Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
 
 
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
 
  39
  40#include <asm/io.h>
  41#include <linux/scatterlist.h>
  42#include <linux/mm.h>
  43#include <linux/dma-mapping.h>
  44
  45#include "usb.h"
  46
  47
  48const char *usbcore_name = "usbcore";
  49
  50static int nousb;	/* Disable USB when built into kernel image */
 
 
 
 
 
 
 
 
 
 
 
  51
  52#ifdef	CONFIG_USB_SUSPEND
  53static int usb_autosuspend_delay = 2;		/* Default delay value,
  54						 * in seconds */
  55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  57
  58#else
  59#define usb_autosuspend_delay		0
  60#endif
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/**
  64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  65 * for the given interface.
  66 * @config: the configuration to search (not necessarily the current config).
  67 * @iface_num: interface number to search in
  68 * @alt_num: alternate interface setting number to search for.
  69 *
  70 * Search the configuration's interface cache for the given alt setting.
 
 
  71 */
  72struct usb_host_interface *usb_find_alt_setting(
  73		struct usb_host_config *config,
  74		unsigned int iface_num,
  75		unsigned int alt_num)
  76{
  77	struct usb_interface_cache *intf_cache = NULL;
  78	int i;
  79
 
 
  80	for (i = 0; i < config->desc.bNumInterfaces; i++) {
  81		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  82				== iface_num) {
  83			intf_cache = config->intf_cache[i];
  84			break;
  85		}
  86	}
  87	if (!intf_cache)
  88		return NULL;
  89	for (i = 0; i < intf_cache->num_altsetting; i++)
  90		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
  91			return &intf_cache->altsetting[i];
  92
  93	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
  94			"config %u\n", alt_num, iface_num,
  95			config->desc.bConfigurationValue);
  96	return NULL;
  97}
  98EXPORT_SYMBOL_GPL(usb_find_alt_setting);
  99
 100/**
 101 * usb_ifnum_to_if - get the interface object with a given interface number
 102 * @dev: the device whose current configuration is considered
 103 * @ifnum: the desired interface
 104 *
 105 * This walks the device descriptor for the currently active configuration
 106 * and returns a pointer to the interface with that particular interface
 107 * number, or null.
 108 *
 109 * Note that configuration descriptors are not required to assign interface
 110 * numbers sequentially, so that it would be incorrect to assume that
 111 * the first interface in that descriptor corresponds to interface zero.
 112 * This routine helps device drivers avoid such mistakes.
 113 * However, you should make sure that you do the right thing with any
 114 * alternate settings available for this interfaces.
 115 *
 116 * Don't call this function unless you are bound to one of the interfaces
 117 * on this device or you have locked the device!
 
 
 
 118 */
 119struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 120				      unsigned ifnum)
 121{
 122	struct usb_host_config *config = dev->actconfig;
 123	int i;
 124
 125	if (!config)
 126		return NULL;
 127	for (i = 0; i < config->desc.bNumInterfaces; i++)
 128		if (config->interface[i]->altsetting[0]
 129				.desc.bInterfaceNumber == ifnum)
 130			return config->interface[i];
 131
 132	return NULL;
 133}
 134EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 135
 136/**
 137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 138 * @intf: the interface containing the altsetting in question
 139 * @altnum: the desired alternate setting number
 140 *
 141 * This searches the altsetting array of the specified interface for
 142 * an entry with the correct bAlternateSetting value and returns a pointer
 143 * to that entry, or null.
 144 *
 145 * Note that altsettings need not be stored sequentially by number, so
 146 * it would be incorrect to assume that the first altsetting entry in
 147 * the array corresponds to altsetting zero.  This routine helps device
 148 * drivers avoid such mistakes.
 149 *
 150 * Don't call this function unless you are bound to the intf interface
 151 * or you have locked the device!
 
 
 
 152 */
 153struct usb_host_interface *usb_altnum_to_altsetting(
 154					const struct usb_interface *intf,
 155					unsigned int altnum)
 156{
 157	int i;
 158
 159	for (i = 0; i < intf->num_altsetting; i++) {
 160		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 161			return &intf->altsetting[i];
 162	}
 163	return NULL;
 164}
 165EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 166
 167struct find_interface_arg {
 168	int minor;
 169	struct device_driver *drv;
 170};
 171
 172static int __find_interface(struct device *dev, void *data)
 173{
 174	struct find_interface_arg *arg = data;
 175	struct usb_interface *intf;
 176
 177	if (!is_usb_interface(dev))
 178		return 0;
 179
 180	if (dev->driver != arg->drv)
 181		return 0;
 182	intf = to_usb_interface(dev);
 183	return intf->minor == arg->minor;
 184}
 185
 186/**
 187 * usb_find_interface - find usb_interface pointer for driver and device
 188 * @drv: the driver whose current configuration is considered
 189 * @minor: the minor number of the desired device
 190 *
 191 * This walks the bus device list and returns a pointer to the interface
 192 * with the matching minor and driver.  Note, this only works for devices
 193 * that share the USB major number.
 
 
 194 */
 195struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 196{
 197	struct find_interface_arg argb;
 198	struct device *dev;
 199
 200	argb.minor = minor;
 201	argb.drv = &drv->drvwrap.driver;
 202
 203	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 204
 205	/* Drop reference count from bus_find_device */
 206	put_device(dev);
 207
 208	return dev ? to_usb_interface(dev) : NULL;
 209}
 210EXPORT_SYMBOL_GPL(usb_find_interface);
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212/**
 213 * usb_release_dev - free a usb device structure when all users of it are finished.
 214 * @dev: device that's been disconnected
 215 *
 216 * Will be called only by the device core when all users of this usb device are
 217 * done.
 218 */
 219static void usb_release_dev(struct device *dev)
 220{
 221	struct usb_device *udev;
 222	struct usb_hcd *hcd;
 223
 224	udev = to_usb_device(dev);
 225	hcd = bus_to_hcd(udev->bus);
 226
 227	usb_destroy_configuration(udev);
 
 
 228	usb_put_hcd(hcd);
 229	kfree(udev->product);
 230	kfree(udev->manufacturer);
 231	kfree(udev->serial);
 232	kfree(udev);
 233}
 234
 235#ifdef	CONFIG_HOTPLUG
 236static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 237{
 238	struct usb_device *usb_dev;
 239
 240	usb_dev = to_usb_device(dev);
 241
 242	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 243		return -ENOMEM;
 244
 245	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 246		return -ENOMEM;
 247
 248	return 0;
 249}
 250
 251#else
 252
 253static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 254{
 255	return -ENODEV;
 256}
 257#endif	/* CONFIG_HOTPLUG */
 258
 259#ifdef	CONFIG_PM
 260
 261/* USB device Power-Management thunks.
 262 * There's no need to distinguish here between quiescing a USB device
 263 * and powering it down; the generic_suspend() routine takes care of
 264 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 265 * USB interfaces there's no difference at all.
 266 */
 267
 268static int usb_dev_prepare(struct device *dev)
 269{
 270	return 0;		/* Implement eventually? */
 271}
 272
 273static void usb_dev_complete(struct device *dev)
 274{
 275	/* Currently used only for rebinding interfaces */
 276	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
 277}
 278
 279static int usb_dev_suspend(struct device *dev)
 280{
 281	return usb_suspend(dev, PMSG_SUSPEND);
 282}
 283
 284static int usb_dev_resume(struct device *dev)
 285{
 286	return usb_resume(dev, PMSG_RESUME);
 287}
 288
 289static int usb_dev_freeze(struct device *dev)
 290{
 291	return usb_suspend(dev, PMSG_FREEZE);
 292}
 293
 294static int usb_dev_thaw(struct device *dev)
 295{
 296	return usb_resume(dev, PMSG_THAW);
 297}
 298
 299static int usb_dev_poweroff(struct device *dev)
 300{
 301	return usb_suspend(dev, PMSG_HIBERNATE);
 302}
 303
 304static int usb_dev_restore(struct device *dev)
 305{
 306	return usb_resume(dev, PMSG_RESTORE);
 307}
 308
 309static const struct dev_pm_ops usb_device_pm_ops = {
 310	.prepare =	usb_dev_prepare,
 311	.complete =	usb_dev_complete,
 312	.suspend =	usb_dev_suspend,
 313	.resume =	usb_dev_resume,
 314	.freeze =	usb_dev_freeze,
 315	.thaw =		usb_dev_thaw,
 316	.poweroff =	usb_dev_poweroff,
 317	.restore =	usb_dev_restore,
 318#ifdef CONFIG_USB_SUSPEND
 319	.runtime_suspend =	usb_runtime_suspend,
 320	.runtime_resume =	usb_runtime_resume,
 321	.runtime_idle =		usb_runtime_idle,
 322#endif
 323};
 324
 325#endif	/* CONFIG_PM */
 326
 327
 328static char *usb_devnode(struct device *dev, mode_t *mode)
 
 329{
 330	struct usb_device *usb_dev;
 331
 332	usb_dev = to_usb_device(dev);
 333	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 334			 usb_dev->bus->busnum, usb_dev->devnum);
 335}
 336
 337struct device_type usb_device_type = {
 338	.name =		"usb_device",
 339	.release =	usb_release_dev,
 340	.uevent =	usb_dev_uevent,
 341	.devnode = 	usb_devnode,
 342#ifdef CONFIG_PM
 343	.pm =		&usb_device_pm_ops,
 344#endif
 345};
 346
 347
 348/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 349static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 350{
 351	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
 352	return hcd->wireless;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356/**
 357 * usb_alloc_dev - usb device constructor (usbcore-internal)
 358 * @parent: hub to which device is connected; null to allocate a root hub
 359 * @bus: bus used to access the device
 360 * @port1: one-based index of port; ignored for root hubs
 361 * Context: !in_interrupt()
 
 362 *
 363 * Only hub drivers (including virtual root hub drivers for host
 364 * controllers) should ever call this.
 365 *
 366 * This call may not be used in a non-sleeping context.
 
 
 
 367 */
 368struct usb_device *usb_alloc_dev(struct usb_device *parent,
 369				 struct usb_bus *bus, unsigned port1)
 370{
 371	struct usb_device *dev;
 372	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
 373	unsigned root_hub = 0;
 
 374
 375	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 376	if (!dev)
 377		return NULL;
 378
 379	if (!usb_get_hcd(bus_to_hcd(bus))) {
 380		kfree(dev);
 381		return NULL;
 382	}
 383	/* Root hubs aren't true devices, so don't allocate HCD resources */
 384	if (usb_hcd->driver->alloc_dev && parent &&
 385		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 386		usb_put_hcd(bus_to_hcd(bus));
 387		kfree(dev);
 388		return NULL;
 389	}
 390
 391	device_initialize(&dev->dev);
 392	dev->dev.bus = &usb_bus_type;
 393	dev->dev.type = &usb_device_type;
 394	dev->dev.groups = usb_device_groups;
 395	dev->dev.dma_mask = bus->controller->dma_mask;
 396	set_dev_node(&dev->dev, dev_to_node(bus->controller));
 397	dev->state = USB_STATE_ATTACHED;
 
 398	atomic_set(&dev->urbnum, 0);
 399
 400	INIT_LIST_HEAD(&dev->ep0.urb_list);
 401	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 402	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 403	/* ep0 maxpacket comes later, from device descriptor */
 404	usb_enable_endpoint(dev, &dev->ep0, false);
 405	dev->can_submit = 1;
 406
 407	/* Save readable and stable topology id, distinguishing devices
 408	 * by location for diagnostics, tools, driver model, etc.  The
 409	 * string is a path along hub ports, from the root.  Each device's
 410	 * dev->devpath will be stable until USB is re-cabled, and hubs
 411	 * are often labeled with these port numbers.  The name isn't
 412	 * as stable:  bus->busnum changes easily from modprobe order,
 413	 * cardbus or pci hotplugging, and so on.
 414	 */
 415	if (unlikely(!parent)) {
 416		dev->devpath[0] = '0';
 417		dev->route = 0;
 418
 419		dev->dev.parent = bus->controller;
 
 420		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 421		root_hub = 1;
 422	} else {
 423		/* match any labeling on the hubs; it's one-based */
 424		if (parent->devpath[0] == '0') {
 425			snprintf(dev->devpath, sizeof dev->devpath,
 426				"%d", port1);
 427			/* Root ports are not counted in route string */
 428			dev->route = 0;
 429		} else {
 430			snprintf(dev->devpath, sizeof dev->devpath,
 431				"%s.%d", parent->devpath, port1);
 432			/* Route string assumes hubs have less than 16 ports */
 433			if (port1 < 15)
 434				dev->route = parent->route +
 435					(port1 << ((parent->level - 1)*4));
 436			else
 437				dev->route = parent->route +
 438					(15 << ((parent->level - 1)*4));
 439		}
 440
 441		dev->dev.parent = &parent->dev;
 442		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 443
 
 
 
 
 
 
 
 444		/* hub driver sets up TT records */
 445	}
 446
 447	dev->portnum = port1;
 448	dev->bus = bus;
 449	dev->parent = parent;
 450	INIT_LIST_HEAD(&dev->filelist);
 451
 452#ifdef	CONFIG_PM
 453	pm_runtime_set_autosuspend_delay(&dev->dev,
 454			usb_autosuspend_delay * 1000);
 455	dev->connect_time = jiffies;
 456	dev->active_duration = -jiffies;
 457#endif
 458	if (root_hub)	/* Root hub always ok [and always wired] */
 459		dev->authorized = 1;
 460	else {
 461		dev->authorized = usb_hcd->authorized_default;
 462		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
 463	}
 464	return dev;
 465}
 
 466
 467/**
 468 * usb_get_dev - increments the reference count of the usb device structure
 469 * @dev: the device being referenced
 470 *
 471 * Each live reference to a device should be refcounted.
 472 *
 473 * Drivers for USB interfaces should normally record such references in
 474 * their probe() methods, when they bind to an interface, and release
 475 * them by calling usb_put_dev(), in their disconnect() methods.
 476 *
 477 * A pointer to the device with the incremented reference counter is returned.
 478 */
 479struct usb_device *usb_get_dev(struct usb_device *dev)
 480{
 481	if (dev)
 482		get_device(&dev->dev);
 483	return dev;
 484}
 485EXPORT_SYMBOL_GPL(usb_get_dev);
 486
 487/**
 488 * usb_put_dev - release a use of the usb device structure
 489 * @dev: device that's been disconnected
 490 *
 491 * Must be called when a user of a device is finished with it.  When the last
 492 * user of the device calls this function, the memory of the device is freed.
 493 */
 494void usb_put_dev(struct usb_device *dev)
 495{
 496	if (dev)
 497		put_device(&dev->dev);
 498}
 499EXPORT_SYMBOL_GPL(usb_put_dev);
 500
 501/**
 502 * usb_get_intf - increments the reference count of the usb interface structure
 503 * @intf: the interface being referenced
 504 *
 505 * Each live reference to a interface must be refcounted.
 506 *
 507 * Drivers for USB interfaces should normally record such references in
 508 * their probe() methods, when they bind to an interface, and release
 509 * them by calling usb_put_intf(), in their disconnect() methods.
 510 *
 511 * A pointer to the interface with the incremented reference counter is
 512 * returned.
 513 */
 514struct usb_interface *usb_get_intf(struct usb_interface *intf)
 515{
 516	if (intf)
 517		get_device(&intf->dev);
 518	return intf;
 519}
 520EXPORT_SYMBOL_GPL(usb_get_intf);
 521
 522/**
 523 * usb_put_intf - release a use of the usb interface structure
 524 * @intf: interface that's been decremented
 525 *
 526 * Must be called when a user of an interface is finished with it.  When the
 527 * last user of the interface calls this function, the memory of the interface
 528 * is freed.
 529 */
 530void usb_put_intf(struct usb_interface *intf)
 531{
 532	if (intf)
 533		put_device(&intf->dev);
 534}
 535EXPORT_SYMBOL_GPL(usb_put_intf);
 536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537/*			USB device locking
 538 *
 539 * USB devices and interfaces are locked using the semaphore in their
 540 * embedded struct device.  The hub driver guarantees that whenever a
 541 * device is connected or disconnected, drivers are called with the
 542 * USB device locked as well as their particular interface.
 543 *
 544 * Complications arise when several devices are to be locked at the same
 545 * time.  Only hub-aware drivers that are part of usbcore ever have to
 546 * do this; nobody else needs to worry about it.  The rule for locking
 547 * is simple:
 548 *
 549 *	When locking both a device and its parent, always lock the
 550 *	the parent first.
 551 */
 552
 553/**
 554 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 555 * @udev: device that's being locked
 556 * @iface: interface bound to the driver making the request (optional)
 557 *
 558 * Attempts to acquire the device lock, but fails if the device is
 559 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 560 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 561 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 562 * disconnect; in some drivers (such as usb-storage) the disconnect()
 563 * or suspend() method will block waiting for a device reset to complete.
 564 *
 565 * Returns a negative error code for failure, otherwise 0.
 566 */
 567int usb_lock_device_for_reset(struct usb_device *udev,
 568			      const struct usb_interface *iface)
 569{
 570	unsigned long jiffies_expire = jiffies + HZ;
 571
 572	if (udev->state == USB_STATE_NOTATTACHED)
 573		return -ENODEV;
 574	if (udev->state == USB_STATE_SUSPENDED)
 575		return -EHOSTUNREACH;
 576	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 577			iface->condition == USB_INTERFACE_UNBOUND))
 578		return -EINTR;
 579
 580	while (!usb_trylock_device(udev)) {
 581
 582		/* If we can't acquire the lock after waiting one second,
 583		 * we're probably deadlocked */
 584		if (time_after(jiffies, jiffies_expire))
 585			return -EBUSY;
 586
 587		msleep(15);
 588		if (udev->state == USB_STATE_NOTATTACHED)
 589			return -ENODEV;
 590		if (udev->state == USB_STATE_SUSPENDED)
 591			return -EHOSTUNREACH;
 592		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 593				iface->condition == USB_INTERFACE_UNBOUND))
 594			return -EINTR;
 595	}
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 599
 600/**
 601 * usb_get_current_frame_number - return current bus frame number
 602 * @dev: the device whose bus is being queried
 603 *
 604 * Returns the current frame number for the USB host controller
 605 * used with the given USB device.  This can be used when scheduling
 606 * isochronous requests.
 607 *
 608 * Note that different kinds of host controller have different
 609 * "scheduling horizons".  While one type might support scheduling only
 610 * 32 frames into the future, others could support scheduling up to
 611 * 1024 frames into the future.
 
 612 */
 613int usb_get_current_frame_number(struct usb_device *dev)
 614{
 615	return usb_hcd_get_frame_number(dev);
 616}
 617EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 618
 619/*-------------------------------------------------------------------*/
 620/*
 621 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 622 * extra field of the interface and endpoint descriptor structs.
 623 */
 624
 625int __usb_get_extra_descriptor(char *buffer, unsigned size,
 626			       unsigned char type, void **ptr)
 627{
 628	struct usb_descriptor_header *header;
 629
 630	while (size >= sizeof(struct usb_descriptor_header)) {
 631		header = (struct usb_descriptor_header *)buffer;
 632
 633		if (header->bLength < 2) {
 634			printk(KERN_ERR
 635				"%s: bogus descriptor, type %d length %d\n",
 636				usbcore_name,
 637				header->bDescriptorType,
 638				header->bLength);
 639			return -1;
 640		}
 641
 642		if (header->bDescriptorType == type) {
 643			*ptr = header;
 644			return 0;
 645		}
 646
 647		buffer += header->bLength;
 648		size -= header->bLength;
 649	}
 650	return -1;
 651}
 652EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 653
 654/**
 655 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 656 * @dev: device the buffer will be used with
 657 * @size: requested buffer size
 658 * @mem_flags: affect whether allocation may block
 659 * @dma: used to return DMA address of buffer
 660 *
 661 * Return value is either null (indicating no buffer could be allocated), or
 662 * the cpu-space pointer to a buffer that may be used to perform DMA to the
 663 * specified device.  Such cpu-space buffers are returned along with the DMA
 664 * address (through the pointer provided).
 665 *
 
 666 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 667 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 668 * hardware during URB completion/resubmit.  The implementation varies between
 669 * platforms, depending on details of how DMA will work to this device.
 670 * Using these buffers also eliminates cacheline sharing problems on
 671 * architectures where CPU caches are not DMA-coherent.  On systems without
 672 * bus-snooping caches, these buffers are uncached.
 673 *
 674 * When the buffer is no longer used, free it with usb_free_coherent().
 675 */
 676void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 677			 dma_addr_t *dma)
 678{
 679	if (!dev || !dev->bus)
 680		return NULL;
 681	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 682}
 683EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 684
 685/**
 686 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 687 * @dev: device the buffer was used with
 688 * @size: requested buffer size
 689 * @addr: CPU address of buffer
 690 * @dma: DMA address of buffer
 691 *
 692 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 693 * been allocated using usb_alloc_coherent(), and the parameters must match
 694 * those provided in that allocation request.
 695 */
 696void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 697		       dma_addr_t dma)
 698{
 699	if (!dev || !dev->bus)
 700		return;
 701	if (!addr)
 702		return;
 703	hcd_buffer_free(dev->bus, size, addr, dma);
 704}
 705EXPORT_SYMBOL_GPL(usb_free_coherent);
 706
 707/**
 708 * usb_buffer_map - create DMA mapping(s) for an urb
 709 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 710 *
 711 * Return value is either null (indicating no buffer could be mapped), or
 712 * the parameter.  URB_NO_TRANSFER_DMA_MAP is
 713 * added to urb->transfer_flags if the operation succeeds.  If the device
 714 * is connected to this system through a non-DMA controller, this operation
 715 * always succeeds.
 716 *
 717 * This call would normally be used for an urb which is reused, perhaps
 718 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 719 * calls to synchronize memory and dma state.
 720 *
 721 * Reverse the effect of this call with usb_buffer_unmap().
 722 */
 723#if 0
 724struct urb *usb_buffer_map(struct urb *urb)
 725{
 726	struct usb_bus		*bus;
 727	struct device		*controller;
 728
 729	if (!urb
 730			|| !urb->dev
 731			|| !(bus = urb->dev->bus)
 732			|| !(controller = bus->controller))
 733		return NULL;
 734
 735	if (controller->dma_mask) {
 736		urb->transfer_dma = dma_map_single(controller,
 737			urb->transfer_buffer, urb->transfer_buffer_length,
 738			usb_pipein(urb->pipe)
 739				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 740	/* FIXME generic api broken like pci, can't report errors */
 741	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 742	} else
 743		urb->transfer_dma = ~0;
 744	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 745	return urb;
 746}
 747EXPORT_SYMBOL_GPL(usb_buffer_map);
 748#endif  /*  0  */
 749
 750/* XXX DISABLED, no users currently.  If you wish to re-enable this
 751 * XXX please determine whether the sync is to transfer ownership of
 752 * XXX the buffer from device to cpu or vice verse, and thusly use the
 753 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 754 */
 755#if 0
 756
 757/**
 758 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 759 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 760 */
 761void usb_buffer_dmasync(struct urb *urb)
 762{
 763	struct usb_bus		*bus;
 764	struct device		*controller;
 765
 766	if (!urb
 767			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 768			|| !urb->dev
 769			|| !(bus = urb->dev->bus)
 770			|| !(controller = bus->controller))
 771		return;
 772
 773	if (controller->dma_mask) {
 774		dma_sync_single_for_cpu(controller,
 775			urb->transfer_dma, urb->transfer_buffer_length,
 776			usb_pipein(urb->pipe)
 777				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 778		if (usb_pipecontrol(urb->pipe))
 779			dma_sync_single_for_cpu(controller,
 780					urb->setup_dma,
 781					sizeof(struct usb_ctrlrequest),
 782					DMA_TO_DEVICE);
 783	}
 784}
 785EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 786#endif
 787
 788/**
 789 * usb_buffer_unmap - free DMA mapping(s) for an urb
 790 * @urb: urb whose transfer_buffer will be unmapped
 791 *
 792 * Reverses the effect of usb_buffer_map().
 793 */
 794#if 0
 795void usb_buffer_unmap(struct urb *urb)
 796{
 797	struct usb_bus		*bus;
 798	struct device		*controller;
 799
 800	if (!urb
 801			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 802			|| !urb->dev
 803			|| !(bus = urb->dev->bus)
 804			|| !(controller = bus->controller))
 805		return;
 806
 807	if (controller->dma_mask) {
 808		dma_unmap_single(controller,
 809			urb->transfer_dma, urb->transfer_buffer_length,
 810			usb_pipein(urb->pipe)
 811				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 812	}
 813	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 814}
 815EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 816#endif  /*  0  */
 817
 818#if 0
 819/**
 820 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 821 * @dev: device to which the scatterlist will be mapped
 822 * @is_in: mapping transfer direction
 823 * @sg: the scatterlist to map
 824 * @nents: the number of entries in the scatterlist
 825 *
 826 * Return value is either < 0 (indicating no buffers could be mapped), or
 827 * the number of DMA mapping array entries in the scatterlist.
 828 *
 829 * The caller is responsible for placing the resulting DMA addresses from
 830 * the scatterlist into URB transfer buffer pointers, and for setting the
 831 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 832 *
 833 * Top I/O rates come from queuing URBs, instead of waiting for each one
 834 * to complete before starting the next I/O.   This is particularly easy
 835 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 836 * mapping entry returned, stopping on the first error or when all succeed.
 837 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 838 *
 839 * This call would normally be used when translating scatterlist requests,
 840 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 841 * may be able to coalesce mappings for improved I/O efficiency.
 842 *
 843 * Reverse the effect of this call with usb_buffer_unmap_sg().
 844 */
 845int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 846		      struct scatterlist *sg, int nents)
 847{
 848	struct usb_bus		*bus;
 849	struct device		*controller;
 850
 851	if (!dev
 852			|| !(bus = dev->bus)
 853			|| !(controller = bus->controller)
 854			|| !controller->dma_mask)
 855		return -EINVAL;
 856
 857	/* FIXME generic api broken like pci, can't report errors */
 858	return dma_map_sg(controller, sg, nents,
 859			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 860}
 861EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 862#endif
 863
 864/* XXX DISABLED, no users currently.  If you wish to re-enable this
 865 * XXX please determine whether the sync is to transfer ownership of
 866 * XXX the buffer from device to cpu or vice verse, and thusly use the
 867 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 868 */
 869#if 0
 870
 871/**
 872 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 873 * @dev: device to which the scatterlist will be mapped
 874 * @is_in: mapping transfer direction
 875 * @sg: the scatterlist to synchronize
 876 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 877 *
 878 * Use this when you are re-using a scatterlist's data buffers for
 879 * another USB request.
 880 */
 881void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 882			   struct scatterlist *sg, int n_hw_ents)
 883{
 884	struct usb_bus		*bus;
 885	struct device		*controller;
 886
 887	if (!dev
 888			|| !(bus = dev->bus)
 889			|| !(controller = bus->controller)
 890			|| !controller->dma_mask)
 891		return;
 892
 893	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 894			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 895}
 896EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 897#endif
 898
 899#if 0
 900/**
 901 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 902 * @dev: device to which the scatterlist will be mapped
 903 * @is_in: mapping transfer direction
 904 * @sg: the scatterlist to unmap
 905 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 906 *
 907 * Reverses the effect of usb_buffer_map_sg().
 908 */
 909void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 910			 struct scatterlist *sg, int n_hw_ents)
 911{
 912	struct usb_bus		*bus;
 913	struct device		*controller;
 914
 915	if (!dev
 916			|| !(bus = dev->bus)
 917			|| !(controller = bus->controller)
 918			|| !controller->dma_mask)
 919		return;
 920
 921	dma_unmap_sg(controller, sg, n_hw_ents,
 922			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 923}
 924EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 925#endif
 926
 927/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
 928#ifdef MODULE
 929module_param(nousb, bool, 0444);
 930#else
 931core_param(nousb, nousb, bool, 0444);
 932#endif
 933
 934/*
 935 * for external read access to <nousb>
 936 */
 937int usb_disabled(void)
 938{
 939	return nousb;
 940}
 941EXPORT_SYMBOL_GPL(usb_disabled);
 942
 943/*
 944 * Notifications of device and interface registration
 945 */
 946static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 947		void *data)
 948{
 949	struct device *dev = data;
 950
 951	switch (action) {
 952	case BUS_NOTIFY_ADD_DEVICE:
 953		if (dev->type == &usb_device_type)
 954			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 955		else if (dev->type == &usb_if_device_type)
 956			usb_create_sysfs_intf_files(to_usb_interface(dev));
 957		break;
 958
 959	case BUS_NOTIFY_DEL_DEVICE:
 960		if (dev->type == &usb_device_type)
 961			usb_remove_sysfs_dev_files(to_usb_device(dev));
 962		else if (dev->type == &usb_if_device_type)
 963			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 964		break;
 965	}
 966	return 0;
 967}
 968
 969static struct notifier_block usb_bus_nb = {
 970	.notifier_call = usb_bus_notify,
 971};
 972
 973struct dentry *usb_debug_root;
 974EXPORT_SYMBOL_GPL(usb_debug_root);
 975
 976static struct dentry *usb_debug_devices;
 977
 978static int usb_debugfs_init(void)
 979{
 980	usb_debug_root = debugfs_create_dir("usb", NULL);
 981	if (!usb_debug_root)
 982		return -ENOENT;
 983
 984	usb_debug_devices = debugfs_create_file("devices", 0444,
 985						usb_debug_root, NULL,
 986						&usbfs_devices_fops);
 987	if (!usb_debug_devices) {
 988		debugfs_remove(usb_debug_root);
 989		usb_debug_root = NULL;
 990		return -ENOENT;
 991	}
 992
 993	return 0;
 994}
 995
 996static void usb_debugfs_cleanup(void)
 997{
 998	debugfs_remove(usb_debug_devices);
 999	debugfs_remove(usb_debug_root);
1000}
1001
1002/*
1003 * Init
1004 */
1005static int __init usb_init(void)
1006{
1007	int retval;
1008	if (nousb) {
1009		pr_info("%s: USB support disabled\n", usbcore_name);
1010		return 0;
1011	}
 
1012
1013	retval = usb_debugfs_init();
1014	if (retval)
1015		goto out;
1016
 
1017	retval = bus_register(&usb_bus_type);
1018	if (retval)
1019		goto bus_register_failed;
1020	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1021	if (retval)
1022		goto bus_notifier_failed;
1023	retval = usb_major_init();
1024	if (retval)
1025		goto major_init_failed;
1026	retval = usb_register(&usbfs_driver);
1027	if (retval)
1028		goto driver_register_failed;
1029	retval = usb_devio_init();
1030	if (retval)
1031		goto usb_devio_init_failed;
1032	retval = usbfs_init();
1033	if (retval)
1034		goto fs_init_failed;
1035	retval = usb_hub_init();
1036	if (retval)
1037		goto hub_init_failed;
1038	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1039	if (!retval)
1040		goto out;
1041
1042	usb_hub_cleanup();
1043hub_init_failed:
1044	usbfs_cleanup();
1045fs_init_failed:
1046	usb_devio_cleanup();
1047usb_devio_init_failed:
1048	usb_deregister(&usbfs_driver);
1049driver_register_failed:
1050	usb_major_cleanup();
1051major_init_failed:
1052	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1053bus_notifier_failed:
1054	bus_unregister(&usb_bus_type);
1055bus_register_failed:
 
1056	usb_debugfs_cleanup();
1057out:
1058	return retval;
1059}
1060
1061/*
1062 * Cleanup
1063 */
1064static void __exit usb_exit(void)
1065{
1066	/* This will matter if shutdown/reboot does exitcalls. */
1067	if (nousb)
1068		return;
1069
 
1070	usb_deregister_device_driver(&usb_generic_driver);
1071	usb_major_cleanup();
1072	usbfs_cleanup();
1073	usb_deregister(&usbfs_driver);
1074	usb_devio_cleanup();
1075	usb_hub_cleanup();
1076	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1077	bus_unregister(&usb_bus_type);
 
1078	usb_debugfs_cleanup();
 
1079}
1080
1081subsys_initcall(usb_init);
1082module_exit(usb_exit);
1083MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
 
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
 
  31#include <linux/kmod.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/errno.h>
  35#include <linux/usb.h>
  36#include <linux/usb/hcd.h>
  37#include <linux/mutex.h>
  38#include <linux/workqueue.h>
  39#include <linux/debugfs.h>
  40#include <linux/usb/of.h>
  41
  42#include <asm/io.h>
  43#include <linux/scatterlist.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46
  47#include "hub.h"
 
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;	/* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60	return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef	CONFIG_PM
  65/* Default delay value, in seconds */
  66static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay		0
  72#endif
  73
  74static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  75		struct usb_endpoint_descriptor **bulk_in,
  76		struct usb_endpoint_descriptor **bulk_out,
  77		struct usb_endpoint_descriptor **int_in,
  78		struct usb_endpoint_descriptor **int_out)
  79{
  80	switch (usb_endpoint_type(epd)) {
  81	case USB_ENDPOINT_XFER_BULK:
  82		if (usb_endpoint_dir_in(epd)) {
  83			if (bulk_in && !*bulk_in) {
  84				*bulk_in = epd;
  85				break;
  86			}
  87		} else {
  88			if (bulk_out && !*bulk_out) {
  89				*bulk_out = epd;
  90				break;
  91			}
  92		}
  93
  94		return false;
  95	case USB_ENDPOINT_XFER_INT:
  96		if (usb_endpoint_dir_in(epd)) {
  97			if (int_in && !*int_in) {
  98				*int_in = epd;
  99				break;
 100			}
 101		} else {
 102			if (int_out && !*int_out) {
 103				*int_out = epd;
 104				break;
 105			}
 106		}
 107
 108		return false;
 109	default:
 110		return false;
 111	}
 112
 113	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 114			(!int_in || *int_in) && (!int_out || *int_out);
 115}
 116
 117/**
 118 * usb_find_common_endpoints() -- look up common endpoint descriptors
 119 * @alt:	alternate setting to search
 120 * @bulk_in:	pointer to descriptor pointer, or NULL
 121 * @bulk_out:	pointer to descriptor pointer, or NULL
 122 * @int_in:	pointer to descriptor pointer, or NULL
 123 * @int_out:	pointer to descriptor pointer, or NULL
 124 *
 125 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 127 * provided pointers (unless they are NULL).
 128 *
 129 * If a requested endpoint is not found, the corresponding pointer is set to
 130 * NULL.
 131 *
 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 133 */
 134int usb_find_common_endpoints(struct usb_host_interface *alt,
 135		struct usb_endpoint_descriptor **bulk_in,
 136		struct usb_endpoint_descriptor **bulk_out,
 137		struct usb_endpoint_descriptor **int_in,
 138		struct usb_endpoint_descriptor **int_out)
 139{
 140	struct usb_endpoint_descriptor *epd;
 141	int i;
 142
 143	if (bulk_in)
 144		*bulk_in = NULL;
 145	if (bulk_out)
 146		*bulk_out = NULL;
 147	if (int_in)
 148		*int_in = NULL;
 149	if (int_out)
 150		*int_out = NULL;
 151
 152	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 153		epd = &alt->endpoint[i].desc;
 154
 155		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 156			return 0;
 157	}
 158
 159	return -ENXIO;
 160}
 161EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 162
 163/**
 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 165 * @alt:	alternate setting to search
 166 * @bulk_in:	pointer to descriptor pointer, or NULL
 167 * @bulk_out:	pointer to descriptor pointer, or NULL
 168 * @int_in:	pointer to descriptor pointer, or NULL
 169 * @int_out:	pointer to descriptor pointer, or NULL
 170 *
 171 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 173 * provided pointers (unless they are NULL).
 174 *
 175 * If a requested endpoint is not found, the corresponding pointer is set to
 176 * NULL.
 177 *
 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 179 */
 180int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 181		struct usb_endpoint_descriptor **bulk_in,
 182		struct usb_endpoint_descriptor **bulk_out,
 183		struct usb_endpoint_descriptor **int_in,
 184		struct usb_endpoint_descriptor **int_out)
 185{
 186	struct usb_endpoint_descriptor *epd;
 187	int i;
 188
 189	if (bulk_in)
 190		*bulk_in = NULL;
 191	if (bulk_out)
 192		*bulk_out = NULL;
 193	if (int_in)
 194		*int_in = NULL;
 195	if (int_out)
 196		*int_out = NULL;
 197
 198	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 199		epd = &alt->endpoint[i].desc;
 200
 201		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 202			return 0;
 203	}
 204
 205	return -ENXIO;
 206}
 207EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 208
 209/**
 210 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 211 * for the given interface.
 212 * @config: the configuration to search (not necessarily the current config).
 213 * @iface_num: interface number to search in
 214 * @alt_num: alternate interface setting number to search for.
 215 *
 216 * Search the configuration's interface cache for the given alt setting.
 217 *
 218 * Return: The alternate setting, if found. %NULL otherwise.
 219 */
 220struct usb_host_interface *usb_find_alt_setting(
 221		struct usb_host_config *config,
 222		unsigned int iface_num,
 223		unsigned int alt_num)
 224{
 225	struct usb_interface_cache *intf_cache = NULL;
 226	int i;
 227
 228	if (!config)
 229		return NULL;
 230	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 231		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 232				== iface_num) {
 233			intf_cache = config->intf_cache[i];
 234			break;
 235		}
 236	}
 237	if (!intf_cache)
 238		return NULL;
 239	for (i = 0; i < intf_cache->num_altsetting; i++)
 240		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 241			return &intf_cache->altsetting[i];
 242
 243	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 244			"config %u\n", alt_num, iface_num,
 245			config->desc.bConfigurationValue);
 246	return NULL;
 247}
 248EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 249
 250/**
 251 * usb_ifnum_to_if - get the interface object with a given interface number
 252 * @dev: the device whose current configuration is considered
 253 * @ifnum: the desired interface
 254 *
 255 * This walks the device descriptor for the currently active configuration
 256 * to find the interface object with the particular interface number.
 
 257 *
 258 * Note that configuration descriptors are not required to assign interface
 259 * numbers sequentially, so that it would be incorrect to assume that
 260 * the first interface in that descriptor corresponds to interface zero.
 261 * This routine helps device drivers avoid such mistakes.
 262 * However, you should make sure that you do the right thing with any
 263 * alternate settings available for this interfaces.
 264 *
 265 * Don't call this function unless you are bound to one of the interfaces
 266 * on this device or you have locked the device!
 267 *
 268 * Return: A pointer to the interface that has @ifnum as interface number,
 269 * if found. %NULL otherwise.
 270 */
 271struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 272				      unsigned ifnum)
 273{
 274	struct usb_host_config *config = dev->actconfig;
 275	int i;
 276
 277	if (!config)
 278		return NULL;
 279	for (i = 0; i < config->desc.bNumInterfaces; i++)
 280		if (config->interface[i]->altsetting[0]
 281				.desc.bInterfaceNumber == ifnum)
 282			return config->interface[i];
 283
 284	return NULL;
 285}
 286EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 287
 288/**
 289 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 290 * @intf: the interface containing the altsetting in question
 291 * @altnum: the desired alternate setting number
 292 *
 293 * This searches the altsetting array of the specified interface for
 294 * an entry with the correct bAlternateSetting value.
 
 295 *
 296 * Note that altsettings need not be stored sequentially by number, so
 297 * it would be incorrect to assume that the first altsetting entry in
 298 * the array corresponds to altsetting zero.  This routine helps device
 299 * drivers avoid such mistakes.
 300 *
 301 * Don't call this function unless you are bound to the intf interface
 302 * or you have locked the device!
 303 *
 304 * Return: A pointer to the entry of the altsetting array of @intf that
 305 * has @altnum as the alternate setting number. %NULL if not found.
 306 */
 307struct usb_host_interface *usb_altnum_to_altsetting(
 308					const struct usb_interface *intf,
 309					unsigned int altnum)
 310{
 311	int i;
 312
 313	for (i = 0; i < intf->num_altsetting; i++) {
 314		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 315			return &intf->altsetting[i];
 316	}
 317	return NULL;
 318}
 319EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 320
 321struct find_interface_arg {
 322	int minor;
 323	struct device_driver *drv;
 324};
 325
 326static int __find_interface(struct device *dev, const void *data)
 327{
 328	const struct find_interface_arg *arg = data;
 329	struct usb_interface *intf;
 330
 331	if (!is_usb_interface(dev))
 332		return 0;
 333
 334	if (dev->driver != arg->drv)
 335		return 0;
 336	intf = to_usb_interface(dev);
 337	return intf->minor == arg->minor;
 338}
 339
 340/**
 341 * usb_find_interface - find usb_interface pointer for driver and device
 342 * @drv: the driver whose current configuration is considered
 343 * @minor: the minor number of the desired device
 344 *
 345 * This walks the bus device list and returns a pointer to the interface
 346 * with the matching minor and driver.  Note, this only works for devices
 347 * that share the USB major number.
 348 *
 349 * Return: A pointer to the interface with the matching major and @minor.
 350 */
 351struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 352{
 353	struct find_interface_arg argb;
 354	struct device *dev;
 355
 356	argb.minor = minor;
 357	argb.drv = &drv->drvwrap.driver;
 358
 359	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 360
 361	/* Drop reference count from bus_find_device */
 362	put_device(dev);
 363
 364	return dev ? to_usb_interface(dev) : NULL;
 365}
 366EXPORT_SYMBOL_GPL(usb_find_interface);
 367
 368struct each_dev_arg {
 369	void *data;
 370	int (*fn)(struct usb_device *, void *);
 371};
 372
 373static int __each_dev(struct device *dev, void *data)
 374{
 375	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 376
 377	/* There are struct usb_interface on the same bus, filter them out */
 378	if (!is_usb_device(dev))
 379		return 0;
 380
 381	return arg->fn(to_usb_device(dev), arg->data);
 382}
 383
 384/**
 385 * usb_for_each_dev - iterate over all USB devices in the system
 386 * @data: data pointer that will be handed to the callback function
 387 * @fn: callback function to be called for each USB device
 388 *
 389 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 390 * returns anything other than 0, we break the iteration prematurely and return
 391 * that value.
 392 */
 393int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 394{
 395	struct each_dev_arg arg = {data, fn};
 396
 397	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 398}
 399EXPORT_SYMBOL_GPL(usb_for_each_dev);
 400
 401struct each_hub_arg {
 402	void *data;
 403	int (*fn)(struct device *, void *);
 404};
 405
 406static int __each_hub(struct usb_device *hdev, void *data)
 407{
 408	struct each_hub_arg *arg = (struct each_hub_arg *)data;
 409	struct usb_hub *hub;
 410	int ret = 0;
 411	int i;
 412
 413	hub = usb_hub_to_struct_hub(hdev);
 414	if (!hub)
 415		return 0;
 416
 417	mutex_lock(&usb_port_peer_mutex);
 418
 419	for (i = 0; i < hdev->maxchild; i++) {
 420		ret = arg->fn(&hub->ports[i]->dev, arg->data);
 421		if (ret)
 422			break;
 423	}
 424
 425	mutex_unlock(&usb_port_peer_mutex);
 426
 427	return ret;
 428}
 429
 430/**
 431 * usb_for_each_port - interate over all USB ports in the system
 432 * @data: data pointer that will be handed to the callback function
 433 * @fn: callback function to be called for each USB port
 434 *
 435 * Iterate over all USB ports and call @fn for each, passing it @data. If it
 436 * returns anything other than 0, we break the iteration prematurely and return
 437 * that value.
 438 */
 439int usb_for_each_port(void *data, int (*fn)(struct device *, void *))
 440{
 441	struct each_hub_arg arg = {data, fn};
 442
 443	return usb_for_each_dev(&arg, __each_hub);
 444}
 445EXPORT_SYMBOL_GPL(usb_for_each_port);
 446
 447/**
 448 * usb_release_dev - free a usb device structure when all users of it are finished.
 449 * @dev: device that's been disconnected
 450 *
 451 * Will be called only by the device core when all users of this usb device are
 452 * done.
 453 */
 454static void usb_release_dev(struct device *dev)
 455{
 456	struct usb_device *udev;
 457	struct usb_hcd *hcd;
 458
 459	udev = to_usb_device(dev);
 460	hcd = bus_to_hcd(udev->bus);
 461
 462	usb_destroy_configuration(udev);
 463	usb_release_bos_descriptor(udev);
 464	of_node_put(dev->of_node);
 465	usb_put_hcd(hcd);
 466	kfree(udev->product);
 467	kfree(udev->manufacturer);
 468	kfree(udev->serial);
 469	kfree(udev);
 470}
 471
 
 472static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 473{
 474	struct usb_device *usb_dev;
 475
 476	usb_dev = to_usb_device(dev);
 477
 478	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 479		return -ENOMEM;
 480
 481	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 482		return -ENOMEM;
 483
 484	return 0;
 485}
 486
 
 
 
 
 
 
 
 
 487#ifdef	CONFIG_PM
 488
 489/* USB device Power-Management thunks.
 490 * There's no need to distinguish here between quiescing a USB device
 491 * and powering it down; the generic_suspend() routine takes care of
 492 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 493 * USB interfaces there's no difference at all.
 494 */
 495
 496static int usb_dev_prepare(struct device *dev)
 497{
 498	return 0;		/* Implement eventually? */
 499}
 500
 501static void usb_dev_complete(struct device *dev)
 502{
 503	/* Currently used only for rebinding interfaces */
 504	usb_resume_complete(dev);
 505}
 506
 507static int usb_dev_suspend(struct device *dev)
 508{
 509	return usb_suspend(dev, PMSG_SUSPEND);
 510}
 511
 512static int usb_dev_resume(struct device *dev)
 513{
 514	return usb_resume(dev, PMSG_RESUME);
 515}
 516
 517static int usb_dev_freeze(struct device *dev)
 518{
 519	return usb_suspend(dev, PMSG_FREEZE);
 520}
 521
 522static int usb_dev_thaw(struct device *dev)
 523{
 524	return usb_resume(dev, PMSG_THAW);
 525}
 526
 527static int usb_dev_poweroff(struct device *dev)
 528{
 529	return usb_suspend(dev, PMSG_HIBERNATE);
 530}
 531
 532static int usb_dev_restore(struct device *dev)
 533{
 534	return usb_resume(dev, PMSG_RESTORE);
 535}
 536
 537static const struct dev_pm_ops usb_device_pm_ops = {
 538	.prepare =	usb_dev_prepare,
 539	.complete =	usb_dev_complete,
 540	.suspend =	usb_dev_suspend,
 541	.resume =	usb_dev_resume,
 542	.freeze =	usb_dev_freeze,
 543	.thaw =		usb_dev_thaw,
 544	.poweroff =	usb_dev_poweroff,
 545	.restore =	usb_dev_restore,
 
 546	.runtime_suspend =	usb_runtime_suspend,
 547	.runtime_resume =	usb_runtime_resume,
 548	.runtime_idle =		usb_runtime_idle,
 
 549};
 550
 551#endif	/* CONFIG_PM */
 552
 553
 554static char *usb_devnode(struct device *dev,
 555			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 556{
 557	struct usb_device *usb_dev;
 558
 559	usb_dev = to_usb_device(dev);
 560	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 561			 usb_dev->bus->busnum, usb_dev->devnum);
 562}
 563
 564struct device_type usb_device_type = {
 565	.name =		"usb_device",
 566	.release =	usb_release_dev,
 567	.uevent =	usb_dev_uevent,
 568	.devnode = 	usb_devnode,
 569#ifdef CONFIG_PM
 570	.pm =		&usb_device_pm_ops,
 571#endif
 572};
 573
 574
 575/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 576static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 577{
 578	struct usb_hcd *hcd = bus_to_hcd(bus);
 579	return hcd->wireless;
 580}
 581
 582static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 583{
 584	struct usb_hub *hub;
 585
 586	if (!dev->parent)
 587		return true; /* Root hub always ok [and always wired] */
 588
 589	switch (hcd->dev_policy) {
 590	case USB_DEVICE_AUTHORIZE_NONE:
 591	default:
 592		return false;
 593
 594	case USB_DEVICE_AUTHORIZE_ALL:
 595		return true;
 596
 597	case USB_DEVICE_AUTHORIZE_INTERNAL:
 598		hub = usb_hub_to_struct_hub(dev->parent);
 599		return hub->ports[dev->portnum - 1]->connect_type ==
 600				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 601	}
 602}
 603
 604/**
 605 * usb_alloc_dev - usb device constructor (usbcore-internal)
 606 * @parent: hub to which device is connected; null to allocate a root hub
 607 * @bus: bus used to access the device
 608 * @port1: one-based index of port; ignored for root hubs
 609 *
 610 * Context: task context, might sleep.
 611 *
 612 * Only hub drivers (including virtual root hub drivers for host
 613 * controllers) should ever call this.
 614 *
 615 * This call may not be used in a non-sleeping context.
 616 *
 617 * Return: On success, a pointer to the allocated usb device. %NULL on
 618 * failure.
 619 */
 620struct usb_device *usb_alloc_dev(struct usb_device *parent,
 621				 struct usb_bus *bus, unsigned port1)
 622{
 623	struct usb_device *dev;
 624	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 625	unsigned root_hub = 0;
 626	unsigned raw_port = port1;
 627
 628	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 629	if (!dev)
 630		return NULL;
 631
 632	if (!usb_get_hcd(usb_hcd)) {
 633		kfree(dev);
 634		return NULL;
 635	}
 636	/* Root hubs aren't true devices, so don't allocate HCD resources */
 637	if (usb_hcd->driver->alloc_dev && parent &&
 638		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 639		usb_put_hcd(bus_to_hcd(bus));
 640		kfree(dev);
 641		return NULL;
 642	}
 643
 644	device_initialize(&dev->dev);
 645	dev->dev.bus = &usb_bus_type;
 646	dev->dev.type = &usb_device_type;
 647	dev->dev.groups = usb_device_groups;
 648	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 
 649	dev->state = USB_STATE_ATTACHED;
 650	dev->lpm_disable_count = 1;
 651	atomic_set(&dev->urbnum, 0);
 652
 653	INIT_LIST_HEAD(&dev->ep0.urb_list);
 654	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 655	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 656	/* ep0 maxpacket comes later, from device descriptor */
 657	usb_enable_endpoint(dev, &dev->ep0, false);
 658	dev->can_submit = 1;
 659
 660	/* Save readable and stable topology id, distinguishing devices
 661	 * by location for diagnostics, tools, driver model, etc.  The
 662	 * string is a path along hub ports, from the root.  Each device's
 663	 * dev->devpath will be stable until USB is re-cabled, and hubs
 664	 * are often labeled with these port numbers.  The name isn't
 665	 * as stable:  bus->busnum changes easily from modprobe order,
 666	 * cardbus or pci hotplugging, and so on.
 667	 */
 668	if (unlikely(!parent)) {
 669		dev->devpath[0] = '0';
 670		dev->route = 0;
 671
 672		dev->dev.parent = bus->controller;
 673		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 674		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 675		root_hub = 1;
 676	} else {
 677		/* match any labeling on the hubs; it's one-based */
 678		if (parent->devpath[0] == '0') {
 679			snprintf(dev->devpath, sizeof dev->devpath,
 680				"%d", port1);
 681			/* Root ports are not counted in route string */
 682			dev->route = 0;
 683		} else {
 684			snprintf(dev->devpath, sizeof dev->devpath,
 685				"%s.%d", parent->devpath, port1);
 686			/* Route string assumes hubs have less than 16 ports */
 687			if (port1 < 15)
 688				dev->route = parent->route +
 689					(port1 << ((parent->level - 1)*4));
 690			else
 691				dev->route = parent->route +
 692					(15 << ((parent->level - 1)*4));
 693		}
 694
 695		dev->dev.parent = &parent->dev;
 696		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 697
 698		if (!parent->parent) {
 699			/* device under root hub's port */
 700			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 701				port1);
 702		}
 703		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 704
 705		/* hub driver sets up TT records */
 706	}
 707
 708	dev->portnum = port1;
 709	dev->bus = bus;
 710	dev->parent = parent;
 711	INIT_LIST_HEAD(&dev->filelist);
 712
 713#ifdef	CONFIG_PM
 714	pm_runtime_set_autosuspend_delay(&dev->dev,
 715			usb_autosuspend_delay * 1000);
 716	dev->connect_time = jiffies;
 717	dev->active_duration = -jiffies;
 718#endif
 719
 720	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 721	if (!root_hub)
 722		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 723
 
 724	return dev;
 725}
 726EXPORT_SYMBOL_GPL(usb_alloc_dev);
 727
 728/**
 729 * usb_get_dev - increments the reference count of the usb device structure
 730 * @dev: the device being referenced
 731 *
 732 * Each live reference to a device should be refcounted.
 733 *
 734 * Drivers for USB interfaces should normally record such references in
 735 * their probe() methods, when they bind to an interface, and release
 736 * them by calling usb_put_dev(), in their disconnect() methods.
 737 *
 738 * Return: A pointer to the device with the incremented reference counter.
 739 */
 740struct usb_device *usb_get_dev(struct usb_device *dev)
 741{
 742	if (dev)
 743		get_device(&dev->dev);
 744	return dev;
 745}
 746EXPORT_SYMBOL_GPL(usb_get_dev);
 747
 748/**
 749 * usb_put_dev - release a use of the usb device structure
 750 * @dev: device that's been disconnected
 751 *
 752 * Must be called when a user of a device is finished with it.  When the last
 753 * user of the device calls this function, the memory of the device is freed.
 754 */
 755void usb_put_dev(struct usb_device *dev)
 756{
 757	if (dev)
 758		put_device(&dev->dev);
 759}
 760EXPORT_SYMBOL_GPL(usb_put_dev);
 761
 762/**
 763 * usb_get_intf - increments the reference count of the usb interface structure
 764 * @intf: the interface being referenced
 765 *
 766 * Each live reference to a interface must be refcounted.
 767 *
 768 * Drivers for USB interfaces should normally record such references in
 769 * their probe() methods, when they bind to an interface, and release
 770 * them by calling usb_put_intf(), in their disconnect() methods.
 771 *
 772 * Return: A pointer to the interface with the incremented reference counter.
 
 773 */
 774struct usb_interface *usb_get_intf(struct usb_interface *intf)
 775{
 776	if (intf)
 777		get_device(&intf->dev);
 778	return intf;
 779}
 780EXPORT_SYMBOL_GPL(usb_get_intf);
 781
 782/**
 783 * usb_put_intf - release a use of the usb interface structure
 784 * @intf: interface that's been decremented
 785 *
 786 * Must be called when a user of an interface is finished with it.  When the
 787 * last user of the interface calls this function, the memory of the interface
 788 * is freed.
 789 */
 790void usb_put_intf(struct usb_interface *intf)
 791{
 792	if (intf)
 793		put_device(&intf->dev);
 794}
 795EXPORT_SYMBOL_GPL(usb_put_intf);
 796
 797/**
 798 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
 799 * @intf: the usb interface
 800 *
 801 * While a USB device cannot perform DMA operations by itself, many USB
 802 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
 803 * for the given USB interface, if any. The returned device structure must be
 804 * released with put_device().
 805 *
 806 * See also usb_get_dma_device().
 807 *
 808 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
 809 *          exists.
 810 */
 811struct device *usb_intf_get_dma_device(struct usb_interface *intf)
 812{
 813	struct usb_device *udev = interface_to_usbdev(intf);
 814	struct device *dmadev;
 815
 816	if (!udev->bus)
 817		return NULL;
 818
 819	dmadev = get_device(udev->bus->sysdev);
 820	if (!dmadev || !dmadev->dma_mask) {
 821		put_device(dmadev);
 822		return NULL;
 823	}
 824
 825	return dmadev;
 826}
 827EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
 828
 829/*			USB device locking
 830 *
 831 * USB devices and interfaces are locked using the semaphore in their
 832 * embedded struct device.  The hub driver guarantees that whenever a
 833 * device is connected or disconnected, drivers are called with the
 834 * USB device locked as well as their particular interface.
 835 *
 836 * Complications arise when several devices are to be locked at the same
 837 * time.  Only hub-aware drivers that are part of usbcore ever have to
 838 * do this; nobody else needs to worry about it.  The rule for locking
 839 * is simple:
 840 *
 841 *	When locking both a device and its parent, always lock the
 842 *	the parent first.
 843 */
 844
 845/**
 846 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 847 * @udev: device that's being locked
 848 * @iface: interface bound to the driver making the request (optional)
 849 *
 850 * Attempts to acquire the device lock, but fails if the device is
 851 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 852 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 853 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 854 * disconnect; in some drivers (such as usb-storage) the disconnect()
 855 * or suspend() method will block waiting for a device reset to complete.
 856 *
 857 * Return: A negative error code for failure, otherwise 0.
 858 */
 859int usb_lock_device_for_reset(struct usb_device *udev,
 860			      const struct usb_interface *iface)
 861{
 862	unsigned long jiffies_expire = jiffies + HZ;
 863
 864	if (udev->state == USB_STATE_NOTATTACHED)
 865		return -ENODEV;
 866	if (udev->state == USB_STATE_SUSPENDED)
 867		return -EHOSTUNREACH;
 868	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 869			iface->condition == USB_INTERFACE_UNBOUND))
 870		return -EINTR;
 871
 872	while (!usb_trylock_device(udev)) {
 873
 874		/* If we can't acquire the lock after waiting one second,
 875		 * we're probably deadlocked */
 876		if (time_after(jiffies, jiffies_expire))
 877			return -EBUSY;
 878
 879		msleep(15);
 880		if (udev->state == USB_STATE_NOTATTACHED)
 881			return -ENODEV;
 882		if (udev->state == USB_STATE_SUSPENDED)
 883			return -EHOSTUNREACH;
 884		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 885				iface->condition == USB_INTERFACE_UNBOUND))
 886			return -EINTR;
 887	}
 888	return 0;
 889}
 890EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 891
 892/**
 893 * usb_get_current_frame_number - return current bus frame number
 894 * @dev: the device whose bus is being queried
 895 *
 896 * Return: The current frame number for the USB host controller used
 897 * with the given USB device. This can be used when scheduling
 898 * isochronous requests.
 899 *
 900 * Note: Different kinds of host controller have different "scheduling
 901 * horizons". While one type might support scheduling only 32 frames
 902 * into the future, others could support scheduling up to 1024 frames
 903 * into the future.
 904 *
 905 */
 906int usb_get_current_frame_number(struct usb_device *dev)
 907{
 908	return usb_hcd_get_frame_number(dev);
 909}
 910EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 911
 912/*-------------------------------------------------------------------*/
 913/*
 914 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 915 * extra field of the interface and endpoint descriptor structs.
 916 */
 917
 918int __usb_get_extra_descriptor(char *buffer, unsigned size,
 919			       unsigned char type, void **ptr, size_t minsize)
 920{
 921	struct usb_descriptor_header *header;
 922
 923	while (size >= sizeof(struct usb_descriptor_header)) {
 924		header = (struct usb_descriptor_header *)buffer;
 925
 926		if (header->bLength < 2 || header->bLength > size) {
 927			printk(KERN_ERR
 928				"%s: bogus descriptor, type %d length %d\n",
 929				usbcore_name,
 930				header->bDescriptorType,
 931				header->bLength);
 932			return -1;
 933		}
 934
 935		if (header->bDescriptorType == type && header->bLength >= minsize) {
 936			*ptr = header;
 937			return 0;
 938		}
 939
 940		buffer += header->bLength;
 941		size -= header->bLength;
 942	}
 943	return -1;
 944}
 945EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 946
 947/**
 948 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 949 * @dev: device the buffer will be used with
 950 * @size: requested buffer size
 951 * @mem_flags: affect whether allocation may block
 952 * @dma: used to return DMA address of buffer
 953 *
 954 * Return: Either null (indicating no buffer could be allocated), or the
 955 * cpu-space pointer to a buffer that may be used to perform DMA to the
 956 * specified device.  Such cpu-space buffers are returned along with the DMA
 957 * address (through the pointer provided).
 958 *
 959 * Note:
 960 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 961 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 962 * hardware during URB completion/resubmit.  The implementation varies between
 963 * platforms, depending on details of how DMA will work to this device.
 964 * Using these buffers also eliminates cacheline sharing problems on
 965 * architectures where CPU caches are not DMA-coherent.  On systems without
 966 * bus-snooping caches, these buffers are uncached.
 967 *
 968 * When the buffer is no longer used, free it with usb_free_coherent().
 969 */
 970void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 971			 dma_addr_t *dma)
 972{
 973	if (!dev || !dev->bus)
 974		return NULL;
 975	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 976}
 977EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 978
 979/**
 980 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 981 * @dev: device the buffer was used with
 982 * @size: requested buffer size
 983 * @addr: CPU address of buffer
 984 * @dma: DMA address of buffer
 985 *
 986 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 987 * been allocated using usb_alloc_coherent(), and the parameters must match
 988 * those provided in that allocation request.
 989 */
 990void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 991		       dma_addr_t dma)
 992{
 993	if (!dev || !dev->bus)
 994		return;
 995	if (!addr)
 996		return;
 997	hcd_buffer_free(dev->bus, size, addr, dma);
 998}
 999EXPORT_SYMBOL_GPL(usb_free_coherent);
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001/*
1002 * Notifications of device and interface registration
1003 */
1004static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1005		void *data)
1006{
1007	struct device *dev = data;
1008
1009	switch (action) {
1010	case BUS_NOTIFY_ADD_DEVICE:
1011		if (dev->type == &usb_device_type)
1012			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1013		else if (dev->type == &usb_if_device_type)
1014			usb_create_sysfs_intf_files(to_usb_interface(dev));
1015		break;
1016
1017	case BUS_NOTIFY_DEL_DEVICE:
1018		if (dev->type == &usb_device_type)
1019			usb_remove_sysfs_dev_files(to_usb_device(dev));
1020		else if (dev->type == &usb_if_device_type)
1021			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1022		break;
1023	}
1024	return 0;
1025}
1026
1027static struct notifier_block usb_bus_nb = {
1028	.notifier_call = usb_bus_notify,
1029};
1030
1031static void usb_debugfs_init(void)
 
 
 
 
 
1032{
1033	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1034			    &usbfs_devices_fops);
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037static void usb_debugfs_cleanup(void)
1038{
1039	debugfs_remove(debugfs_lookup("devices", usb_debug_root));
 
1040}
1041
1042/*
1043 * Init
1044 */
1045static int __init usb_init(void)
1046{
1047	int retval;
1048	if (usb_disabled()) {
1049		pr_info("%s: USB support disabled\n", usbcore_name);
1050		return 0;
1051	}
1052	usb_init_pool_max();
1053
1054	usb_debugfs_init();
 
 
1055
1056	usb_acpi_register();
1057	retval = bus_register(&usb_bus_type);
1058	if (retval)
1059		goto bus_register_failed;
1060	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1061	if (retval)
1062		goto bus_notifier_failed;
1063	retval = usb_major_init();
1064	if (retval)
1065		goto major_init_failed;
1066	retval = usb_register(&usbfs_driver);
1067	if (retval)
1068		goto driver_register_failed;
1069	retval = usb_devio_init();
1070	if (retval)
1071		goto usb_devio_init_failed;
 
 
 
1072	retval = usb_hub_init();
1073	if (retval)
1074		goto hub_init_failed;
1075	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1076	if (!retval)
1077		goto out;
1078
1079	usb_hub_cleanup();
1080hub_init_failed:
 
 
1081	usb_devio_cleanup();
1082usb_devio_init_failed:
1083	usb_deregister(&usbfs_driver);
1084driver_register_failed:
1085	usb_major_cleanup();
1086major_init_failed:
1087	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1088bus_notifier_failed:
1089	bus_unregister(&usb_bus_type);
1090bus_register_failed:
1091	usb_acpi_unregister();
1092	usb_debugfs_cleanup();
1093out:
1094	return retval;
1095}
1096
1097/*
1098 * Cleanup
1099 */
1100static void __exit usb_exit(void)
1101{
1102	/* This will matter if shutdown/reboot does exitcalls. */
1103	if (usb_disabled())
1104		return;
1105
1106	usb_release_quirk_list();
1107	usb_deregister_device_driver(&usb_generic_driver);
1108	usb_major_cleanup();
 
1109	usb_deregister(&usbfs_driver);
1110	usb_devio_cleanup();
1111	usb_hub_cleanup();
1112	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1113	bus_unregister(&usb_bus_type);
1114	usb_acpi_unregister();
1115	usb_debugfs_cleanup();
1116	idr_destroy(&usb_bus_idr);
1117}
1118
1119subsys_initcall(usb_init);
1120module_exit(usb_exit);
1121MODULE_LICENSE("GPL");