Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Generic helpers for smp ipi calls
  3 *
  4 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
  5 */
 
 
 
 
  6#include <linux/rcupdate.h>
  7#include <linux/rculist.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/percpu.h>
 11#include <linux/init.h>
 
 12#include <linux/gfp.h>
 13#include <linux/smp.h>
 14#include <linux/cpu.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16#ifdef CONFIG_USE_GENERIC_SMP_HELPERS
 17static struct {
 18	struct list_head	queue;
 19	raw_spinlock_t		lock;
 20} call_function __cacheline_aligned_in_smp =
 21	{
 22		.queue		= LIST_HEAD_INIT(call_function.queue),
 23		.lock		= __RAW_SPIN_LOCK_UNLOCKED(call_function.lock),
 24	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26enum {
 27	CSD_FLAG_LOCK		= 0x01,
 
 
 
 
 
 28};
 29
 30struct call_function_data {
 31	struct call_single_data	csd;
 32	atomic_t		refs;
 33	cpumask_var_t		cpumask;
 
 34};
 35
 36static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
 37
 38struct call_single_queue {
 39	struct list_head	list;
 40	raw_spinlock_t		lock;
 41};
 42
 43static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_queue, call_single_queue);
 44
 45static int
 46hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
 47{
 48	long cpu = (long)hcpu;
 49	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 50
 51	switch (action) {
 52	case CPU_UP_PREPARE:
 53	case CPU_UP_PREPARE_FROZEN:
 54		if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
 55				cpu_to_node(cpu)))
 56			return notifier_from_errno(-ENOMEM);
 57		break;
 58
 59#ifdef CONFIG_HOTPLUG_CPU
 60	case CPU_UP_CANCELED:
 61	case CPU_UP_CANCELED_FROZEN:
 62
 63	case CPU_DEAD:
 64	case CPU_DEAD_FROZEN:
 65		free_cpumask_var(cfd->cpumask);
 66		break;
 67#endif
 68	};
 
 
 
 
 
 69
 70	return NOTIFY_OK;
 71}
 72
 73static struct notifier_block __cpuinitdata hotplug_cfd_notifier = {
 74	.notifier_call		= hotplug_cfd,
 75};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76
 77void __init call_function_init(void)
 78{
 79	void *cpu = (void *)(long)smp_processor_id();
 80	int i;
 81
 82	for_each_possible_cpu(i) {
 83		struct call_single_queue *q = &per_cpu(call_single_queue, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84
 85		raw_spin_lock_init(&q->lock);
 86		INIT_LIST_HEAD(&q->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87	}
 
 
 88
 89	hotplug_cfd(&hotplug_cfd_notifier, CPU_UP_PREPARE, cpu);
 90	register_cpu_notifier(&hotplug_cfd_notifier);
 91}
 92
 93/*
 94 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 95 *
 96 * For non-synchronous ipi calls the csd can still be in use by the
 97 * previous function call. For multi-cpu calls its even more interesting
 98 * as we'll have to ensure no other cpu is observing our csd.
 99 */
100static void csd_lock_wait(struct call_single_data *data)
101{
102	while (data->flags & CSD_FLAG_LOCK)
 
 
 
 
 
 
103		cpu_relax();
 
 
104}
105
106static void csd_lock(struct call_single_data *data)
107{
108	csd_lock_wait(data);
109	data->flags = CSD_FLAG_LOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
111	/*
112	 * prevent CPU from reordering the above assignment
113	 * to ->flags with any subsequent assignments to other
114	 * fields of the specified call_single_data structure:
115	 */
116	smp_mb();
117}
118
119static void csd_unlock(struct call_single_data *data)
120{
121	WARN_ON(!(data->flags & CSD_FLAG_LOCK));
122
123	/*
124	 * ensure we're all done before releasing data:
125	 */
126	smp_mb();
127
128	data->flags &= ~CSD_FLAG_LOCK;
129}
130
131/*
132 * Insert a previously allocated call_single_data element
133 * for execution on the given CPU. data must already have
134 * ->func, ->info, and ->flags set.
135 */
136static
137void generic_exec_single(int cpu, struct call_single_data *data, int wait)
138{
139	struct call_single_queue *dst = &per_cpu(call_single_queue, cpu);
140	unsigned long flags;
141	int ipi;
142
143	raw_spin_lock_irqsave(&dst->lock, flags);
144	ipi = list_empty(&dst->list);
145	list_add_tail(&data->list, &dst->list);
146	raw_spin_unlock_irqrestore(&dst->lock, flags);
 
 
 
 
147
148	/*
149	 * The list addition should be visible before sending the IPI
150	 * handler locks the list to pull the entry off it because of
151	 * normal cache coherency rules implied by spinlocks.
152	 *
153	 * If IPIs can go out of order to the cache coherency protocol
154	 * in an architecture, sufficient synchronisation should be added
155	 * to arch code to make it appear to obey cache coherency WRT
156	 * locking and barrier primitives. Generic code isn't really
157	 * equipped to do the right thing...
158	 */
159	if (ipi)
160		arch_send_call_function_single_ipi(cpu);
161
162	if (wait)
163		csd_lock_wait(data);
164}
165
166/*
167 * Invoked by arch to handle an IPI for call function. Must be called with
168 * interrupts disabled.
 
169 */
170void generic_smp_call_function_interrupt(void)
171{
172	struct call_function_data *data;
173	int cpu = smp_processor_id();
174
175	/*
176	 * Shouldn't receive this interrupt on a cpu that is not yet online.
177	 */
178	WARN_ON_ONCE(!cpu_online(cpu));
179
180	/*
181	 * Ensure entry is visible on call_function_queue after we have
182	 * entered the IPI. See comment in smp_call_function_many.
183	 * If we don't have this, then we may miss an entry on the list
184	 * and never get another IPI to process it.
185	 */
186	smp_mb();
187
188	/*
189	 * It's ok to use list_for_each_rcu() here even though we may
190	 * delete 'pos', since list_del_rcu() doesn't clear ->next
191	 */
192	list_for_each_entry_rcu(data, &call_function.queue, csd.list) {
193		int refs;
194		smp_call_func_t func;
195
196		/*
197		 * Since we walk the list without any locks, we might
198		 * see an entry that was completed, removed from the
199		 * list and is in the process of being reused.
200		 *
201		 * We must check that the cpu is in the cpumask before
202		 * checking the refs, and both must be set before
203		 * executing the callback on this cpu.
204		 */
 
 
 
 
 
 
 
 
205
206		if (!cpumask_test_cpu(cpu, data->cpumask))
207			continue;
 
 
208
209		smp_rmb();
210
211		if (atomic_read(&data->refs) == 0)
212			continue;
213
214		func = data->csd.func;		/* save for later warn */
215		func(data->csd.info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
217		/*
218		 * If the cpu mask is not still set then func enabled
219		 * interrupts (BUG), and this cpu took another smp call
220		 * function interrupt and executed func(info) twice
221		 * on this cpu.  That nested execution decremented refs.
222		 */
223		if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) {
224			WARN(1, "%pf enabled interrupts and double executed\n", func);
225			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226		}
 
227
228		refs = atomic_dec_return(&data->refs);
229		WARN_ON(refs < 0);
230
231		if (refs)
232			continue;
233
234		WARN_ON(!cpumask_empty(data->cpumask));
235
236		raw_spin_lock(&call_function.lock);
237		list_del_rcu(&data->csd.list);
238		raw_spin_unlock(&call_function.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
239
240		csd_unlock(&data->csd);
 
 
 
 
241	}
242
243}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
245/*
246 * Invoked by arch to handle an IPI for call function single. Must be
247 * called from the arch with interrupts disabled.
248 */
249void generic_smp_call_function_single_interrupt(void)
250{
251	struct call_single_queue *q = &__get_cpu_var(call_single_queue);
252	unsigned int data_flags;
253	LIST_HEAD(list);
254
255	/*
256	 * Shouldn't receive this interrupt on a cpu that is not yet online.
257	 */
258	WARN_ON_ONCE(!cpu_online(smp_processor_id()));
 
259
260	raw_spin_lock(&q->lock);
261	list_replace_init(&q->list, &list);
262	raw_spin_unlock(&q->lock);
263
264	while (!list_empty(&list)) {
265		struct call_single_data *data;
266
267		data = list_entry(list.next, struct call_single_data, list);
268		list_del(&data->list);
 
269
270		/*
271		 * 'data' can be invalid after this call if flags == 0
272		 * (when called through generic_exec_single()),
273		 * so save them away before making the call:
274		 */
275		data_flags = data->flags;
276
277		data->func(data->info);
 
 
 
 
 
278
279		/*
280		 * Unlocked CSDs are valid through generic_exec_single():
281		 */
282		if (data_flags & CSD_FLAG_LOCK)
283			csd_unlock(data);
284	}
285}
286
287static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data);
288
289/*
290 * smp_call_function_single - Run a function on a specific CPU
291 * @func: The function to run. This must be fast and non-blocking.
292 * @info: An arbitrary pointer to pass to the function.
293 * @wait: If true, wait until function has completed on other CPUs.
294 *
295 * Returns 0 on success, else a negative status code.
296 */
297int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
298			     int wait)
299{
300	struct call_single_data d = {
301		.flags = 0,
 
302	};
303	unsigned long flags;
304	int this_cpu;
305	int err = 0;
306
307	/*
308	 * prevent preemption and reschedule on another processor,
309	 * as well as CPU removal
310	 */
311	this_cpu = get_cpu();
312
313	/*
314	 * Can deadlock when called with interrupts disabled.
315	 * We allow cpu's that are not yet online though, as no one else can
316	 * send smp call function interrupt to this cpu and as such deadlocks
317	 * can't happen.
318	 */
319	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
320		     && !oops_in_progress);
321
322	if (cpu == this_cpu) {
323		local_irq_save(flags);
324		func(info);
325		local_irq_restore(flags);
326	} else {
327		if ((unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) {
328			struct call_single_data *data = &d;
329
330			if (!wait)
331				data = &__get_cpu_var(csd_data);
 
 
 
332
333			csd_lock(data);
 
 
 
 
 
334
335			data->func = func;
336			data->info = info;
337			generic_exec_single(cpu, data, wait);
338		} else {
339			err = -ENXIO;	/* CPU not online */
340		}
341	}
342
343	put_cpu();
344
345	return err;
346}
347EXPORT_SYMBOL(smp_call_function_single);
348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349/*
350 * smp_call_function_any - Run a function on any of the given cpus
351 * @mask: The mask of cpus it can run on.
352 * @func: The function to run. This must be fast and non-blocking.
353 * @info: An arbitrary pointer to pass to the function.
354 * @wait: If true, wait until function has completed.
355 *
356 * Returns 0 on success, else a negative status code (if no cpus were online).
357 * Note that @wait will be implicitly turned on in case of allocation failures,
358 * since we fall back to on-stack allocation.
359 *
360 * Selection preference:
361 *	1) current cpu if in @mask
362 *	2) any cpu of current node if in @mask
363 *	3) any other online cpu in @mask
364 */
365int smp_call_function_any(const struct cpumask *mask,
366			  smp_call_func_t func, void *info, int wait)
367{
368	unsigned int cpu;
369	const struct cpumask *nodemask;
370	int ret;
371
372	/* Try for same CPU (cheapest) */
373	cpu = get_cpu();
374	if (cpumask_test_cpu(cpu, mask))
375		goto call;
376
377	/* Try for same node. */
378	nodemask = cpumask_of_node(cpu_to_node(cpu));
379	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
380	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
381		if (cpu_online(cpu))
382			goto call;
383	}
384
385	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
386	cpu = cpumask_any_and(mask, cpu_online_mask);
387call:
388	ret = smp_call_function_single(cpu, func, info, wait);
389	put_cpu();
390	return ret;
391}
392EXPORT_SYMBOL_GPL(smp_call_function_any);
393
394/**
395 * __smp_call_function_single(): Run a function on a specific CPU
396 * @cpu: The CPU to run on.
397 * @data: Pre-allocated and setup data structure
398 * @wait: If true, wait until function has completed on specified CPU.
399 *
400 * Like smp_call_function_single(), but allow caller to pass in a
401 * pre-allocated data structure. Useful for embedding @data inside
402 * other structures, for instance.
403 */
404void __smp_call_function_single(int cpu, struct call_single_data *data,
405				int wait)
406{
407	unsigned int this_cpu;
408	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
409
410	this_cpu = get_cpu();
411	/*
412	 * Can deadlock when called with interrupts disabled.
413	 * We allow cpu's that are not yet online though, as no one else can
414	 * send smp call function interrupt to this cpu and as such deadlocks
415	 * can't happen.
416	 */
417	WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled()
418		     && !oops_in_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
420	if (cpu == this_cpu) {
421		local_irq_save(flags);
422		data->func(data->info);
423		local_irq_restore(flags);
424	} else {
425		csd_lock(data);
426		generic_exec_single(cpu, data, wait);
427	}
428	put_cpu();
 
 
 
 
 
 
 
 
429}
430
431/**
432 * smp_call_function_many(): Run a function on a set of other CPUs.
433 * @mask: The set of cpus to run on (only runs on online subset).
434 * @func: The function to run. This must be fast and non-blocking.
435 * @info: An arbitrary pointer to pass to the function.
436 * @wait: If true, wait (atomically) until function has completed
437 *        on other CPUs.
 
 
438 *
439 * If @wait is true, then returns once @func has returned.
440 *
441 * You must not call this function with disabled interrupts or from a
442 * hardware interrupt handler or from a bottom half handler. Preemption
443 * must be disabled when calling this function.
444 */
445void smp_call_function_many(const struct cpumask *mask,
446			    smp_call_func_t func, void *info, bool wait)
447{
448	struct call_function_data *data;
449	unsigned long flags;
450	int refs, cpu, next_cpu, this_cpu = smp_processor_id();
451
452	/*
453	 * Can deadlock when called with interrupts disabled.
454	 * We allow cpu's that are not yet online though, as no one else can
455	 * send smp call function interrupt to this cpu and as such deadlocks
456	 * can't happen.
457	 */
458	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
459		     && !oops_in_progress && !early_boot_irqs_disabled);
460
461	/* Try to fastpath.  So, what's a CPU they want? Ignoring this one. */
462	cpu = cpumask_first_and(mask, cpu_online_mask);
463	if (cpu == this_cpu)
464		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
465
466	/* No online cpus?  We're done. */
467	if (cpu >= nr_cpu_ids)
468		return;
469
470	/* Do we have another CPU which isn't us? */
471	next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
472	if (next_cpu == this_cpu)
473		next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
474
475	/* Fastpath: do that cpu by itself. */
476	if (next_cpu >= nr_cpu_ids) {
477		smp_call_function_single(cpu, func, info, wait);
478		return;
479	}
480
481	data = &__get_cpu_var(cfd_data);
482	csd_lock(&data->csd);
483
484	/* This BUG_ON verifies our reuse assertions and can be removed */
485	BUG_ON(atomic_read(&data->refs) || !cpumask_empty(data->cpumask));
486
487	/*
488	 * The global call function queue list add and delete are protected
489	 * by a lock, but the list is traversed without any lock, relying
490	 * on the rcu list add and delete to allow safe concurrent traversal.
491	 * We reuse the call function data without waiting for any grace
492	 * period after some other cpu removes it from the global queue.
493	 * This means a cpu might find our data block as it is being
494	 * filled out.
495	 *
496	 * We hold off the interrupt handler on the other cpu by
497	 * ordering our writes to the cpu mask vs our setting of the
498	 * refs counter.  We assert only the cpu owning the data block
499	 * will set a bit in cpumask, and each bit will only be cleared
500	 * by the subject cpu.  Each cpu must first find its bit is
501	 * set and then check that refs is set indicating the element is
502	 * ready to be processed, otherwise it must skip the entry.
503	 *
504	 * On the previous iteration refs was set to 0 by another cpu.
505	 * To avoid the use of transitivity, set the counter to 0 here
506	 * so the wmb will pair with the rmb in the interrupt handler.
507	 */
508	atomic_set(&data->refs, 0);	/* convert 3rd to 1st party write */
509
510	data->csd.func = func;
511	data->csd.info = info;
512
513	/* Ensure 0 refs is visible before mask.  Also orders func and info */
514	smp_wmb();
515
516	/* We rely on the "and" being processed before the store */
517	cpumask_and(data->cpumask, mask, cpu_online_mask);
518	cpumask_clear_cpu(this_cpu, data->cpumask);
519	refs = cpumask_weight(data->cpumask);
520
521	/* Some callers race with other cpus changing the passed mask */
522	if (unlikely(!refs)) {
523		csd_unlock(&data->csd);
524		return;
525	}
526
527	raw_spin_lock_irqsave(&call_function.lock, flags);
528	/*
529	 * Place entry at the _HEAD_ of the list, so that any cpu still
530	 * observing the entry in generic_smp_call_function_interrupt()
531	 * will not miss any other list entries:
532	 */
533	list_add_rcu(&data->csd.list, &call_function.queue);
534	/*
535	 * We rely on the wmb() in list_add_rcu to complete our writes
536	 * to the cpumask before this write to refs, which indicates
537	 * data is on the list and is ready to be processed.
538	 */
539	atomic_set(&data->refs, refs);
540	raw_spin_unlock_irqrestore(&call_function.lock, flags);
541
542	/*
543	 * Make the list addition visible before sending the ipi.
544	 * (IPIs must obey or appear to obey normal Linux cache
545	 * coherency rules -- see comment in generic_exec_single).
546	 */
547	smp_mb();
548
549	/* Send a message to all CPUs in the map */
550	arch_send_call_function_ipi_mask(data->cpumask);
551
552	/* Optionally wait for the CPUs to complete */
553	if (wait)
554		csd_lock_wait(&data->csd);
555}
556EXPORT_SYMBOL(smp_call_function_many);
557
558/**
559 * smp_call_function(): Run a function on all other CPUs.
560 * @func: The function to run. This must be fast and non-blocking.
561 * @info: An arbitrary pointer to pass to the function.
562 * @wait: If true, wait (atomically) until function has completed
563 *        on other CPUs.
564 *
565 * Returns 0.
566 *
567 * If @wait is true, then returns once @func has returned; otherwise
568 * it returns just before the target cpu calls @func.
569 *
570 * You must not call this function with disabled interrupts or from a
571 * hardware interrupt handler or from a bottom half handler.
572 */
573int smp_call_function(smp_call_func_t func, void *info, int wait)
574{
575	preempt_disable();
576	smp_call_function_many(cpu_online_mask, func, info, wait);
577	preempt_enable();
578
579	return 0;
580}
581EXPORT_SYMBOL(smp_call_function);
582
583void ipi_call_lock(void)
584{
585	raw_spin_lock(&call_function.lock);
586}
587
588void ipi_call_unlock(void)
589{
590	raw_spin_unlock(&call_function.lock);
591}
592
593void ipi_call_lock_irq(void)
594{
595	raw_spin_lock_irq(&call_function.lock);
596}
597
598void ipi_call_unlock_irq(void)
599{
600	raw_spin_unlock_irq(&call_function.lock);
601}
602#endif /* USE_GENERIC_SMP_HELPERS */
603
604/* Setup configured maximum number of CPUs to activate */
605unsigned int setup_max_cpus = NR_CPUS;
606EXPORT_SYMBOL(setup_max_cpus);
607
608
609/*
610 * Setup routine for controlling SMP activation
611 *
612 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
613 * activation entirely (the MPS table probe still happens, though).
614 *
615 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
616 * greater than 0, limits the maximum number of CPUs activated in
617 * SMP mode to <NUM>.
618 */
619
620void __weak arch_disable_smp_support(void) { }
621
622static int __init nosmp(char *str)
623{
624	setup_max_cpus = 0;
625	arch_disable_smp_support();
626
627	return 0;
628}
629
630early_param("nosmp", nosmp);
631
632/* this is hard limit */
633static int __init nrcpus(char *str)
634{
635	int nr_cpus;
636
637	get_option(&str, &nr_cpus);
638	if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
639		nr_cpu_ids = nr_cpus;
640
641	return 0;
642}
643
644early_param("nr_cpus", nrcpus);
645
646static int __init maxcpus(char *str)
647{
648	get_option(&str, &setup_max_cpus);
649	if (setup_max_cpus == 0)
650		arch_disable_smp_support();
651
652	return 0;
653}
654
655early_param("maxcpus", maxcpus);
656
657/* Setup number of possible processor ids */
658int nr_cpu_ids __read_mostly = NR_CPUS;
659EXPORT_SYMBOL(nr_cpu_ids);
660
661/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
662void __init setup_nr_cpu_ids(void)
663{
664	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
665}
666
667/* Called by boot processor to activate the rest. */
668void __init smp_init(void)
669{
670	unsigned int cpu;
671
672	/* FIXME: This should be done in userspace --RR */
673	for_each_present_cpu(cpu) {
674		if (num_online_cpus() >= setup_max_cpus)
675			break;
676		if (!cpu_online(cpu))
677			cpu_up(cpu);
678	}
 
 
 
 
 
679
680	/* Any cleanup work */
681	printk(KERN_INFO "Brought up %ld CPUs\n", (long)num_online_cpus());
682	smp_cpus_done(setup_max_cpus);
683}
684
685/*
686 * Call a function on all processors.  May be used during early boot while
687 * early_boot_irqs_disabled is set.  Use local_irq_save/restore() instead
688 * of local_irq_disable/enable().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689 */
690int on_each_cpu(void (*func) (void *info), void *info, int wait)
 
691{
692	unsigned long flags;
693	int ret = 0;
 
 
694
695	preempt_disable();
696	ret = smp_call_function(func, info, wait);
697	local_irq_save(flags);
698	func(info);
699	local_irq_restore(flags);
700	preempt_enable();
701	return ret;
702}
703EXPORT_SYMBOL(on_each_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic helpers for smp ipi calls
   4 *
   5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/irq_work.h>
  11#include <linux/rcupdate.h>
  12#include <linux/rculist.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/gfp.h>
  19#include <linux/smp.h>
  20#include <linux/cpu.h>
  21#include <linux/sched.h>
  22#include <linux/sched/idle.h>
  23#include <linux/hypervisor.h>
  24#include <linux/sched/clock.h>
  25#include <linux/nmi.h>
  26#include <linux/sched/debug.h>
  27#include <linux/jump_label.h>
  28
  29#include "smpboot.h"
  30#include "sched/smp.h"
  31
  32#define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
  33
  34#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  35union cfd_seq_cnt {
  36	u64		val;
  37	struct {
  38		u64	src:16;
  39		u64	dst:16;
  40#define CFD_SEQ_NOCPU	0xffff
  41		u64	type:4;
  42#define CFD_SEQ_QUEUE	0
  43#define CFD_SEQ_IPI	1
  44#define CFD_SEQ_NOIPI	2
  45#define CFD_SEQ_PING	3
  46#define CFD_SEQ_PINGED	4
  47#define CFD_SEQ_HANDLE	5
  48#define CFD_SEQ_DEQUEUE	6
  49#define CFD_SEQ_IDLE	7
  50#define CFD_SEQ_GOTIPI	8
  51#define CFD_SEQ_HDLEND	9
  52		u64	cnt:28;
  53	}		u;
  54};
  55
  56static char *seq_type[] = {
  57	[CFD_SEQ_QUEUE]		= "queue",
  58	[CFD_SEQ_IPI]		= "ipi",
  59	[CFD_SEQ_NOIPI]		= "noipi",
  60	[CFD_SEQ_PING]		= "ping",
  61	[CFD_SEQ_PINGED]	= "pinged",
  62	[CFD_SEQ_HANDLE]	= "handle",
  63	[CFD_SEQ_DEQUEUE]	= "dequeue (src CPU 0 == empty)",
  64	[CFD_SEQ_IDLE]		= "idle",
  65	[CFD_SEQ_GOTIPI]	= "gotipi",
  66	[CFD_SEQ_HDLEND]	= "hdlend (src CPU 0 == early)",
  67};
  68
  69struct cfd_seq_local {
  70	u64	ping;
  71	u64	pinged;
  72	u64	handle;
  73	u64	dequeue;
  74	u64	idle;
  75	u64	gotipi;
  76	u64	hdlend;
  77};
  78#endif
  79
  80struct cfd_percpu {
  81	call_single_data_t	csd;
  82#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  83	u64	seq_queue;
  84	u64	seq_ipi;
  85	u64	seq_noipi;
  86#endif
  87};
  88
  89struct call_function_data {
  90	struct cfd_percpu	__percpu *pcpu;
 
  91	cpumask_var_t		cpumask;
  92	cpumask_var_t		cpumask_ipi;
  93};
  94
  95static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
  96
  97static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
 
 
 
  98
  99static void flush_smp_call_function_queue(bool warn_cpu_offline);
 100
 101int smpcfd_prepare_cpu(unsigned int cpu)
 
 102{
 
 103	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 104
 105	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
 106				     cpu_to_node(cpu)))
 107		return -ENOMEM;
 108	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
 109				     cpu_to_node(cpu))) {
 
 
 
 
 
 
 
 
 
 110		free_cpumask_var(cfd->cpumask);
 111		return -ENOMEM;
 112	}
 113	cfd->pcpu = alloc_percpu(struct cfd_percpu);
 114	if (!cfd->pcpu) {
 115		free_cpumask_var(cfd->cpumask);
 116		free_cpumask_var(cfd->cpumask_ipi);
 117		return -ENOMEM;
 118	}
 119
 120	return 0;
 121}
 122
 123int smpcfd_dead_cpu(unsigned int cpu)
 124{
 125	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 126
 127	free_cpumask_var(cfd->cpumask);
 128	free_cpumask_var(cfd->cpumask_ipi);
 129	free_percpu(cfd->pcpu);
 130	return 0;
 131}
 132
 133int smpcfd_dying_cpu(unsigned int cpu)
 134{
 135	/*
 136	 * The IPIs for the smp-call-function callbacks queued by other
 137	 * CPUs might arrive late, either due to hardware latencies or
 138	 * because this CPU disabled interrupts (inside stop-machine)
 139	 * before the IPIs were sent. So flush out any pending callbacks
 140	 * explicitly (without waiting for the IPIs to arrive), to
 141	 * ensure that the outgoing CPU doesn't go offline with work
 142	 * still pending.
 143	 */
 144	flush_smp_call_function_queue(false);
 145	irq_work_run();
 146	return 0;
 147}
 148
 149void __init call_function_init(void)
 150{
 
 151	int i;
 152
 153	for_each_possible_cpu(i)
 154		init_llist_head(&per_cpu(call_single_queue, i));
 155
 156	smpcfd_prepare_cpu(smp_processor_id());
 157}
 158
 159#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 160
 161static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
 162static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
 163
 164static int __init csdlock_debug(char *str)
 165{
 166	unsigned int val = 0;
 167
 168	if (str && !strcmp(str, "ext")) {
 169		val = 1;
 170		static_branch_enable(&csdlock_debug_extended);
 171	} else
 172		get_option(&str, &val);
 173
 174	if (val)
 175		static_branch_enable(&csdlock_debug_enabled);
 176
 177	return 0;
 178}
 179early_param("csdlock_debug", csdlock_debug);
 180
 181static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
 182static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
 183static DEFINE_PER_CPU(void *, cur_csd_info);
 184static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
 185
 186#define CSD_LOCK_TIMEOUT (5ULL * NSEC_PER_SEC)
 187static atomic_t csd_bug_count = ATOMIC_INIT(0);
 188static u64 cfd_seq;
 189
 190#define CFD_SEQ(s, d, t, c)	\
 191	(union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
 192
 193static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
 194{
 195	union cfd_seq_cnt new, old;
 196
 197	new = CFD_SEQ(src, dst, type, 0);
 198
 199	do {
 200		old.val = READ_ONCE(cfd_seq);
 201		new.u.cnt = old.u.cnt + 1;
 202	} while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
 203
 204	return old.val;
 205}
 206
 207#define cfd_seq_store(var, src, dst, type)				\
 208	do {								\
 209		if (static_branch_unlikely(&csdlock_debug_extended))	\
 210			var = cfd_seq_inc(src, dst, type);		\
 211	} while (0)
 212
 213/* Record current CSD work for current CPU, NULL to erase. */
 214static void __csd_lock_record(struct __call_single_data *csd)
 215{
 216	if (!csd) {
 217		smp_mb(); /* NULL cur_csd after unlock. */
 218		__this_cpu_write(cur_csd, NULL);
 219		return;
 220	}
 221	__this_cpu_write(cur_csd_func, csd->func);
 222	__this_cpu_write(cur_csd_info, csd->info);
 223	smp_wmb(); /* func and info before csd. */
 224	__this_cpu_write(cur_csd, csd);
 225	smp_mb(); /* Update cur_csd before function call. */
 226		  /* Or before unlock, as the case may be. */
 227}
 228
 229static __always_inline void csd_lock_record(struct __call_single_data *csd)
 230{
 231	if (static_branch_unlikely(&csdlock_debug_enabled))
 232		__csd_lock_record(csd);
 233}
 234
 235static int csd_lock_wait_getcpu(struct __call_single_data *csd)
 236{
 237	unsigned int csd_type;
 238
 239	csd_type = CSD_TYPE(csd);
 240	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
 241		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
 242	return -1;
 243}
 244
 245static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
 246			     unsigned int type, union cfd_seq_cnt *data,
 247			     unsigned int *n_data, unsigned int now)
 248{
 249	union cfd_seq_cnt new[2];
 250	unsigned int i, j, k;
 251
 252	new[0].val = val;
 253	new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
 254
 255	for (i = 0; i < 2; i++) {
 256		if (new[i].u.cnt <= now)
 257			new[i].u.cnt |= 0x80000000U;
 258		for (j = 0; j < *n_data; j++) {
 259			if (new[i].u.cnt == data[j].u.cnt) {
 260				/* Direct read value trumps generated one. */
 261				if (i == 0)
 262					data[j].val = new[i].val;
 263				break;
 264			}
 265			if (new[i].u.cnt < data[j].u.cnt) {
 266				for (k = *n_data; k > j; k--)
 267					data[k].val = data[k - 1].val;
 268				data[j].val = new[i].val;
 269				(*n_data)++;
 270				break;
 271			}
 272		}
 273		if (j == *n_data) {
 274			data[j].val = new[i].val;
 275			(*n_data)++;
 276		}
 277	}
 278}
 279
 280static const char *csd_lock_get_type(unsigned int type)
 281{
 282	return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
 283}
 284
 285static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
 286{
 287	struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
 288	unsigned int srccpu = csd->node.src;
 289	struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
 290	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 291	unsigned int now;
 292	union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
 293	unsigned int n_data = 0, i;
 294
 295	data[0].val = READ_ONCE(cfd_seq);
 296	now = data[0].u.cnt;
 297
 298	cfd_seq_data_add(pcpu->seq_queue,			srccpu, cpu,	       CFD_SEQ_QUEUE,  data, &n_data, now);
 299	cfd_seq_data_add(pcpu->seq_ipi,				srccpu, cpu,	       CFD_SEQ_IPI,    data, &n_data, now);
 300	cfd_seq_data_add(pcpu->seq_noipi,			srccpu, cpu,	       CFD_SEQ_NOIPI,  data, &n_data, now);
 301
 302	cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),	srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
 303	cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
 304
 305	cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
 306	cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
 307	cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
 308	cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
 309	cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
 310
 311	for (i = 0; i < n_data; i++) {
 312		pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
 313			 data[i].u.cnt & ~0x80000000U, data[i].u.src,
 314			 data[i].u.dst, csd_lock_get_type(data[i].u.type));
 315	}
 316	pr_alert("\tcsd: cnt now: %07x\n", now);
 317}
 318
 319/*
 320 * Complain if too much time spent waiting.  Note that only
 321 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
 322 * so waiting on other types gets much less information.
 323 */
 324static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
 325{
 326	int cpu = -1;
 327	int cpux;
 328	bool firsttime;
 329	u64 ts2, ts_delta;
 330	call_single_data_t *cpu_cur_csd;
 331	unsigned int flags = READ_ONCE(csd->node.u_flags);
 332
 333	if (!(flags & CSD_FLAG_LOCK)) {
 334		if (!unlikely(*bug_id))
 335			return true;
 336		cpu = csd_lock_wait_getcpu(csd);
 337		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
 338			 *bug_id, raw_smp_processor_id(), cpu);
 339		return true;
 340	}
 341
 342	ts2 = sched_clock();
 343	ts_delta = ts2 - *ts1;
 344	if (likely(ts_delta <= CSD_LOCK_TIMEOUT))
 345		return false;
 346
 347	firsttime = !*bug_id;
 348	if (firsttime)
 349		*bug_id = atomic_inc_return(&csd_bug_count);
 350	cpu = csd_lock_wait_getcpu(csd);
 351	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
 352		cpux = 0;
 353	else
 354		cpux = cpu;
 355	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
 356	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
 357		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
 358		 cpu, csd->func, csd->info);
 359	if (cpu_cur_csd && csd != cpu_cur_csd) {
 360		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
 361			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
 362			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
 363	} else {
 364		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
 365			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
 366	}
 367	if (cpu >= 0) {
 368		if (static_branch_unlikely(&csdlock_debug_extended))
 369			csd_lock_print_extended(csd, cpu);
 370		if (!trigger_single_cpu_backtrace(cpu))
 371			dump_cpu_task(cpu);
 372		if (!cpu_cur_csd) {
 373			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
 374			arch_send_call_function_single_ipi(cpu);
 375		}
 376	}
 377	dump_stack();
 378	*ts1 = ts2;
 379
 380	return false;
 
 381}
 382
 383/*
 384 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 385 *
 386 * For non-synchronous ipi calls the csd can still be in use by the
 387 * previous function call. For multi-cpu calls its even more interesting
 388 * as we'll have to ensure no other cpu is observing our csd.
 389 */
 390static void __csd_lock_wait(struct __call_single_data *csd)
 391{
 392	int bug_id = 0;
 393	u64 ts0, ts1;
 394
 395	ts1 = ts0 = sched_clock();
 396	for (;;) {
 397		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
 398			break;
 399		cpu_relax();
 400	}
 401	smp_acquire__after_ctrl_dep();
 402}
 403
 404static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 405{
 406	if (static_branch_unlikely(&csdlock_debug_enabled)) {
 407		__csd_lock_wait(csd);
 408		return;
 409	}
 410
 411	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 412}
 413
 414static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
 415{
 416	unsigned int this_cpu = smp_processor_id();
 417	struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
 418	struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
 419	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 420
 421	cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 422	if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
 423		cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 424		cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
 425		send_call_function_single_ipi(cpu);
 426		cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
 427	} else {
 428		cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 429	}
 430}
 431#else
 432#define cfd_seq_store(var, src, dst, type)
 433
 434static void csd_lock_record(struct __call_single_data *csd)
 435{
 436}
 437
 438static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 439{
 440	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 441}
 442#endif
 443
 444static __always_inline void csd_lock(struct __call_single_data *csd)
 445{
 446	csd_lock_wait(csd);
 447	csd->node.u_flags |= CSD_FLAG_LOCK;
 448
 449	/*
 450	 * prevent CPU from reordering the above assignment
 451	 * to ->flags with any subsequent assignments to other
 452	 * fields of the specified call_single_data_t structure:
 453	 */
 454	smp_wmb();
 455}
 456
 457static __always_inline void csd_unlock(struct __call_single_data *csd)
 458{
 459	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
 460
 461	/*
 462	 * ensure we're all done before releasing data:
 463	 */
 464	smp_store_release(&csd->node.u_flags, 0);
 
 
 465}
 466
 467static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
 468
 469void __smp_call_single_queue(int cpu, struct llist_node *node)
 
 
 
 
 470{
 471#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 472	if (static_branch_unlikely(&csdlock_debug_extended)) {
 473		unsigned int type;
 474
 475		type = CSD_TYPE(container_of(node, call_single_data_t,
 476					     node.llist));
 477		if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
 478			__smp_call_single_queue_debug(cpu, node);
 479			return;
 480		}
 481	}
 482#endif
 483
 484	/*
 485	 * The list addition should be visible before sending the IPI
 486	 * handler locks the list to pull the entry off it because of
 487	 * normal cache coherency rules implied by spinlocks.
 488	 *
 489	 * If IPIs can go out of order to the cache coherency protocol
 490	 * in an architecture, sufficient synchronisation should be added
 491	 * to arch code to make it appear to obey cache coherency WRT
 492	 * locking and barrier primitives. Generic code isn't really
 493	 * equipped to do the right thing...
 494	 */
 495	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
 496		send_call_function_single_ipi(cpu);
 
 
 
 497}
 498
 499/*
 500 * Insert a previously allocated call_single_data_t element
 501 * for execution on the given CPU. data must already have
 502 * ->func, ->info, and ->flags set.
 503 */
 504static int generic_exec_single(int cpu, struct __call_single_data *csd)
 505{
 506	if (cpu == smp_processor_id()) {
 507		smp_call_func_t func = csd->func;
 508		void *info = csd->info;
 509		unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510
 511		/*
 512		 * We can unlock early even for the synchronous on-stack case,
 513		 * since we're doing this from the same CPU..
 
 
 
 
 
 514		 */
 515		csd_lock_record(csd);
 516		csd_unlock(csd);
 517		local_irq_save(flags);
 518		func(info);
 519		csd_lock_record(NULL);
 520		local_irq_restore(flags);
 521		return 0;
 522	}
 523
 524	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
 525		csd_unlock(csd);
 526		return -ENXIO;
 527	}
 528
 529	__smp_call_single_queue(cpu, &csd->node.llist);
 530
 531	return 0;
 532}
 533
 534/**
 535 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 536 *
 537 * Invoked by arch to handle an IPI for call function single.
 538 * Must be called with interrupts disabled.
 539 */
 540void generic_smp_call_function_single_interrupt(void)
 541{
 542	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
 543		      smp_processor_id(), CFD_SEQ_GOTIPI);
 544	flush_smp_call_function_queue(true);
 545}
 546
 547/**
 548 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 549 *
 550 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 551 *		      offline CPU. Skip this check if set to 'false'.
 552 *
 553 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 554 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 555 * to ensure that all pending IPI callbacks are run before it goes completely
 556 * offline.
 557 *
 558 * Loop through the call_single_queue and run all the queued callbacks.
 559 * Must be called with interrupts disabled.
 560 */
 561static void flush_smp_call_function_queue(bool warn_cpu_offline)
 562{
 563	call_single_data_t *csd, *csd_next;
 564	struct llist_node *entry, *prev;
 565	struct llist_head *head;
 566	static bool warned;
 567
 568	lockdep_assert_irqs_disabled();
 569
 570	head = this_cpu_ptr(&call_single_queue);
 571	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
 572		      smp_processor_id(), CFD_SEQ_HANDLE);
 573	entry = llist_del_all(head);
 574	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
 575		      /* Special meaning of source cpu: 0 == queue empty */
 576		      entry ? CFD_SEQ_NOCPU : 0,
 577		      smp_processor_id(), CFD_SEQ_DEQUEUE);
 578	entry = llist_reverse_order(entry);
 579
 580	/* There shouldn't be any pending callbacks on an offline CPU. */
 581	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
 582		     !warned && !llist_empty(head))) {
 583		warned = true;
 584		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
 585
 586		/*
 587		 * We don't have to use the _safe() variant here
 588		 * because we are not invoking the IPI handlers yet.
 
 
 589		 */
 590		llist_for_each_entry(csd, entry, node.llist) {
 591			switch (CSD_TYPE(csd)) {
 592			case CSD_TYPE_ASYNC:
 593			case CSD_TYPE_SYNC:
 594			case CSD_TYPE_IRQ_WORK:
 595				pr_warn("IPI callback %pS sent to offline CPU\n",
 596					csd->func);
 597				break;
 598
 599			case CSD_TYPE_TTWU:
 600				pr_warn("IPI task-wakeup sent to offline CPU\n");
 601				break;
 602
 603			default:
 604				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
 605					CSD_TYPE(csd));
 606				break;
 607			}
 608		}
 609	}
 610
 611	/*
 612	 * First; run all SYNC callbacks, people are waiting for us.
 613	 */
 614	prev = NULL;
 615	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 616		/* Do we wait until *after* callback? */
 617		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
 618			smp_call_func_t func = csd->func;
 619			void *info = csd->info;
 620
 621			if (prev) {
 622				prev->next = &csd_next->node.llist;
 623			} else {
 624				entry = &csd_next->node.llist;
 625			}
 626
 627			csd_lock_record(csd);
 628			func(info);
 629			csd_unlock(csd);
 630			csd_lock_record(NULL);
 631		} else {
 632			prev = &csd->node.llist;
 633		}
 634	}
 635
 636	if (!entry) {
 637		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
 638			      0, smp_processor_id(),
 639			      CFD_SEQ_HDLEND);
 640		return;
 641	}
 642
 643	/*
 644	 * Second; run all !SYNC callbacks.
 645	 */
 646	prev = NULL;
 647	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 648		int type = CSD_TYPE(csd);
 649
 650		if (type != CSD_TYPE_TTWU) {
 651			if (prev) {
 652				prev->next = &csd_next->node.llist;
 653			} else {
 654				entry = &csd_next->node.llist;
 655			}
 656
 657			if (type == CSD_TYPE_ASYNC) {
 658				smp_call_func_t func = csd->func;
 659				void *info = csd->info;
 660
 661				csd_lock_record(csd);
 662				csd_unlock(csd);
 663				func(info);
 664				csd_lock_record(NULL);
 665			} else if (type == CSD_TYPE_IRQ_WORK) {
 666				irq_work_single(csd);
 667			}
 668
 669		} else {
 670			prev = &csd->node.llist;
 671		}
 672	}
 
 
 
 
 
 673
 674	/*
 675	 * Third; only CSD_TYPE_TTWU is left, issue those.
 676	 */
 677	if (entry)
 678		sched_ttwu_pending(entry);
 679
 680	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
 681		      smp_processor_id(), CFD_SEQ_HDLEND);
 682}
 
 
 
 683
 684void flush_smp_call_function_from_idle(void)
 685{
 686	unsigned long flags;
 687
 688	if (llist_empty(this_cpu_ptr(&call_single_queue)))
 689		return;
 
 
 
 
 690
 691	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
 692		      smp_processor_id(), CFD_SEQ_IDLE);
 693	local_irq_save(flags);
 694	flush_smp_call_function_queue(true);
 695	if (local_softirq_pending())
 696		do_softirq();
 697
 698	local_irq_restore(flags);
 
 
 
 
 
 699}
 700
 
 
 701/*
 702 * smp_call_function_single - Run a function on a specific CPU
 703 * @func: The function to run. This must be fast and non-blocking.
 704 * @info: An arbitrary pointer to pass to the function.
 705 * @wait: If true, wait until function has completed on other CPUs.
 706 *
 707 * Returns 0 on success, else a negative status code.
 708 */
 709int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
 710			     int wait)
 711{
 712	call_single_data_t *csd;
 713	call_single_data_t csd_stack = {
 714		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
 715	};
 
 716	int this_cpu;
 717	int err;
 718
 719	/*
 720	 * prevent preemption and reschedule on another processor,
 721	 * as well as CPU removal
 722	 */
 723	this_cpu = get_cpu();
 724
 725	/*
 726	 * Can deadlock when called with interrupts disabled.
 727	 * We allow cpu's that are not yet online though, as no one else can
 728	 * send smp call function interrupt to this cpu and as such deadlocks
 729	 * can't happen.
 730	 */
 731	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
 732		     && !oops_in_progress);
 733
 734	/*
 735	 * When @wait we can deadlock when we interrupt between llist_add() and
 736	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 737	 * csd_lock() on because the interrupt context uses the same csd
 738	 * storage.
 739	 */
 740	WARN_ON_ONCE(!in_task());
 741
 742	csd = &csd_stack;
 743	if (!wait) {
 744		csd = this_cpu_ptr(&csd_data);
 745		csd_lock(csd);
 746	}
 747
 748	csd->func = func;
 749	csd->info = info;
 750#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 751	csd->node.src = smp_processor_id();
 752	csd->node.dst = cpu;
 753#endif
 754
 755	err = generic_exec_single(cpu, csd);
 756
 757	if (wait)
 758		csd_lock_wait(csd);
 
 
 
 759
 760	put_cpu();
 761
 762	return err;
 763}
 764EXPORT_SYMBOL(smp_call_function_single);
 765
 766/**
 767 * smp_call_function_single_async(): Run an asynchronous function on a
 768 * 			         specific CPU.
 769 * @cpu: The CPU to run on.
 770 * @csd: Pre-allocated and setup data structure
 771 *
 772 * Like smp_call_function_single(), but the call is asynchonous and
 773 * can thus be done from contexts with disabled interrupts.
 774 *
 775 * The caller passes his own pre-allocated data structure
 776 * (ie: embedded in an object) and is responsible for synchronizing it
 777 * such that the IPIs performed on the @csd are strictly serialized.
 778 *
 779 * If the function is called with one csd which has not yet been
 780 * processed by previous call to smp_call_function_single_async(), the
 781 * function will return immediately with -EBUSY showing that the csd
 782 * object is still in progress.
 783 *
 784 * NOTE: Be careful, there is unfortunately no current debugging facility to
 785 * validate the correctness of this serialization.
 786 */
 787int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
 788{
 789	int err = 0;
 790
 791	preempt_disable();
 792
 793	if (csd->node.u_flags & CSD_FLAG_LOCK) {
 794		err = -EBUSY;
 795		goto out;
 796	}
 797
 798	csd->node.u_flags = CSD_FLAG_LOCK;
 799	smp_wmb();
 800
 801	err = generic_exec_single(cpu, csd);
 802
 803out:
 804	preempt_enable();
 805
 806	return err;
 807}
 808EXPORT_SYMBOL_GPL(smp_call_function_single_async);
 809
 810/*
 811 * smp_call_function_any - Run a function on any of the given cpus
 812 * @mask: The mask of cpus it can run on.
 813 * @func: The function to run. This must be fast and non-blocking.
 814 * @info: An arbitrary pointer to pass to the function.
 815 * @wait: If true, wait until function has completed.
 816 *
 817 * Returns 0 on success, else a negative status code (if no cpus were online).
 
 
 818 *
 819 * Selection preference:
 820 *	1) current cpu if in @mask
 821 *	2) any cpu of current node if in @mask
 822 *	3) any other online cpu in @mask
 823 */
 824int smp_call_function_any(const struct cpumask *mask,
 825			  smp_call_func_t func, void *info, int wait)
 826{
 827	unsigned int cpu;
 828	const struct cpumask *nodemask;
 829	int ret;
 830
 831	/* Try for same CPU (cheapest) */
 832	cpu = get_cpu();
 833	if (cpumask_test_cpu(cpu, mask))
 834		goto call;
 835
 836	/* Try for same node. */
 837	nodemask = cpumask_of_node(cpu_to_node(cpu));
 838	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
 839	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
 840		if (cpu_online(cpu))
 841			goto call;
 842	}
 843
 844	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
 845	cpu = cpumask_any_and(mask, cpu_online_mask);
 846call:
 847	ret = smp_call_function_single(cpu, func, info, wait);
 848	put_cpu();
 849	return ret;
 850}
 851EXPORT_SYMBOL_GPL(smp_call_function_any);
 852
 853/*
 854 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
 
 
 
 855 *
 856 * %SCF_WAIT:		Wait until function execution is completed
 857 * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
 
 858 */
 859#define SCF_WAIT	(1U << 0)
 860#define SCF_RUN_LOCAL	(1U << 1)
 861
 862static void smp_call_function_many_cond(const struct cpumask *mask,
 863					smp_call_func_t func, void *info,
 864					unsigned int scf_flags,
 865					smp_cond_func_t cond_func)
 866{
 867	int cpu, last_cpu, this_cpu = smp_processor_id();
 868	struct call_function_data *cfd;
 869	bool wait = scf_flags & SCF_WAIT;
 870	bool run_remote = false;
 871	bool run_local = false;
 872	int nr_cpus = 0;
 873
 874	lockdep_assert_preemption_disabled();
 875
 
 876	/*
 877	 * Can deadlock when called with interrupts disabled.
 878	 * We allow cpu's that are not yet online though, as no one else can
 879	 * send smp call function interrupt to this cpu and as such deadlocks
 880	 * can't happen.
 881	 */
 882	if (cpu_online(this_cpu) && !oops_in_progress &&
 883	    !early_boot_irqs_disabled)
 884		lockdep_assert_irqs_enabled();
 885
 886	/*
 887	 * When @wait we can deadlock when we interrupt between llist_add() and
 888	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 889	 * csd_lock() on because the interrupt context uses the same csd
 890	 * storage.
 891	 */
 892	WARN_ON_ONCE(!in_task());
 893
 894	/* Check if we need local execution. */
 895	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
 896		run_local = true;
 897
 898	/* Check if we need remote execution, i.e., any CPU excluding this one. */
 899	cpu = cpumask_first_and(mask, cpu_online_mask);
 900	if (cpu == this_cpu)
 901		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 902	if (cpu < nr_cpu_ids)
 903		run_remote = true;
 904
 905	if (run_remote) {
 906		cfd = this_cpu_ptr(&cfd_data);
 907		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
 908		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
 909
 910		cpumask_clear(cfd->cpumask_ipi);
 911		for_each_cpu(cpu, cfd->cpumask) {
 912			struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 913			call_single_data_t *csd = &pcpu->csd;
 914
 915			if (cond_func && !cond_func(cpu, info))
 916				continue;
 917
 918			csd_lock(csd);
 919			if (wait)
 920				csd->node.u_flags |= CSD_TYPE_SYNC;
 921			csd->func = func;
 922			csd->info = info;
 923#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 924			csd->node.src = smp_processor_id();
 925			csd->node.dst = cpu;
 926#endif
 927			cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 928			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
 929				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 930				nr_cpus++;
 931				last_cpu = cpu;
 932
 933				cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 934			} else {
 935				cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 936			}
 937		}
 938
 939		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
 940
 941		/*
 942		 * Choose the most efficient way to send an IPI. Note that the
 943		 * number of CPUs might be zero due to concurrent changes to the
 944		 * provided mask.
 945		 */
 946		if (nr_cpus == 1)
 947			send_call_function_single_ipi(last_cpu);
 948		else if (likely(nr_cpus > 1))
 949			arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
 950
 951		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
 952	}
 953
 954	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
 955		unsigned long flags;
 956
 
 957		local_irq_save(flags);
 958		func(info);
 959		local_irq_restore(flags);
 
 
 
 960	}
 961
 962	if (run_remote && wait) {
 963		for_each_cpu(cpu, cfd->cpumask) {
 964			call_single_data_t *csd;
 965
 966			csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
 967			csd_lock_wait(csd);
 968		}
 969	}
 970}
 971
 972/**
 973 * smp_call_function_many(): Run a function on a set of CPUs.
 974 * @mask: The set of cpus to run on (only runs on online subset).
 975 * @func: The function to run. This must be fast and non-blocking.
 976 * @info: An arbitrary pointer to pass to the function.
 977 * @flags: Bitmask that controls the operation. If %SCF_WAIT is set, wait
 978 *        (atomically) until function has completed on other CPUs. If
 979 *        %SCF_RUN_LOCAL is set, the function will also be run locally
 980 *        if the local CPU is set in the @cpumask.
 981 *
 982 * If @wait is true, then returns once @func has returned.
 983 *
 984 * You must not call this function with disabled interrupts or from a
 985 * hardware interrupt handler or from a bottom half handler. Preemption
 986 * must be disabled when calling this function.
 987 */
 988void smp_call_function_many(const struct cpumask *mask,
 989			    smp_call_func_t func, void *info, bool wait)
 990{
 991	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992}
 993EXPORT_SYMBOL(smp_call_function_many);
 994
 995/**
 996 * smp_call_function(): Run a function on all other CPUs.
 997 * @func: The function to run. This must be fast and non-blocking.
 998 * @info: An arbitrary pointer to pass to the function.
 999 * @wait: If true, wait (atomically) until function has completed
1000 *        on other CPUs.
1001 *
1002 * Returns 0.
1003 *
1004 * If @wait is true, then returns once @func has returned; otherwise
1005 * it returns just before the target cpu calls @func.
1006 *
1007 * You must not call this function with disabled interrupts or from a
1008 * hardware interrupt handler or from a bottom half handler.
1009 */
1010void smp_call_function(smp_call_func_t func, void *info, int wait)
1011{
1012	preempt_disable();
1013	smp_call_function_many(cpu_online_mask, func, info, wait);
1014	preempt_enable();
 
 
1015}
1016EXPORT_SYMBOL(smp_call_function);
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018/* Setup configured maximum number of CPUs to activate */
1019unsigned int setup_max_cpus = NR_CPUS;
1020EXPORT_SYMBOL(setup_max_cpus);
1021
1022
1023/*
1024 * Setup routine for controlling SMP activation
1025 *
1026 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1027 * activation entirely (the MPS table probe still happens, though).
1028 *
1029 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1030 * greater than 0, limits the maximum number of CPUs activated in
1031 * SMP mode to <NUM>.
1032 */
1033
1034void __weak arch_disable_smp_support(void) { }
1035
1036static int __init nosmp(char *str)
1037{
1038	setup_max_cpus = 0;
1039	arch_disable_smp_support();
1040
1041	return 0;
1042}
1043
1044early_param("nosmp", nosmp);
1045
1046/* this is hard limit */
1047static int __init nrcpus(char *str)
1048{
1049	int nr_cpus;
1050
1051	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
 
1052		nr_cpu_ids = nr_cpus;
1053
1054	return 0;
1055}
1056
1057early_param("nr_cpus", nrcpus);
1058
1059static int __init maxcpus(char *str)
1060{
1061	get_option(&str, &setup_max_cpus);
1062	if (setup_max_cpus == 0)
1063		arch_disable_smp_support();
1064
1065	return 0;
1066}
1067
1068early_param("maxcpus", maxcpus);
1069
1070/* Setup number of possible processor ids */
1071unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1072EXPORT_SYMBOL(nr_cpu_ids);
1073
1074/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1075void __init setup_nr_cpu_ids(void)
1076{
1077	nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1078}
1079
1080/* Called by boot processor to activate the rest. */
1081void __init smp_init(void)
1082{
1083	int num_nodes, num_cpus;
1084
1085	idle_threads_init();
1086	cpuhp_threads_init();
1087
1088	pr_info("Bringing up secondary CPUs ...\n");
1089
1090	bringup_nonboot_cpus(setup_max_cpus);
1091
1092	num_nodes = num_online_nodes();
1093	num_cpus  = num_online_cpus();
1094	pr_info("Brought up %d node%s, %d CPU%s\n",
1095		num_nodes, (num_nodes > 1 ? "s" : ""),
1096		num_cpus,  (num_cpus  > 1 ? "s" : ""));
1097
1098	/* Any cleanup work */
 
1099	smp_cpus_done(setup_max_cpus);
1100}
1101
1102/*
1103 * on_each_cpu_cond(): Call a function on each processor for which
1104 * the supplied function cond_func returns true, optionally waiting
1105 * for all the required CPUs to finish. This may include the local
1106 * processor.
1107 * @cond_func:	A callback function that is passed a cpu id and
1108 *		the info parameter. The function is called
1109 *		with preemption disabled. The function should
1110 *		return a blooean value indicating whether to IPI
1111 *		the specified CPU.
1112 * @func:	The function to run on all applicable CPUs.
1113 *		This must be fast and non-blocking.
1114 * @info:	An arbitrary pointer to pass to both functions.
1115 * @wait:	If true, wait (atomically) until function has
1116 *		completed on other CPUs.
1117 *
1118 * Preemption is disabled to protect against CPUs going offline but not online.
1119 * CPUs going online during the call will not be seen or sent an IPI.
1120 *
1121 * You must not call this function with disabled interrupts or
1122 * from a hardware interrupt handler or from a bottom half handler.
1123 */
1124void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1125			   void *info, bool wait, const struct cpumask *mask)
1126{
1127	unsigned int scf_flags = SCF_RUN_LOCAL;
1128
1129	if (wait)
1130		scf_flags |= SCF_WAIT;
1131
1132	preempt_disable();
1133	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
 
 
 
1134	preempt_enable();
 
1135}
1136EXPORT_SYMBOL(on_each_cpu_cond_mask);
1137
1138static void do_nothing(void *unused)
1139{
1140}
1141
1142/**
1143 * kick_all_cpus_sync - Force all cpus out of idle
1144 *
1145 * Used to synchronize the update of pm_idle function pointer. It's
1146 * called after the pointer is updated and returns after the dummy
1147 * callback function has been executed on all cpus. The execution of
1148 * the function can only happen on the remote cpus after they have
1149 * left the idle function which had been called via pm_idle function
1150 * pointer. So it's guaranteed that nothing uses the previous pointer
1151 * anymore.
1152 */
1153void kick_all_cpus_sync(void)
1154{
1155	/* Make sure the change is visible before we kick the cpus */
1156	smp_mb();
1157	smp_call_function(do_nothing, NULL, 1);
1158}
1159EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1160
1161/**
1162 * wake_up_all_idle_cpus - break all cpus out of idle
1163 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1164 * including idle polling cpus, for non-idle cpus, we will do nothing
1165 * for them.
1166 */
1167void wake_up_all_idle_cpus(void)
1168{
1169	int cpu;
1170
1171	preempt_disable();
1172	for_each_online_cpu(cpu) {
1173		if (cpu == smp_processor_id())
1174			continue;
1175
1176		wake_up_if_idle(cpu);
1177	}
1178	preempt_enable();
1179}
1180EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1181
1182/**
1183 * smp_call_on_cpu - Call a function on a specific cpu
1184 *
1185 * Used to call a function on a specific cpu and wait for it to return.
1186 * Optionally make sure the call is done on a specified physical cpu via vcpu
1187 * pinning in order to support virtualized environments.
1188 */
1189struct smp_call_on_cpu_struct {
1190	struct work_struct	work;
1191	struct completion	done;
1192	int			(*func)(void *);
1193	void			*data;
1194	int			ret;
1195	int			cpu;
1196};
1197
1198static void smp_call_on_cpu_callback(struct work_struct *work)
1199{
1200	struct smp_call_on_cpu_struct *sscs;
1201
1202	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1203	if (sscs->cpu >= 0)
1204		hypervisor_pin_vcpu(sscs->cpu);
1205	sscs->ret = sscs->func(sscs->data);
1206	if (sscs->cpu >= 0)
1207		hypervisor_pin_vcpu(-1);
1208
1209	complete(&sscs->done);
1210}
1211
1212int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1213{
1214	struct smp_call_on_cpu_struct sscs = {
1215		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1216		.func = func,
1217		.data = par,
1218		.cpu  = phys ? cpu : -1,
1219	};
1220
1221	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1222
1223	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1224		return -ENXIO;
1225
1226	queue_work_on(cpu, system_wq, &sscs.work);
1227	wait_for_completion(&sscs.done);
1228
1229	return sscs.ret;
1230}
1231EXPORT_SYMBOL_GPL(smp_call_on_cpu);