Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
 
 
 
  30
  31#include <asm/uaccess.h>
  32#include <asm/mmu_context.h>
  33#include <asm/pgtable.h>
  34#include <asm/tlbflush.h>
  35#include <asm/io.h>
  36
  37#include "power.h"
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39static int swsusp_page_is_free(struct page *);
  40static void swsusp_set_page_forbidden(struct page *);
  41static void swsusp_unset_page_forbidden(struct page *);
  42
  43/*
  44 * Number of bytes to reserve for memory allocations made by device drivers
  45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  46 * cause image creation to fail (tunable via /sys/power/reserved_size).
  47 */
  48unsigned long reserved_size;
  49
  50void __init hibernate_reserved_size_init(void)
  51{
  52	reserved_size = SPARE_PAGES * PAGE_SIZE;
  53}
  54
  55/*
  56 * Preferred image size in bytes (tunable via /sys/power/image_size).
  57 * When it is set to N, swsusp will do its best to ensure the image
  58 * size will not exceed N bytes, but if that is impossible, it will
  59 * try to create the smallest image possible.
  60 */
  61unsigned long image_size;
  62
  63void __init hibernate_image_size_init(void)
  64{
  65	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  66}
  67
  68/* List of PBEs needed for restoring the pages that were allocated before
 
  69 * the suspend and included in the suspend image, but have also been
  70 * allocated by the "resume" kernel, so their contents cannot be written
  71 * directly to their "original" page frames.
  72 */
  73struct pbe *restore_pblist;
  74
  75/* Pointer to an auxiliary buffer (1 page) */
  76static void *buffer;
  77
  78/**
  79 *	@safe_needed - on resume, for storing the PBE list and the image,
  80 *	we can only use memory pages that do not conflict with the pages
  81 *	used before suspend.  The unsafe pages have PageNosaveFree set
  82 *	and we count them using unsafe_pages.
  83 *
  84 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  85 *	so that swsusp_free() can release it.
 
 
 
  86 */
 
 
 
 
  87
  88#define PG_ANY		0
  89#define PG_SAFE		1
  90#define PG_UNSAFE_CLEAR	1
  91#define PG_UNSAFE_KEEP	0
  92
  93static unsigned int allocated_unsafe_pages;
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
  95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  96{
  97	void *res;
  98
  99	res = (void *)get_zeroed_page(gfp_mask);
 100	if (safe_needed)
 101		while (res && swsusp_page_is_free(virt_to_page(res))) {
 102			/* The page is unsafe, mark it for swsusp_free() */
 103			swsusp_set_page_forbidden(virt_to_page(res));
 104			allocated_unsafe_pages++;
 105			res = (void *)get_zeroed_page(gfp_mask);
 106		}
 107	if (res) {
 108		swsusp_set_page_forbidden(virt_to_page(res));
 109		swsusp_set_page_free(virt_to_page(res));
 110	}
 111	return res;
 112}
 113
 
 
 
 
 
 
 
 
 
 
 
 
 114unsigned long get_safe_page(gfp_t gfp_mask)
 115{
 116	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 117}
 118
 119static struct page *alloc_image_page(gfp_t gfp_mask)
 120{
 121	struct page *page;
 122
 123	page = alloc_page(gfp_mask);
 124	if (page) {
 125		swsusp_set_page_forbidden(page);
 126		swsusp_set_page_free(page);
 127	}
 128	return page;
 129}
 130
 
 
 
 
 
 
 
 
 131/**
 132 *	free_image_page - free page represented by @addr, allocated with
 133 *	get_image_page (page flags set by it must be cleared)
 
 
 
 
 134 */
 135
 136static inline void free_image_page(void *addr, int clear_nosave_free)
 137{
 138	struct page *page;
 139
 140	BUG_ON(!virt_addr_valid(addr));
 141
 142	page = virt_to_page(addr);
 143
 144	swsusp_unset_page_forbidden(page);
 145	if (clear_nosave_free)
 146		swsusp_unset_page_free(page);
 147
 148	__free_page(page);
 149}
 150
 151/* struct linked_page is used to build chains of pages */
 152
 153#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 154
 155struct linked_page {
 156	struct linked_page *next;
 157	char data[LINKED_PAGE_DATA_SIZE];
 158} __attribute__((packed));
 159
 160static inline void
 161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 162{
 163	while (list) {
 164		struct linked_page *lp = list->next;
 165
 166		free_image_page(list, clear_page_nosave);
 167		list = lp;
 168	}
 169}
 170
 171/**
 172  *	struct chain_allocator is used for allocating small objects out of
 173  *	a linked list of pages called 'the chain'.
 174  *
 175  *	The chain grows each time when there is no room for a new object in
 176  *	the current page.  The allocated objects cannot be freed individually.
 177  *	It is only possible to free them all at once, by freeing the entire
 178  *	chain.
 179  *
 180  *	NOTE: The chain allocator may be inefficient if the allocated objects
 181  *	are not much smaller than PAGE_SIZE.
 182  */
 183
 184struct chain_allocator {
 185	struct linked_page *chain;	/* the chain */
 186	unsigned int used_space;	/* total size of objects allocated out
 187					 * of the current page
 188					 */
 189	gfp_t gfp_mask;		/* mask for allocating pages */
 190	int safe_needed;	/* if set, only "safe" pages are allocated */
 191};
 192
 193static void
 194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 195{
 196	ca->chain = NULL;
 197	ca->used_space = LINKED_PAGE_DATA_SIZE;
 198	ca->gfp_mask = gfp_mask;
 199	ca->safe_needed = safe_needed;
 200}
 201
 202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 203{
 204	void *ret;
 205
 206	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 207		struct linked_page *lp;
 208
 209		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 
 210		if (!lp)
 211			return NULL;
 212
 213		lp->next = ca->chain;
 214		ca->chain = lp;
 215		ca->used_space = 0;
 216	}
 217	ret = ca->chain->data + ca->used_space;
 218	ca->used_space += size;
 219	return ret;
 220}
 221
 222/**
 223 *	Data types related to memory bitmaps.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224 *
 225 *	Memory bitmap is a structure consiting of many linked lists of
 226 *	objects.  The main list's elements are of type struct zone_bitmap
 227 *	and each of them corresonds to one zone.  For each zone bitmap
 228 *	object there is a list of objects of type struct bm_block that
 229 *	represent each blocks of bitmap in which information is stored.
 230 *
 231 *	struct memory_bitmap contains a pointer to the main list of zone
 232 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 233 *	and a pointer to the list of pages used for allocating all of the
 234 *	zone bitmap objects and bitmap block objects.
 235 *
 236 *	NOTE: It has to be possible to lay out the bitmap in memory
 237 *	using only allocations of order 0.  Additionally, the bitmap is
 238 *	designed to work with arbitrary number of zones (this is over the
 239 *	top for now, but let's avoid making unnecessary assumptions ;-).
 240 *
 241 *	struct zone_bitmap contains a pointer to a list of bitmap block
 242 *	objects and a pointer to the bitmap block object that has been
 243 *	most recently used for setting bits.  Additionally, it contains the
 244 *	pfns that correspond to the start and end of the represented zone.
 245 *
 246 *	struct bm_block contains a pointer to the memory page in which
 247 *	information is stored (in the form of a block of bitmap)
 248 *	It also contains the pfns that correspond to the start and end of
 249 *	the represented memory area.
 250 */
 251
 252#define BM_END_OF_MAP	(~0UL)
 253
 254#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 
 
 255
 256struct bm_block {
 257	struct list_head hook;	/* hook into a list of bitmap blocks */
 258	unsigned long start_pfn;	/* pfn represented by the first bit */
 259	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
 260	unsigned long *data;	/* bitmap representing pages */
 
 
 
 261};
 262
 263static inline unsigned long bm_block_bits(struct bm_block *bb)
 264{
 265	return bb->end_pfn - bb->start_pfn;
 266}
 
 
 
 
 
 
 
 
 
 
 267
 268/* strcut bm_position is used for browsing memory bitmaps */
 269
 270struct bm_position {
 271	struct bm_block *block;
 272	int bit;
 
 
 273};
 274
 275struct memory_bitmap {
 276	struct list_head blocks;	/* list of bitmap blocks */
 277	struct linked_page *p_list;	/* list of pages used to store zone
 278					 * bitmap objects and bitmap block
 279					 * objects
 280					 */
 281	struct bm_position cur;	/* most recently used bit position */
 282};
 283
 284/* Functions that operate on memory bitmaps */
 285
 286static void memory_bm_position_reset(struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287{
 288	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
 289	bm->cur.bit = 0;
 290}
 291
 292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 
 
 
 
 
 
 
 
 
 
 
 293
 294/**
 295 *	create_bm_block_list - create a list of block bitmap objects
 296 *	@pages - number of pages to track
 297 *	@list - list to put the allocated blocks into
 298 *	@ca - chain allocator to be used for allocating memory
 299 */
 300static int create_bm_block_list(unsigned long pages,
 301				struct list_head *list,
 302				struct chain_allocator *ca)
 303{
 304	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 
 
 305
 306	while (nr_blocks-- > 0) {
 307		struct bm_block *bb;
 308
 309		bb = chain_alloc(ca, sizeof(struct bm_block));
 310		if (!bb)
 
 
 
 
 
 
 
 
 
 311			return -ENOMEM;
 312		list_add(&bb->hook, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	}
 314
 
 
 
 315	return 0;
 316}
 317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318struct mem_extent {
 319	struct list_head hook;
 320	unsigned long start;
 321	unsigned long end;
 322};
 323
 324/**
 325 *	free_mem_extents - free a list of memory extents
 326 *	@list - list of extents to empty
 327 */
 328static void free_mem_extents(struct list_head *list)
 329{
 330	struct mem_extent *ext, *aux;
 331
 332	list_for_each_entry_safe(ext, aux, list, hook) {
 333		list_del(&ext->hook);
 334		kfree(ext);
 335	}
 336}
 337
 338/**
 339 *	create_mem_extents - create a list of memory extents representing
 340 *	                     contiguous ranges of PFNs
 341 *	@list - list to put the extents into
 342 *	@gfp_mask - mask to use for memory allocations
 
 343 */
 344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 345{
 346	struct zone *zone;
 347
 348	INIT_LIST_HEAD(list);
 349
 350	for_each_populated_zone(zone) {
 351		unsigned long zone_start, zone_end;
 352		struct mem_extent *ext, *cur, *aux;
 353
 354		zone_start = zone->zone_start_pfn;
 355		zone_end = zone->zone_start_pfn + zone->spanned_pages;
 356
 357		list_for_each_entry(ext, list, hook)
 358			if (zone_start <= ext->end)
 359				break;
 360
 361		if (&ext->hook == list || zone_end < ext->start) {
 362			/* New extent is necessary */
 363			struct mem_extent *new_ext;
 364
 365			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 366			if (!new_ext) {
 367				free_mem_extents(list);
 368				return -ENOMEM;
 369			}
 370			new_ext->start = zone_start;
 371			new_ext->end = zone_end;
 372			list_add_tail(&new_ext->hook, &ext->hook);
 373			continue;
 374		}
 375
 376		/* Merge this zone's range of PFNs with the existing one */
 377		if (zone_start < ext->start)
 378			ext->start = zone_start;
 379		if (zone_end > ext->end)
 380			ext->end = zone_end;
 381
 382		/* More merging may be possible */
 383		cur = ext;
 384		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 385			if (zone_end < cur->start)
 386				break;
 387			if (zone_end < cur->end)
 388				ext->end = cur->end;
 389			list_del(&cur->hook);
 390			kfree(cur);
 391		}
 392	}
 393
 394	return 0;
 395}
 396
 397/**
 398  *	memory_bm_create - allocate memory for a memory bitmap
 399  */
 400static int
 401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 402{
 403	struct chain_allocator ca;
 404	struct list_head mem_extents;
 405	struct mem_extent *ext;
 406	int error;
 407
 408	chain_init(&ca, gfp_mask, safe_needed);
 409	INIT_LIST_HEAD(&bm->blocks);
 410
 411	error = create_mem_extents(&mem_extents, gfp_mask);
 412	if (error)
 413		return error;
 414
 415	list_for_each_entry(ext, &mem_extents, hook) {
 416		struct bm_block *bb;
 417		unsigned long pfn = ext->start;
 418		unsigned long pages = ext->end - ext->start;
 419
 420		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
 421
 422		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
 423		if (error)
 
 
 424			goto Error;
 425
 426		list_for_each_entry_continue(bb, &bm->blocks, hook) {
 427			bb->data = get_image_page(gfp_mask, safe_needed);
 428			if (!bb->data) {
 429				error = -ENOMEM;
 430				goto Error;
 431			}
 432
 433			bb->start_pfn = pfn;
 434			if (pages >= BM_BITS_PER_BLOCK) {
 435				pfn += BM_BITS_PER_BLOCK;
 436				pages -= BM_BITS_PER_BLOCK;
 437			} else {
 438				/* This is executed only once in the loop */
 439				pfn += pages;
 440			}
 441			bb->end_pfn = pfn;
 442		}
 
 443	}
 444
 445	bm->p_list = ca.chain;
 446	memory_bm_position_reset(bm);
 447 Exit:
 448	free_mem_extents(&mem_extents);
 449	return error;
 450
 451 Error:
 452	bm->p_list = ca.chain;
 453	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 454	goto Exit;
 455}
 456
 457/**
 458  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 459  */
 
 460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 461{
 462	struct bm_block *bb;
 463
 464	list_for_each_entry(bb, &bm->blocks, hook)
 465		if (bb->data)
 466			free_image_page(bb->data, clear_nosave_free);
 467
 468	free_list_of_pages(bm->p_list, clear_nosave_free);
 469
 470	INIT_LIST_HEAD(&bm->blocks);
 471}
 472
 473/**
 474 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
 475 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 476 *	of @bm->cur_zone_bm are updated.
 
 
 
 
 477 */
 478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 479				void **addr, unsigned int *bit_nr)
 480{
 481	struct bm_block *bb;
 
 
 482
 483	/*
 484	 * Check if the pfn corresponds to the current bitmap block and find
 485	 * the block where it fits if this is not the case.
 486	 */
 487	bb = bm->cur.block;
 488	if (pfn < bb->start_pfn)
 489		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
 490			if (pfn >= bb->start_pfn)
 491				break;
 492
 493	if (pfn >= bb->end_pfn)
 494		list_for_each_entry_continue(bb, &bm->blocks, hook)
 495			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
 496				break;
 
 
 
 
 
 
 
 
 497
 498	if (&bb->hook == &bm->blocks)
 499		return -EFAULT;
 500
 501	/* The block has been found */
 502	bm->cur.block = bb;
 503	pfn -= bb->start_pfn;
 504	bm->cur.bit = pfn + 1;
 505	*bit_nr = pfn;
 506	*addr = bb->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507	return 0;
 508}
 509
 510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 511{
 512	void *addr;
 513	unsigned int bit;
 514	int error;
 515
 516	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 517	BUG_ON(error);
 518	set_bit(bit, addr);
 519}
 520
 521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 522{
 523	void *addr;
 524	unsigned int bit;
 525	int error;
 526
 527	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 528	if (!error)
 529		set_bit(bit, addr);
 
 530	return error;
 531}
 532
 533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 534{
 535	void *addr;
 536	unsigned int bit;
 537	int error;
 538
 539	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 540	BUG_ON(error);
 541	clear_bit(bit, addr);
 542}
 543
 
 
 
 
 
 
 
 
 544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 545{
 546	void *addr;
 547	unsigned int bit;
 548	int error;
 549
 550	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 551	BUG_ON(error);
 552	return test_bit(bit, addr);
 553}
 554
 555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 556{
 557	void *addr;
 558	unsigned int bit;
 559
 560	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 561}
 562
 563/**
 564 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 565 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 566 *	returned.
 
 
 
 567 *
 568 *	It is required to run memory_bm_position_reset() before the first call to
 569 *	this function.
 570 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 
 
 
 
 
 
 
 
 
 
 
 572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 573{
 574	struct bm_block *bb;
 575	int bit;
 576
 577	bb = bm->cur.block;
 578	do {
 579		bit = bm->cur.bit;
 580		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
 581		if (bit < bm_block_bits(bb))
 582			goto Return_pfn;
 583
 584		bb = list_entry(bb->hook.next, struct bm_block, hook);
 585		bm->cur.block = bb;
 586		bm->cur.bit = 0;
 587	} while (&bb->hook != &bm->blocks);
 
 588
 589	memory_bm_position_reset(bm);
 590	return BM_END_OF_MAP;
 591
 592 Return_pfn:
 593	bm->cur.bit = bit + 1;
 594	return bb->start_pfn + bit;
 595}
 596
 597/**
 598 *	This structure represents a range of page frames the contents of which
 599 *	should not be saved during the suspend.
 600 */
 601
 602struct nosave_region {
 603	struct list_head list;
 604	unsigned long start_pfn;
 605	unsigned long end_pfn;
 606};
 607
 608static LIST_HEAD(nosave_regions);
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610/**
 611 *	register_nosave_region - register a range of page frames the contents
 612 *	of which should not be saved during the suspend (to be used in the early
 613 *	initialization code)
 
 614 */
 615
 616void __init
 617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 618			 int use_kmalloc)
 619{
 620	struct nosave_region *region;
 621
 622	if (start_pfn >= end_pfn)
 623		return;
 624
 625	if (!list_empty(&nosave_regions)) {
 626		/* Try to extend the previous region (they should be sorted) */
 627		region = list_entry(nosave_regions.prev,
 628					struct nosave_region, list);
 629		if (region->end_pfn == start_pfn) {
 630			region->end_pfn = end_pfn;
 631			goto Report;
 632		}
 633	}
 634	if (use_kmalloc) {
 635		/* during init, this shouldn't fail */
 636		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 637		BUG_ON(!region);
 638	} else
 639		/* This allocation cannot fail */
 640		region = alloc_bootmem(sizeof(struct nosave_region));
 
 
 
 
 
 641	region->start_pfn = start_pfn;
 642	region->end_pfn = end_pfn;
 643	list_add_tail(&region->list, &nosave_regions);
 644 Report:
 645	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
 646		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
 
 647}
 648
 649/*
 650 * Set bits in this map correspond to the page frames the contents of which
 651 * should not be saved during the suspend.
 652 */
 653static struct memory_bitmap *forbidden_pages_map;
 654
 655/* Set bits in this map correspond to free page frames. */
 656static struct memory_bitmap *free_pages_map;
 657
 658/*
 659 * Each page frame allocated for creating the image is marked by setting the
 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 661 */
 662
 663void swsusp_set_page_free(struct page *page)
 664{
 665	if (free_pages_map)
 666		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 667}
 668
 669static int swsusp_page_is_free(struct page *page)
 670{
 671	return free_pages_map ?
 672		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 673}
 674
 675void swsusp_unset_page_free(struct page *page)
 676{
 677	if (free_pages_map)
 678		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 679}
 680
 681static void swsusp_set_page_forbidden(struct page *page)
 682{
 683	if (forbidden_pages_map)
 684		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 685}
 686
 687int swsusp_page_is_forbidden(struct page *page)
 688{
 689	return forbidden_pages_map ?
 690		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 691}
 692
 693static void swsusp_unset_page_forbidden(struct page *page)
 694{
 695	if (forbidden_pages_map)
 696		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 697}
 698
 699/**
 700 *	mark_nosave_pages - set bits corresponding to the page frames the
 701 *	contents of which should not be saved in a given bitmap.
 
 
 
 702 */
 703
 704static void mark_nosave_pages(struct memory_bitmap *bm)
 705{
 706	struct nosave_region *region;
 707
 708	if (list_empty(&nosave_regions))
 709		return;
 710
 711	list_for_each_entry(region, &nosave_regions, list) {
 712		unsigned long pfn;
 713
 714		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
 715				region->start_pfn << PAGE_SHIFT,
 716				region->end_pfn << PAGE_SHIFT);
 
 717
 718		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 719			if (pfn_valid(pfn)) {
 720				/*
 721				 * It is safe to ignore the result of
 722				 * mem_bm_set_bit_check() here, since we won't
 723				 * touch the PFNs for which the error is
 724				 * returned anyway.
 725				 */
 726				mem_bm_set_bit_check(bm, pfn);
 727			}
 728	}
 729}
 730
 731/**
 732 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 733 *	frames that should not be saved and free page frames.  The pointers
 734 *	forbidden_pages_map and free_pages_map are only modified if everything
 735 *	goes well, because we don't want the bits to be used before both bitmaps
 736 *	are set up.
 
 737 */
 738
 739int create_basic_memory_bitmaps(void)
 740{
 741	struct memory_bitmap *bm1, *bm2;
 742	int error = 0;
 743
 744	BUG_ON(forbidden_pages_map || free_pages_map);
 
 
 
 745
 746	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 747	if (!bm1)
 748		return -ENOMEM;
 749
 750	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 751	if (error)
 752		goto Free_first_object;
 753
 754	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 755	if (!bm2)
 756		goto Free_first_bitmap;
 757
 758	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 759	if (error)
 760		goto Free_second_object;
 761
 762	forbidden_pages_map = bm1;
 763	free_pages_map = bm2;
 764	mark_nosave_pages(forbidden_pages_map);
 765
 766	pr_debug("PM: Basic memory bitmaps created\n");
 767
 768	return 0;
 769
 770 Free_second_object:
 771	kfree(bm2);
 772 Free_first_bitmap:
 773 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 774 Free_first_object:
 775	kfree(bm1);
 776	return -ENOMEM;
 777}
 778
 779/**
 780 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 781 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 782 *	so that the bitmaps themselves are not referred to while they are being
 783 *	freed.
 
 784 */
 785
 786void free_basic_memory_bitmaps(void)
 787{
 788	struct memory_bitmap *bm1, *bm2;
 789
 790	BUG_ON(!(forbidden_pages_map && free_pages_map));
 
 791
 792	bm1 = forbidden_pages_map;
 793	bm2 = free_pages_map;
 794	forbidden_pages_map = NULL;
 795	free_pages_map = NULL;
 796	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 797	kfree(bm1);
 798	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 799	kfree(bm2);
 800
 801	pr_debug("PM: Basic memory bitmaps freed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802}
 803
 804/**
 805 *	snapshot_additional_pages - estimate the number of additional pages
 806 *	be needed for setting up the suspend image data structures for given
 807 *	zone (usually the returned value is greater than the exact number)
 
 
 
 808 */
 809
 810unsigned int snapshot_additional_pages(struct zone *zone)
 811{
 812	unsigned int res;
 
 
 
 
 
 
 
 
 813
 814	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 815	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
 816	return 2 * res;
 817}
 818
 819#ifdef CONFIG_HIGHMEM
 820/**
 821 *	count_free_highmem_pages - compute the total number of free highmem
 822 *	pages, system-wide.
 
 823 */
 824
 825static unsigned int count_free_highmem_pages(void)
 826{
 827	struct zone *zone;
 828	unsigned int cnt = 0;
 829
 830	for_each_populated_zone(zone)
 831		if (is_highmem(zone))
 832			cnt += zone_page_state(zone, NR_FREE_PAGES);
 833
 834	return cnt;
 835}
 836
 837/**
 838 *	saveable_highmem_page - Determine whether a highmem page should be
 839 *	included in the suspend image.
 840 *
 841 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 842 *	and it isn't a part of a free chunk of pages.
 
 
 843 */
 844static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 845{
 846	struct page *page;
 847
 848	if (!pfn_valid(pfn))
 849		return NULL;
 850
 851	page = pfn_to_page(pfn);
 852	if (page_zone(page) != zone)
 853		return NULL;
 854
 855	BUG_ON(!PageHighMem(page));
 856
 857	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 858	    PageReserved(page))
 
 
 
 
 
 859		return NULL;
 860
 861	return page;
 862}
 863
 864/**
 865 *	count_highmem_pages - compute the total number of saveable highmem
 866 *	pages.
 867 */
 868
 869static unsigned int count_highmem_pages(void)
 870{
 871	struct zone *zone;
 872	unsigned int n = 0;
 873
 874	for_each_populated_zone(zone) {
 875		unsigned long pfn, max_zone_pfn;
 876
 877		if (!is_highmem(zone))
 878			continue;
 879
 880		mark_free_pages(zone);
 881		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 882		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 883			if (saveable_highmem_page(zone, pfn))
 884				n++;
 885	}
 886	return n;
 887}
 888#else
 889static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 890{
 891	return NULL;
 892}
 893#endif /* CONFIG_HIGHMEM */
 894
 895/**
 896 *	saveable_page - Determine whether a non-highmem page should be included
 897 *	in the suspend image.
 
 
 898 *
 899 *	We should save the page if it isn't Nosave, and is not in the range
 900 *	of pages statically defined as 'unsaveable', and it isn't a part of
 901 *	a free chunk of pages.
 902 */
 903static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 904{
 905	struct page *page;
 906
 907	if (!pfn_valid(pfn))
 908		return NULL;
 909
 910	page = pfn_to_page(pfn);
 911	if (page_zone(page) != zone)
 912		return NULL;
 913
 914	BUG_ON(PageHighMem(page));
 915
 916	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 917		return NULL;
 918
 
 
 
 919	if (PageReserved(page)
 920	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 921		return NULL;
 922
 
 
 
 923	return page;
 924}
 925
 926/**
 927 *	count_data_pages - compute the total number of saveable non-highmem
 928 *	pages.
 929 */
 930
 931static unsigned int count_data_pages(void)
 932{
 933	struct zone *zone;
 934	unsigned long pfn, max_zone_pfn;
 935	unsigned int n = 0;
 936
 937	for_each_populated_zone(zone) {
 938		if (is_highmem(zone))
 939			continue;
 940
 941		mark_free_pages(zone);
 942		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 943		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 944			if (saveable_page(zone, pfn))
 945				n++;
 946	}
 947	return n;
 948}
 949
 950/* This is needed, because copy_page and memcpy are not usable for copying
 
 951 * task structs.
 952 */
 953static inline void do_copy_page(long *dst, long *src)
 954{
 955	int n;
 956
 957	for (n = PAGE_SIZE / sizeof(long); n; n--)
 958		*dst++ = *src++;
 959}
 960
 961
 962/**
 963 *	safe_copy_page - check if the page we are going to copy is marked as
 964 *		present in the kernel page tables (this always is the case if
 965 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 966 *		kernel_page_present() always returns 'true').
 
 
 967 */
 968static void safe_copy_page(void *dst, struct page *s_page)
 969{
 970	if (kernel_page_present(s_page)) {
 971		do_copy_page(dst, page_address(s_page));
 972	} else {
 973		kernel_map_pages(s_page, 1, 1);
 974		do_copy_page(dst, page_address(s_page));
 975		kernel_map_pages(s_page, 1, 0);
 976	}
 977}
 978
 979
 980#ifdef CONFIG_HIGHMEM
 981static inline struct page *
 982page_is_saveable(struct zone *zone, unsigned long pfn)
 983{
 984	return is_highmem(zone) ?
 985		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
 986}
 987
 988static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
 989{
 990	struct page *s_page, *d_page;
 991	void *src, *dst;
 992
 993	s_page = pfn_to_page(src_pfn);
 994	d_page = pfn_to_page(dst_pfn);
 995	if (PageHighMem(s_page)) {
 996		src = kmap_atomic(s_page, KM_USER0);
 997		dst = kmap_atomic(d_page, KM_USER1);
 998		do_copy_page(dst, src);
 999		kunmap_atomic(dst, KM_USER1);
1000		kunmap_atomic(src, KM_USER0);
1001	} else {
1002		if (PageHighMem(d_page)) {
1003			/* Page pointed to by src may contain some kernel
 
1004			 * data modified by kmap_atomic()
1005			 */
1006			safe_copy_page(buffer, s_page);
1007			dst = kmap_atomic(d_page, KM_USER0);
1008			copy_page(dst, buffer);
1009			kunmap_atomic(dst, KM_USER0);
1010		} else {
1011			safe_copy_page(page_address(d_page), s_page);
1012		}
1013	}
1014}
1015#else
1016#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1017
1018static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019{
1020	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1021				pfn_to_page(src_pfn));
1022}
1023#endif /* CONFIG_HIGHMEM */
1024
1025static void
1026copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027{
1028	struct zone *zone;
1029	unsigned long pfn;
1030
1031	for_each_populated_zone(zone) {
1032		unsigned long max_zone_pfn;
1033
1034		mark_free_pages(zone);
1035		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037			if (page_is_saveable(zone, pfn))
1038				memory_bm_set_bit(orig_bm, pfn);
1039	}
1040	memory_bm_position_reset(orig_bm);
1041	memory_bm_position_reset(copy_bm);
1042	for(;;) {
1043		pfn = memory_bm_next_pfn(orig_bm);
1044		if (unlikely(pfn == BM_END_OF_MAP))
1045			break;
1046		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1047	}
1048}
1049
1050/* Total number of image pages */
1051static unsigned int nr_copy_pages;
1052/* Number of pages needed for saving the original pfns of the image pages */
1053static unsigned int nr_meta_pages;
1054/*
1055 * Numbers of normal and highmem page frames allocated for hibernation image
1056 * before suspending devices.
1057 */
1058unsigned int alloc_normal, alloc_highmem;
1059/*
1060 * Memory bitmap used for marking saveable pages (during hibernation) or
1061 * hibernation image pages (during restore)
1062 */
1063static struct memory_bitmap orig_bm;
1064/*
1065 * Memory bitmap used during hibernation for marking allocated page frames that
1066 * will contain copies of saveable pages.  During restore it is initially used
1067 * for marking hibernation image pages, but then the set bits from it are
1068 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1069 * used for marking "safe" highmem pages, but it has to be reinitialized for
1070 * this purpose.
1071 */
1072static struct memory_bitmap copy_bm;
1073
1074/**
1075 *	swsusp_free - free pages allocated for the suspend.
1076 *
1077 *	Suspend pages are alocated before the atomic copy is made, so we
1078 *	need to release them after the resume.
1079 */
1080
1081void swsusp_free(void)
1082{
1083	struct zone *zone;
1084	unsigned long pfn, max_zone_pfn;
1085
1086	for_each_populated_zone(zone) {
1087		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1088		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1089			if (pfn_valid(pfn)) {
1090				struct page *page = pfn_to_page(pfn);
1091
1092				if (swsusp_page_is_forbidden(page) &&
1093				    swsusp_page_is_free(page)) {
1094					swsusp_unset_page_forbidden(page);
1095					swsusp_unset_page_free(page);
1096					__free_page(page);
1097				}
1098			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099	}
 
 
1100	nr_copy_pages = 0;
1101	nr_meta_pages = 0;
1102	restore_pblist = NULL;
1103	buffer = NULL;
1104	alloc_normal = 0;
1105	alloc_highmem = 0;
 
1106}
1107
1108/* Helper functions used for the shrinking of memory. */
1109
1110#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1111
1112/**
1113 * preallocate_image_pages - Allocate a number of pages for hibernation image
1114 * @nr_pages: Number of page frames to allocate.
1115 * @mask: GFP flags to use for the allocation.
1116 *
1117 * Return value: Number of page frames actually allocated
1118 */
1119static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1120{
1121	unsigned long nr_alloc = 0;
1122
1123	while (nr_pages > 0) {
1124		struct page *page;
1125
1126		page = alloc_image_page(mask);
1127		if (!page)
1128			break;
1129		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1130		if (PageHighMem(page))
1131			alloc_highmem++;
1132		else
1133			alloc_normal++;
1134		nr_pages--;
1135		nr_alloc++;
1136	}
1137
1138	return nr_alloc;
1139}
1140
1141static unsigned long preallocate_image_memory(unsigned long nr_pages,
1142					      unsigned long avail_normal)
1143{
1144	unsigned long alloc;
1145
1146	if (avail_normal <= alloc_normal)
1147		return 0;
1148
1149	alloc = avail_normal - alloc_normal;
1150	if (nr_pages < alloc)
1151		alloc = nr_pages;
1152
1153	return preallocate_image_pages(alloc, GFP_IMAGE);
1154}
1155
1156#ifdef CONFIG_HIGHMEM
1157static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1158{
1159	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1160}
1161
1162/**
1163 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1164 */
1165static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1166{
1167	x *= multiplier;
1168	do_div(x, base);
1169	return (unsigned long)x;
1170}
1171
1172static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1173						unsigned long highmem,
1174						unsigned long total)
1175{
1176	unsigned long alloc = __fraction(nr_pages, highmem, total);
1177
1178	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179}
1180#else /* CONFIG_HIGHMEM */
1181static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1182{
1183	return 0;
1184}
1185
1186static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187						unsigned long highmem,
1188						unsigned long total)
1189{
1190	return 0;
1191}
1192#endif /* CONFIG_HIGHMEM */
1193
1194/**
1195 * free_unnecessary_pages - Release preallocated pages not needed for the image
1196 */
1197static void free_unnecessary_pages(void)
1198{
1199	unsigned long save, to_free_normal, to_free_highmem;
1200
1201	save = count_data_pages();
1202	if (alloc_normal >= save) {
1203		to_free_normal = alloc_normal - save;
1204		save = 0;
1205	} else {
1206		to_free_normal = 0;
1207		save -= alloc_normal;
1208	}
1209	save += count_highmem_pages();
1210	if (alloc_highmem >= save) {
1211		to_free_highmem = alloc_highmem - save;
1212	} else {
1213		to_free_highmem = 0;
1214		save -= alloc_highmem;
1215		if (to_free_normal > save)
1216			to_free_normal -= save;
1217		else
1218			to_free_normal = 0;
1219	}
 
1220
1221	memory_bm_position_reset(&copy_bm);
1222
1223	while (to_free_normal > 0 || to_free_highmem > 0) {
1224		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1225		struct page *page = pfn_to_page(pfn);
1226
1227		if (PageHighMem(page)) {
1228			if (!to_free_highmem)
1229				continue;
1230			to_free_highmem--;
1231			alloc_highmem--;
1232		} else {
1233			if (!to_free_normal)
1234				continue;
1235			to_free_normal--;
1236			alloc_normal--;
1237		}
1238		memory_bm_clear_bit(&copy_bm, pfn);
1239		swsusp_unset_page_forbidden(page);
1240		swsusp_unset_page_free(page);
1241		__free_page(page);
1242	}
 
 
1243}
1244
1245/**
1246 * minimum_image_size - Estimate the minimum acceptable size of an image
1247 * @saveable: Number of saveable pages in the system.
1248 *
1249 * We want to avoid attempting to free too much memory too hard, so estimate the
1250 * minimum acceptable size of a hibernation image to use as the lower limit for
1251 * preallocating memory.
1252 *
1253 * We assume that the minimum image size should be proportional to
1254 *
1255 * [number of saveable pages] - [number of pages that can be freed in theory]
1256 *
1257 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1258 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1259 * minus mapped file pages.
1260 */
1261static unsigned long minimum_image_size(unsigned long saveable)
1262{
1263	unsigned long size;
1264
1265	size = global_page_state(NR_SLAB_RECLAIMABLE)
1266		+ global_page_state(NR_ACTIVE_ANON)
1267		+ global_page_state(NR_INACTIVE_ANON)
1268		+ global_page_state(NR_ACTIVE_FILE)
1269		+ global_page_state(NR_INACTIVE_FILE)
1270		- global_page_state(NR_FILE_MAPPED);
1271
1272	return saveable <= size ? 0 : saveable - size;
1273}
1274
1275/**
1276 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1277 *
1278 * To create a hibernation image it is necessary to make a copy of every page
1279 * frame in use.  We also need a number of page frames to be free during
1280 * hibernation for allocations made while saving the image and for device
1281 * drivers, in case they need to allocate memory from their hibernation
1282 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1283 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1284 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1285 * total number of available page frames and allocate at least
1286 *
1287 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1288 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1289 *
1290 * of them, which corresponds to the maximum size of a hibernation image.
1291 *
1292 * If image_size is set below the number following from the above formula,
1293 * the preallocation of memory is continued until the total number of saveable
1294 * pages in the system is below the requested image size or the minimum
1295 * acceptable image size returned by minimum_image_size(), whichever is greater.
1296 */
1297int hibernate_preallocate_memory(void)
1298{
1299	struct zone *zone;
1300	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1301	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1302	struct timeval start, stop;
1303	int error;
1304
1305	printk(KERN_INFO "PM: Preallocating image memory... ");
1306	do_gettimeofday(&start);
1307
1308	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1309	if (error)
 
1310		goto err_out;
 
1311
1312	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1313	if (error)
 
1314		goto err_out;
 
1315
1316	alloc_normal = 0;
1317	alloc_highmem = 0;
1318
1319	/* Count the number of saveable data pages. */
1320	save_highmem = count_highmem_pages();
1321	saveable = count_data_pages();
1322
1323	/*
1324	 * Compute the total number of page frames we can use (count) and the
1325	 * number of pages needed for image metadata (size).
1326	 */
1327	count = saveable;
1328	saveable += save_highmem;
1329	highmem = save_highmem;
1330	size = 0;
1331	for_each_populated_zone(zone) {
1332		size += snapshot_additional_pages(zone);
1333		if (is_highmem(zone))
1334			highmem += zone_page_state(zone, NR_FREE_PAGES);
1335		else
1336			count += zone_page_state(zone, NR_FREE_PAGES);
1337	}
1338	avail_normal = count;
1339	count += highmem;
1340	count -= totalreserve_pages;
1341
1342	/* Compute the maximum number of saveable pages to leave in memory. */
1343	max_size = (count - (size + PAGES_FOR_IO)) / 2
1344			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1345	/* Compute the desired number of image pages specified by image_size. */
1346	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1347	if (size > max_size)
1348		size = max_size;
1349	/*
1350	 * If the desired number of image pages is at least as large as the
1351	 * current number of saveable pages in memory, allocate page frames for
1352	 * the image and we're done.
1353	 */
1354	if (size >= saveable) {
1355		pages = preallocate_image_highmem(save_highmem);
1356		pages += preallocate_image_memory(saveable - pages, avail_normal);
1357		goto out;
1358	}
1359
1360	/* Estimate the minimum size of the image. */
1361	pages = minimum_image_size(saveable);
1362	/*
1363	 * To avoid excessive pressure on the normal zone, leave room in it to
1364	 * accommodate an image of the minimum size (unless it's already too
1365	 * small, in which case don't preallocate pages from it at all).
1366	 */
1367	if (avail_normal > pages)
1368		avail_normal -= pages;
1369	else
1370		avail_normal = 0;
1371	if (size < pages)
1372		size = min_t(unsigned long, pages, max_size);
1373
1374	/*
1375	 * Let the memory management subsystem know that we're going to need a
1376	 * large number of page frames to allocate and make it free some memory.
1377	 * NOTE: If this is not done, performance will be hurt badly in some
1378	 * test cases.
1379	 */
1380	shrink_all_memory(saveable - size);
1381
1382	/*
1383	 * The number of saveable pages in memory was too high, so apply some
1384	 * pressure to decrease it.  First, make room for the largest possible
1385	 * image and fail if that doesn't work.  Next, try to decrease the size
1386	 * of the image as much as indicated by 'size' using allocations from
1387	 * highmem and non-highmem zones separately.
1388	 */
1389	pages_highmem = preallocate_image_highmem(highmem / 2);
1390	alloc = (count - max_size) - pages_highmem;
 
 
 
 
1391	pages = preallocate_image_memory(alloc, avail_normal);
1392	if (pages < alloc) {
1393		/* We have exhausted non-highmem pages, try highmem. */
1394		alloc -= pages;
1395		pages += pages_highmem;
1396		pages_highmem = preallocate_image_highmem(alloc);
1397		if (pages_highmem < alloc)
 
 
1398			goto err_out;
 
1399		pages += pages_highmem;
1400		/*
1401		 * size is the desired number of saveable pages to leave in
1402		 * memory, so try to preallocate (all memory - size) pages.
1403		 */
1404		alloc = (count - pages) - size;
1405		pages += preallocate_image_highmem(alloc);
1406	} else {
1407		/*
1408		 * There are approximately max_size saveable pages at this point
1409		 * and we want to reduce this number down to size.
1410		 */
1411		alloc = max_size - size;
1412		size = preallocate_highmem_fraction(alloc, highmem, count);
1413		pages_highmem += size;
1414		alloc -= size;
1415		size = preallocate_image_memory(alloc, avail_normal);
1416		pages_highmem += preallocate_image_highmem(alloc - size);
1417		pages += pages_highmem + size;
1418	}
1419
1420	/*
1421	 * We only need as many page frames for the image as there are saveable
1422	 * pages in memory, but we have allocated more.  Release the excessive
1423	 * ones now.
1424	 */
1425	free_unnecessary_pages();
1426
1427 out:
1428	do_gettimeofday(&stop);
1429	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1430	swsusp_show_speed(&start, &stop, pages, "Allocated");
1431
1432	return 0;
1433
1434 err_out:
1435	printk(KERN_CONT "\n");
1436	swsusp_free();
1437	return -ENOMEM;
1438}
1439
1440#ifdef CONFIG_HIGHMEM
1441/**
1442  *	count_pages_for_highmem - compute the number of non-highmem pages
1443  *	that will be necessary for creating copies of highmem pages.
1444  */
1445
 
1446static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1447{
1448	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1449
1450	if (free_highmem >= nr_highmem)
1451		nr_highmem = 0;
1452	else
1453		nr_highmem -= free_highmem;
1454
1455	return nr_highmem;
1456}
1457#else
1458static unsigned int
1459count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1460#endif /* CONFIG_HIGHMEM */
1461
1462/**
1463 *	enough_free_mem - Make sure we have enough free memory for the
1464 *	snapshot image.
1465 */
1466
1467static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1468{
1469	struct zone *zone;
1470	unsigned int free = alloc_normal;
1471
1472	for_each_populated_zone(zone)
1473		if (!is_highmem(zone))
1474			free += zone_page_state(zone, NR_FREE_PAGES);
1475
1476	nr_pages += count_pages_for_highmem(nr_highmem);
1477	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1478		nr_pages, PAGES_FOR_IO, free);
1479
1480	return free > nr_pages + PAGES_FOR_IO;
1481}
1482
1483#ifdef CONFIG_HIGHMEM
1484/**
1485 *	get_highmem_buffer - if there are some highmem pages in the suspend
1486 *	image, we may need the buffer to copy them and/or load their data.
 
 
1487 */
1488
1489static inline int get_highmem_buffer(int safe_needed)
1490{
1491	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1492	return buffer ? 0 : -ENOMEM;
1493}
1494
1495/**
1496 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1497 *	Try to allocate as many pages as needed, but if the number of free
1498 *	highmem pages is lesser than that, allocate them all.
 
1499 */
1500
1501static inline unsigned int
1502alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1503{
1504	unsigned int to_alloc = count_free_highmem_pages();
1505
1506	if (to_alloc > nr_highmem)
1507		to_alloc = nr_highmem;
1508
1509	nr_highmem -= to_alloc;
1510	while (to_alloc-- > 0) {
1511		struct page *page;
1512
1513		page = alloc_image_page(__GFP_HIGHMEM);
1514		memory_bm_set_bit(bm, page_to_pfn(page));
1515	}
1516	return nr_highmem;
1517}
1518#else
1519static inline int get_highmem_buffer(int safe_needed) { return 0; }
1520
1521static inline unsigned int
1522alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1523#endif /* CONFIG_HIGHMEM */
1524
1525/**
1526 *	swsusp_alloc - allocate memory for the suspend image
1527 *
1528 *	We first try to allocate as many highmem pages as there are
1529 *	saveable highmem pages in the system.  If that fails, we allocate
1530 *	non-highmem pages for the copies of the remaining highmem ones.
1531 *
1532 *	In this approach it is likely that the copies of highmem pages will
1533 *	also be located in the high memory, because of the way in which
1534 *	copy_data_pages() works.
1535 */
1536
1537static int
1538swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1539		unsigned int nr_pages, unsigned int nr_highmem)
1540{
1541	if (nr_highmem > 0) {
1542		if (get_highmem_buffer(PG_ANY))
1543			goto err_out;
1544		if (nr_highmem > alloc_highmem) {
1545			nr_highmem -= alloc_highmem;
1546			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1547		}
1548	}
1549	if (nr_pages > alloc_normal) {
1550		nr_pages -= alloc_normal;
1551		while (nr_pages-- > 0) {
1552			struct page *page;
1553
1554			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1555			if (!page)
1556				goto err_out;
1557			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1558		}
1559	}
1560
1561	return 0;
1562
1563 err_out:
1564	swsusp_free();
1565	return -ENOMEM;
1566}
1567
1568asmlinkage int swsusp_save(void)
1569{
1570	unsigned int nr_pages, nr_highmem;
1571
1572	printk(KERN_INFO "PM: Creating hibernation image:\n");
1573
1574	drain_local_pages(NULL);
1575	nr_pages = count_data_pages();
1576	nr_highmem = count_highmem_pages();
1577	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1578
1579	if (!enough_free_mem(nr_pages, nr_highmem)) {
1580		printk(KERN_ERR "PM: Not enough free memory\n");
1581		return -ENOMEM;
1582	}
1583
1584	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1585		printk(KERN_ERR "PM: Memory allocation failed\n");
1586		return -ENOMEM;
1587	}
1588
1589	/* During allocating of suspend pagedir, new cold pages may appear.
 
1590	 * Kill them.
1591	 */
1592	drain_local_pages(NULL);
1593	copy_data_pages(&copy_bm, &orig_bm);
1594
1595	/*
1596	 * End of critical section. From now on, we can write to memory,
1597	 * but we should not touch disk. This specially means we must _not_
1598	 * touch swap space! Except we must write out our image of course.
1599	 */
1600
1601	nr_pages += nr_highmem;
1602	nr_copy_pages = nr_pages;
1603	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1604
1605	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1606		nr_pages);
1607
1608	return 0;
1609}
1610
1611#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1612static int init_header_complete(struct swsusp_info *info)
1613{
1614	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1615	info->version_code = LINUX_VERSION_CODE;
1616	return 0;
1617}
1618
1619static char *check_image_kernel(struct swsusp_info *info)
1620{
1621	if (info->version_code != LINUX_VERSION_CODE)
1622		return "kernel version";
1623	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1624		return "system type";
1625	if (strcmp(info->uts.release,init_utsname()->release))
1626		return "kernel release";
1627	if (strcmp(info->uts.version,init_utsname()->version))
1628		return "version";
1629	if (strcmp(info->uts.machine,init_utsname()->machine))
1630		return "machine";
1631	return NULL;
1632}
1633#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1634
1635unsigned long snapshot_get_image_size(void)
1636{
1637	return nr_copy_pages + nr_meta_pages + 1;
1638}
1639
1640static int init_header(struct swsusp_info *info)
1641{
1642	memset(info, 0, sizeof(struct swsusp_info));
1643	info->num_physpages = num_physpages;
1644	info->image_pages = nr_copy_pages;
1645	info->pages = snapshot_get_image_size();
1646	info->size = info->pages;
1647	info->size <<= PAGE_SHIFT;
1648	return init_header_complete(info);
1649}
1650
1651/**
1652 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1653 *	are stored in the array @buf[] (1 page at a time)
 
 
 
 
1654 */
1655
1656static inline void
1657pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1658{
1659	int j;
1660
1661	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1662		buf[j] = memory_bm_next_pfn(bm);
1663		if (unlikely(buf[j] == BM_END_OF_MAP))
1664			break;
1665	}
1666}
1667
1668/**
1669 *	snapshot_read_next - used for reading the system memory snapshot.
 
1670 *
1671 *	On the first call to it @handle should point to a zeroed
1672 *	snapshot_handle structure.  The structure gets updated and a pointer
1673 *	to it should be passed to this function every next time.
1674 *
1675 *	On success the function returns a positive number.  Then, the caller
1676 *	is allowed to read up to the returned number of bytes from the memory
1677 *	location computed by the data_of() macro.
1678 *
1679 *	The function returns 0 to indicate the end of data stream condition,
1680 *	and a negative number is returned on error.  In such cases the
1681 *	structure pointed to by @handle is not updated and should not be used
1682 *	any more.
1683 */
1684
1685int snapshot_read_next(struct snapshot_handle *handle)
1686{
1687	if (handle->cur > nr_meta_pages + nr_copy_pages)
1688		return 0;
1689
1690	if (!buffer) {
1691		/* This makes the buffer be freed by swsusp_free() */
1692		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1693		if (!buffer)
1694			return -ENOMEM;
1695	}
1696	if (!handle->cur) {
1697		int error;
1698
1699		error = init_header((struct swsusp_info *)buffer);
1700		if (error)
1701			return error;
1702		handle->buffer = buffer;
1703		memory_bm_position_reset(&orig_bm);
1704		memory_bm_position_reset(&copy_bm);
1705	} else if (handle->cur <= nr_meta_pages) {
1706		clear_page(buffer);
1707		pack_pfns(buffer, &orig_bm);
1708	} else {
1709		struct page *page;
1710
1711		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1712		if (PageHighMem(page)) {
1713			/* Highmem pages are copied to the buffer,
 
1714			 * because we can't return with a kmapped
1715			 * highmem page (we may not be called again).
1716			 */
1717			void *kaddr;
1718
1719			kaddr = kmap_atomic(page, KM_USER0);
1720			copy_page(buffer, kaddr);
1721			kunmap_atomic(kaddr, KM_USER0);
1722			handle->buffer = buffer;
1723		} else {
1724			handle->buffer = page_address(page);
1725		}
1726	}
1727	handle->cur++;
1728	return PAGE_SIZE;
1729}
1730
1731/**
1732 *	mark_unsafe_pages - mark the pages that cannot be used for storing
1733 *	the image during resume, because they conflict with the pages that
1734 *	had been used before suspend
1735 */
1736
1737static int mark_unsafe_pages(struct memory_bitmap *bm)
1738{
1739	struct zone *zone;
1740	unsigned long pfn, max_zone_pfn;
1741
1742	/* Clear page flags */
1743	for_each_populated_zone(zone) {
1744		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1745		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1746			if (pfn_valid(pfn))
1747				swsusp_unset_page_free(pfn_to_page(pfn));
1748	}
1749
1750	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1751	memory_bm_position_reset(bm);
1752	do {
1753		pfn = memory_bm_next_pfn(bm);
1754		if (likely(pfn != BM_END_OF_MAP)) {
1755			if (likely(pfn_valid(pfn)))
1756				swsusp_set_page_free(pfn_to_page(pfn));
1757			else
1758				return -EFAULT;
1759		}
1760	} while (pfn != BM_END_OF_MAP);
1761
1762	allocated_unsafe_pages = 0;
1763
1764	return 0;
1765}
1766
1767static void
1768duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 
 
 
 
 
1769{
1770	unsigned long pfn;
1771
1772	memory_bm_position_reset(src);
1773	pfn = memory_bm_next_pfn(src);
 
1774	while (pfn != BM_END_OF_MAP) {
1775		memory_bm_set_bit(dst, pfn);
1776		pfn = memory_bm_next_pfn(src);
1777	}
 
 
 
 
 
1778}
1779
1780static int check_header(struct swsusp_info *info)
1781{
1782	char *reason;
1783
1784	reason = check_image_kernel(info);
1785	if (!reason && info->num_physpages != num_physpages)
1786		reason = "memory size";
1787	if (reason) {
1788		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1789		return -EPERM;
1790	}
1791	return 0;
1792}
1793
1794/**
1795 *	load header - check the image header and copy data from it
1796 */
1797
1798static int
1799load_header(struct swsusp_info *info)
1800{
1801	int error;
1802
1803	restore_pblist = NULL;
1804	error = check_header(info);
1805	if (!error) {
1806		nr_copy_pages = info->image_pages;
1807		nr_meta_pages = info->pages - info->image_pages - 1;
1808	}
1809	return error;
1810}
1811
1812/**
1813 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1814 *	the corresponding bit in the memory bitmap @bm
 
 
 
 
1815 */
1816static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1817{
1818	int j;
1819
1820	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1821		if (unlikely(buf[j] == BM_END_OF_MAP))
1822			break;
1823
1824		if (memory_bm_pfn_present(bm, buf[j]))
1825			memory_bm_set_bit(bm, buf[j]);
1826		else
1827			return -EFAULT;
1828	}
1829
1830	return 0;
1831}
1832
1833/* List of "safe" pages that may be used to store data loaded from the suspend
1834 * image
1835 */
1836static struct linked_page *safe_pages_list;
1837
1838#ifdef CONFIG_HIGHMEM
1839/* struct highmem_pbe is used for creating the list of highmem pages that
 
1840 * should be restored atomically during the resume from disk, because the page
1841 * frames they have occupied before the suspend are in use.
1842 */
1843struct highmem_pbe {
1844	struct page *copy_page;	/* data is here now */
1845	struct page *orig_page;	/* data was here before the suspend */
1846	struct highmem_pbe *next;
1847};
1848
1849/* List of highmem PBEs needed for restoring the highmem pages that were
 
1850 * allocated before the suspend and included in the suspend image, but have
1851 * also been allocated by the "resume" kernel, so their contents cannot be
1852 * written directly to their "original" page frames.
1853 */
1854static struct highmem_pbe *highmem_pblist;
1855
1856/**
1857 *	count_highmem_image_pages - compute the number of highmem pages in the
1858 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1859 *	image pages are assumed to be set.
 
1860 */
1861
1862static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1863{
1864	unsigned long pfn;
1865	unsigned int cnt = 0;
1866
1867	memory_bm_position_reset(bm);
1868	pfn = memory_bm_next_pfn(bm);
1869	while (pfn != BM_END_OF_MAP) {
1870		if (PageHighMem(pfn_to_page(pfn)))
1871			cnt++;
1872
1873		pfn = memory_bm_next_pfn(bm);
1874	}
1875	return cnt;
1876}
1877
1878/**
1879 *	prepare_highmem_image - try to allocate as many highmem pages as
1880 *	there are highmem image pages (@nr_highmem_p points to the variable
1881 *	containing the number of highmem image pages).  The pages that are
1882 *	"safe" (ie. will not be overwritten when the suspend image is
1883 *	restored) have the corresponding bits set in @bm (it must be
1884 *	unitialized).
1885 *
1886 *	NOTE: This function should not be called if there are no highmem
1887 *	image pages.
1888 */
1889
1890static unsigned int safe_highmem_pages;
1891
1892static struct memory_bitmap *safe_highmem_bm;
1893
1894static int
1895prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
1896{
1897	unsigned int to_alloc;
1898
1899	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1900		return -ENOMEM;
1901
1902	if (get_highmem_buffer(PG_SAFE))
1903		return -ENOMEM;
1904
1905	to_alloc = count_free_highmem_pages();
1906	if (to_alloc > *nr_highmem_p)
1907		to_alloc = *nr_highmem_p;
1908	else
1909		*nr_highmem_p = to_alloc;
1910
1911	safe_highmem_pages = 0;
1912	while (to_alloc-- > 0) {
1913		struct page *page;
1914
1915		page = alloc_page(__GFP_HIGHMEM);
1916		if (!swsusp_page_is_free(page)) {
1917			/* The page is "safe", set its bit the bitmap */
1918			memory_bm_set_bit(bm, page_to_pfn(page));
1919			safe_highmem_pages++;
1920		}
1921		/* Mark the page as allocated */
1922		swsusp_set_page_forbidden(page);
1923		swsusp_set_page_free(page);
1924	}
1925	memory_bm_position_reset(bm);
1926	safe_highmem_bm = bm;
1927	return 0;
1928}
1929
 
 
1930/**
1931 *	get_highmem_page_buffer - for given highmem image page find the buffer
1932 *	that suspend_write_next() should set for its caller to write to.
1933 *
1934 *	If the page is to be saved to its "original" page frame or a copy of
1935 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1936 *	the copy of the page is to be made in normal memory, so the address of
1937 *	the copy is returned.
1938 *
1939 *	If @buffer is returned, the caller of suspend_write_next() will write
1940 *	the page's contents to @buffer, so they will have to be copied to the
1941 *	right location on the next call to suspend_write_next() and it is done
1942 *	with the help of copy_last_highmem_page().  For this purpose, if
1943 *	@buffer is returned, @last_highmem page is set to the page to which
1944 *	the data will have to be copied from @buffer.
 
 
 
1945 */
1946
1947static struct page *last_highmem_page;
1948
1949static void *
1950get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1951{
1952	struct highmem_pbe *pbe;
1953	void *kaddr;
1954
1955	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1956		/* We have allocated the "original" page frame and we can
 
1957		 * use it directly to store the loaded page.
1958		 */
1959		last_highmem_page = page;
1960		return buffer;
1961	}
1962	/* The "original" page frame has not been allocated and we have to
 
1963	 * use a "safe" page frame to store the loaded page.
1964	 */
1965	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1966	if (!pbe) {
1967		swsusp_free();
1968		return ERR_PTR(-ENOMEM);
1969	}
1970	pbe->orig_page = page;
1971	if (safe_highmem_pages > 0) {
1972		struct page *tmp;
1973
1974		/* Copy of the page will be stored in high memory */
1975		kaddr = buffer;
1976		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1977		safe_highmem_pages--;
1978		last_highmem_page = tmp;
1979		pbe->copy_page = tmp;
1980	} else {
1981		/* Copy of the page will be stored in normal memory */
1982		kaddr = safe_pages_list;
1983		safe_pages_list = safe_pages_list->next;
1984		pbe->copy_page = virt_to_page(kaddr);
1985	}
1986	pbe->next = highmem_pblist;
1987	highmem_pblist = pbe;
1988	return kaddr;
1989}
1990
1991/**
1992 *	copy_last_highmem_page - copy the contents of a highmem image from
1993 *	@buffer, where the caller of snapshot_write_next() has place them,
1994 *	to the right location represented by @last_highmem_page .
 
 
1995 */
1996
1997static void copy_last_highmem_page(void)
1998{
1999	if (last_highmem_page) {
2000		void *dst;
2001
2002		dst = kmap_atomic(last_highmem_page, KM_USER0);
2003		copy_page(dst, buffer);
2004		kunmap_atomic(dst, KM_USER0);
2005		last_highmem_page = NULL;
2006	}
2007}
2008
2009static inline int last_highmem_page_copied(void)
2010{
2011	return !last_highmem_page;
2012}
2013
2014static inline void free_highmem_data(void)
2015{
2016	if (safe_highmem_bm)
2017		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2018
2019	if (buffer)
2020		free_image_page(buffer, PG_UNSAFE_CLEAR);
2021}
2022#else
2023static inline int get_safe_write_buffer(void) { return 0; }
2024
2025static unsigned int
2026count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2027
2028static inline int
2029prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2030{
2031	return 0;
2032}
2033
2034static inline void *
2035get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2036{
2037	return ERR_PTR(-EINVAL);
2038}
2039
2040static inline void copy_last_highmem_page(void) {}
2041static inline int last_highmem_page_copied(void) { return 1; }
2042static inline void free_highmem_data(void) {}
2043#endif /* CONFIG_HIGHMEM */
2044
2045/**
2046 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2047 *	be overwritten in the process of restoring the system memory state
2048 *	from the suspend image ("unsafe" pages) and allocate memory for the
2049 *	image.
2050 *
2051 *	The idea is to allocate a new memory bitmap first and then allocate
2052 *	as many pages as needed for the image data, but not to assign these
2053 *	pages to specific tasks initially.  Instead, we just mark them as
2054 *	allocated and create a lists of "safe" pages that will be used
2055 *	later.  On systems with high memory a list of "safe" highmem pages is
2056 *	also created.
2057 */
2058
2059#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2060
2061static int
2062prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063{
2064	unsigned int nr_pages, nr_highmem;
2065	struct linked_page *sp_list, *lp;
2066	int error;
2067
2068	/* If there is no highmem, the buffer will not be necessary */
2069	free_image_page(buffer, PG_UNSAFE_CLEAR);
2070	buffer = NULL;
2071
2072	nr_highmem = count_highmem_image_pages(bm);
2073	error = mark_unsafe_pages(bm);
2074	if (error)
2075		goto Free;
2076
2077	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2078	if (error)
2079		goto Free;
2080
2081	duplicate_memory_bitmap(new_bm, bm);
2082	memory_bm_free(bm, PG_UNSAFE_KEEP);
2083	if (nr_highmem > 0) {
2084		error = prepare_highmem_image(bm, &nr_highmem);
2085		if (error)
2086			goto Free;
2087	}
2088	/* Reserve some safe pages for potential later use.
 
2089	 *
2090	 * NOTE: This way we make sure there will be enough safe pages for the
2091	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2092	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 
 
2093	 */
2094	sp_list = NULL;
2095	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2096	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2097	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2098	while (nr_pages > 0) {
2099		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2100		if (!lp) {
2101			error = -ENOMEM;
2102			goto Free;
2103		}
2104		lp->next = sp_list;
2105		sp_list = lp;
2106		nr_pages--;
2107	}
2108	/* Preallocate memory for the image */
2109	safe_pages_list = NULL;
2110	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2111	while (nr_pages > 0) {
2112		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2113		if (!lp) {
2114			error = -ENOMEM;
2115			goto Free;
2116		}
2117		if (!swsusp_page_is_free(virt_to_page(lp))) {
2118			/* The page is "safe", add it to the list */
2119			lp->next = safe_pages_list;
2120			safe_pages_list = lp;
2121		}
2122		/* Mark the page as allocated */
2123		swsusp_set_page_forbidden(virt_to_page(lp));
2124		swsusp_set_page_free(virt_to_page(lp));
2125		nr_pages--;
2126	}
2127	/* Free the reserved safe pages so that chain_alloc() can use them */
2128	while (sp_list) {
2129		lp = sp_list->next;
2130		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2131		sp_list = lp;
2132	}
2133	return 0;
2134
2135 Free:
2136	swsusp_free();
2137	return error;
2138}
2139
2140/**
2141 *	get_buffer - compute the address that snapshot_write_next() should
2142 *	set for its caller to write to.
 
 
2143 */
2144
2145static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2146{
2147	struct pbe *pbe;
2148	struct page *page;
2149	unsigned long pfn = memory_bm_next_pfn(bm);
2150
2151	if (pfn == BM_END_OF_MAP)
2152		return ERR_PTR(-EFAULT);
2153
2154	page = pfn_to_page(pfn);
2155	if (PageHighMem(page))
2156		return get_highmem_page_buffer(page, ca);
2157
2158	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2159		/* We have allocated the "original" page frame and we can
 
2160		 * use it directly to store the loaded page.
2161		 */
2162		return page_address(page);
2163
2164	/* The "original" page frame has not been allocated and we have to
 
2165	 * use a "safe" page frame to store the loaded page.
2166	 */
2167	pbe = chain_alloc(ca, sizeof(struct pbe));
2168	if (!pbe) {
2169		swsusp_free();
2170		return ERR_PTR(-ENOMEM);
2171	}
2172	pbe->orig_address = page_address(page);
2173	pbe->address = safe_pages_list;
2174	safe_pages_list = safe_pages_list->next;
2175	pbe->next = restore_pblist;
2176	restore_pblist = pbe;
2177	return pbe->address;
2178}
2179
2180/**
2181 *	snapshot_write_next - used for writing the system memory snapshot.
 
2182 *
2183 *	On the first call to it @handle should point to a zeroed
2184 *	snapshot_handle structure.  The structure gets updated and a pointer
2185 *	to it should be passed to this function every next time.
2186 *
2187 *	On success the function returns a positive number.  Then, the caller
2188 *	is allowed to write up to the returned number of bytes to the memory
2189 *	location computed by the data_of() macro.
2190 *
2191 *	The function returns 0 to indicate the "end of file" condition,
2192 *	and a negative number is returned on error.  In such cases the
2193 *	structure pointed to by @handle is not updated and should not be used
2194 *	any more.
2195 */
2196
2197int snapshot_write_next(struct snapshot_handle *handle)
2198{
2199	static struct chain_allocator ca;
2200	int error = 0;
2201
2202	/* Check if we have already loaded the entire image */
2203	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2204		return 0;
2205
2206	handle->sync_read = 1;
2207
2208	if (!handle->cur) {
2209		if (!buffer)
2210			/* This makes the buffer be freed by swsusp_free() */
2211			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2212
2213		if (!buffer)
2214			return -ENOMEM;
2215
2216		handle->buffer = buffer;
2217	} else if (handle->cur == 1) {
2218		error = load_header(buffer);
2219		if (error)
2220			return error;
2221
 
 
2222		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2223		if (error)
2224			return error;
2225
 
2226	} else if (handle->cur <= nr_meta_pages + 1) {
2227		error = unpack_orig_pfns(buffer, &copy_bm);
2228		if (error)
2229			return error;
2230
2231		if (handle->cur == nr_meta_pages + 1) {
2232			error = prepare_image(&orig_bm, &copy_bm);
2233			if (error)
2234				return error;
2235
2236			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2237			memory_bm_position_reset(&orig_bm);
2238			restore_pblist = NULL;
2239			handle->buffer = get_buffer(&orig_bm, &ca);
2240			handle->sync_read = 0;
2241			if (IS_ERR(handle->buffer))
2242				return PTR_ERR(handle->buffer);
2243		}
2244	} else {
2245		copy_last_highmem_page();
 
2246		handle->buffer = get_buffer(&orig_bm, &ca);
2247		if (IS_ERR(handle->buffer))
2248			return PTR_ERR(handle->buffer);
2249		if (handle->buffer != buffer)
2250			handle->sync_read = 0;
2251	}
2252	handle->cur++;
2253	return PAGE_SIZE;
2254}
2255
2256/**
2257 *	snapshot_write_finalize - must be called after the last call to
2258 *	snapshot_write_next() in case the last page in the image happens
2259 *	to be a highmem page and its contents should be stored in the
2260 *	highmem.  Additionally, it releases the memory that will not be
2261 *	used any more.
 
2262 */
2263
2264void snapshot_write_finalize(struct snapshot_handle *handle)
2265{
2266	copy_last_highmem_page();
2267	/* Free only if we have loaded the image entirely */
 
2268	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2269		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2270		free_highmem_data();
2271	}
2272}
2273
2274int snapshot_image_loaded(struct snapshot_handle *handle)
2275{
2276	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2277			handle->cur <= nr_meta_pages + nr_copy_pages);
2278}
2279
2280#ifdef CONFIG_HIGHMEM
2281/* Assumes that @buf is ready and points to a "safe" page */
2282static inline void
2283swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2284{
2285	void *kaddr1, *kaddr2;
2286
2287	kaddr1 = kmap_atomic(p1, KM_USER0);
2288	kaddr2 = kmap_atomic(p2, KM_USER1);
2289	copy_page(buf, kaddr1);
2290	copy_page(kaddr1, kaddr2);
2291	copy_page(kaddr2, buf);
2292	kunmap_atomic(kaddr2, KM_USER1);
2293	kunmap_atomic(kaddr1, KM_USER0);
2294}
2295
2296/**
2297 *	restore_highmem - for each highmem page that was allocated before
2298 *	the suspend and included in the suspend image, and also has been
2299 *	allocated by the "resume" kernel swap its current (ie. "before
2300 *	resume") contents with the previous (ie. "before suspend") one.
2301 *
2302 *	If the resume eventually fails, we can call this function once
2303 *	again and restore the "before resume" highmem state.
 
 
 
 
2304 */
2305
2306int restore_highmem(void)
2307{
2308	struct highmem_pbe *pbe = highmem_pblist;
2309	void *buf;
2310
2311	if (!pbe)
2312		return 0;
2313
2314	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2315	if (!buf)
2316		return -ENOMEM;
2317
2318	while (pbe) {
2319		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2320		pbe = pbe->next;
2321	}
2322	free_image_page(buf, PG_UNSAFE_CLEAR);
2323	return 0;
2324}
2325#endif /* CONFIG_HIGHMEM */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 
 
 
 
 
 
 
 
 
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/**
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* strcut bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	int node_bit;
 408};
 409
 410struct memory_bitmap {
 411	struct list_head zones;
 412	struct linked_page *p_list;	/* list of pages used to store zone
 413					   bitmap objects and bitmap block
 414					   objects */
 
 415	struct bm_position cur;	/* most recently used bit position */
 416};
 417
 418/* Functions that operate on memory bitmaps */
 419
 420#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 421#if BITS_PER_LONG == 32
 422#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 423#else
 424#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 425#endif
 426#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 427
 428/**
 429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 430 *
 431 * This function is used to allocate inner nodes as well as the
 432 * leave nodes of the radix tree. It also adds the node to the
 433 * corresponding linked list passed in by the *list parameter.
 434 */
 435static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 436					   struct chain_allocator *ca,
 437					   struct list_head *list)
 438{
 439	struct rtree_node *node;
 
 
 440
 441	node = chain_alloc(ca, sizeof(struct rtree_node));
 442	if (!node)
 443		return NULL;
 444
 445	node->data = get_image_page(gfp_mask, safe_needed);
 446	if (!node->data)
 447		return NULL;
 448
 449	list_add_tail(&node->list, list);
 450
 451	return node;
 452}
 453
 454/**
 455 * add_rtree_block - Add a new leave node to the radix tree.
 456 *
 457 * The leave nodes need to be allocated in order to keep the leaves
 458 * linked list in order. This is guaranteed by the zone->blocks
 459 * counter.
 460 */
 461static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 462			   int safe_needed, struct chain_allocator *ca)
 463{
 464	struct rtree_node *node, *block, **dst;
 465	unsigned int levels_needed, block_nr;
 466	int i;
 467
 468	block_nr = zone->blocks;
 469	levels_needed = 0;
 470
 471	/* How many levels do we need for this block nr? */
 472	while (block_nr) {
 473		levels_needed += 1;
 474		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 475	}
 476
 477	/* Make sure the rtree has enough levels */
 478	for (i = zone->levels; i < levels_needed; i++) {
 479		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 480					&zone->nodes);
 481		if (!node)
 482			return -ENOMEM;
 483
 484		node->data[0] = (unsigned long)zone->rtree;
 485		zone->rtree = node;
 486		zone->levels += 1;
 487	}
 488
 489	/* Allocate new block */
 490	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 491	if (!block)
 492		return -ENOMEM;
 493
 494	/* Now walk the rtree to insert the block */
 495	node = zone->rtree;
 496	dst = &zone->rtree;
 497	block_nr = zone->blocks;
 498	for (i = zone->levels; i > 0; i--) {
 499		int index;
 500
 501		if (!node) {
 502			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 503						&zone->nodes);
 504			if (!node)
 505				return -ENOMEM;
 506			*dst = node;
 507		}
 508
 509		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 510		index &= BM_RTREE_LEVEL_MASK;
 511		dst = (struct rtree_node **)&((*dst)->data[index]);
 512		node = *dst;
 513	}
 514
 515	zone->blocks += 1;
 516	*dst = block;
 517
 518	return 0;
 519}
 520
 521static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 522			       int clear_nosave_free);
 523
 524/**
 525 * create_zone_bm_rtree - Create a radix tree for one zone.
 526 *
 527 * Allocated the mem_zone_bm_rtree structure and initializes it.
 528 * This function also allocated and builds the radix tree for the
 529 * zone.
 530 */
 531static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 532						      int safe_needed,
 533						      struct chain_allocator *ca,
 534						      unsigned long start,
 535						      unsigned long end)
 536{
 537	struct mem_zone_bm_rtree *zone;
 538	unsigned int i, nr_blocks;
 539	unsigned long pages;
 540
 541	pages = end - start;
 542	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 543	if (!zone)
 544		return NULL;
 545
 546	INIT_LIST_HEAD(&zone->nodes);
 547	INIT_LIST_HEAD(&zone->leaves);
 548	zone->start_pfn = start;
 549	zone->end_pfn = end;
 550	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 551
 552	for (i = 0; i < nr_blocks; i++) {
 553		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 554			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 555			return NULL;
 556		}
 557	}
 558
 559	return zone;
 560}
 561
 562/**
 563 * free_zone_bm_rtree - Free the memory of the radix tree.
 564 *
 565 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 566 * structure itself is not freed here nor are the rtree_node
 567 * structs.
 568 */
 569static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 570			       int clear_nosave_free)
 571{
 572	struct rtree_node *node;
 573
 574	list_for_each_entry(node, &zone->nodes, list)
 575		free_image_page(node->data, clear_nosave_free);
 576
 577	list_for_each_entry(node, &zone->leaves, list)
 578		free_image_page(node->data, clear_nosave_free);
 579}
 580
 581static void memory_bm_position_reset(struct memory_bitmap *bm)
 582{
 583	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 584				  list);
 585	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 586				  struct rtree_node, list);
 587	bm->cur.node_pfn = 0;
 588	bm->cur.node_bit = 0;
 589}
 590
 591static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 592
 593struct mem_extent {
 594	struct list_head hook;
 595	unsigned long start;
 596	unsigned long end;
 597};
 598
 599/**
 600 * free_mem_extents - Free a list of memory extents.
 601 * @list: List of extents to free.
 602 */
 603static void free_mem_extents(struct list_head *list)
 604{
 605	struct mem_extent *ext, *aux;
 606
 607	list_for_each_entry_safe(ext, aux, list, hook) {
 608		list_del(&ext->hook);
 609		kfree(ext);
 610	}
 611}
 612
 613/**
 614 * create_mem_extents - Create a list of memory extents.
 615 * @list: List to put the extents into.
 616 * @gfp_mask: Mask to use for memory allocations.
 617 *
 618 * The extents represent contiguous ranges of PFNs.
 619 */
 620static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 621{
 622	struct zone *zone;
 623
 624	INIT_LIST_HEAD(list);
 625
 626	for_each_populated_zone(zone) {
 627		unsigned long zone_start, zone_end;
 628		struct mem_extent *ext, *cur, *aux;
 629
 630		zone_start = zone->zone_start_pfn;
 631		zone_end = zone_end_pfn(zone);
 632
 633		list_for_each_entry(ext, list, hook)
 634			if (zone_start <= ext->end)
 635				break;
 636
 637		if (&ext->hook == list || zone_end < ext->start) {
 638			/* New extent is necessary */
 639			struct mem_extent *new_ext;
 640
 641			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 642			if (!new_ext) {
 643				free_mem_extents(list);
 644				return -ENOMEM;
 645			}
 646			new_ext->start = zone_start;
 647			new_ext->end = zone_end;
 648			list_add_tail(&new_ext->hook, &ext->hook);
 649			continue;
 650		}
 651
 652		/* Merge this zone's range of PFNs with the existing one */
 653		if (zone_start < ext->start)
 654			ext->start = zone_start;
 655		if (zone_end > ext->end)
 656			ext->end = zone_end;
 657
 658		/* More merging may be possible */
 659		cur = ext;
 660		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 661			if (zone_end < cur->start)
 662				break;
 663			if (zone_end < cur->end)
 664				ext->end = cur->end;
 665			list_del(&cur->hook);
 666			kfree(cur);
 667		}
 668	}
 669
 670	return 0;
 671}
 672
 673/**
 674 * memory_bm_create - Allocate memory for a memory bitmap.
 675 */
 676static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 677			    int safe_needed)
 678{
 679	struct chain_allocator ca;
 680	struct list_head mem_extents;
 681	struct mem_extent *ext;
 682	int error;
 683
 684	chain_init(&ca, gfp_mask, safe_needed);
 685	INIT_LIST_HEAD(&bm->zones);
 686
 687	error = create_mem_extents(&mem_extents, gfp_mask);
 688	if (error)
 689		return error;
 690
 691	list_for_each_entry(ext, &mem_extents, hook) {
 692		struct mem_zone_bm_rtree *zone;
 
 
 
 
 693
 694		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 695					    ext->start, ext->end);
 696		if (!zone) {
 697			error = -ENOMEM;
 698			goto Error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699		}
 700		list_add_tail(&zone->list, &bm->zones);
 701	}
 702
 703	bm->p_list = ca.chain;
 704	memory_bm_position_reset(bm);
 705 Exit:
 706	free_mem_extents(&mem_extents);
 707	return error;
 708
 709 Error:
 710	bm->p_list = ca.chain;
 711	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 712	goto Exit;
 713}
 714
 715/**
 716 * memory_bm_free - Free memory occupied by the memory bitmap.
 717 * @bm: Memory bitmap.
 718 */
 719static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 720{
 721	struct mem_zone_bm_rtree *zone;
 722
 723	list_for_each_entry(zone, &bm->zones, list)
 724		free_zone_bm_rtree(zone, clear_nosave_free);
 
 725
 726	free_list_of_pages(bm->p_list, clear_nosave_free);
 727
 728	INIT_LIST_HEAD(&bm->zones);
 729}
 730
 731/**
 732 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 733 *
 734 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 735 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 736 *
 737 * Walk the radix tree to find the page containing the bit that represents @pfn
 738 * and return the position of the bit in @addr and @bit_nr.
 739 */
 740static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 741			      void **addr, unsigned int *bit_nr)
 742{
 743	struct mem_zone_bm_rtree *curr, *zone;
 744	struct rtree_node *node;
 745	int i, block_nr;
 746
 747	zone = bm->cur.zone;
 
 
 
 
 
 
 
 
 748
 749	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 750		goto zone_found;
 751
 752	zone = NULL;
 753
 754	/* Find the right zone */
 755	list_for_each_entry(curr, &bm->zones, list) {
 756		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 757			zone = curr;
 758			break;
 759		}
 760	}
 761
 762	if (!zone)
 763		return -EFAULT;
 764
 765zone_found:
 766	/*
 767	 * We have found the zone. Now walk the radix tree to find the leaf node
 768	 * for our PFN.
 769	 */
 770
 771	/*
 772	 * If the zone we wish to scan is the current zone and the
 773	 * pfn falls into the current node then we do not need to walk
 774	 * the tree.
 775	 */
 776	node = bm->cur.node;
 777	if (zone == bm->cur.zone &&
 778	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 779		goto node_found;
 780
 781	node      = zone->rtree;
 782	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 783
 784	for (i = zone->levels; i > 0; i--) {
 785		int index;
 786
 787		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 788		index &= BM_RTREE_LEVEL_MASK;
 789		BUG_ON(node->data[index] == 0);
 790		node = (struct rtree_node *)node->data[index];
 791	}
 792
 793node_found:
 794	/* Update last position */
 795	bm->cur.zone = zone;
 796	bm->cur.node = node;
 797	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 798
 799	/* Set return values */
 800	*addr = node->data;
 801	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 802
 803	return 0;
 804}
 805
 806static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 807{
 808	void *addr;
 809	unsigned int bit;
 810	int error;
 811
 812	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 813	BUG_ON(error);
 814	set_bit(bit, addr);
 815}
 816
 817static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 818{
 819	void *addr;
 820	unsigned int bit;
 821	int error;
 822
 823	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 824	if (!error)
 825		set_bit(bit, addr);
 826
 827	return error;
 828}
 829
 830static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 831{
 832	void *addr;
 833	unsigned int bit;
 834	int error;
 835
 836	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 837	BUG_ON(error);
 838	clear_bit(bit, addr);
 839}
 840
 841static void memory_bm_clear_current(struct memory_bitmap *bm)
 842{
 843	int bit;
 844
 845	bit = max(bm->cur.node_bit - 1, 0);
 846	clear_bit(bit, bm->cur.node->data);
 847}
 848
 849static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 850{
 851	void *addr;
 852	unsigned int bit;
 853	int error;
 854
 855	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 856	BUG_ON(error);
 857	return test_bit(bit, addr);
 858}
 859
 860static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 861{
 862	void *addr;
 863	unsigned int bit;
 864
 865	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 866}
 867
 868/*
 869 * rtree_next_node - Jump to the next leaf node.
 870 *
 871 * Set the position to the beginning of the next node in the
 872 * memory bitmap. This is either the next node in the current
 873 * zone's radix tree or the first node in the radix tree of the
 874 * next zone.
 875 *
 876 * Return true if there is a next node, false otherwise.
 
 877 */
 878static bool rtree_next_node(struct memory_bitmap *bm)
 879{
 880	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 881		bm->cur.node = list_entry(bm->cur.node->list.next,
 882					  struct rtree_node, list);
 883		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 884		bm->cur.node_bit  = 0;
 885		touch_softlockup_watchdog();
 886		return true;
 887	}
 888
 889	/* No more nodes, goto next zone */
 890	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 891		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 892				  struct mem_zone_bm_rtree, list);
 893		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 894					  struct rtree_node, list);
 895		bm->cur.node_pfn = 0;
 896		bm->cur.node_bit = 0;
 897		return true;
 898	}
 899
 900	/* No more zones */
 901	return false;
 902}
 903
 904/**
 905 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 906 * @bm: Memory bitmap.
 907 *
 908 * Starting from the last returned position this function searches for the next
 909 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 910 * set, BM_END_OF_MAP is returned.
 911 *
 912 * It is required to run memory_bm_position_reset() before the first call to
 913 * this function for the given memory bitmap.
 914 */
 915static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 916{
 917	unsigned long bits, pfn, pages;
 918	int bit;
 919
 
 920	do {
 921		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 922		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 923		bit	  = find_next_bit(bm->cur.node->data, bits,
 924					  bm->cur.node_bit);
 925		if (bit < bits) {
 926			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 927			bm->cur.node_bit = bit + 1;
 928			return pfn;
 929		}
 930	} while (rtree_next_node(bm));
 931
 
 932	return BM_END_OF_MAP;
 
 
 
 
 933}
 934
 935/*
 936 * This structure represents a range of page frames the contents of which
 937 * should not be saved during hibernation.
 938 */
 
 939struct nosave_region {
 940	struct list_head list;
 941	unsigned long start_pfn;
 942	unsigned long end_pfn;
 943};
 944
 945static LIST_HEAD(nosave_regions);
 946
 947static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 948{
 949	struct rtree_node *node;
 950
 951	list_for_each_entry(node, &zone->nodes, list)
 952		recycle_safe_page(node->data);
 953
 954	list_for_each_entry(node, &zone->leaves, list)
 955		recycle_safe_page(node->data);
 956}
 957
 958static void memory_bm_recycle(struct memory_bitmap *bm)
 959{
 960	struct mem_zone_bm_rtree *zone;
 961	struct linked_page *p_list;
 962
 963	list_for_each_entry(zone, &bm->zones, list)
 964		recycle_zone_bm_rtree(zone);
 965
 966	p_list = bm->p_list;
 967	while (p_list) {
 968		struct linked_page *lp = p_list;
 969
 970		p_list = lp->next;
 971		recycle_safe_page(lp);
 972	}
 973}
 974
 975/**
 976 * register_nosave_region - Register a region of unsaveable memory.
 977 *
 978 * Register a range of page frames the contents of which should not be saved
 979 * during hibernation (to be used in the early initialization code).
 980 */
 981void __init __register_nosave_region(unsigned long start_pfn,
 982				     unsigned long end_pfn, int use_kmalloc)
 
 
 983{
 984	struct nosave_region *region;
 985
 986	if (start_pfn >= end_pfn)
 987		return;
 988
 989	if (!list_empty(&nosave_regions)) {
 990		/* Try to extend the previous region (they should be sorted) */
 991		region = list_entry(nosave_regions.prev,
 992					struct nosave_region, list);
 993		if (region->end_pfn == start_pfn) {
 994			region->end_pfn = end_pfn;
 995			goto Report;
 996		}
 997	}
 998	if (use_kmalloc) {
 999		/* During init, this shouldn't fail */
1000		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
1001		BUG_ON(!region);
1002	} else {
1003		/* This allocation cannot fail */
1004		region = memblock_alloc(sizeof(struct nosave_region),
1005					SMP_CACHE_BYTES);
1006		if (!region)
1007			panic("%s: Failed to allocate %zu bytes\n", __func__,
1008			      sizeof(struct nosave_region));
1009	}
1010	region->start_pfn = start_pfn;
1011	region->end_pfn = end_pfn;
1012	list_add_tail(&region->list, &nosave_regions);
1013 Report:
1014	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1015		(unsigned long long) start_pfn << PAGE_SHIFT,
1016		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1017}
1018
1019/*
1020 * Set bits in this map correspond to the page frames the contents of which
1021 * should not be saved during the suspend.
1022 */
1023static struct memory_bitmap *forbidden_pages_map;
1024
1025/* Set bits in this map correspond to free page frames. */
1026static struct memory_bitmap *free_pages_map;
1027
1028/*
1029 * Each page frame allocated for creating the image is marked by setting the
1030 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1031 */
1032
1033void swsusp_set_page_free(struct page *page)
1034{
1035	if (free_pages_map)
1036		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1037}
1038
1039static int swsusp_page_is_free(struct page *page)
1040{
1041	return free_pages_map ?
1042		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1043}
1044
1045void swsusp_unset_page_free(struct page *page)
1046{
1047	if (free_pages_map)
1048		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1049}
1050
1051static void swsusp_set_page_forbidden(struct page *page)
1052{
1053	if (forbidden_pages_map)
1054		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1055}
1056
1057int swsusp_page_is_forbidden(struct page *page)
1058{
1059	return forbidden_pages_map ?
1060		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1061}
1062
1063static void swsusp_unset_page_forbidden(struct page *page)
1064{
1065	if (forbidden_pages_map)
1066		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1067}
1068
1069/**
1070 * mark_nosave_pages - Mark pages that should not be saved.
1071 * @bm: Memory bitmap.
1072 *
1073 * Set the bits in @bm that correspond to the page frames the contents of which
1074 * should not be saved.
1075 */
 
1076static void mark_nosave_pages(struct memory_bitmap *bm)
1077{
1078	struct nosave_region *region;
1079
1080	if (list_empty(&nosave_regions))
1081		return;
1082
1083	list_for_each_entry(region, &nosave_regions, list) {
1084		unsigned long pfn;
1085
1086		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1087			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1088			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1089				- 1);
1090
1091		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1092			if (pfn_valid(pfn)) {
1093				/*
1094				 * It is safe to ignore the result of
1095				 * mem_bm_set_bit_check() here, since we won't
1096				 * touch the PFNs for which the error is
1097				 * returned anyway.
1098				 */
1099				mem_bm_set_bit_check(bm, pfn);
1100			}
1101	}
1102}
1103
1104/**
1105 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1106 *
1107 * Create bitmaps needed for marking page frames that should not be saved and
1108 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1109 * only modified if everything goes well, because we don't want the bits to be
1110 * touched before both bitmaps are set up.
1111 */
 
1112int create_basic_memory_bitmaps(void)
1113{
1114	struct memory_bitmap *bm1, *bm2;
1115	int error = 0;
1116
1117	if (forbidden_pages_map && free_pages_map)
1118		return 0;
1119	else
1120		BUG_ON(forbidden_pages_map || free_pages_map);
1121
1122	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1123	if (!bm1)
1124		return -ENOMEM;
1125
1126	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1127	if (error)
1128		goto Free_first_object;
1129
1130	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1131	if (!bm2)
1132		goto Free_first_bitmap;
1133
1134	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1135	if (error)
1136		goto Free_second_object;
1137
1138	forbidden_pages_map = bm1;
1139	free_pages_map = bm2;
1140	mark_nosave_pages(forbidden_pages_map);
1141
1142	pr_debug("Basic memory bitmaps created\n");
1143
1144	return 0;
1145
1146 Free_second_object:
1147	kfree(bm2);
1148 Free_first_bitmap:
1149	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1150 Free_first_object:
1151	kfree(bm1);
1152	return -ENOMEM;
1153}
1154
1155/**
1156 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1157 *
1158 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1159 * auxiliary pointers are necessary so that the bitmaps themselves are not
1160 * referred to while they are being freed.
1161 */
 
1162void free_basic_memory_bitmaps(void)
1163{
1164	struct memory_bitmap *bm1, *bm2;
1165
1166	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1167		return;
1168
1169	bm1 = forbidden_pages_map;
1170	bm2 = free_pages_map;
1171	forbidden_pages_map = NULL;
1172	free_pages_map = NULL;
1173	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1174	kfree(bm1);
1175	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1176	kfree(bm2);
1177
1178	pr_debug("Basic memory bitmaps freed\n");
1179}
1180
1181static void clear_or_poison_free_page(struct page *page)
1182{
1183	if (page_poisoning_enabled_static())
1184		__kernel_poison_pages(page, 1);
1185	else if (want_init_on_free())
1186		clear_highpage(page);
1187}
1188
1189void clear_or_poison_free_pages(void)
1190{
1191	struct memory_bitmap *bm = free_pages_map;
1192	unsigned long pfn;
1193
1194	if (WARN_ON(!(free_pages_map)))
1195		return;
1196
1197	if (page_poisoning_enabled() || want_init_on_free()) {
1198		memory_bm_position_reset(bm);
1199		pfn = memory_bm_next_pfn(bm);
1200		while (pfn != BM_END_OF_MAP) {
1201			if (pfn_valid(pfn))
1202				clear_or_poison_free_page(pfn_to_page(pfn));
1203
1204			pfn = memory_bm_next_pfn(bm);
1205		}
1206		memory_bm_position_reset(bm);
1207		pr_info("free pages cleared after restore\n");
1208	}
1209}
1210
1211/**
1212 * snapshot_additional_pages - Estimate the number of extra pages needed.
1213 * @zone: Memory zone to carry out the computation for.
1214 *
1215 * Estimate the number of additional pages needed for setting up a hibernation
1216 * image data structures for @zone (usually, the returned value is greater than
1217 * the exact number).
1218 */
 
1219unsigned int snapshot_additional_pages(struct zone *zone)
1220{
1221	unsigned int rtree, nodes;
1222
1223	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1224	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1225			      LINKED_PAGE_DATA_SIZE);
1226	while (nodes > 1) {
1227		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1228		rtree += nodes;
1229	}
1230
1231	return 2 * rtree;
 
 
1232}
1233
1234#ifdef CONFIG_HIGHMEM
1235/**
1236 * count_free_highmem_pages - Compute the total number of free highmem pages.
1237 *
1238 * The returned number is system-wide.
1239 */
 
1240static unsigned int count_free_highmem_pages(void)
1241{
1242	struct zone *zone;
1243	unsigned int cnt = 0;
1244
1245	for_each_populated_zone(zone)
1246		if (is_highmem(zone))
1247			cnt += zone_page_state(zone, NR_FREE_PAGES);
1248
1249	return cnt;
1250}
1251
1252/**
1253 * saveable_highmem_page - Check if a highmem page is saveable.
 
1254 *
1255 * Determine whether a highmem page should be included in a hibernation image.
1256 *
1257 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1258 * and it isn't part of a free chunk of pages.
1259 */
1260static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1261{
1262	struct page *page;
1263
1264	if (!pfn_valid(pfn))
1265		return NULL;
1266
1267	page = pfn_to_online_page(pfn);
1268	if (!page || page_zone(page) != zone)
1269		return NULL;
1270
1271	BUG_ON(!PageHighMem(page));
1272
1273	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1274		return NULL;
1275
1276	if (PageReserved(page) || PageOffline(page))
1277		return NULL;
1278
1279	if (page_is_guard(page))
1280		return NULL;
1281
1282	return page;
1283}
1284
1285/**
1286 * count_highmem_pages - Compute the total number of saveable highmem pages.
 
1287 */
 
1288static unsigned int count_highmem_pages(void)
1289{
1290	struct zone *zone;
1291	unsigned int n = 0;
1292
1293	for_each_populated_zone(zone) {
1294		unsigned long pfn, max_zone_pfn;
1295
1296		if (!is_highmem(zone))
1297			continue;
1298
1299		mark_free_pages(zone);
1300		max_zone_pfn = zone_end_pfn(zone);
1301		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1302			if (saveable_highmem_page(zone, pfn))
1303				n++;
1304	}
1305	return n;
1306}
1307#else
1308static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1309{
1310	return NULL;
1311}
1312#endif /* CONFIG_HIGHMEM */
1313
1314/**
1315 * saveable_page - Check if the given page is saveable.
1316 *
1317 * Determine whether a non-highmem page should be included in a hibernation
1318 * image.
1319 *
1320 * We should save the page if it isn't Nosave, and is not in the range
1321 * of pages statically defined as 'unsaveable', and it isn't part of
1322 * a free chunk of pages.
1323 */
1324static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1325{
1326	struct page *page;
1327
1328	if (!pfn_valid(pfn))
1329		return NULL;
1330
1331	page = pfn_to_online_page(pfn);
1332	if (!page || page_zone(page) != zone)
1333		return NULL;
1334
1335	BUG_ON(PageHighMem(page));
1336
1337	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1338		return NULL;
1339
1340	if (PageOffline(page))
1341		return NULL;
1342
1343	if (PageReserved(page)
1344	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1345		return NULL;
1346
1347	if (page_is_guard(page))
1348		return NULL;
1349
1350	return page;
1351}
1352
1353/**
1354 * count_data_pages - Compute the total number of saveable non-highmem pages.
 
1355 */
 
1356static unsigned int count_data_pages(void)
1357{
1358	struct zone *zone;
1359	unsigned long pfn, max_zone_pfn;
1360	unsigned int n = 0;
1361
1362	for_each_populated_zone(zone) {
1363		if (is_highmem(zone))
1364			continue;
1365
1366		mark_free_pages(zone);
1367		max_zone_pfn = zone_end_pfn(zone);
1368		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1369			if (saveable_page(zone, pfn))
1370				n++;
1371	}
1372	return n;
1373}
1374
1375/*
1376 * This is needed, because copy_page and memcpy are not usable for copying
1377 * task structs.
1378 */
1379static inline void do_copy_page(long *dst, long *src)
1380{
1381	int n;
1382
1383	for (n = PAGE_SIZE / sizeof(long); n; n--)
1384		*dst++ = *src++;
1385}
1386
 
1387/**
1388 * safe_copy_page - Copy a page in a safe way.
1389 *
1390 * Check if the page we are going to copy is marked as present in the kernel
1391 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1392 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1393 * always returns 'true'.
1394 */
1395static void safe_copy_page(void *dst, struct page *s_page)
1396{
1397	if (kernel_page_present(s_page)) {
1398		do_copy_page(dst, page_address(s_page));
1399	} else {
1400		hibernate_map_page(s_page);
1401		do_copy_page(dst, page_address(s_page));
1402		hibernate_unmap_page(s_page);
1403	}
1404}
1405
 
1406#ifdef CONFIG_HIGHMEM
1407static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
 
1408{
1409	return is_highmem(zone) ?
1410		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1411}
1412
1413static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1414{
1415	struct page *s_page, *d_page;
1416	void *src, *dst;
1417
1418	s_page = pfn_to_page(src_pfn);
1419	d_page = pfn_to_page(dst_pfn);
1420	if (PageHighMem(s_page)) {
1421		src = kmap_atomic(s_page);
1422		dst = kmap_atomic(d_page);
1423		do_copy_page(dst, src);
1424		kunmap_atomic(dst);
1425		kunmap_atomic(src);
1426	} else {
1427		if (PageHighMem(d_page)) {
1428			/*
1429			 * The page pointed to by src may contain some kernel
1430			 * data modified by kmap_atomic()
1431			 */
1432			safe_copy_page(buffer, s_page);
1433			dst = kmap_atomic(d_page);
1434			copy_page(dst, buffer);
1435			kunmap_atomic(dst);
1436		} else {
1437			safe_copy_page(page_address(d_page), s_page);
1438		}
1439	}
1440}
1441#else
1442#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1443
1444static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1445{
1446	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1447				pfn_to_page(src_pfn));
1448}
1449#endif /* CONFIG_HIGHMEM */
1450
1451static void copy_data_pages(struct memory_bitmap *copy_bm,
1452			    struct memory_bitmap *orig_bm)
1453{
1454	struct zone *zone;
1455	unsigned long pfn;
1456
1457	for_each_populated_zone(zone) {
1458		unsigned long max_zone_pfn;
1459
1460		mark_free_pages(zone);
1461		max_zone_pfn = zone_end_pfn(zone);
1462		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1463			if (page_is_saveable(zone, pfn))
1464				memory_bm_set_bit(orig_bm, pfn);
1465	}
1466	memory_bm_position_reset(orig_bm);
1467	memory_bm_position_reset(copy_bm);
1468	for(;;) {
1469		pfn = memory_bm_next_pfn(orig_bm);
1470		if (unlikely(pfn == BM_END_OF_MAP))
1471			break;
1472		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1473	}
1474}
1475
1476/* Total number of image pages */
1477static unsigned int nr_copy_pages;
1478/* Number of pages needed for saving the original pfns of the image pages */
1479static unsigned int nr_meta_pages;
1480/*
1481 * Numbers of normal and highmem page frames allocated for hibernation image
1482 * before suspending devices.
1483 */
1484static unsigned int alloc_normal, alloc_highmem;
1485/*
1486 * Memory bitmap used for marking saveable pages (during hibernation) or
1487 * hibernation image pages (during restore)
1488 */
1489static struct memory_bitmap orig_bm;
1490/*
1491 * Memory bitmap used during hibernation for marking allocated page frames that
1492 * will contain copies of saveable pages.  During restore it is initially used
1493 * for marking hibernation image pages, but then the set bits from it are
1494 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1495 * used for marking "safe" highmem pages, but it has to be reinitialized for
1496 * this purpose.
1497 */
1498static struct memory_bitmap copy_bm;
1499
1500/**
1501 * swsusp_free - Free pages allocated for hibernation image.
1502 *
1503 * Image pages are allocated before snapshot creation, so they need to be
1504 * released after resume.
1505 */
 
1506void swsusp_free(void)
1507{
1508	unsigned long fb_pfn, fr_pfn;
 
1509
1510	if (!forbidden_pages_map || !free_pages_map)
1511		goto out;
 
 
 
1512
1513	memory_bm_position_reset(forbidden_pages_map);
1514	memory_bm_position_reset(free_pages_map);
1515
1516loop:
1517	fr_pfn = memory_bm_next_pfn(free_pages_map);
1518	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1519
1520	/*
1521	 * Find the next bit set in both bitmaps. This is guaranteed to
1522	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1523	 */
1524	do {
1525		if (fb_pfn < fr_pfn)
1526			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1527		if (fr_pfn < fb_pfn)
1528			fr_pfn = memory_bm_next_pfn(free_pages_map);
1529	} while (fb_pfn != fr_pfn);
1530
1531	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1532		struct page *page = pfn_to_page(fr_pfn);
1533
1534		memory_bm_clear_current(forbidden_pages_map);
1535		memory_bm_clear_current(free_pages_map);
1536		hibernate_restore_unprotect_page(page_address(page));
1537		__free_page(page);
1538		goto loop;
1539	}
1540
1541out:
1542	nr_copy_pages = 0;
1543	nr_meta_pages = 0;
1544	restore_pblist = NULL;
1545	buffer = NULL;
1546	alloc_normal = 0;
1547	alloc_highmem = 0;
1548	hibernate_restore_protection_end();
1549}
1550
1551/* Helper functions used for the shrinking of memory. */
1552
1553#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1554
1555/**
1556 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1557 * @nr_pages: Number of page frames to allocate.
1558 * @mask: GFP flags to use for the allocation.
1559 *
1560 * Return value: Number of page frames actually allocated
1561 */
1562static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1563{
1564	unsigned long nr_alloc = 0;
1565
1566	while (nr_pages > 0) {
1567		struct page *page;
1568
1569		page = alloc_image_page(mask);
1570		if (!page)
1571			break;
1572		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1573		if (PageHighMem(page))
1574			alloc_highmem++;
1575		else
1576			alloc_normal++;
1577		nr_pages--;
1578		nr_alloc++;
1579	}
1580
1581	return nr_alloc;
1582}
1583
1584static unsigned long preallocate_image_memory(unsigned long nr_pages,
1585					      unsigned long avail_normal)
1586{
1587	unsigned long alloc;
1588
1589	if (avail_normal <= alloc_normal)
1590		return 0;
1591
1592	alloc = avail_normal - alloc_normal;
1593	if (nr_pages < alloc)
1594		alloc = nr_pages;
1595
1596	return preallocate_image_pages(alloc, GFP_IMAGE);
1597}
1598
1599#ifdef CONFIG_HIGHMEM
1600static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1601{
1602	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1603}
1604
1605/**
1606 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1607 */
1608static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1609{
1610	return div64_u64(x * multiplier, base);
 
 
1611}
1612
1613static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1614						  unsigned long highmem,
1615						  unsigned long total)
1616{
1617	unsigned long alloc = __fraction(nr_pages, highmem, total);
1618
1619	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1620}
1621#else /* CONFIG_HIGHMEM */
1622static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1623{
1624	return 0;
1625}
1626
1627static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1628							 unsigned long highmem,
1629							 unsigned long total)
1630{
1631	return 0;
1632}
1633#endif /* CONFIG_HIGHMEM */
1634
1635/**
1636 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1637 */
1638static unsigned long free_unnecessary_pages(void)
1639{
1640	unsigned long save, to_free_normal, to_free_highmem, free;
1641
1642	save = count_data_pages();
1643	if (alloc_normal >= save) {
1644		to_free_normal = alloc_normal - save;
1645		save = 0;
1646	} else {
1647		to_free_normal = 0;
1648		save -= alloc_normal;
1649	}
1650	save += count_highmem_pages();
1651	if (alloc_highmem >= save) {
1652		to_free_highmem = alloc_highmem - save;
1653	} else {
1654		to_free_highmem = 0;
1655		save -= alloc_highmem;
1656		if (to_free_normal > save)
1657			to_free_normal -= save;
1658		else
1659			to_free_normal = 0;
1660	}
1661	free = to_free_normal + to_free_highmem;
1662
1663	memory_bm_position_reset(&copy_bm);
1664
1665	while (to_free_normal > 0 || to_free_highmem > 0) {
1666		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1667		struct page *page = pfn_to_page(pfn);
1668
1669		if (PageHighMem(page)) {
1670			if (!to_free_highmem)
1671				continue;
1672			to_free_highmem--;
1673			alloc_highmem--;
1674		} else {
1675			if (!to_free_normal)
1676				continue;
1677			to_free_normal--;
1678			alloc_normal--;
1679		}
1680		memory_bm_clear_bit(&copy_bm, pfn);
1681		swsusp_unset_page_forbidden(page);
1682		swsusp_unset_page_free(page);
1683		__free_page(page);
1684	}
1685
1686	return free;
1687}
1688
1689/**
1690 * minimum_image_size - Estimate the minimum acceptable size of an image.
1691 * @saveable: Number of saveable pages in the system.
1692 *
1693 * We want to avoid attempting to free too much memory too hard, so estimate the
1694 * minimum acceptable size of a hibernation image to use as the lower limit for
1695 * preallocating memory.
1696 *
1697 * We assume that the minimum image size should be proportional to
1698 *
1699 * [number of saveable pages] - [number of pages that can be freed in theory]
1700 *
1701 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1702 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1703 */
1704static unsigned long minimum_image_size(unsigned long saveable)
1705{
1706	unsigned long size;
1707
1708	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1709		+ global_node_page_state(NR_ACTIVE_ANON)
1710		+ global_node_page_state(NR_INACTIVE_ANON)
1711		+ global_node_page_state(NR_ACTIVE_FILE)
1712		+ global_node_page_state(NR_INACTIVE_FILE);
 
1713
1714	return saveable <= size ? 0 : saveable - size;
1715}
1716
1717/**
1718 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1719 *
1720 * To create a hibernation image it is necessary to make a copy of every page
1721 * frame in use.  We also need a number of page frames to be free during
1722 * hibernation for allocations made while saving the image and for device
1723 * drivers, in case they need to allocate memory from their hibernation
1724 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1725 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1726 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1727 * total number of available page frames and allocate at least
1728 *
1729 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1730 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1731 *
1732 * of them, which corresponds to the maximum size of a hibernation image.
1733 *
1734 * If image_size is set below the number following from the above formula,
1735 * the preallocation of memory is continued until the total number of saveable
1736 * pages in the system is below the requested image size or the minimum
1737 * acceptable image size returned by minimum_image_size(), whichever is greater.
1738 */
1739int hibernate_preallocate_memory(void)
1740{
1741	struct zone *zone;
1742	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1743	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1744	ktime_t start, stop;
1745	int error;
1746
1747	pr_info("Preallocating image memory\n");
1748	start = ktime_get();
1749
1750	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1751	if (error) {
1752		pr_err("Cannot allocate original bitmap\n");
1753		goto err_out;
1754	}
1755
1756	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1757	if (error) {
1758		pr_err("Cannot allocate copy bitmap\n");
1759		goto err_out;
1760	}
1761
1762	alloc_normal = 0;
1763	alloc_highmem = 0;
1764
1765	/* Count the number of saveable data pages. */
1766	save_highmem = count_highmem_pages();
1767	saveable = count_data_pages();
1768
1769	/*
1770	 * Compute the total number of page frames we can use (count) and the
1771	 * number of pages needed for image metadata (size).
1772	 */
1773	count = saveable;
1774	saveable += save_highmem;
1775	highmem = save_highmem;
1776	size = 0;
1777	for_each_populated_zone(zone) {
1778		size += snapshot_additional_pages(zone);
1779		if (is_highmem(zone))
1780			highmem += zone_page_state(zone, NR_FREE_PAGES);
1781		else
1782			count += zone_page_state(zone, NR_FREE_PAGES);
1783	}
1784	avail_normal = count;
1785	count += highmem;
1786	count -= totalreserve_pages;
1787
1788	/* Compute the maximum number of saveable pages to leave in memory. */
1789	max_size = (count - (size + PAGES_FOR_IO)) / 2
1790			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1791	/* Compute the desired number of image pages specified by image_size. */
1792	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1793	if (size > max_size)
1794		size = max_size;
1795	/*
1796	 * If the desired number of image pages is at least as large as the
1797	 * current number of saveable pages in memory, allocate page frames for
1798	 * the image and we're done.
1799	 */
1800	if (size >= saveable) {
1801		pages = preallocate_image_highmem(save_highmem);
1802		pages += preallocate_image_memory(saveable - pages, avail_normal);
1803		goto out;
1804	}
1805
1806	/* Estimate the minimum size of the image. */
1807	pages = minimum_image_size(saveable);
1808	/*
1809	 * To avoid excessive pressure on the normal zone, leave room in it to
1810	 * accommodate an image of the minimum size (unless it's already too
1811	 * small, in which case don't preallocate pages from it at all).
1812	 */
1813	if (avail_normal > pages)
1814		avail_normal -= pages;
1815	else
1816		avail_normal = 0;
1817	if (size < pages)
1818		size = min_t(unsigned long, pages, max_size);
1819
1820	/*
1821	 * Let the memory management subsystem know that we're going to need a
1822	 * large number of page frames to allocate and make it free some memory.
1823	 * NOTE: If this is not done, performance will be hurt badly in some
1824	 * test cases.
1825	 */
1826	shrink_all_memory(saveable - size);
1827
1828	/*
1829	 * The number of saveable pages in memory was too high, so apply some
1830	 * pressure to decrease it.  First, make room for the largest possible
1831	 * image and fail if that doesn't work.  Next, try to decrease the size
1832	 * of the image as much as indicated by 'size' using allocations from
1833	 * highmem and non-highmem zones separately.
1834	 */
1835	pages_highmem = preallocate_image_highmem(highmem / 2);
1836	alloc = count - max_size;
1837	if (alloc > pages_highmem)
1838		alloc -= pages_highmem;
1839	else
1840		alloc = 0;
1841	pages = preallocate_image_memory(alloc, avail_normal);
1842	if (pages < alloc) {
1843		/* We have exhausted non-highmem pages, try highmem. */
1844		alloc -= pages;
1845		pages += pages_highmem;
1846		pages_highmem = preallocate_image_highmem(alloc);
1847		if (pages_highmem < alloc) {
1848			pr_err("Image allocation is %lu pages short\n",
1849				alloc - pages_highmem);
1850			goto err_out;
1851		}
1852		pages += pages_highmem;
1853		/*
1854		 * size is the desired number of saveable pages to leave in
1855		 * memory, so try to preallocate (all memory - size) pages.
1856		 */
1857		alloc = (count - pages) - size;
1858		pages += preallocate_image_highmem(alloc);
1859	} else {
1860		/*
1861		 * There are approximately max_size saveable pages at this point
1862		 * and we want to reduce this number down to size.
1863		 */
1864		alloc = max_size - size;
1865		size = preallocate_highmem_fraction(alloc, highmem, count);
1866		pages_highmem += size;
1867		alloc -= size;
1868		size = preallocate_image_memory(alloc, avail_normal);
1869		pages_highmem += preallocate_image_highmem(alloc - size);
1870		pages += pages_highmem + size;
1871	}
1872
1873	/*
1874	 * We only need as many page frames for the image as there are saveable
1875	 * pages in memory, but we have allocated more.  Release the excessive
1876	 * ones now.
1877	 */
1878	pages -= free_unnecessary_pages();
1879
1880 out:
1881	stop = ktime_get();
1882	pr_info("Allocated %lu pages for snapshot\n", pages);
1883	swsusp_show_speed(start, stop, pages, "Allocated");
1884
1885	return 0;
1886
1887 err_out:
 
1888	swsusp_free();
1889	return -ENOMEM;
1890}
1891
1892#ifdef CONFIG_HIGHMEM
1893/**
1894 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1895 *
1896 * Compute the number of non-highmem pages that will be necessary for creating
1897 * copies of highmem pages.
1898 */
1899static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1900{
1901	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1902
1903	if (free_highmem >= nr_highmem)
1904		nr_highmem = 0;
1905	else
1906		nr_highmem -= free_highmem;
1907
1908	return nr_highmem;
1909}
1910#else
1911static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 
1912#endif /* CONFIG_HIGHMEM */
1913
1914/**
1915 * enough_free_mem - Check if there is enough free memory for the image.
 
1916 */
 
1917static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1918{
1919	struct zone *zone;
1920	unsigned int free = alloc_normal;
1921
1922	for_each_populated_zone(zone)
1923		if (!is_highmem(zone))
1924			free += zone_page_state(zone, NR_FREE_PAGES);
1925
1926	nr_pages += count_pages_for_highmem(nr_highmem);
1927	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1928		 nr_pages, PAGES_FOR_IO, free);
1929
1930	return free > nr_pages + PAGES_FOR_IO;
1931}
1932
1933#ifdef CONFIG_HIGHMEM
1934/**
1935 * get_highmem_buffer - Allocate a buffer for highmem pages.
1936 *
1937 * If there are some highmem pages in the hibernation image, we may need a
1938 * buffer to copy them and/or load their data.
1939 */
 
1940static inline int get_highmem_buffer(int safe_needed)
1941{
1942	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1943	return buffer ? 0 : -ENOMEM;
1944}
1945
1946/**
1947 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1948 *
1949 * Try to allocate as many pages as needed, but if the number of free highmem
1950 * pages is less than that, allocate them all.
1951 */
1952static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1953					       unsigned int nr_highmem)
 
1954{
1955	unsigned int to_alloc = count_free_highmem_pages();
1956
1957	if (to_alloc > nr_highmem)
1958		to_alloc = nr_highmem;
1959
1960	nr_highmem -= to_alloc;
1961	while (to_alloc-- > 0) {
1962		struct page *page;
1963
1964		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1965		memory_bm_set_bit(bm, page_to_pfn(page));
1966	}
1967	return nr_highmem;
1968}
1969#else
1970static inline int get_highmem_buffer(int safe_needed) { return 0; }
1971
1972static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1973					       unsigned int n) { return 0; }
1974#endif /* CONFIG_HIGHMEM */
1975
1976/**
1977 * swsusp_alloc - Allocate memory for hibernation image.
1978 *
1979 * We first try to allocate as many highmem pages as there are
1980 * saveable highmem pages in the system.  If that fails, we allocate
1981 * non-highmem pages for the copies of the remaining highmem ones.
1982 *
1983 * In this approach it is likely that the copies of highmem pages will
1984 * also be located in the high memory, because of the way in which
1985 * copy_data_pages() works.
1986 */
1987static int swsusp_alloc(struct memory_bitmap *copy_bm,
1988			unsigned int nr_pages, unsigned int nr_highmem)
 
 
1989{
1990	if (nr_highmem > 0) {
1991		if (get_highmem_buffer(PG_ANY))
1992			goto err_out;
1993		if (nr_highmem > alloc_highmem) {
1994			nr_highmem -= alloc_highmem;
1995			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1996		}
1997	}
1998	if (nr_pages > alloc_normal) {
1999		nr_pages -= alloc_normal;
2000		while (nr_pages-- > 0) {
2001			struct page *page;
2002
2003			page = alloc_image_page(GFP_ATOMIC);
2004			if (!page)
2005				goto err_out;
2006			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2007		}
2008	}
2009
2010	return 0;
2011
2012 err_out:
2013	swsusp_free();
2014	return -ENOMEM;
2015}
2016
2017asmlinkage __visible int swsusp_save(void)
2018{
2019	unsigned int nr_pages, nr_highmem;
2020
2021	pr_info("Creating image:\n");
2022
2023	drain_local_pages(NULL);
2024	nr_pages = count_data_pages();
2025	nr_highmem = count_highmem_pages();
2026	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2027
2028	if (!enough_free_mem(nr_pages, nr_highmem)) {
2029		pr_err("Not enough free memory\n");
2030		return -ENOMEM;
2031	}
2032
2033	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2034		pr_err("Memory allocation failed\n");
2035		return -ENOMEM;
2036	}
2037
2038	/*
2039	 * During allocating of suspend pagedir, new cold pages may appear.
2040	 * Kill them.
2041	 */
2042	drain_local_pages(NULL);
2043	copy_data_pages(&copy_bm, &orig_bm);
2044
2045	/*
2046	 * End of critical section. From now on, we can write to memory,
2047	 * but we should not touch disk. This specially means we must _not_
2048	 * touch swap space! Except we must write out our image of course.
2049	 */
2050
2051	nr_pages += nr_highmem;
2052	nr_copy_pages = nr_pages;
2053	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2054
2055	pr_info("Image created (%d pages copied)\n", nr_pages);
 
2056
2057	return 0;
2058}
2059
2060#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2061static int init_header_complete(struct swsusp_info *info)
2062{
2063	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2064	info->version_code = LINUX_VERSION_CODE;
2065	return 0;
2066}
2067
2068static const char *check_image_kernel(struct swsusp_info *info)
2069{
2070	if (info->version_code != LINUX_VERSION_CODE)
2071		return "kernel version";
2072	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2073		return "system type";
2074	if (strcmp(info->uts.release,init_utsname()->release))
2075		return "kernel release";
2076	if (strcmp(info->uts.version,init_utsname()->version))
2077		return "version";
2078	if (strcmp(info->uts.machine,init_utsname()->machine))
2079		return "machine";
2080	return NULL;
2081}
2082#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2083
2084unsigned long snapshot_get_image_size(void)
2085{
2086	return nr_copy_pages + nr_meta_pages + 1;
2087}
2088
2089static int init_header(struct swsusp_info *info)
2090{
2091	memset(info, 0, sizeof(struct swsusp_info));
2092	info->num_physpages = get_num_physpages();
2093	info->image_pages = nr_copy_pages;
2094	info->pages = snapshot_get_image_size();
2095	info->size = info->pages;
2096	info->size <<= PAGE_SHIFT;
2097	return init_header_complete(info);
2098}
2099
2100/**
2101 * pack_pfns - Prepare PFNs for saving.
2102 * @bm: Memory bitmap.
2103 * @buf: Memory buffer to store the PFNs in.
2104 *
2105 * PFNs corresponding to set bits in @bm are stored in the area of memory
2106 * pointed to by @buf (1 page at a time).
2107 */
2108static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
 
2109{
2110	int j;
2111
2112	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2113		buf[j] = memory_bm_next_pfn(bm);
2114		if (unlikely(buf[j] == BM_END_OF_MAP))
2115			break;
2116	}
2117}
2118
2119/**
2120 * snapshot_read_next - Get the address to read the next image page from.
2121 * @handle: Snapshot handle to be used for the reading.
2122 *
2123 * On the first call, @handle should point to a zeroed snapshot_handle
2124 * structure.  The structure gets populated then and a pointer to it should be
2125 * passed to this function every next time.
2126 *
2127 * On success, the function returns a positive number.  Then, the caller
2128 * is allowed to read up to the returned number of bytes from the memory
2129 * location computed by the data_of() macro.
2130 *
2131 * The function returns 0 to indicate the end of the data stream condition,
2132 * and negative numbers are returned on errors.  If that happens, the structure
2133 * pointed to by @handle is not updated and should not be used any more.
 
2134 */
 
2135int snapshot_read_next(struct snapshot_handle *handle)
2136{
2137	if (handle->cur > nr_meta_pages + nr_copy_pages)
2138		return 0;
2139
2140	if (!buffer) {
2141		/* This makes the buffer be freed by swsusp_free() */
2142		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2143		if (!buffer)
2144			return -ENOMEM;
2145	}
2146	if (!handle->cur) {
2147		int error;
2148
2149		error = init_header((struct swsusp_info *)buffer);
2150		if (error)
2151			return error;
2152		handle->buffer = buffer;
2153		memory_bm_position_reset(&orig_bm);
2154		memory_bm_position_reset(&copy_bm);
2155	} else if (handle->cur <= nr_meta_pages) {
2156		clear_page(buffer);
2157		pack_pfns(buffer, &orig_bm);
2158	} else {
2159		struct page *page;
2160
2161		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2162		if (PageHighMem(page)) {
2163			/*
2164			 * Highmem pages are copied to the buffer,
2165			 * because we can't return with a kmapped
2166			 * highmem page (we may not be called again).
2167			 */
2168			void *kaddr;
2169
2170			kaddr = kmap_atomic(page);
2171			copy_page(buffer, kaddr);
2172			kunmap_atomic(kaddr);
2173			handle->buffer = buffer;
2174		} else {
2175			handle->buffer = page_address(page);
2176		}
2177	}
2178	handle->cur++;
2179	return PAGE_SIZE;
2180}
2181
2182static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2183				    struct memory_bitmap *src)
 
 
 
 
 
2184{
2185	unsigned long pfn;
 
2186
2187	memory_bm_position_reset(src);
2188	pfn = memory_bm_next_pfn(src);
2189	while (pfn != BM_END_OF_MAP) {
2190		memory_bm_set_bit(dst, pfn);
2191		pfn = memory_bm_next_pfn(src);
 
2192	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193}
2194
2195/**
2196 * mark_unsafe_pages - Mark pages that were used before hibernation.
2197 *
2198 * Mark the pages that cannot be used for storing the image during restoration,
2199 * because they conflict with the pages that had been used before hibernation.
2200 */
2201static void mark_unsafe_pages(struct memory_bitmap *bm)
2202{
2203	unsigned long pfn;
2204
2205	/* Clear the "free"/"unsafe" bit for all PFNs */
2206	memory_bm_position_reset(free_pages_map);
2207	pfn = memory_bm_next_pfn(free_pages_map);
2208	while (pfn != BM_END_OF_MAP) {
2209		memory_bm_clear_current(free_pages_map);
2210		pfn = memory_bm_next_pfn(free_pages_map);
2211	}
2212
2213	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2214	duplicate_memory_bitmap(free_pages_map, bm);
2215
2216	allocated_unsafe_pages = 0;
2217}
2218
2219static int check_header(struct swsusp_info *info)
2220{
2221	const char *reason;
2222
2223	reason = check_image_kernel(info);
2224	if (!reason && info->num_physpages != get_num_physpages())
2225		reason = "memory size";
2226	if (reason) {
2227		pr_err("Image mismatch: %s\n", reason);
2228		return -EPERM;
2229	}
2230	return 0;
2231}
2232
2233/**
2234 * load header - Check the image header and copy the data from it.
2235 */
2236static int load_header(struct swsusp_info *info)
 
 
2237{
2238	int error;
2239
2240	restore_pblist = NULL;
2241	error = check_header(info);
2242	if (!error) {
2243		nr_copy_pages = info->image_pages;
2244		nr_meta_pages = info->pages - info->image_pages - 1;
2245	}
2246	return error;
2247}
2248
2249/**
2250 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2251 * @bm: Memory bitmap.
2252 * @buf: Area of memory containing the PFNs.
2253 *
2254 * For each element of the array pointed to by @buf (1 page at a time), set the
2255 * corresponding bit in @bm.
2256 */
2257static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2258{
2259	int j;
2260
2261	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2262		if (unlikely(buf[j] == BM_END_OF_MAP))
2263			break;
2264
2265		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2266			memory_bm_set_bit(bm, buf[j]);
2267		else
2268			return -EFAULT;
2269	}
2270
2271	return 0;
2272}
2273
 
 
 
 
 
2274#ifdef CONFIG_HIGHMEM
2275/*
2276 * struct highmem_pbe is used for creating the list of highmem pages that
2277 * should be restored atomically during the resume from disk, because the page
2278 * frames they have occupied before the suspend are in use.
2279 */
2280struct highmem_pbe {
2281	struct page *copy_page;	/* data is here now */
2282	struct page *orig_page;	/* data was here before the suspend */
2283	struct highmem_pbe *next;
2284};
2285
2286/*
2287 * List of highmem PBEs needed for restoring the highmem pages that were
2288 * allocated before the suspend and included in the suspend image, but have
2289 * also been allocated by the "resume" kernel, so their contents cannot be
2290 * written directly to their "original" page frames.
2291 */
2292static struct highmem_pbe *highmem_pblist;
2293
2294/**
2295 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2296 * @bm: Memory bitmap.
2297 *
2298 * The bits in @bm that correspond to image pages are assumed to be set.
2299 */
 
2300static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2301{
2302	unsigned long pfn;
2303	unsigned int cnt = 0;
2304
2305	memory_bm_position_reset(bm);
2306	pfn = memory_bm_next_pfn(bm);
2307	while (pfn != BM_END_OF_MAP) {
2308		if (PageHighMem(pfn_to_page(pfn)))
2309			cnt++;
2310
2311		pfn = memory_bm_next_pfn(bm);
2312	}
2313	return cnt;
2314}
2315
 
 
 
 
 
 
 
 
 
 
 
 
2316static unsigned int safe_highmem_pages;
2317
2318static struct memory_bitmap *safe_highmem_bm;
2319
2320/**
2321 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2322 * @bm: Pointer to an uninitialized memory bitmap structure.
2323 * @nr_highmem_p: Pointer to the number of highmem image pages.
2324 *
2325 * Try to allocate as many highmem pages as there are highmem image pages
2326 * (@nr_highmem_p points to the variable containing the number of highmem image
2327 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2328 * hibernation image is restored entirely) have the corresponding bits set in
2329 * @bm (it must be uninitialized).
2330 *
2331 * NOTE: This function should not be called if there are no highmem image pages.
2332 */
2333static int prepare_highmem_image(struct memory_bitmap *bm,
2334				 unsigned int *nr_highmem_p)
2335{
2336	unsigned int to_alloc;
2337
2338	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2339		return -ENOMEM;
2340
2341	if (get_highmem_buffer(PG_SAFE))
2342		return -ENOMEM;
2343
2344	to_alloc = count_free_highmem_pages();
2345	if (to_alloc > *nr_highmem_p)
2346		to_alloc = *nr_highmem_p;
2347	else
2348		*nr_highmem_p = to_alloc;
2349
2350	safe_highmem_pages = 0;
2351	while (to_alloc-- > 0) {
2352		struct page *page;
2353
2354		page = alloc_page(__GFP_HIGHMEM);
2355		if (!swsusp_page_is_free(page)) {
2356			/* The page is "safe", set its bit the bitmap */
2357			memory_bm_set_bit(bm, page_to_pfn(page));
2358			safe_highmem_pages++;
2359		}
2360		/* Mark the page as allocated */
2361		swsusp_set_page_forbidden(page);
2362		swsusp_set_page_free(page);
2363	}
2364	memory_bm_position_reset(bm);
2365	safe_highmem_bm = bm;
2366	return 0;
2367}
2368
2369static struct page *last_highmem_page;
2370
2371/**
2372 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 
2373 *
2374 * For a given highmem image page get a buffer that suspend_write_next() should
2375 * return to its caller to write to.
2376 *
2377 * If the page is to be saved to its "original" page frame or a copy of
2378 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2379 * the copy of the page is to be made in normal memory, so the address of
2380 * the copy is returned.
2381 *
2382 * If @buffer is returned, the caller of suspend_write_next() will write
2383 * the page's contents to @buffer, so they will have to be copied to the
2384 * right location on the next call to suspend_write_next() and it is done
2385 * with the help of copy_last_highmem_page().  For this purpose, if
2386 * @buffer is returned, @last_highmem_page is set to the page to which
2387 * the data will have to be copied from @buffer.
2388 */
2389static void *get_highmem_page_buffer(struct page *page,
2390				     struct chain_allocator *ca)
 
 
 
2391{
2392	struct highmem_pbe *pbe;
2393	void *kaddr;
2394
2395	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2396		/*
2397		 * We have allocated the "original" page frame and we can
2398		 * use it directly to store the loaded page.
2399		 */
2400		last_highmem_page = page;
2401		return buffer;
2402	}
2403	/*
2404	 * The "original" page frame has not been allocated and we have to
2405	 * use a "safe" page frame to store the loaded page.
2406	 */
2407	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2408	if (!pbe) {
2409		swsusp_free();
2410		return ERR_PTR(-ENOMEM);
2411	}
2412	pbe->orig_page = page;
2413	if (safe_highmem_pages > 0) {
2414		struct page *tmp;
2415
2416		/* Copy of the page will be stored in high memory */
2417		kaddr = buffer;
2418		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2419		safe_highmem_pages--;
2420		last_highmem_page = tmp;
2421		pbe->copy_page = tmp;
2422	} else {
2423		/* Copy of the page will be stored in normal memory */
2424		kaddr = safe_pages_list;
2425		safe_pages_list = safe_pages_list->next;
2426		pbe->copy_page = virt_to_page(kaddr);
2427	}
2428	pbe->next = highmem_pblist;
2429	highmem_pblist = pbe;
2430	return kaddr;
2431}
2432
2433/**
2434 * copy_last_highmem_page - Copy most the most recent highmem image page.
2435 *
2436 * Copy the contents of a highmem image from @buffer, where the caller of
2437 * snapshot_write_next() has stored them, to the right location represented by
2438 * @last_highmem_page .
2439 */
 
2440static void copy_last_highmem_page(void)
2441{
2442	if (last_highmem_page) {
2443		void *dst;
2444
2445		dst = kmap_atomic(last_highmem_page);
2446		copy_page(dst, buffer);
2447		kunmap_atomic(dst);
2448		last_highmem_page = NULL;
2449	}
2450}
2451
2452static inline int last_highmem_page_copied(void)
2453{
2454	return !last_highmem_page;
2455}
2456
2457static inline void free_highmem_data(void)
2458{
2459	if (safe_highmem_bm)
2460		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2461
2462	if (buffer)
2463		free_image_page(buffer, PG_UNSAFE_CLEAR);
2464}
2465#else
2466static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2467
2468static inline int prepare_highmem_image(struct memory_bitmap *bm,
2469					unsigned int *nr_highmem_p) { return 0; }
2470
2471static inline void *get_highmem_page_buffer(struct page *page,
2472					    struct chain_allocator *ca)
 
 
 
 
 
 
2473{
2474	return ERR_PTR(-EINVAL);
2475}
2476
2477static inline void copy_last_highmem_page(void) {}
2478static inline int last_highmem_page_copied(void) { return 1; }
2479static inline void free_highmem_data(void) {}
2480#endif /* CONFIG_HIGHMEM */
2481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2483
2484/**
2485 * prepare_image - Make room for loading hibernation image.
2486 * @new_bm: Uninitialized memory bitmap structure.
2487 * @bm: Memory bitmap with unsafe pages marked.
2488 *
2489 * Use @bm to mark the pages that will be overwritten in the process of
2490 * restoring the system memory state from the suspend image ("unsafe" pages)
2491 * and allocate memory for the image.
2492 *
2493 * The idea is to allocate a new memory bitmap first and then allocate
2494 * as many pages as needed for image data, but without specifying what those
2495 * pages will be used for just yet.  Instead, we mark them all as allocated and
2496 * create a lists of "safe" pages to be used later.  On systems with high
2497 * memory a list of "safe" highmem pages is created too.
2498 */
2499static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2500{
2501	unsigned int nr_pages, nr_highmem;
2502	struct linked_page *lp;
2503	int error;
2504
2505	/* If there is no highmem, the buffer will not be necessary */
2506	free_image_page(buffer, PG_UNSAFE_CLEAR);
2507	buffer = NULL;
2508
2509	nr_highmem = count_highmem_image_pages(bm);
2510	mark_unsafe_pages(bm);
 
 
2511
2512	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2513	if (error)
2514		goto Free;
2515
2516	duplicate_memory_bitmap(new_bm, bm);
2517	memory_bm_free(bm, PG_UNSAFE_KEEP);
2518	if (nr_highmem > 0) {
2519		error = prepare_highmem_image(bm, &nr_highmem);
2520		if (error)
2521			goto Free;
2522	}
2523	/*
2524	 * Reserve some safe pages for potential later use.
2525	 *
2526	 * NOTE: This way we make sure there will be enough safe pages for the
2527	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2528	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2529	 *
2530	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2531	 */
 
 
2532	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2533	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2534	while (nr_pages > 0) {
2535		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2536		if (!lp) {
2537			error = -ENOMEM;
2538			goto Free;
2539		}
2540		lp->next = safe_pages_list;
2541		safe_pages_list = lp;
2542		nr_pages--;
2543	}
2544	/* Preallocate memory for the image */
 
2545	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2546	while (nr_pages > 0) {
2547		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2548		if (!lp) {
2549			error = -ENOMEM;
2550			goto Free;
2551		}
2552		if (!swsusp_page_is_free(virt_to_page(lp))) {
2553			/* The page is "safe", add it to the list */
2554			lp->next = safe_pages_list;
2555			safe_pages_list = lp;
2556		}
2557		/* Mark the page as allocated */
2558		swsusp_set_page_forbidden(virt_to_page(lp));
2559		swsusp_set_page_free(virt_to_page(lp));
2560		nr_pages--;
2561	}
 
 
 
 
 
 
2562	return 0;
2563
2564 Free:
2565	swsusp_free();
2566	return error;
2567}
2568
2569/**
2570 * get_buffer - Get the address to store the next image data page.
2571 *
2572 * Get the address that snapshot_write_next() should return to its caller to
2573 * write to.
2574 */
 
2575static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2576{
2577	struct pbe *pbe;
2578	struct page *page;
2579	unsigned long pfn = memory_bm_next_pfn(bm);
2580
2581	if (pfn == BM_END_OF_MAP)
2582		return ERR_PTR(-EFAULT);
2583
2584	page = pfn_to_page(pfn);
2585	if (PageHighMem(page))
2586		return get_highmem_page_buffer(page, ca);
2587
2588	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2589		/*
2590		 * We have allocated the "original" page frame and we can
2591		 * use it directly to store the loaded page.
2592		 */
2593		return page_address(page);
2594
2595	/*
2596	 * The "original" page frame has not been allocated and we have to
2597	 * use a "safe" page frame to store the loaded page.
2598	 */
2599	pbe = chain_alloc(ca, sizeof(struct pbe));
2600	if (!pbe) {
2601		swsusp_free();
2602		return ERR_PTR(-ENOMEM);
2603	}
2604	pbe->orig_address = page_address(page);
2605	pbe->address = safe_pages_list;
2606	safe_pages_list = safe_pages_list->next;
2607	pbe->next = restore_pblist;
2608	restore_pblist = pbe;
2609	return pbe->address;
2610}
2611
2612/**
2613 * snapshot_write_next - Get the address to store the next image page.
2614 * @handle: Snapshot handle structure to guide the writing.
2615 *
2616 * On the first call, @handle should point to a zeroed snapshot_handle
2617 * structure.  The structure gets populated then and a pointer to it should be
2618 * passed to this function every next time.
2619 *
2620 * On success, the function returns a positive number.  Then, the caller
2621 * is allowed to write up to the returned number of bytes to the memory
2622 * location computed by the data_of() macro.
2623 *
2624 * The function returns 0 to indicate the "end of file" condition.  Negative
2625 * numbers are returned on errors, in which cases the structure pointed to by
2626 * @handle is not updated and should not be used any more.
 
2627 */
 
2628int snapshot_write_next(struct snapshot_handle *handle)
2629{
2630	static struct chain_allocator ca;
2631	int error = 0;
2632
2633	/* Check if we have already loaded the entire image */
2634	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2635		return 0;
2636
2637	handle->sync_read = 1;
2638
2639	if (!handle->cur) {
2640		if (!buffer)
2641			/* This makes the buffer be freed by swsusp_free() */
2642			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2643
2644		if (!buffer)
2645			return -ENOMEM;
2646
2647		handle->buffer = buffer;
2648	} else if (handle->cur == 1) {
2649		error = load_header(buffer);
2650		if (error)
2651			return error;
2652
2653		safe_pages_list = NULL;
2654
2655		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2656		if (error)
2657			return error;
2658
2659		hibernate_restore_protection_begin();
2660	} else if (handle->cur <= nr_meta_pages + 1) {
2661		error = unpack_orig_pfns(buffer, &copy_bm);
2662		if (error)
2663			return error;
2664
2665		if (handle->cur == nr_meta_pages + 1) {
2666			error = prepare_image(&orig_bm, &copy_bm);
2667			if (error)
2668				return error;
2669
2670			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2671			memory_bm_position_reset(&orig_bm);
2672			restore_pblist = NULL;
2673			handle->buffer = get_buffer(&orig_bm, &ca);
2674			handle->sync_read = 0;
2675			if (IS_ERR(handle->buffer))
2676				return PTR_ERR(handle->buffer);
2677		}
2678	} else {
2679		copy_last_highmem_page();
2680		hibernate_restore_protect_page(handle->buffer);
2681		handle->buffer = get_buffer(&orig_bm, &ca);
2682		if (IS_ERR(handle->buffer))
2683			return PTR_ERR(handle->buffer);
2684		if (handle->buffer != buffer)
2685			handle->sync_read = 0;
2686	}
2687	handle->cur++;
2688	return PAGE_SIZE;
2689}
2690
2691/**
2692 * snapshot_write_finalize - Complete the loading of a hibernation image.
2693 *
2694 * Must be called after the last call to snapshot_write_next() in case the last
2695 * page in the image happens to be a highmem page and its contents should be
2696 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2697 * necessary any more.
2698 */
 
2699void snapshot_write_finalize(struct snapshot_handle *handle)
2700{
2701	copy_last_highmem_page();
2702	hibernate_restore_protect_page(handle->buffer);
2703	/* Do that only if we have loaded the image entirely */
2704	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2705		memory_bm_recycle(&orig_bm);
2706		free_highmem_data();
2707	}
2708}
2709
2710int snapshot_image_loaded(struct snapshot_handle *handle)
2711{
2712	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2713			handle->cur <= nr_meta_pages + nr_copy_pages);
2714}
2715
2716#ifdef CONFIG_HIGHMEM
2717/* Assumes that @buf is ready and points to a "safe" page */
2718static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2719				       void *buf)
2720{
2721	void *kaddr1, *kaddr2;
2722
2723	kaddr1 = kmap_atomic(p1);
2724	kaddr2 = kmap_atomic(p2);
2725	copy_page(buf, kaddr1);
2726	copy_page(kaddr1, kaddr2);
2727	copy_page(kaddr2, buf);
2728	kunmap_atomic(kaddr2);
2729	kunmap_atomic(kaddr1);
2730}
2731
2732/**
2733 * restore_highmem - Put highmem image pages into their original locations.
 
 
 
2734 *
2735 * For each highmem page that was in use before hibernation and is included in
2736 * the image, and also has been allocated by the "restore" kernel, swap its
2737 * current contents with the previous (ie. "before hibernation") ones.
2738 *
2739 * If the restore eventually fails, we can call this function once again and
2740 * restore the highmem state as seen by the restore kernel.
2741 */
 
2742int restore_highmem(void)
2743{
2744	struct highmem_pbe *pbe = highmem_pblist;
2745	void *buf;
2746
2747	if (!pbe)
2748		return 0;
2749
2750	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2751	if (!buf)
2752		return -ENOMEM;
2753
2754	while (pbe) {
2755		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2756		pbe = pbe->next;
2757	}
2758	free_image_page(buf, PG_UNSAFE_CLEAR);
2759	return 0;
2760}
2761#endif /* CONFIG_HIGHMEM */