Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2011 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef DRM_FOURCC_H
  25#define DRM_FOURCC_H
  26
  27#include "drm.h"
  28
  29#if defined(__cplusplus)
  30extern "C" {
  31#endif
  32
  33/**
  34 * DOC: overview
  35 *
  36 * In the DRM subsystem, framebuffer pixel formats are described using the
  37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  38 * fourcc code, a Format Modifier may optionally be provided, in order to
  39 * further describe the buffer's format - for example tiling or compression.
  40 *
  41 * Format Modifiers
  42 * ----------------
  43 *
  44 * Format modifiers are used in conjunction with a fourcc code, forming a
  45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
  46 * format and data layout of the buffer, and should be the only way to describe
  47 * that particular buffer.
  48 *
  49 * Having multiple fourcc:modifier pairs which describe the same layout should
  50 * be avoided, as such aliases run the risk of different drivers exposing
  51 * different names for the same data format, forcing userspace to understand
  52 * that they are aliases.
  53 *
  54 * Format modifiers may change any property of the buffer, including the number
  55 * of planes and/or the required allocation size. Format modifiers are
  56 * vendor-namespaced, and as such the relationship between a fourcc code and a
  57 * modifier is specific to the modifer being used. For example, some modifiers
  58 * may preserve meaning - such as number of planes - from the fourcc code,
  59 * whereas others may not.
  60 *
  61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
  62 * match only a single modifier. A modifier must not be a subset of layouts of
  63 * another modifier. For instance, it's incorrect to encode pitch alignment in
  64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
  65 * aligned modifier. That said, modifiers can have implicit minimal
  66 * requirements.
  67 *
  68 * For modifiers where the combination of fourcc code and modifier can alias,
  69 * a canonical pair needs to be defined and used by all drivers. Preferred
  70 * combinations are also encouraged where all combinations might lead to
  71 * confusion and unnecessarily reduced interoperability. An example for the
  72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
  73 *
  74 * There are two kinds of modifier users:
  75 *
  76 * - Kernel and user-space drivers: for drivers it's important that modifiers
  77 *   don't alias, otherwise two drivers might support the same format but use
  78 *   different aliases, preventing them from sharing buffers in an efficient
  79 *   format.
  80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
  81 *   see modifiers as opaque tokens they can check for equality and intersect.
  82 *   These users musn't need to know to reason about the modifier value
  83 *   (i.e. they are not expected to extract information out of the modifier).
  84 *
  85 * Vendors should document their modifier usage in as much detail as
  86 * possible, to ensure maximum compatibility across devices, drivers and
  87 * applications.
  88 *
  89 * The authoritative list of format modifier codes is found in
  90 * `include/uapi/drm/drm_fourcc.h`
  91 */
  92
  93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
  94				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
  95
  96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
  97
  98/* Reserve 0 for the invalid format specifier */
  99#define DRM_FORMAT_INVALID	0
 100
 101/* color index */
 102#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
 103
 104/* 8 bpp Red */
 105#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
 106
 107/* 16 bpp Red */
 108#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
 109
 110/* 16 bpp RG */
 111#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
 112#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
 113
 114/* 32 bpp RG */
 115#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
 116#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
 117
 118/* 8 bpp RGB */
 119#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
 120#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
 121
 122/* 16 bpp RGB */
 123#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 124#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 125#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 126#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 127
 128#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 129#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 130#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 131#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 132
 133#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 134#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 135#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 136#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 137
 138#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 139#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 140#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 141#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 142
 143#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 144#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 145
 146/* 24 bpp RGB */
 147#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 148#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 149
 150/* 32 bpp RGB */
 151#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 152#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 153#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 154#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 155
 156#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 157#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 158#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 159#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 160
 161#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 162#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 163#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 164#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 165
 166#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 167#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 168#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 169#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 170
 171/* 64 bpp RGB */
 172#define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 173#define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 174
 175#define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 176#define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 177
 178/*
 179 * Floating point 64bpp RGB
 180 * IEEE 754-2008 binary16 half-precision float
 181 * [15:0] sign:exponent:mantissa 1:5:10
 182 */
 183#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 184#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 185
 186#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 187#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 188
 189/*
 190 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
 191 * of unused padding per component:
 192 */
 193#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
 194
 195/* packed YCbCr */
 196#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 197#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 198#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 199#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 200
 201#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 202#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 203#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 204#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 205
 206/*
 207 * packed Y2xx indicate for each component, xx valid data occupy msb
 208 * 16-xx padding occupy lsb
 209 */
 210#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 211#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 212#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 213
 214/*
 215 * packed Y4xx indicate for each component, xx valid data occupy msb
 216 * 16-xx padding occupy lsb except Y410
 217 */
 218#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 219#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 220#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 221
 222#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 223#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 224#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 225
 226/*
 227 * packed YCbCr420 2x2 tiled formats
 228 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 229 */
 230/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 231#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
 232/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 233#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
 234
 235/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 236#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
 237/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 238#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
 239
 240/*
 241 * 1-plane YUV 4:2:0
 242 * In these formats, the component ordering is specified (Y, followed by U
 243 * then V), but the exact Linear layout is undefined.
 244 * These formats can only be used with a non-Linear modifier.
 245 */
 246#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
 247#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
 248
 249/*
 250 * 2 plane RGB + A
 251 * index 0 = RGB plane, same format as the corresponding non _A8 format has
 252 * index 1 = A plane, [7:0] A
 253 */
 254#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
 255#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
 256#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
 257#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
 258#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
 259#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
 260#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
 261#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
 262
 263/*
 264 * 2 plane YCbCr
 265 * index 0 = Y plane, [7:0] Y
 266 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 267 * or
 268 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 269 */
 270#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 271#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 272#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 273#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 274#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 275#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 276/*
 277 * 2 plane YCbCr
 278 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
 279 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
 280 */
 281#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
 282
 283/*
 284 * 2 plane YCbCr MSB aligned
 285 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 286 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 287 */
 288#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 289
 290/*
 291 * 2 plane YCbCr MSB aligned
 292 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 293 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 294 */
 295#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 296
 297/*
 298 * 2 plane YCbCr MSB aligned
 299 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 300 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 301 */
 302#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 303
 304/*
 305 * 2 plane YCbCr MSB aligned
 306 * index 0 = Y plane, [15:0] Y little endian
 307 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 308 */
 309#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 310
 311/* 3 plane non-subsampled (444) YCbCr
 312 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 313 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 314 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
 315 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
 316 */
 317#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
 318
 319/* 3 plane non-subsampled (444) YCrCb
 320 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 321 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 322 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
 323 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
 324 */
 325#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
 326
 327/*
 328 * 3 plane YCbCr
 329 * index 0: Y plane, [7:0] Y
 330 * index 1: Cb plane, [7:0] Cb
 331 * index 2: Cr plane, [7:0] Cr
 332 * or
 333 * index 1: Cr plane, [7:0] Cr
 334 * index 2: Cb plane, [7:0] Cb
 335 */
 336#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 337#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 338#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 339#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 340#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 341#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 342#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 343#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 344#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 345#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 346
 347
 348/*
 349 * Format Modifiers:
 350 *
 351 * Format modifiers describe, typically, a re-ordering or modification
 352 * of the data in a plane of an FB.  This can be used to express tiled/
 353 * swizzled formats, or compression, or a combination of the two.
 354 *
 355 * The upper 8 bits of the format modifier are a vendor-id as assigned
 356 * below.  The lower 56 bits are assigned as vendor sees fit.
 357 */
 358
 359/* Vendor Ids: */
 360#define DRM_FORMAT_MOD_VENDOR_NONE    0
 361#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 362#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 363#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 364#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 365#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 366#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 367#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 368#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 369#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 370#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
 371
 372/* add more to the end as needed */
 373
 374#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
 375
 376#define fourcc_mod_code(vendor, val) \
 377	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 378
 379/*
 380 * Format Modifier tokens:
 381 *
 382 * When adding a new token please document the layout with a code comment,
 383 * similar to the fourcc codes above. drm_fourcc.h is considered the
 384 * authoritative source for all of these.
 385 *
 386 * Generic modifier names:
 387 *
 388 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
 389 * for layouts which are common across multiple vendors. To preserve
 390 * compatibility, in cases where a vendor-specific definition already exists and
 391 * a generic name for it is desired, the common name is a purely symbolic alias
 392 * and must use the same numerical value as the original definition.
 393 *
 394 * Note that generic names should only be used for modifiers which describe
 395 * generic layouts (such as pixel re-ordering), which may have
 396 * independently-developed support across multiple vendors.
 397 *
 398 * In future cases where a generic layout is identified before merging with a
 399 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
 400 * 'NONE' could be considered. This should only be for obvious, exceptional
 401 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
 402 * apply to a single vendor.
 403 *
 404 * Generic names should not be used for cases where multiple hardware vendors
 405 * have implementations of the same standardised compression scheme (such as
 406 * AFBC). In those cases, all implementations should use the same format
 407 * modifier(s), reflecting the vendor of the standard.
 408 */
 409
 410#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
 411
 412/*
 413 * Invalid Modifier
 414 *
 415 * This modifier can be used as a sentinel to terminate the format modifiers
 416 * list, or to initialize a variable with an invalid modifier. It might also be
 417 * used to report an error back to userspace for certain APIs.
 418 */
 419#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 420
 421/*
 422 * Linear Layout
 423 *
 424 * Just plain linear layout. Note that this is different from no specifying any
 425 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 426 * which tells the driver to also take driver-internal information into account
 427 * and so might actually result in a tiled framebuffer.
 428 */
 429#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
 430
 431/*
 432 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
 433 *
 434 * The "none" format modifier doesn't actually mean that the modifier is
 435 * implicit, instead it means that the layout is linear. Whether modifiers are
 436 * used is out-of-band information carried in an API-specific way (e.g. in a
 437 * flag for drm_mode_fb_cmd2).
 438 */
 439#define DRM_FORMAT_MOD_NONE	0
 440
 441/* Intel framebuffer modifiers */
 442
 443/*
 444 * Intel X-tiling layout
 445 *
 446 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 447 * in row-major layout. Within the tile bytes are laid out row-major, with
 448 * a platform-dependent stride. On top of that the memory can apply
 449 * platform-depending swizzling of some higher address bits into bit6.
 450 *
 451 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 452 * On earlier platforms the is highly platforms specific and not useful for
 453 * cross-driver sharing. It exists since on a given platform it does uniquely
 454 * identify the layout in a simple way for i915-specific userspace, which
 455 * facilitated conversion of userspace to modifiers. Additionally the exact
 456 * format on some really old platforms is not known.
 457 */
 458#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
 459
 460/*
 461 * Intel Y-tiling layout
 462 *
 463 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 464 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 465 * chunks column-major, with a platform-dependent height. On top of that the
 466 * memory can apply platform-depending swizzling of some higher address bits
 467 * into bit6.
 468 *
 469 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 470 * On earlier platforms the is highly platforms specific and not useful for
 471 * cross-driver sharing. It exists since on a given platform it does uniquely
 472 * identify the layout in a simple way for i915-specific userspace, which
 473 * facilitated conversion of userspace to modifiers. Additionally the exact
 474 * format on some really old platforms is not known.
 475 */
 476#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
 477
 478/*
 479 * Intel Yf-tiling layout
 480 *
 481 * This is a tiled layout using 4Kb tiles in row-major layout.
 482 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 483 * are arranged in four groups (two wide, two high) with column-major layout.
 484 * Each group therefore consits out of four 256 byte units, which are also laid
 485 * out as 2x2 column-major.
 486 * 256 byte units are made out of four 64 byte blocks of pixels, producing
 487 * either a square block or a 2:1 unit.
 488 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 489 * in pixel depends on the pixel depth.
 490 */
 491#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 492
 493/*
 494 * Intel color control surface (CCS) for render compression
 495 *
 496 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 497 * The main surface will be plane index 0 and must be Y/Yf-tiled,
 498 * the CCS will be plane index 1.
 499 *
 500 * Each CCS tile matches a 1024x512 pixel area of the main surface.
 501 * To match certain aspects of the 3D hardware the CCS is
 502 * considered to be made up of normal 128Bx32 Y tiles, Thus
 503 * the CCS pitch must be specified in multiples of 128 bytes.
 504 *
 505 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 506 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 507 * But that fact is not relevant unless the memory is accessed
 508 * directly.
 509 */
 510#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
 511#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
 512
 513/*
 514 * Intel color control surfaces (CCS) for Gen-12 render compression.
 515 *
 516 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 517 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 518 * main surface. In other words, 4 bits in CCS map to a main surface cache
 519 * line pair. The main surface pitch is required to be a multiple of four
 520 * Y-tile widths.
 521 */
 522#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
 523
 524/*
 525 * Intel color control surfaces (CCS) for Gen-12 media compression
 526 *
 527 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 528 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 529 * main surface. In other words, 4 bits in CCS map to a main surface cache
 530 * line pair. The main surface pitch is required to be a multiple of four
 531 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
 532 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
 533 * planes 2 and 3 for the respective CCS.
 534 */
 535#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
 536
 537/*
 538 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
 539 * compression.
 540 *
 541 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
 542 * and at index 1. The clear color is stored at index 2, and the pitch should
 543 * be ignored. The clear color structure is 256 bits. The first 128 bits
 544 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
 545 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
 546 * the converted clear color of size 64 bits. The first 32 bits store the Lower
 547 * Converted Clear Color value and the next 32 bits store the Higher Converted
 548 * Clear Color value when applicable. The Converted Clear Color values are
 549 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
 550 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
 551 * corresponds to an area of 4x1 tiles in the main surface. The main surface
 552 * pitch is required to be a multiple of 4 tile widths.
 553 */
 554#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
 555
 556/*
 557 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 558 *
 559 * Macroblocks are laid in a Z-shape, and each pixel data is following the
 560 * standard NV12 style.
 561 * As for NV12, an image is the result of two frame buffers: one for Y,
 562 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 563 * Alignment requirements are (for each buffer):
 564 * - multiple of 128 pixels for the width
 565 * - multiple of  32 pixels for the height
 566 *
 567 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 568 */
 569#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
 570
 571/*
 572 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 573 *
 574 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 575 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 576 * they correspond to their 16x16 luma block.
 577 */
 578#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
 579
 580/*
 581 * Qualcomm Compressed Format
 582 *
 583 * Refers to a compressed variant of the base format that is compressed.
 584 * Implementation may be platform and base-format specific.
 585 *
 586 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 587 * Pixel data pitch/stride is aligned with macrotile width.
 588 * Pixel data height is aligned with macrotile height.
 589 * Entire pixel data buffer is aligned with 4k(bytes).
 590 */
 591#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
 592
 593/* Vivante framebuffer modifiers */
 594
 595/*
 596 * Vivante 4x4 tiling layout
 597 *
 598 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 599 * layout.
 600 */
 601#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
 602
 603/*
 604 * Vivante 64x64 super-tiling layout
 605 *
 606 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 607 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 608 * major layout.
 609 *
 610 * For more information: see
 611 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 612 */
 613#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
 614
 615/*
 616 * Vivante 4x4 tiling layout for dual-pipe
 617 *
 618 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 619 * different base address. Offsets from the base addresses are therefore halved
 620 * compared to the non-split tiled layout.
 621 */
 622#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
 623
 624/*
 625 * Vivante 64x64 super-tiling layout for dual-pipe
 626 *
 627 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 628 * starts at a different base address. Offsets from the base addresses are
 629 * therefore halved compared to the non-split super-tiled layout.
 630 */
 631#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 632
 633/* NVIDIA frame buffer modifiers */
 634
 635/*
 636 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 637 *
 638 * Pixels are arranged in simple tiles of 16 x 16 bytes.
 639 */
 640#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 641
 642/*
 643 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
 644 * and Tegra GPUs starting with Tegra K1.
 645 *
 646 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
 647 * based on the architecture generation.  GOBs themselves are then arranged in
 648 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
 649 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
 650 * a block depth or height of "4").
 651 *
 652 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 653 * in full detail.
 654 *
 655 *       Macro
 656 * Bits  Param Description
 657 * ----  ----- -----------------------------------------------------------------
 658 *
 659 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
 660 *             compatibility with the existing
 661 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 662 *
 663 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
 664 *             compatibility with the existing
 665 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 666 *
 667 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
 668 *             size).  Must be zero.
 669 *
 670 *             Note there is no log2(width) parameter.  Some portions of the
 671 *             hardware support a block width of two gobs, but it is impractical
 672 *             to use due to lack of support elsewhere, and has no known
 673 *             benefits.
 674 *
 675 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
 676 *             in blocks, specified via log2(tile width in blocks)).  Must be
 677 *             zero.
 678 *
 679 * 19:12 k     Page Kind.  This value directly maps to a field in the page
 680 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
 681 *             in memory and can be derived from the tuple
 682 *
 683 *               (format, GPU model, compression type, samples per pixel)
 684 *
 685 *             Where compression type is defined below.  If GPU model were
 686 *             implied by the format modifier, format, or memory buffer, page
 687 *             kind would not need to be included in the modifier itself, but
 688 *             since the modifier should define the layout of the associated
 689 *             memory buffer independent from any device or other context, it
 690 *             must be included here.
 691 *
 692 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
 693 *             starting with Fermi GPUs.  Additionally, the mapping between page
 694 *             kind and bit layout has changed at various points.
 695 *
 696 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
 697 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
 698 *               2 = Gob Height 8, Turing+ Page Kind mapping
 699 *               3 = Reserved for future use.
 700 *
 701 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
 702 *             bit remapping step that occurs at an even lower level than the
 703 *             page kind and block linear swizzles.  This causes the layout of
 704 *             surfaces mapped in those SOC's GPUs to be incompatible with the
 705 *             equivalent mapping on other GPUs in the same system.
 706 *
 707 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
 708 *               1 = Desktop GPU and Tegra Xavier+ Layout
 709 *
 710 * 25:23 c     Lossless Framebuffer Compression type.
 711 *
 712 *               0 = none
 713 *               1 = ROP/3D, layout 1, exact compression format implied by Page
 714 *                   Kind field
 715 *               2 = ROP/3D, layout 2, exact compression format implied by Page
 716 *                   Kind field
 717 *               3 = CDE horizontal
 718 *               4 = CDE vertical
 719 *               5 = Reserved for future use
 720 *               6 = Reserved for future use
 721 *               7 = Reserved for future use
 722 *
 723 * 55:25 -     Reserved for future use.  Must be zero.
 724 */
 725#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
 726	fourcc_mod_code(NVIDIA, (0x10 | \
 727				 ((h) & 0xf) | \
 728				 (((k) & 0xff) << 12) | \
 729				 (((g) & 0x3) << 20) | \
 730				 (((s) & 0x1) << 22) | \
 731				 (((c) & 0x7) << 23)))
 732
 733/* To grandfather in prior block linear format modifiers to the above layout,
 734 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
 735 * with block-linear layouts, is remapped within drivers to the value 0xfe,
 736 * which corresponds to the "generic" kind used for simple single-sample
 737 * uncompressed color formats on Fermi - Volta GPUs.
 738 */
 739static inline __u64
 740drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
 741{
 742	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
 743		return modifier;
 744	else
 745		return modifier | (0xfe << 12);
 746}
 747
 748/*
 749 * 16Bx2 Block Linear layout, used by Tegra K1 and later
 750 *
 751 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
 752 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
 753 *
 754 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
 755 *
 756 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
 757 * Valid values are:
 758 *
 759 * 0 == ONE_GOB
 760 * 1 == TWO_GOBS
 761 * 2 == FOUR_GOBS
 762 * 3 == EIGHT_GOBS
 763 * 4 == SIXTEEN_GOBS
 764 * 5 == THIRTYTWO_GOBS
 765 *
 766 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 767 * in full detail.
 768 */
 769#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
 770	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
 771
 772#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
 773	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
 774#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
 775	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
 776#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
 777	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
 778#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
 779	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
 780#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
 781	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
 782#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
 783	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
 784
 785/*
 786 * Some Broadcom modifiers take parameters, for example the number of
 787 * vertical lines in the image. Reserve the lower 32 bits for modifier
 788 * type, and the next 24 bits for parameters. Top 8 bits are the
 789 * vendor code.
 790 */
 791#define __fourcc_mod_broadcom_param_shift 8
 792#define __fourcc_mod_broadcom_param_bits 48
 793#define fourcc_mod_broadcom_code(val, params) \
 794	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
 795#define fourcc_mod_broadcom_param(m) \
 796	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
 797	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
 798#define fourcc_mod_broadcom_mod(m) \
 799	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
 800		 __fourcc_mod_broadcom_param_shift))
 801
 802/*
 803 * Broadcom VC4 "T" format
 804 *
 805 * This is the primary layout that the V3D GPU can texture from (it
 806 * can't do linear).  The T format has:
 807 *
 808 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
 809 *   pixels at 32 bit depth.
 810 *
 811 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
 812 *   16x16 pixels).
 813 *
 814 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
 815 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
 816 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
 817 *
 818 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
 819 *   tiles) or right-to-left (odd rows of 4k tiles).
 820 */
 821#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
 822
 823/*
 824 * Broadcom SAND format
 825 *
 826 * This is the native format that the H.264 codec block uses.  For VC4
 827 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
 828 *
 829 * The image can be considered to be split into columns, and the
 830 * columns are placed consecutively into memory.  The width of those
 831 * columns can be either 32, 64, 128, or 256 pixels, but in practice
 832 * only 128 pixel columns are used.
 833 *
 834 * The pitch between the start of each column is set to optimally
 835 * switch between SDRAM banks. This is passed as the number of lines
 836 * of column width in the modifier (we can't use the stride value due
 837 * to various core checks that look at it , so you should set the
 838 * stride to width*cpp).
 839 *
 840 * Note that the column height for this format modifier is the same
 841 * for all of the planes, assuming that each column contains both Y
 842 * and UV.  Some SAND-using hardware stores UV in a separate tiled
 843 * image from Y to reduce the column height, which is not supported
 844 * with these modifiers.
 845 */
 846
 847#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
 848	fourcc_mod_broadcom_code(2, v)
 849#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
 850	fourcc_mod_broadcom_code(3, v)
 851#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
 852	fourcc_mod_broadcom_code(4, v)
 853#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
 854	fourcc_mod_broadcom_code(5, v)
 855
 856#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
 857	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
 858#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
 859	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
 860#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
 861	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
 862#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
 863	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
 864
 865/* Broadcom UIF format
 866 *
 867 * This is the common format for the current Broadcom multimedia
 868 * blocks, including V3D 3.x and newer, newer video codecs, and
 869 * displays.
 870 *
 871 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
 872 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
 873 * stored in columns, with padding between the columns to ensure that
 874 * moving from one column to the next doesn't hit the same SDRAM page
 875 * bank.
 876 *
 877 * To calculate the padding, it is assumed that each hardware block
 878 * and the software driving it knows the platform's SDRAM page size,
 879 * number of banks, and XOR address, and that it's identical between
 880 * all blocks using the format.  This tiling modifier will use XOR as
 881 * necessary to reduce the padding.  If a hardware block can't do XOR,
 882 * the assumption is that a no-XOR tiling modifier will be created.
 883 */
 884#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
 885
 886/*
 887 * Arm Framebuffer Compression (AFBC) modifiers
 888 *
 889 * AFBC is a proprietary lossless image compression protocol and format.
 890 * It provides fine-grained random access and minimizes the amount of data
 891 * transferred between IP blocks.
 892 *
 893 * AFBC has several features which may be supported and/or used, which are
 894 * represented using bits in the modifier. Not all combinations are valid,
 895 * and different devices or use-cases may support different combinations.
 896 *
 897 * Further information on the use of AFBC modifiers can be found in
 898 * Documentation/gpu/afbc.rst
 899 */
 900
 901/*
 902 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
 903 * modifiers) denote the category for modifiers. Currently we have only two
 904 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
 905 * different categories.
 906 */
 907#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
 908	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
 909
 910#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
 911#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
 912
 913#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
 914	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
 915
 916/*
 917 * AFBC superblock size
 918 *
 919 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
 920 * size (in pixels) must be aligned to a multiple of the superblock size.
 921 * Four lowest significant bits(LSBs) are reserved for block size.
 922 *
 923 * Where one superblock size is specified, it applies to all planes of the
 924 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
 925 * the first applies to the Luma plane and the second applies to the Chroma
 926 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
 927 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
 928 */
 929#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
 930#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
 931#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
 932#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
 933#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
 934
 935/*
 936 * AFBC lossless colorspace transform
 937 *
 938 * Indicates that the buffer makes use of the AFBC lossless colorspace
 939 * transform.
 940 */
 941#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
 942
 943/*
 944 * AFBC block-split
 945 *
 946 * Indicates that the payload of each superblock is split. The second
 947 * half of the payload is positioned at a predefined offset from the start
 948 * of the superblock payload.
 949 */
 950#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
 951
 952/*
 953 * AFBC sparse layout
 954 *
 955 * This flag indicates that the payload of each superblock must be stored at a
 956 * predefined position relative to the other superblocks in the same AFBC
 957 * buffer. This order is the same order used by the header buffer. In this mode
 958 * each superblock is given the same amount of space as an uncompressed
 959 * superblock of the particular format would require, rounding up to the next
 960 * multiple of 128 bytes in size.
 961 */
 962#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
 963
 964/*
 965 * AFBC copy-block restrict
 966 *
 967 * Buffers with this flag must obey the copy-block restriction. The restriction
 968 * is such that there are no copy-blocks referring across the border of 8x8
 969 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
 970 */
 971#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
 972
 973/*
 974 * AFBC tiled layout
 975 *
 976 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
 977 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
 978 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
 979 * larger bpp formats. The order between the tiles is scan line.
 980 * When the tiled layout is used, the buffer size (in pixels) must be aligned
 981 * to the tile size.
 982 */
 983#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
 984
 985/*
 986 * AFBC solid color blocks
 987 *
 988 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
 989 * can be reduced if a whole superblock is a single color.
 990 */
 991#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
 992
 993/*
 994 * AFBC double-buffer
 995 *
 996 * Indicates that the buffer is allocated in a layout safe for front-buffer
 997 * rendering.
 998 */
 999#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1000
1001/*
1002 * AFBC buffer content hints
1003 *
1004 * Indicates that the buffer includes per-superblock content hints.
1005 */
1006#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1007
1008/* AFBC uncompressed storage mode
1009 *
1010 * Indicates that the buffer is using AFBC uncompressed storage mode.
1011 * In this mode all superblock payloads in the buffer use the uncompressed
1012 * storage mode, which is usually only used for data which cannot be compressed.
1013 * The buffer layout is the same as for AFBC buffers without USM set, this only
1014 * affects the storage mode of the individual superblocks. Note that even a
1015 * buffer without USM set may use uncompressed storage mode for some or all
1016 * superblocks, USM just guarantees it for all.
1017 */
1018#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1019
1020/*
1021 * Arm 16x16 Block U-Interleaved modifier
1022 *
1023 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1024 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1025 * in the block are reordered.
1026 */
1027#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1028	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1029
1030/*
1031 * Allwinner tiled modifier
1032 *
1033 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1034 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1035 * planes.
1036 *
1037 * With this tiling, the luminance samples are disposed in tiles representing
1038 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1039 * The pixel order in each tile is linear and the tiles are disposed linearly,
1040 * both in row-major order.
1041 */
1042#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1043
1044/*
1045 * Amlogic Video Framebuffer Compression modifiers
1046 *
1047 * Amlogic uses a proprietary lossless image compression protocol and format
1048 * for their hardware video codec accelerators, either video decoders or
1049 * video input encoders.
1050 *
1051 * It considerably reduces memory bandwidth while writing and reading
1052 * frames in memory.
1053 *
1054 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1055 * per component YCbCr 420, single plane :
1056 * - DRM_FORMAT_YUV420_8BIT
1057 * - DRM_FORMAT_YUV420_10BIT
1058 *
1059 * The first 8 bits of the mode defines the layout, then the following 8 bits
1060 * defines the options changing the layout.
1061 *
1062 * Not all combinations are valid, and different SoCs may support different
1063 * combinations of layout and options.
1064 */
1065#define __fourcc_mod_amlogic_layout_mask 0xff
1066#define __fourcc_mod_amlogic_options_shift 8
1067#define __fourcc_mod_amlogic_options_mask 0xff
1068
1069#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1070	fourcc_mod_code(AMLOGIC, \
1071			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1072			(((__options) & __fourcc_mod_amlogic_options_mask) \
1073			 << __fourcc_mod_amlogic_options_shift))
1074
1075/* Amlogic FBC Layouts */
1076
1077/*
1078 * Amlogic FBC Basic Layout
1079 *
1080 * The basic layout is composed of:
1081 * - a body content organized in 64x32 superblocks with 4096 bytes per
1082 *   superblock in default mode.
1083 * - a 32 bytes per 128x64 header block
1084 *
1085 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1086 */
1087#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1088
1089/*
1090 * Amlogic FBC Scatter Memory layout
1091 *
1092 * Indicates the header contains IOMMU references to the compressed
1093 * frames content to optimize memory access and layout.
1094 *
1095 * In this mode, only the header memory address is needed, thus the
1096 * content memory organization is tied to the current producer
1097 * execution and cannot be saved/dumped neither transferrable between
1098 * Amlogic SoCs supporting this modifier.
1099 *
1100 * Due to the nature of the layout, these buffers are not expected to
1101 * be accessible by the user-space clients, but only accessible by the
1102 * hardware producers and consumers.
1103 *
1104 * The user-space clients should expect a failure while trying to mmap
1105 * the DMA-BUF handle returned by the producer.
1106 */
1107#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1108
1109/* Amlogic FBC Layout Options Bit Mask */
1110
1111/*
1112 * Amlogic FBC Memory Saving mode
1113 *
1114 * Indicates the storage is packed when pixel size is multiple of word
1115 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1116 * memory.
1117 *
1118 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1119 * the basic layout and 3200 bytes per 64x32 superblock combined with
1120 * the scatter layout.
1121 */
1122#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1123
1124/*
1125 * AMD modifiers
1126 *
1127 * Memory layout:
1128 *
1129 * without DCC:
1130 *   - main surface
1131 *
1132 * with DCC & without DCC_RETILE:
1133 *   - main surface in plane 0
1134 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1135 *
1136 * with DCC & DCC_RETILE:
1137 *   - main surface in plane 0
1138 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1139 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1140 *
1141 * For multi-plane formats the above surfaces get merged into one plane for
1142 * each format plane, based on the required alignment only.
1143 *
1144 * Bits  Parameter                Notes
1145 * ----- ------------------------ ---------------------------------------------
1146 *
1147 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1148 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1149 *    13 DCC
1150 *    14 DCC_RETILE
1151 *    15 DCC_PIPE_ALIGN
1152 *    16 DCC_INDEPENDENT_64B
1153 *    17 DCC_INDEPENDENT_128B
1154 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1155 *    20 DCC_CONSTANT_ENCODE
1156 * 23:21 PIPE_XOR_BITS            Only for some chips
1157 * 26:24 BANK_XOR_BITS            Only for some chips
1158 * 29:27 PACKERS                  Only for some chips
1159 * 32:30 RB                       Only for some chips
1160 * 35:33 PIPE                     Only for some chips
1161 * 55:36 -                        Reserved for future use, must be zero
1162 */
1163#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1164
1165#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1166
1167/* Reserve 0 for GFX8 and older */
1168#define AMD_FMT_MOD_TILE_VER_GFX9 1
1169#define AMD_FMT_MOD_TILE_VER_GFX10 2
1170#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1171
1172/*
1173 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1174 * version.
1175 */
1176#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1177
1178/*
1179 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1180 * GFX9 as canonical version.
1181 */
1182#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1183#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1184#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1185#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1186
1187#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1188#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1189#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1190
1191#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1192#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1193#define AMD_FMT_MOD_TILE_SHIFT 8
1194#define AMD_FMT_MOD_TILE_MASK 0x1F
1195
1196/* Whether DCC compression is enabled. */
1197#define AMD_FMT_MOD_DCC_SHIFT 13
1198#define AMD_FMT_MOD_DCC_MASK 0x1
1199
1200/*
1201 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1202 * one which is not-aligned.
1203 */
1204#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1205#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1206
1207/* Only set if DCC_RETILE = false */
1208#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1209#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1210
1211#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1212#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1213#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1214#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1215#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1216#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1217
1218/*
1219 * DCC supports embedding some clear colors directly in the DCC surface.
1220 * However, on older GPUs the rendering HW ignores the embedded clear color
1221 * and prefers the driver provided color. This necessitates doing a fastclear
1222 * eliminate operation before a process transfers control.
1223 *
1224 * If this bit is set that means the fastclear eliminate is not needed for these
1225 * embeddable colors.
1226 */
1227#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1228#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1229
1230/*
1231 * The below fields are for accounting for per GPU differences. These are only
1232 * relevant for GFX9 and later and if the tile field is *_X/_T.
1233 *
1234 * PIPE_XOR_BITS = always needed
1235 * BANK_XOR_BITS = only for TILE_VER_GFX9
1236 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1237 * RB = only for TILE_VER_GFX9 & DCC
1238 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1239 */
1240#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1241#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1242#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1243#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1244#define AMD_FMT_MOD_PACKERS_SHIFT 27
1245#define AMD_FMT_MOD_PACKERS_MASK 0x7
1246#define AMD_FMT_MOD_RB_SHIFT 30
1247#define AMD_FMT_MOD_RB_MASK 0x7
1248#define AMD_FMT_MOD_PIPE_SHIFT 33
1249#define AMD_FMT_MOD_PIPE_MASK 0x7
1250
1251#define AMD_FMT_MOD_SET(field, value) \
1252	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1253#define AMD_FMT_MOD_GET(field, value) \
1254	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1255#define AMD_FMT_MOD_CLEAR(field) \
1256	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1257
1258#if defined(__cplusplus)
1259}
1260#endif
1261
1262#endif /* DRM_FOURCC_H */