Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * devfreq_cooling: Thermal cooling device implementation for devices using
  4 *                  devfreq
  5 *
  6 * Copyright (C) 2014-2015 ARM Limited
  7 *
  8 * TODO:
  9 *    - If OPPs are added or removed after devfreq cooling has
 10 *      registered, the devfreq cooling won't react to it.
 11 */
 12
 13#include <linux/devfreq.h>
 14#include <linux/devfreq_cooling.h>
 15#include <linux/energy_model.h>
 16#include <linux/export.h>
 17#include <linux/slab.h>
 18#include <linux/pm_opp.h>
 19#include <linux/pm_qos.h>
 20#include <linux/thermal.h>
 21
 22#include <trace/events/thermal.h>
 23
 24#define HZ_PER_KHZ		1000
 25#define SCALE_ERROR_MITIGATION	100
 26
 27/**
 28 * struct devfreq_cooling_device - Devfreq cooling device
 29 *		devfreq_cooling_device registered.
 30 * @cdev:	Pointer to associated thermal cooling device.
 31 * @devfreq:	Pointer to associated devfreq device.
 32 * @cooling_state:	Current cooling state.
 33 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 34 *		order.  You can index the table by cooling device state
 35 * @max_state:	It is the last index, that is, one less than the number of the
 36 *		OPPs
 37 * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
 38 * @res_util:	Resource utilization scaling factor for the power.
 39 *		It is multiplied by 100 to minimize the error. It is used
 40 *		for estimation of the power budget instead of using
 41 *		'utilization' (which is	'busy_time' / 'total_time').
 42 *		The 'res_util' range is from 100 to power * 100	for the
 43 *		corresponding 'state'.
 44 * @capped_state:	index to cooling state with in dynamic power budget
 45 * @req_max_freq:	PM QoS request for limiting the maximum frequency
 46 *			of the devfreq device.
 47 * @em_pd:		Energy Model for the associated Devfreq device
 48 */
 49struct devfreq_cooling_device {
 50	struct thermal_cooling_device *cdev;
 51	struct devfreq *devfreq;
 52	unsigned long cooling_state;
 53	u32 *freq_table;
 54	size_t max_state;
 55	struct devfreq_cooling_power *power_ops;
 56	u32 res_util;
 57	int capped_state;
 58	struct dev_pm_qos_request req_max_freq;
 59	struct em_perf_domain *em_pd;
 60};
 61
 62static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
 63					 unsigned long *state)
 64{
 65	struct devfreq_cooling_device *dfc = cdev->devdata;
 66
 67	*state = dfc->max_state;
 68
 69	return 0;
 70}
 71
 72static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
 73					 unsigned long *state)
 74{
 75	struct devfreq_cooling_device *dfc = cdev->devdata;
 76
 77	*state = dfc->cooling_state;
 78
 79	return 0;
 80}
 81
 82static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
 83					 unsigned long state)
 84{
 85	struct devfreq_cooling_device *dfc = cdev->devdata;
 86	struct devfreq *df = dfc->devfreq;
 87	struct device *dev = df->dev.parent;
 88	unsigned long freq;
 89	int perf_idx;
 90
 91	if (state == dfc->cooling_state)
 92		return 0;
 93
 94	dev_dbg(dev, "Setting cooling state %lu\n", state);
 95
 96	if (state > dfc->max_state)
 97		return -EINVAL;
 98
 99	if (dfc->em_pd) {
100		perf_idx = dfc->max_state - state;
101		freq = dfc->em_pd->table[perf_idx].frequency * 1000;
102	} else {
103		freq = dfc->freq_table[state];
104	}
105
106	dev_pm_qos_update_request(&dfc->req_max_freq,
107				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
108
109	dfc->cooling_state = state;
110
111	return 0;
112}
113
114/**
115 * get_perf_idx() - get the performance index corresponding to a frequency
116 * @em_pd:	Pointer to device's Energy Model
117 * @freq:	frequency in kHz
118 *
119 * Return: the performance index associated with the @freq, or
120 * -EINVAL if it wasn't found.
121 */
122static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
123{
124	int i;
125
126	for (i = 0; i < em_pd->nr_perf_states; i++) {
127		if (em_pd->table[i].frequency == freq)
128			return i;
129	}
130
131	return -EINVAL;
132}
133
134static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
135{
136	struct device *dev = df->dev.parent;
137	unsigned long voltage;
138	struct dev_pm_opp *opp;
139
140	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
141	if (PTR_ERR(opp) == -ERANGE)
142		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
143
144	if (IS_ERR(opp)) {
145		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
146				    freq, PTR_ERR(opp));
147		return 0;
148	}
149
150	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
151	dev_pm_opp_put(opp);
152
153	if (voltage == 0) {
154		dev_err_ratelimited(dev,
155				    "Failed to get voltage for frequency %lu\n",
156				    freq);
157	}
158
159	return voltage;
160}
161
162static void _normalize_load(struct devfreq_dev_status *status)
163{
164	if (status->total_time > 0xfffff) {
165		status->total_time >>= 10;
166		status->busy_time >>= 10;
167	}
168
169	status->busy_time <<= 10;
170	status->busy_time /= status->total_time ? : 1;
171
172	status->busy_time = status->busy_time ? : 1;
173	status->total_time = 1024;
174}
175
176static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
177					       u32 *power)
178{
179	struct devfreq_cooling_device *dfc = cdev->devdata;
180	struct devfreq *df = dfc->devfreq;
181	struct devfreq_dev_status status;
182	unsigned long state;
183	unsigned long freq;
184	unsigned long voltage;
185	int res, perf_idx;
186
187	mutex_lock(&df->lock);
188	status = df->last_status;
189	mutex_unlock(&df->lock);
190
191	freq = status.current_frequency;
192
193	if (dfc->power_ops && dfc->power_ops->get_real_power) {
194		voltage = get_voltage(df, freq);
195		if (voltage == 0) {
196			res = -EINVAL;
197			goto fail;
198		}
199
200		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
201		if (!res) {
202			state = dfc->capped_state;
203			dfc->res_util = dfc->em_pd->table[state].power;
204			dfc->res_util *= SCALE_ERROR_MITIGATION;
205
206			if (*power > 1)
207				dfc->res_util /= *power;
208		} else {
209			goto fail;
210		}
211	} else {
212		/* Energy Model frequencies are in kHz */
213		perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
214		if (perf_idx < 0) {
215			res = -EAGAIN;
216			goto fail;
217		}
218
219		_normalize_load(&status);
220
221		/* Scale power for utilization */
222		*power = dfc->em_pd->table[perf_idx].power;
223		*power *= status.busy_time;
224		*power >>= 10;
225	}
226
227	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
228
229	return 0;
230fail:
231	/* It is safe to set max in this case */
232	dfc->res_util = SCALE_ERROR_MITIGATION;
233	return res;
234}
235
236static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
237				       unsigned long state, u32 *power)
238{
239	struct devfreq_cooling_device *dfc = cdev->devdata;
240	int perf_idx;
241
242	if (state > dfc->max_state)
243		return -EINVAL;
244
245	perf_idx = dfc->max_state - state;
246	*power = dfc->em_pd->table[perf_idx].power;
247
248	return 0;
249}
250
251static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
252				       u32 power, unsigned long *state)
253{
254	struct devfreq_cooling_device *dfc = cdev->devdata;
255	struct devfreq *df = dfc->devfreq;
256	struct devfreq_dev_status status;
257	unsigned long freq;
258	s32 est_power;
259	int i;
260
261	mutex_lock(&df->lock);
262	status = df->last_status;
263	mutex_unlock(&df->lock);
264
265	freq = status.current_frequency;
266
267	if (dfc->power_ops && dfc->power_ops->get_real_power) {
268		/* Scale for resource utilization */
269		est_power = power * dfc->res_util;
270		est_power /= SCALE_ERROR_MITIGATION;
271	} else {
272		/* Scale dynamic power for utilization */
273		_normalize_load(&status);
274		est_power = power << 10;
275		est_power /= status.busy_time;
276	}
277
278	/*
279	 * Find the first cooling state that is within the power
280	 * budget. The EM power table is sorted ascending.
281	 */
282	for (i = dfc->max_state; i > 0; i--)
283		if (est_power >= dfc->em_pd->table[i].power)
284			break;
285
286	*state = dfc->max_state - i;
287	dfc->capped_state = *state;
288
289	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
290	return 0;
291}
292
293static struct thermal_cooling_device_ops devfreq_cooling_ops = {
294	.get_max_state = devfreq_cooling_get_max_state,
295	.get_cur_state = devfreq_cooling_get_cur_state,
296	.set_cur_state = devfreq_cooling_set_cur_state,
297};
298
299/**
300 * devfreq_cooling_gen_tables() - Generate frequency table.
301 * @dfc:	Pointer to devfreq cooling device.
302 * @num_opps:	Number of OPPs
303 *
304 * Generate frequency table which holds the frequencies in descending
305 * order. That way its indexed by cooling device state. This is for
306 * compatibility with drivers which do not register Energy Model.
307 *
308 * Return: 0 on success, negative error code on failure.
309 */
310static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
311				      int num_opps)
312{
313	struct devfreq *df = dfc->devfreq;
314	struct device *dev = df->dev.parent;
315	unsigned long freq;
316	int i;
317
318	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
319			     GFP_KERNEL);
320	if (!dfc->freq_table)
321		return -ENOMEM;
322
323	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
324		struct dev_pm_opp *opp;
325
326		opp = dev_pm_opp_find_freq_floor(dev, &freq);
327		if (IS_ERR(opp)) {
328			kfree(dfc->freq_table);
329			return PTR_ERR(opp);
330		}
331
332		dev_pm_opp_put(opp);
333		dfc->freq_table[i] = freq;
334	}
335
336	return 0;
337}
338
339/**
340 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
341 *                                      with OF and power information.
342 * @np:	Pointer to OF device_node.
343 * @df:	Pointer to devfreq device.
344 * @dfc_power:	Pointer to devfreq_cooling_power.
345 *
346 * Register a devfreq cooling device.  The available OPPs must be
347 * registered on the device.
348 *
349 * If @dfc_power is provided, the cooling device is registered with the
350 * power extensions.  For the power extensions to work correctly,
351 * devfreq should use the simple_ondemand governor, other governors
352 * are not currently supported.
353 */
354struct thermal_cooling_device *
355of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
356				  struct devfreq_cooling_power *dfc_power)
357{
358	struct thermal_cooling_device *cdev;
359	struct device *dev = df->dev.parent;
360	struct devfreq_cooling_device *dfc;
361	char *name;
362	int err, num_opps;
363
364	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
365	if (!dfc)
366		return ERR_PTR(-ENOMEM);
367
368	dfc->devfreq = df;
369
370	dfc->em_pd = em_pd_get(dev);
371	if (dfc->em_pd) {
372		devfreq_cooling_ops.get_requested_power =
373			devfreq_cooling_get_requested_power;
374		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
375		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
376
377		dfc->power_ops = dfc_power;
378
379		num_opps = em_pd_nr_perf_states(dfc->em_pd);
380	} else {
381		/* Backward compatibility for drivers which do not use IPA */
382		dev_dbg(dev, "missing EM for cooling device\n");
383
384		num_opps = dev_pm_opp_get_opp_count(dev);
385
386		err = devfreq_cooling_gen_tables(dfc, num_opps);
387		if (err)
388			goto free_dfc;
389	}
390
391	if (num_opps <= 0) {
392		err = -EINVAL;
393		goto free_dfc;
394	}
395
396	/* max_state is an index, not a counter */
397	dfc->max_state = num_opps - 1;
398
399	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
400				     DEV_PM_QOS_MAX_FREQUENCY,
401				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
402	if (err < 0)
403		goto free_table;
404
405	err = -ENOMEM;
406	name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
407	if (!name)
408		goto remove_qos_req;
409
410	cdev = thermal_of_cooling_device_register(np, name, dfc,
411						  &devfreq_cooling_ops);
412	kfree(name);
413
414	if (IS_ERR(cdev)) {
415		err = PTR_ERR(cdev);
416		dev_err(dev,
417			"Failed to register devfreq cooling device (%d)\n",
418			err);
419		goto remove_qos_req;
420	}
421
422	dfc->cdev = cdev;
423
424	return cdev;
425
426remove_qos_req:
427	dev_pm_qos_remove_request(&dfc->req_max_freq);
428free_table:
429	kfree(dfc->freq_table);
430free_dfc:
431	kfree(dfc);
432
433	return ERR_PTR(err);
434}
435EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
436
437/**
438 * of_devfreq_cooling_register() - Register devfreq cooling device,
439 *                                with OF information.
440 * @np: Pointer to OF device_node.
441 * @df: Pointer to devfreq device.
442 */
443struct thermal_cooling_device *
444of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
445{
446	return of_devfreq_cooling_register_power(np, df, NULL);
447}
448EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
449
450/**
451 * devfreq_cooling_register() - Register devfreq cooling device.
452 * @df: Pointer to devfreq device.
453 */
454struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
455{
456	return of_devfreq_cooling_register(NULL, df);
457}
458EXPORT_SYMBOL_GPL(devfreq_cooling_register);
459
460/**
461 * devfreq_cooling_em_register() - Register devfreq cooling device with
462 *		power information and automatically register Energy Model (EM)
463 * @df:		Pointer to devfreq device.
464 * @dfc_power:	Pointer to devfreq_cooling_power.
465 *
466 * Register a devfreq cooling device and automatically register EM. The
467 * available OPPs must be registered for the device.
468 *
469 * If @dfc_power is provided, the cooling device is registered with the
470 * power extensions. It is using the simple Energy Model which requires
471 * "dynamic-power-coefficient" a devicetree property. To not break drivers
472 * which miss that DT property, the function won't bail out when the EM
473 * registration failed. The cooling device will be registered if everything
474 * else is OK.
475 */
476struct thermal_cooling_device *
477devfreq_cooling_em_register(struct devfreq *df,
478			    struct devfreq_cooling_power *dfc_power)
479{
480	struct thermal_cooling_device *cdev;
481	struct device *dev;
482	int ret;
483
484	if (IS_ERR_OR_NULL(df))
485		return ERR_PTR(-EINVAL);
486
487	dev = df->dev.parent;
488
489	ret = dev_pm_opp_of_register_em(dev, NULL);
490	if (ret)
491		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
492			ret);
493
494	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
495
496	if (IS_ERR_OR_NULL(cdev))
497		em_dev_unregister_perf_domain(dev);
498
499	return cdev;
500}
501EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
502
503/**
504 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
505 * @cdev: Pointer to devfreq cooling device to unregister.
506 *
507 * Unregisters devfreq cooling device and related Energy Model if it was
508 * present.
509 */
510void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
511{
512	struct devfreq_cooling_device *dfc;
513	struct device *dev;
514
515	if (IS_ERR_OR_NULL(cdev))
516		return;
517
518	dfc = cdev->devdata;
519	dev = dfc->devfreq->dev.parent;
520
521	thermal_cooling_device_unregister(dfc->cdev);
522	dev_pm_qos_remove_request(&dfc->req_max_freq);
523
524	em_dev_unregister_perf_domain(dev);
525
526	kfree(dfc->freq_table);
527	kfree(dfc);
528}
529EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);