sets the alarm timer and sleeps until it is fired or interrupted.
745 */
746static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
747				enum alarmtimer_type type)
748{
749	struct restart_block *restart;
750	alarm->data = (void *)current;
751	do {
752		set_current_state(TASK_INTERRUPTIBLE);
753		alarm_start(alarm, absexp);
754		if (likely(alarm->data))
755			schedule();
756
757		alarm_cancel(alarm);
758	} while (alarm->data && !signal_pending(current));
759
760	__set_current_state(TASK_RUNNING);
761
762	destroy_hrtimer_on_stack(&alarm->timer);
 
 
763
764	if (!alarm->data)
765		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
766
767	if (freezing(current))
768		alarmtimer_freezerset(absexp, type);
769	restart = &current->restart_block;
770	if (restart->nanosleep.type != TT_NONE) {
771		struct timespec64 rmt;
772		ktime_t rem;
773
774		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
 
 
775
776		if (rem <= 0)
777			return 0;
778		rmt = ktime_to_timespec64(rem);
779
780		return nanosleep_copyout(restart, &rmt);
781	}
782	return -ERESTART_RESTARTBLOCK;
783}
784
785static void
786alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
787		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
788{
789	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
790			      HRTIMER_MODE_ABS);
791	__alarm_init(alarm, type, function);
792}
793
794/**
795 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
796 * @restart: ptr to restart block
797 *
798 * Handles restarted clock_nanosleep calls
799 */
800static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
801{
802	enum  alarmtimer_type type = restart->nanosleep.clockid;
803	ktime_t exp = restart->nanosleep.expires;
 
804	struct alarm alarm;
 
 
 
 
805
806	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
 
807
808	return alarmtimer_do_nsleep(&alarm, exp, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809}
810
811/**
812 * alarm_timer_nsleep - alarmtimer nanosleep
813 * @which_clock: clockid
814 * @flags: determines abstime or relative
815 * @tsreq: requested sleep time (abs or rel)
 
816 *
817 * Handles clock_nanosleep calls against _ALARM clockids
818 */
819static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
820			      const struct timespec64 *tsreq)
821{
822	enum  alarmtimer_type type = clock2alarm(which_clock);
823	struct restart_block *restart = &current->restart_block;
824	struct alarm alarm;
825	ktime_t exp;
826	int ret = 0;
 
827
828	if (!alarmtimer_get_rtcdev())
829		return -EOPNOTSUPP;
830
831	if (flags & ~TIMER_ABSTIME)
832		return -EINVAL;
833
834	if (!capable(CAP_WAKE_ALARM))
835		return -EPERM;
836
837	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
838
839	exp = timespec64_to_ktime(*tsreq);
840	/* Convert (if necessary) to absolute time */
841	if (flags != TIMER_ABSTIME) {
842		ktime_t now = alarm_bases[type].get_ktime();
 
 
843
844		exp = ktime_add_safe(now, exp);
845	} else {
846		exp = timens_ktime_to_host(which_clock, exp);
847	}
848
849	ret = alarmtimer_do_nsleep(&alarm, exp, type);
850	if (ret != -ERESTART_RESTARTBLOCK)
851		return ret;
852
853	/* abs timers don't set remaining time or restart */
854	if (flags == TIMER_ABSTIME)
855		return -ERESTARTNOHAND;
 
 
856
 
 
 
 
 
 
 
 
857	restart->nanosleep.clockid = type;
858	restart->nanosleep.expires = exp;
859	set_restart_fn(restart, alarm_timer_nsleep_restart);
 
 
 
860	return ret;
861}
862
863const struct k_clock alarm_clock = {
864	.clock_getres		= alarm_clock_getres,
865	.clock_get_ktime	= alarm_clock_get_ktime,
866	.clock_get_timespec	= alarm_clock_get_timespec,
867	.timer_create		= alarm_timer_create,
868	.timer_set		= common_timer_set,
869	.timer_del		= common_timer_del,
870	.timer_get		= common_timer_get,
871	.timer_arm		= alarm_timer_arm,
872	.timer_rearm		= alarm_timer_rearm,
873	.timer_forward		= alarm_timer_forward,
874	.timer_remaining	= alarm_timer_remaining,
875	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
876	.timer_wait_running	= alarm_timer_wait_running,
877	.nsleep			= alarm_timer_nsleep,
878};
879#endif /* CONFIG_POSIX_TIMERS */
880
881
882/* Suspend hook structures */
883static const struct dev_pm_ops alarmtimer_pm_ops = {
884	.suspend = alarmtimer_suspend,
885	.resume = alarmtimer_resume,
886};
887
888static struct platform_driver alarmtimer_driver = {
889	.driver = {
890		.name = "alarmtimer",
891		.pm = &alarmtimer_pm_ops,
892	}
893};
894
895static void get_boottime_timespec(struct timespec64 *tp)
896{
897	ktime_get_boottime_ts64(tp);
898	timens_add_boottime(tp);
899}
900
901/**
902 * alarmtimer_init - Initialize alarm timer code
903 *
904 * This function initializes the alarm bases and registers
905 * the posix clock ids.
906 */
907static int __init alarmtimer_init(void)
908{
909	int error;
910	int i;
 
 
 
 
 
 
 
 
 
911
912	alarmtimer_rtc_timer_init();
 
913
914	/* Initialize alarm bases */
915	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
916	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
917	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
918	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
919	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
920	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
921	for (i = 0; i < ALARM_NUMTYPE; i++) {
922		timerqueue_init_head(&alarm_bases[i].timerqueue);
923		spin_lock_init(&alarm_bases[i].lock);
 
 
 
 
924	}
925
926	error = alarmtimer_rtc_interface_setup();
927	if (error)
928		return error;
929
930	error = platform_driver_register(&alarmtimer_driver);
931	if (error)
932		goto out_if;
933
934	return 0;
935out_if:
936	alarmtimer_rtc_interface_remove();
937	return error;
938}
939device_initcall(alarmtimer_init);