Loading...
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/spinlock.h>
23#include <linux/slab.h>
24#include <linux/proc_fs.h>
25
26struct device_node *allnodes;
27struct device_node *of_chosen;
28
29/* use when traversing tree through the allnext, child, sibling,
30 * or parent members of struct device_node.
31 */
32DEFINE_RWLOCK(devtree_lock);
33
34int of_n_addr_cells(struct device_node *np)
35{
36 const __be32 *ip;
37
38 do {
39 if (np->parent)
40 np = np->parent;
41 ip = of_get_property(np, "#address-cells", NULL);
42 if (ip)
43 return be32_to_cpup(ip);
44 } while (np->parent);
45 /* No #address-cells property for the root node */
46 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
47}
48EXPORT_SYMBOL(of_n_addr_cells);
49
50int of_n_size_cells(struct device_node *np)
51{
52 const __be32 *ip;
53
54 do {
55 if (np->parent)
56 np = np->parent;
57 ip = of_get_property(np, "#size-cells", NULL);
58 if (ip)
59 return be32_to_cpup(ip);
60 } while (np->parent);
61 /* No #size-cells property for the root node */
62 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
63}
64EXPORT_SYMBOL(of_n_size_cells);
65
66#if !defined(CONFIG_SPARC) /* SPARC doesn't do ref counting (yet) */
67/**
68 * of_node_get - Increment refcount of a node
69 * @node: Node to inc refcount, NULL is supported to
70 * simplify writing of callers
71 *
72 * Returns node.
73 */
74struct device_node *of_node_get(struct device_node *node)
75{
76 if (node)
77 kref_get(&node->kref);
78 return node;
79}
80EXPORT_SYMBOL(of_node_get);
81
82static inline struct device_node *kref_to_device_node(struct kref *kref)
83{
84 return container_of(kref, struct device_node, kref);
85}
86
87/**
88 * of_node_release - release a dynamically allocated node
89 * @kref: kref element of the node to be released
90 *
91 * In of_node_put() this function is passed to kref_put()
92 * as the destructor.
93 */
94static void of_node_release(struct kref *kref)
95{
96 struct device_node *node = kref_to_device_node(kref);
97 struct property *prop = node->properties;
98
99 /* We should never be releasing nodes that haven't been detached. */
100 if (!of_node_check_flag(node, OF_DETACHED)) {
101 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
102 dump_stack();
103 kref_init(&node->kref);
104 return;
105 }
106
107 if (!of_node_check_flag(node, OF_DYNAMIC))
108 return;
109
110 while (prop) {
111 struct property *next = prop->next;
112 kfree(prop->name);
113 kfree(prop->value);
114 kfree(prop);
115 prop = next;
116
117 if (!prop) {
118 prop = node->deadprops;
119 node->deadprops = NULL;
120 }
121 }
122 kfree(node->full_name);
123 kfree(node->data);
124 kfree(node);
125}
126
127/**
128 * of_node_put - Decrement refcount of a node
129 * @node: Node to dec refcount, NULL is supported to
130 * simplify writing of callers
131 *
132 */
133void of_node_put(struct device_node *node)
134{
135 if (node)
136 kref_put(&node->kref, of_node_release);
137}
138EXPORT_SYMBOL(of_node_put);
139#endif /* !CONFIG_SPARC */
140
141struct property *of_find_property(const struct device_node *np,
142 const char *name,
143 int *lenp)
144{
145 struct property *pp;
146
147 if (!np)
148 return NULL;
149
150 read_lock(&devtree_lock);
151 for (pp = np->properties; pp != 0; pp = pp->next) {
152 if (of_prop_cmp(pp->name, name) == 0) {
153 if (lenp != 0)
154 *lenp = pp->length;
155 break;
156 }
157 }
158 read_unlock(&devtree_lock);
159
160 return pp;
161}
162EXPORT_SYMBOL(of_find_property);
163
164/**
165 * of_find_all_nodes - Get next node in global list
166 * @prev: Previous node or NULL to start iteration
167 * of_node_put() will be called on it
168 *
169 * Returns a node pointer with refcount incremented, use
170 * of_node_put() on it when done.
171 */
172struct device_node *of_find_all_nodes(struct device_node *prev)
173{
174 struct device_node *np;
175
176 read_lock(&devtree_lock);
177 np = prev ? prev->allnext : allnodes;
178 for (; np != NULL; np = np->allnext)
179 if (of_node_get(np))
180 break;
181 of_node_put(prev);
182 read_unlock(&devtree_lock);
183 return np;
184}
185EXPORT_SYMBOL(of_find_all_nodes);
186
187/*
188 * Find a property with a given name for a given node
189 * and return the value.
190 */
191const void *of_get_property(const struct device_node *np, const char *name,
192 int *lenp)
193{
194 struct property *pp = of_find_property(np, name, lenp);
195
196 return pp ? pp->value : NULL;
197}
198EXPORT_SYMBOL(of_get_property);
199
200/** Checks if the given "compat" string matches one of the strings in
201 * the device's "compatible" property
202 */
203int of_device_is_compatible(const struct device_node *device,
204 const char *compat)
205{
206 const char* cp;
207 int cplen, l;
208
209 cp = of_get_property(device, "compatible", &cplen);
210 if (cp == NULL)
211 return 0;
212 while (cplen > 0) {
213 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
214 return 1;
215 l = strlen(cp) + 1;
216 cp += l;
217 cplen -= l;
218 }
219
220 return 0;
221}
222EXPORT_SYMBOL(of_device_is_compatible);
223
224/**
225 * of_machine_is_compatible - Test root of device tree for a given compatible value
226 * @compat: compatible string to look for in root node's compatible property.
227 *
228 * Returns true if the root node has the given value in its
229 * compatible property.
230 */
231int of_machine_is_compatible(const char *compat)
232{
233 struct device_node *root;
234 int rc = 0;
235
236 root = of_find_node_by_path("/");
237 if (root) {
238 rc = of_device_is_compatible(root, compat);
239 of_node_put(root);
240 }
241 return rc;
242}
243EXPORT_SYMBOL(of_machine_is_compatible);
244
245/**
246 * of_device_is_available - check if a device is available for use
247 *
248 * @device: Node to check for availability
249 *
250 * Returns 1 if the status property is absent or set to "okay" or "ok",
251 * 0 otherwise
252 */
253int of_device_is_available(const struct device_node *device)
254{
255 const char *status;
256 int statlen;
257
258 status = of_get_property(device, "status", &statlen);
259 if (status == NULL)
260 return 1;
261
262 if (statlen > 0) {
263 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
264 return 1;
265 }
266
267 return 0;
268}
269EXPORT_SYMBOL(of_device_is_available);
270
271/**
272 * of_get_parent - Get a node's parent if any
273 * @node: Node to get parent
274 *
275 * Returns a node pointer with refcount incremented, use
276 * of_node_put() on it when done.
277 */
278struct device_node *of_get_parent(const struct device_node *node)
279{
280 struct device_node *np;
281
282 if (!node)
283 return NULL;
284
285 read_lock(&devtree_lock);
286 np = of_node_get(node->parent);
287 read_unlock(&devtree_lock);
288 return np;
289}
290EXPORT_SYMBOL(of_get_parent);
291
292/**
293 * of_get_next_parent - Iterate to a node's parent
294 * @node: Node to get parent of
295 *
296 * This is like of_get_parent() except that it drops the
297 * refcount on the passed node, making it suitable for iterating
298 * through a node's parents.
299 *
300 * Returns a node pointer with refcount incremented, use
301 * of_node_put() on it when done.
302 */
303struct device_node *of_get_next_parent(struct device_node *node)
304{
305 struct device_node *parent;
306
307 if (!node)
308 return NULL;
309
310 read_lock(&devtree_lock);
311 parent = of_node_get(node->parent);
312 of_node_put(node);
313 read_unlock(&devtree_lock);
314 return parent;
315}
316
317/**
318 * of_get_next_child - Iterate a node childs
319 * @node: parent node
320 * @prev: previous child of the parent node, or NULL to get first
321 *
322 * Returns a node pointer with refcount incremented, use
323 * of_node_put() on it when done.
324 */
325struct device_node *of_get_next_child(const struct device_node *node,
326 struct device_node *prev)
327{
328 struct device_node *next;
329
330 read_lock(&devtree_lock);
331 next = prev ? prev->sibling : node->child;
332 for (; next; next = next->sibling)
333 if (of_node_get(next))
334 break;
335 of_node_put(prev);
336 read_unlock(&devtree_lock);
337 return next;
338}
339EXPORT_SYMBOL(of_get_next_child);
340
341/**
342 * of_find_node_by_path - Find a node matching a full OF path
343 * @path: The full path to match
344 *
345 * Returns a node pointer with refcount incremented, use
346 * of_node_put() on it when done.
347 */
348struct device_node *of_find_node_by_path(const char *path)
349{
350 struct device_node *np = allnodes;
351
352 read_lock(&devtree_lock);
353 for (; np; np = np->allnext) {
354 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
355 && of_node_get(np))
356 break;
357 }
358 read_unlock(&devtree_lock);
359 return np;
360}
361EXPORT_SYMBOL(of_find_node_by_path);
362
363/**
364 * of_find_node_by_name - Find a node by its "name" property
365 * @from: The node to start searching from or NULL, the node
366 * you pass will not be searched, only the next one
367 * will; typically, you pass what the previous call
368 * returned. of_node_put() will be called on it
369 * @name: The name string to match against
370 *
371 * Returns a node pointer with refcount incremented, use
372 * of_node_put() on it when done.
373 */
374struct device_node *of_find_node_by_name(struct device_node *from,
375 const char *name)
376{
377 struct device_node *np;
378
379 read_lock(&devtree_lock);
380 np = from ? from->allnext : allnodes;
381 for (; np; np = np->allnext)
382 if (np->name && (of_node_cmp(np->name, name) == 0)
383 && of_node_get(np))
384 break;
385 of_node_put(from);
386 read_unlock(&devtree_lock);
387 return np;
388}
389EXPORT_SYMBOL(of_find_node_by_name);
390
391/**
392 * of_find_node_by_type - Find a node by its "device_type" property
393 * @from: The node to start searching from, or NULL to start searching
394 * the entire device tree. The node you pass will not be
395 * searched, only the next one will; typically, you pass
396 * what the previous call returned. of_node_put() will be
397 * called on from for you.
398 * @type: The type string to match against
399 *
400 * Returns a node pointer with refcount incremented, use
401 * of_node_put() on it when done.
402 */
403struct device_node *of_find_node_by_type(struct device_node *from,
404 const char *type)
405{
406 struct device_node *np;
407
408 read_lock(&devtree_lock);
409 np = from ? from->allnext : allnodes;
410 for (; np; np = np->allnext)
411 if (np->type && (of_node_cmp(np->type, type) == 0)
412 && of_node_get(np))
413 break;
414 of_node_put(from);
415 read_unlock(&devtree_lock);
416 return np;
417}
418EXPORT_SYMBOL(of_find_node_by_type);
419
420/**
421 * of_find_compatible_node - Find a node based on type and one of the
422 * tokens in its "compatible" property
423 * @from: The node to start searching from or NULL, the node
424 * you pass will not be searched, only the next one
425 * will; typically, you pass what the previous call
426 * returned. of_node_put() will be called on it
427 * @type: The type string to match "device_type" or NULL to ignore
428 * @compatible: The string to match to one of the tokens in the device
429 * "compatible" list.
430 *
431 * Returns a node pointer with refcount incremented, use
432 * of_node_put() on it when done.
433 */
434struct device_node *of_find_compatible_node(struct device_node *from,
435 const char *type, const char *compatible)
436{
437 struct device_node *np;
438
439 read_lock(&devtree_lock);
440 np = from ? from->allnext : allnodes;
441 for (; np; np = np->allnext) {
442 if (type
443 && !(np->type && (of_node_cmp(np->type, type) == 0)))
444 continue;
445 if (of_device_is_compatible(np, compatible) && of_node_get(np))
446 break;
447 }
448 of_node_put(from);
449 read_unlock(&devtree_lock);
450 return np;
451}
452EXPORT_SYMBOL(of_find_compatible_node);
453
454/**
455 * of_find_node_with_property - Find a node which has a property with
456 * the given name.
457 * @from: The node to start searching from or NULL, the node
458 * you pass will not be searched, only the next one
459 * will; typically, you pass what the previous call
460 * returned. of_node_put() will be called on it
461 * @prop_name: The name of the property to look for.
462 *
463 * Returns a node pointer with refcount incremented, use
464 * of_node_put() on it when done.
465 */
466struct device_node *of_find_node_with_property(struct device_node *from,
467 const char *prop_name)
468{
469 struct device_node *np;
470 struct property *pp;
471
472 read_lock(&devtree_lock);
473 np = from ? from->allnext : allnodes;
474 for (; np; np = np->allnext) {
475 for (pp = np->properties; pp != 0; pp = pp->next) {
476 if (of_prop_cmp(pp->name, prop_name) == 0) {
477 of_node_get(np);
478 goto out;
479 }
480 }
481 }
482out:
483 of_node_put(from);
484 read_unlock(&devtree_lock);
485 return np;
486}
487EXPORT_SYMBOL(of_find_node_with_property);
488
489/**
490 * of_match_node - Tell if an device_node has a matching of_match structure
491 * @matches: array of of device match structures to search in
492 * @node: the of device structure to match against
493 *
494 * Low level utility function used by device matching.
495 */
496const struct of_device_id *of_match_node(const struct of_device_id *matches,
497 const struct device_node *node)
498{
499 if (!matches)
500 return NULL;
501
502 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
503 int match = 1;
504 if (matches->name[0])
505 match &= node->name
506 && !strcmp(matches->name, node->name);
507 if (matches->type[0])
508 match &= node->type
509 && !strcmp(matches->type, node->type);
510 if (matches->compatible[0])
511 match &= of_device_is_compatible(node,
512 matches->compatible);
513 if (match)
514 return matches;
515 matches++;
516 }
517 return NULL;
518}
519EXPORT_SYMBOL(of_match_node);
520
521/**
522 * of_find_matching_node - Find a node based on an of_device_id match
523 * table.
524 * @from: The node to start searching from or NULL, the node
525 * you pass will not be searched, only the next one
526 * will; typically, you pass what the previous call
527 * returned. of_node_put() will be called on it
528 * @matches: array of of device match structures to search in
529 *
530 * Returns a node pointer with refcount incremented, use
531 * of_node_put() on it when done.
532 */
533struct device_node *of_find_matching_node(struct device_node *from,
534 const struct of_device_id *matches)
535{
536 struct device_node *np;
537
538 read_lock(&devtree_lock);
539 np = from ? from->allnext : allnodes;
540 for (; np; np = np->allnext) {
541 if (of_match_node(matches, np) && of_node_get(np))
542 break;
543 }
544 of_node_put(from);
545 read_unlock(&devtree_lock);
546 return np;
547}
548EXPORT_SYMBOL(of_find_matching_node);
549
550/**
551 * of_modalias_node - Lookup appropriate modalias for a device node
552 * @node: pointer to a device tree node
553 * @modalias: Pointer to buffer that modalias value will be copied into
554 * @len: Length of modalias value
555 *
556 * Based on the value of the compatible property, this routine will attempt
557 * to choose an appropriate modalias value for a particular device tree node.
558 * It does this by stripping the manufacturer prefix (as delimited by a ',')
559 * from the first entry in the compatible list property.
560 *
561 * This routine returns 0 on success, <0 on failure.
562 */
563int of_modalias_node(struct device_node *node, char *modalias, int len)
564{
565 const char *compatible, *p;
566 int cplen;
567
568 compatible = of_get_property(node, "compatible", &cplen);
569 if (!compatible || strlen(compatible) > cplen)
570 return -ENODEV;
571 p = strchr(compatible, ',');
572 strlcpy(modalias, p ? p + 1 : compatible, len);
573 return 0;
574}
575EXPORT_SYMBOL_GPL(of_modalias_node);
576
577/**
578 * of_find_node_by_phandle - Find a node given a phandle
579 * @handle: phandle of the node to find
580 *
581 * Returns a node pointer with refcount incremented, use
582 * of_node_put() on it when done.
583 */
584struct device_node *of_find_node_by_phandle(phandle handle)
585{
586 struct device_node *np;
587
588 read_lock(&devtree_lock);
589 for (np = allnodes; np; np = np->allnext)
590 if (np->phandle == handle)
591 break;
592 of_node_get(np);
593 read_unlock(&devtree_lock);
594 return np;
595}
596EXPORT_SYMBOL(of_find_node_by_phandle);
597
598/**
599 * of_property_read_u32_array - Find and read an array of 32 bit integers
600 * from a property.
601 *
602 * @np: device node from which the property value is to be read.
603 * @propname: name of the property to be searched.
604 * @out_value: pointer to return value, modified only if return value is 0.
605 *
606 * Search for a property in a device node and read 32-bit value(s) from
607 * it. Returns 0 on success, -EINVAL if the property does not exist,
608 * -ENODATA if property does not have a value, and -EOVERFLOW if the
609 * property data isn't large enough.
610 *
611 * The out_value is modified only if a valid u32 value can be decoded.
612 */
613int of_property_read_u32_array(const struct device_node *np,
614 const char *propname, u32 *out_values,
615 size_t sz)
616{
617 struct property *prop = of_find_property(np, propname, NULL);
618 const __be32 *val;
619
620 if (!prop)
621 return -EINVAL;
622 if (!prop->value)
623 return -ENODATA;
624 if ((sz * sizeof(*out_values)) > prop->length)
625 return -EOVERFLOW;
626
627 val = prop->value;
628 while (sz--)
629 *out_values++ = be32_to_cpup(val++);
630 return 0;
631}
632EXPORT_SYMBOL_GPL(of_property_read_u32_array);
633
634/**
635 * of_property_read_string - Find and read a string from a property
636 * @np: device node from which the property value is to be read.
637 * @propname: name of the property to be searched.
638 * @out_string: pointer to null terminated return string, modified only if
639 * return value is 0.
640 *
641 * Search for a property in a device tree node and retrieve a null
642 * terminated string value (pointer to data, not a copy). Returns 0 on
643 * success, -EINVAL if the property does not exist, -ENODATA if property
644 * does not have a value, and -EILSEQ if the string is not null-terminated
645 * within the length of the property data.
646 *
647 * The out_string pointer is modified only if a valid string can be decoded.
648 */
649int of_property_read_string(struct device_node *np, const char *propname,
650 const char **out_string)
651{
652 struct property *prop = of_find_property(np, propname, NULL);
653 if (!prop)
654 return -EINVAL;
655 if (!prop->value)
656 return -ENODATA;
657 if (strnlen(prop->value, prop->length) >= prop->length)
658 return -EILSEQ;
659 *out_string = prop->value;
660 return 0;
661}
662EXPORT_SYMBOL_GPL(of_property_read_string);
663
664/**
665 * of_parse_phandle - Resolve a phandle property to a device_node pointer
666 * @np: Pointer to device node holding phandle property
667 * @phandle_name: Name of property holding a phandle value
668 * @index: For properties holding a table of phandles, this is the index into
669 * the table
670 *
671 * Returns the device_node pointer with refcount incremented. Use
672 * of_node_put() on it when done.
673 */
674struct device_node *
675of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
676{
677 const __be32 *phandle;
678 int size;
679
680 phandle = of_get_property(np, phandle_name, &size);
681 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
682 return NULL;
683
684 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
685}
686EXPORT_SYMBOL(of_parse_phandle);
687
688/**
689 * of_parse_phandles_with_args - Find a node pointed by phandle in a list
690 * @np: pointer to a device tree node containing a list
691 * @list_name: property name that contains a list
692 * @cells_name: property name that specifies phandles' arguments count
693 * @index: index of a phandle to parse out
694 * @out_node: optional pointer to device_node struct pointer (will be filled)
695 * @out_args: optional pointer to arguments pointer (will be filled)
696 *
697 * This function is useful to parse lists of phandles and their arguments.
698 * Returns 0 on success and fills out_node and out_args, on error returns
699 * appropriate errno value.
700 *
701 * Example:
702 *
703 * phandle1: node1 {
704 * #list-cells = <2>;
705 * }
706 *
707 * phandle2: node2 {
708 * #list-cells = <1>;
709 * }
710 *
711 * node3 {
712 * list = <&phandle1 1 2 &phandle2 3>;
713 * }
714 *
715 * To get a device_node of the `node2' node you may call this:
716 * of_parse_phandles_with_args(node3, "list", "#list-cells", 2, &node2, &args);
717 */
718int of_parse_phandles_with_args(struct device_node *np, const char *list_name,
719 const char *cells_name, int index,
720 struct device_node **out_node,
721 const void **out_args)
722{
723 int ret = -EINVAL;
724 const __be32 *list;
725 const __be32 *list_end;
726 int size;
727 int cur_index = 0;
728 struct device_node *node = NULL;
729 const void *args = NULL;
730
731 list = of_get_property(np, list_name, &size);
732 if (!list) {
733 ret = -ENOENT;
734 goto err0;
735 }
736 list_end = list + size / sizeof(*list);
737
738 while (list < list_end) {
739 const __be32 *cells;
740 phandle phandle;
741
742 phandle = be32_to_cpup(list++);
743 args = list;
744
745 /* one cell hole in the list = <>; */
746 if (!phandle)
747 goto next;
748
749 node = of_find_node_by_phandle(phandle);
750 if (!node) {
751 pr_debug("%s: could not find phandle\n",
752 np->full_name);
753 goto err0;
754 }
755
756 cells = of_get_property(node, cells_name, &size);
757 if (!cells || size != sizeof(*cells)) {
758 pr_debug("%s: could not get %s for %s\n",
759 np->full_name, cells_name, node->full_name);
760 goto err1;
761 }
762
763 list += be32_to_cpup(cells);
764 if (list > list_end) {
765 pr_debug("%s: insufficient arguments length\n",
766 np->full_name);
767 goto err1;
768 }
769next:
770 if (cur_index == index)
771 break;
772
773 of_node_put(node);
774 node = NULL;
775 args = NULL;
776 cur_index++;
777 }
778
779 if (!node) {
780 /*
781 * args w/o node indicates that the loop above has stopped at
782 * the 'hole' cell. Report this differently.
783 */
784 if (args)
785 ret = -EEXIST;
786 else
787 ret = -ENOENT;
788 goto err0;
789 }
790
791 if (out_node)
792 *out_node = node;
793 if (out_args)
794 *out_args = args;
795
796 return 0;
797err1:
798 of_node_put(node);
799err0:
800 pr_debug("%s failed with status %d\n", __func__, ret);
801 return ret;
802}
803EXPORT_SYMBOL(of_parse_phandles_with_args);
804
805/**
806 * prom_add_property - Add a property to a node
807 */
808int prom_add_property(struct device_node *np, struct property *prop)
809{
810 struct property **next;
811 unsigned long flags;
812
813 prop->next = NULL;
814 write_lock_irqsave(&devtree_lock, flags);
815 next = &np->properties;
816 while (*next) {
817 if (strcmp(prop->name, (*next)->name) == 0) {
818 /* duplicate ! don't insert it */
819 write_unlock_irqrestore(&devtree_lock, flags);
820 return -1;
821 }
822 next = &(*next)->next;
823 }
824 *next = prop;
825 write_unlock_irqrestore(&devtree_lock, flags);
826
827#ifdef CONFIG_PROC_DEVICETREE
828 /* try to add to proc as well if it was initialized */
829 if (np->pde)
830 proc_device_tree_add_prop(np->pde, prop);
831#endif /* CONFIG_PROC_DEVICETREE */
832
833 return 0;
834}
835
836/**
837 * prom_remove_property - Remove a property from a node.
838 *
839 * Note that we don't actually remove it, since we have given out
840 * who-knows-how-many pointers to the data using get-property.
841 * Instead we just move the property to the "dead properties"
842 * list, so it won't be found any more.
843 */
844int prom_remove_property(struct device_node *np, struct property *prop)
845{
846 struct property **next;
847 unsigned long flags;
848 int found = 0;
849
850 write_lock_irqsave(&devtree_lock, flags);
851 next = &np->properties;
852 while (*next) {
853 if (*next == prop) {
854 /* found the node */
855 *next = prop->next;
856 prop->next = np->deadprops;
857 np->deadprops = prop;
858 found = 1;
859 break;
860 }
861 next = &(*next)->next;
862 }
863 write_unlock_irqrestore(&devtree_lock, flags);
864
865 if (!found)
866 return -ENODEV;
867
868#ifdef CONFIG_PROC_DEVICETREE
869 /* try to remove the proc node as well */
870 if (np->pde)
871 proc_device_tree_remove_prop(np->pde, prop);
872#endif /* CONFIG_PROC_DEVICETREE */
873
874 return 0;
875}
876
877/*
878 * prom_update_property - Update a property in a node.
879 *
880 * Note that we don't actually remove it, since we have given out
881 * who-knows-how-many pointers to the data using get-property.
882 * Instead we just move the property to the "dead properties" list,
883 * and add the new property to the property list
884 */
885int prom_update_property(struct device_node *np,
886 struct property *newprop,
887 struct property *oldprop)
888{
889 struct property **next;
890 unsigned long flags;
891 int found = 0;
892
893 write_lock_irqsave(&devtree_lock, flags);
894 next = &np->properties;
895 while (*next) {
896 if (*next == oldprop) {
897 /* found the node */
898 newprop->next = oldprop->next;
899 *next = newprop;
900 oldprop->next = np->deadprops;
901 np->deadprops = oldprop;
902 found = 1;
903 break;
904 }
905 next = &(*next)->next;
906 }
907 write_unlock_irqrestore(&devtree_lock, flags);
908
909 if (!found)
910 return -ENODEV;
911
912#ifdef CONFIG_PROC_DEVICETREE
913 /* try to add to proc as well if it was initialized */
914 if (np->pde)
915 proc_device_tree_update_prop(np->pde, newprop, oldprop);
916#endif /* CONFIG_PROC_DEVICETREE */
917
918 return 0;
919}
920
921#if defined(CONFIG_OF_DYNAMIC)
922/*
923 * Support for dynamic device trees.
924 *
925 * On some platforms, the device tree can be manipulated at runtime.
926 * The routines in this section support adding, removing and changing
927 * device tree nodes.
928 */
929
930/**
931 * of_attach_node - Plug a device node into the tree and global list.
932 */
933void of_attach_node(struct device_node *np)
934{
935 unsigned long flags;
936
937 write_lock_irqsave(&devtree_lock, flags);
938 np->sibling = np->parent->child;
939 np->allnext = allnodes;
940 np->parent->child = np;
941 allnodes = np;
942 write_unlock_irqrestore(&devtree_lock, flags);
943}
944
945/**
946 * of_detach_node - "Unplug" a node from the device tree.
947 *
948 * The caller must hold a reference to the node. The memory associated with
949 * the node is not freed until its refcount goes to zero.
950 */
951void of_detach_node(struct device_node *np)
952{
953 struct device_node *parent;
954 unsigned long flags;
955
956 write_lock_irqsave(&devtree_lock, flags);
957
958 parent = np->parent;
959 if (!parent)
960 goto out_unlock;
961
962 if (allnodes == np)
963 allnodes = np->allnext;
964 else {
965 struct device_node *prev;
966 for (prev = allnodes;
967 prev->allnext != np;
968 prev = prev->allnext)
969 ;
970 prev->allnext = np->allnext;
971 }
972
973 if (parent->child == np)
974 parent->child = np->sibling;
975 else {
976 struct device_node *prevsib;
977 for (prevsib = np->parent->child;
978 prevsib->sibling != np;
979 prevsib = prevsib->sibling)
980 ;
981 prevsib->sibling = np->sibling;
982 }
983
984 of_node_set_flag(np, OF_DETACHED);
985
986out_unlock:
987 write_unlock_irqrestore(&devtree_lock, flags);
988}
989#endif /* defined(CONFIG_OF_DYNAMIC) */
990
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39EXPORT_SYMBOL(of_chosen);
40struct device_node *of_aliases;
41struct device_node *of_stdout;
42static const char *of_stdout_options;
43
44struct kset *of_kset;
45
46/*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52DEFINE_MUTEX(of_mutex);
53
54/* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57DEFINE_RAW_SPINLOCK(devtree_lock);
58
59bool of_node_name_eq(const struct device_node *np, const char *name)
60{
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71}
72EXPORT_SYMBOL(of_node_name_eq);
73
74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75{
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80}
81EXPORT_SYMBOL(of_node_name_prefix);
82
83static bool __of_node_is_type(const struct device_node *np, const char *type)
84{
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88}
89
90int of_bus_n_addr_cells(struct device_node *np)
91{
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100}
101
102int of_n_addr_cells(struct device_node *np)
103{
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108}
109EXPORT_SYMBOL(of_n_addr_cells);
110
111int of_bus_n_size_cells(struct device_node *np)
112{
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121}
122
123int of_n_size_cells(struct device_node *np)
124{
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129}
130EXPORT_SYMBOL(of_n_size_cells);
131
132#ifdef CONFIG_NUMA
133int __weak of_node_to_nid(struct device_node *np)
134{
135 return NUMA_NO_NODE;
136}
137#endif
138
139#define OF_PHANDLE_CACHE_BITS 7
140#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
144static u32 of_phandle_cache_hash(phandle handle)
145{
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147}
148
149/*
150 * Caller must hold devtree_lock.
151 */
152void __of_phandle_cache_inv_entry(phandle handle)
153{
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165}
166
167void __init of_core_init(void)
168{
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190}
191
192static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194{
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209}
210
211struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214{
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223}
224EXPORT_SYMBOL(of_find_property);
225
226struct device_node *__of_find_all_nodes(struct device_node *prev)
227{
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241}
242
243/**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
251struct device_node *of_find_all_nodes(struct device_node *prev)
252{
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262}
263EXPORT_SYMBOL(of_find_all_nodes);
264
265/*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
269const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271{
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275}
276
277/*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
281const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283{
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287}
288EXPORT_SYMBOL(of_get_property);
289
290/*
291 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292 *
293 * @cpu: logical cpu index of a core/thread
294 * @phys_id: physical identifier of a core/thread
295 *
296 * CPU logical to physical index mapping is architecture specific.
297 * However this __weak function provides a default match of physical
298 * id to logical cpu index. phys_id provided here is usually values read
299 * from the device tree which must match the hardware internal registers.
300 *
301 * Returns true if the physical identifier and the logical cpu index
302 * correspond to the same core/thread, false otherwise.
303 */
304bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305{
306 return (u32)phys_id == cpu;
307}
308
309/*
310 * Checks if the given "prop_name" property holds the physical id of the
311 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312 * NULL, local thread number within the core is returned in it.
313 */
314static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 const char *prop_name, int cpu, unsigned int *thread)
316{
317 const __be32 *cell;
318 int ac, prop_len, tid;
319 u64 hwid;
320
321 ac = of_n_addr_cells(cpun);
322 cell = of_get_property(cpun, prop_name, &prop_len);
323 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 return true;
325 if (!cell || !ac)
326 return false;
327 prop_len /= sizeof(*cell) * ac;
328 for (tid = 0; tid < prop_len; tid++) {
329 hwid = of_read_number(cell, ac);
330 if (arch_match_cpu_phys_id(cpu, hwid)) {
331 if (thread)
332 *thread = tid;
333 return true;
334 }
335 cell += ac;
336 }
337 return false;
338}
339
340/*
341 * arch_find_n_match_cpu_physical_id - See if the given device node is
342 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
343 * else false. If 'thread' is non-NULL, the local thread number within the
344 * core is returned in it.
345 */
346bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 int cpu, unsigned int *thread)
348{
349 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 * for thread ids on PowerPC. If it doesn't exist fallback to
351 * standard "reg" property.
352 */
353 if (IS_ENABLED(CONFIG_PPC) &&
354 __of_find_n_match_cpu_property(cpun,
355 "ibm,ppc-interrupt-server#s",
356 cpu, thread))
357 return true;
358
359 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360}
361
362/**
363 * of_get_cpu_node - Get device node associated with the given logical CPU
364 *
365 * @cpu: CPU number(logical index) for which device node is required
366 * @thread: if not NULL, local thread number within the physical core is
367 * returned
368 *
369 * The main purpose of this function is to retrieve the device node for the
370 * given logical CPU index. It should be used to initialize the of_node in
371 * cpu device. Once of_node in cpu device is populated, all the further
372 * references can use that instead.
373 *
374 * CPU logical to physical index mapping is architecture specific and is built
375 * before booting secondary cores. This function uses arch_match_cpu_phys_id
376 * which can be overridden by architecture specific implementation.
377 *
378 * Return: A node pointer for the logical cpu with refcount incremented, use
379 * of_node_put() on it when done. Returns NULL if not found.
380 */
381struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382{
383 struct device_node *cpun;
384
385 for_each_of_cpu_node(cpun) {
386 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 return cpun;
388 }
389 return NULL;
390}
391EXPORT_SYMBOL(of_get_cpu_node);
392
393/**
394 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395 *
396 * @cpu_node: Pointer to the device_node for CPU.
397 *
398 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399 * CPU is not found.
400 */
401int of_cpu_node_to_id(struct device_node *cpu_node)
402{
403 int cpu;
404 bool found = false;
405 struct device_node *np;
406
407 for_each_possible_cpu(cpu) {
408 np = of_cpu_device_node_get(cpu);
409 found = (cpu_node == np);
410 of_node_put(np);
411 if (found)
412 return cpu;
413 }
414
415 return -ENODEV;
416}
417EXPORT_SYMBOL(of_cpu_node_to_id);
418
419/**
420 * of_get_cpu_state_node - Get CPU's idle state node at the given index
421 *
422 * @cpu_node: The device node for the CPU
423 * @index: The index in the list of the idle states
424 *
425 * Two generic methods can be used to describe a CPU's idle states, either via
426 * a flattened description through the "cpu-idle-states" binding or via the
427 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428 * bindings. This function check for both and returns the idle state node for
429 * the requested index.
430 *
431 * Return: An idle state node if found at @index. The refcount is incremented
432 * for it, so call of_node_put() on it when done. Returns NULL if not found.
433 */
434struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 int index)
436{
437 struct of_phandle_args args;
438 int err;
439
440 err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 "#power-domain-cells", 0, &args);
442 if (!err) {
443 struct device_node *state_node =
444 of_parse_phandle(args.np, "domain-idle-states", index);
445
446 of_node_put(args.np);
447 if (state_node)
448 return state_node;
449 }
450
451 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452}
453EXPORT_SYMBOL(of_get_cpu_state_node);
454
455/**
456 * __of_device_is_compatible() - Check if the node matches given constraints
457 * @device: pointer to node
458 * @compat: required compatible string, NULL or "" for any match
459 * @type: required device_type value, NULL or "" for any match
460 * @name: required node name, NULL or "" for any match
461 *
462 * Checks if the given @compat, @type and @name strings match the
463 * properties of the given @device. A constraints can be skipped by
464 * passing NULL or an empty string as the constraint.
465 *
466 * Returns 0 for no match, and a positive integer on match. The return
467 * value is a relative score with larger values indicating better
468 * matches. The score is weighted for the most specific compatible value
469 * to get the highest score. Matching type is next, followed by matching
470 * name. Practically speaking, this results in the following priority
471 * order for matches:
472 *
473 * 1. specific compatible && type && name
474 * 2. specific compatible && type
475 * 3. specific compatible && name
476 * 4. specific compatible
477 * 5. general compatible && type && name
478 * 6. general compatible && type
479 * 7. general compatible && name
480 * 8. general compatible
481 * 9. type && name
482 * 10. type
483 * 11. name
484 */
485static int __of_device_is_compatible(const struct device_node *device,
486 const char *compat, const char *type, const char *name)
487{
488 struct property *prop;
489 const char *cp;
490 int index = 0, score = 0;
491
492 /* Compatible match has highest priority */
493 if (compat && compat[0]) {
494 prop = __of_find_property(device, "compatible", NULL);
495 for (cp = of_prop_next_string(prop, NULL); cp;
496 cp = of_prop_next_string(prop, cp), index++) {
497 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 score = INT_MAX/2 - (index << 2);
499 break;
500 }
501 }
502 if (!score)
503 return 0;
504 }
505
506 /* Matching type is better than matching name */
507 if (type && type[0]) {
508 if (!__of_node_is_type(device, type))
509 return 0;
510 score += 2;
511 }
512
513 /* Matching name is a bit better than not */
514 if (name && name[0]) {
515 if (!of_node_name_eq(device, name))
516 return 0;
517 score++;
518 }
519
520 return score;
521}
522
523/** Checks if the given "compat" string matches one of the strings in
524 * the device's "compatible" property
525 */
526int of_device_is_compatible(const struct device_node *device,
527 const char *compat)
528{
529 unsigned long flags;
530 int res;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 res = __of_device_is_compatible(device, compat, NULL, NULL);
534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 return res;
536}
537EXPORT_SYMBOL(of_device_is_compatible);
538
539/** Checks if the device is compatible with any of the entries in
540 * a NULL terminated array of strings. Returns the best match
541 * score or 0.
542 */
543int of_device_compatible_match(struct device_node *device,
544 const char *const *compat)
545{
546 unsigned int tmp, score = 0;
547
548 if (!compat)
549 return 0;
550
551 while (*compat) {
552 tmp = of_device_is_compatible(device, *compat);
553 if (tmp > score)
554 score = tmp;
555 compat++;
556 }
557
558 return score;
559}
560
561/**
562 * of_machine_is_compatible - Test root of device tree for a given compatible value
563 * @compat: compatible string to look for in root node's compatible property.
564 *
565 * Return: A positive integer if the root node has the given value in its
566 * compatible property.
567 */
568int of_machine_is_compatible(const char *compat)
569{
570 struct device_node *root;
571 int rc = 0;
572
573 root = of_find_node_by_path("/");
574 if (root) {
575 rc = of_device_is_compatible(root, compat);
576 of_node_put(root);
577 }
578 return rc;
579}
580EXPORT_SYMBOL(of_machine_is_compatible);
581
582/**
583 * __of_device_is_available - check if a device is available for use
584 *
585 * @device: Node to check for availability, with locks already held
586 *
587 * Return: True if the status property is absent or set to "okay" or "ok",
588 * false otherwise
589 */
590static bool __of_device_is_available(const struct device_node *device)
591{
592 const char *status;
593 int statlen;
594
595 if (!device)
596 return false;
597
598 status = __of_get_property(device, "status", &statlen);
599 if (status == NULL)
600 return true;
601
602 if (statlen > 0) {
603 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 return true;
605 }
606
607 return false;
608}
609
610/**
611 * of_device_is_available - check if a device is available for use
612 *
613 * @device: Node to check for availability
614 *
615 * Return: True if the status property is absent or set to "okay" or "ok",
616 * false otherwise
617 */
618bool of_device_is_available(const struct device_node *device)
619{
620 unsigned long flags;
621 bool res;
622
623 raw_spin_lock_irqsave(&devtree_lock, flags);
624 res = __of_device_is_available(device);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return res;
627
628}
629EXPORT_SYMBOL(of_device_is_available);
630
631/**
632 * of_device_is_big_endian - check if a device has BE registers
633 *
634 * @device: Node to check for endianness
635 *
636 * Return: True if the device has a "big-endian" property, or if the kernel
637 * was compiled for BE *and* the device has a "native-endian" property.
638 * Returns false otherwise.
639 *
640 * Callers would nominally use ioread32be/iowrite32be if
641 * of_device_is_big_endian() == true, or readl/writel otherwise.
642 */
643bool of_device_is_big_endian(const struct device_node *device)
644{
645 if (of_property_read_bool(device, "big-endian"))
646 return true;
647 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
648 of_property_read_bool(device, "native-endian"))
649 return true;
650 return false;
651}
652EXPORT_SYMBOL(of_device_is_big_endian);
653
654/**
655 * of_get_parent - Get a node's parent if any
656 * @node: Node to get parent
657 *
658 * Return: A node pointer with refcount incremented, use
659 * of_node_put() on it when done.
660 */
661struct device_node *of_get_parent(const struct device_node *node)
662{
663 struct device_node *np;
664 unsigned long flags;
665
666 if (!node)
667 return NULL;
668
669 raw_spin_lock_irqsave(&devtree_lock, flags);
670 np = of_node_get(node->parent);
671 raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 return np;
673}
674EXPORT_SYMBOL(of_get_parent);
675
676/**
677 * of_get_next_parent - Iterate to a node's parent
678 * @node: Node to get parent of
679 *
680 * This is like of_get_parent() except that it drops the
681 * refcount on the passed node, making it suitable for iterating
682 * through a node's parents.
683 *
684 * Return: A node pointer with refcount incremented, use
685 * of_node_put() on it when done.
686 */
687struct device_node *of_get_next_parent(struct device_node *node)
688{
689 struct device_node *parent;
690 unsigned long flags;
691
692 if (!node)
693 return NULL;
694
695 raw_spin_lock_irqsave(&devtree_lock, flags);
696 parent = of_node_get(node->parent);
697 of_node_put(node);
698 raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 return parent;
700}
701EXPORT_SYMBOL(of_get_next_parent);
702
703static struct device_node *__of_get_next_child(const struct device_node *node,
704 struct device_node *prev)
705{
706 struct device_node *next;
707
708 if (!node)
709 return NULL;
710
711 next = prev ? prev->sibling : node->child;
712 for (; next; next = next->sibling)
713 if (of_node_get(next))
714 break;
715 of_node_put(prev);
716 return next;
717}
718#define __for_each_child_of_node(parent, child) \
719 for (child = __of_get_next_child(parent, NULL); child != NULL; \
720 child = __of_get_next_child(parent, child))
721
722/**
723 * of_get_next_child - Iterate a node childs
724 * @node: parent node
725 * @prev: previous child of the parent node, or NULL to get first
726 *
727 * Return: A node pointer with refcount incremented, use of_node_put() on
728 * it when done. Returns NULL when prev is the last child. Decrements the
729 * refcount of prev.
730 */
731struct device_node *of_get_next_child(const struct device_node *node,
732 struct device_node *prev)
733{
734 struct device_node *next;
735 unsigned long flags;
736
737 raw_spin_lock_irqsave(&devtree_lock, flags);
738 next = __of_get_next_child(node, prev);
739 raw_spin_unlock_irqrestore(&devtree_lock, flags);
740 return next;
741}
742EXPORT_SYMBOL(of_get_next_child);
743
744/**
745 * of_get_next_available_child - Find the next available child node
746 * @node: parent node
747 * @prev: previous child of the parent node, or NULL to get first
748 *
749 * This function is like of_get_next_child(), except that it
750 * automatically skips any disabled nodes (i.e. status = "disabled").
751 */
752struct device_node *of_get_next_available_child(const struct device_node *node,
753 struct device_node *prev)
754{
755 struct device_node *next;
756 unsigned long flags;
757
758 if (!node)
759 return NULL;
760
761 raw_spin_lock_irqsave(&devtree_lock, flags);
762 next = prev ? prev->sibling : node->child;
763 for (; next; next = next->sibling) {
764 if (!__of_device_is_available(next))
765 continue;
766 if (of_node_get(next))
767 break;
768 }
769 of_node_put(prev);
770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 return next;
772}
773EXPORT_SYMBOL(of_get_next_available_child);
774
775/**
776 * of_get_next_cpu_node - Iterate on cpu nodes
777 * @prev: previous child of the /cpus node, or NULL to get first
778 *
779 * Return: A cpu node pointer with refcount incremented, use of_node_put()
780 * on it when done. Returns NULL when prev is the last child. Decrements
781 * the refcount of prev.
782 */
783struct device_node *of_get_next_cpu_node(struct device_node *prev)
784{
785 struct device_node *next = NULL;
786 unsigned long flags;
787 struct device_node *node;
788
789 if (!prev)
790 node = of_find_node_by_path("/cpus");
791
792 raw_spin_lock_irqsave(&devtree_lock, flags);
793 if (prev)
794 next = prev->sibling;
795 else if (node) {
796 next = node->child;
797 of_node_put(node);
798 }
799 for (; next; next = next->sibling) {
800 if (!(of_node_name_eq(next, "cpu") ||
801 __of_node_is_type(next, "cpu")))
802 continue;
803 if (of_node_get(next))
804 break;
805 }
806 of_node_put(prev);
807 raw_spin_unlock_irqrestore(&devtree_lock, flags);
808 return next;
809}
810EXPORT_SYMBOL(of_get_next_cpu_node);
811
812/**
813 * of_get_compatible_child - Find compatible child node
814 * @parent: parent node
815 * @compatible: compatible string
816 *
817 * Lookup child node whose compatible property contains the given compatible
818 * string.
819 *
820 * Return: a node pointer with refcount incremented, use of_node_put() on it
821 * when done; or NULL if not found.
822 */
823struct device_node *of_get_compatible_child(const struct device_node *parent,
824 const char *compatible)
825{
826 struct device_node *child;
827
828 for_each_child_of_node(parent, child) {
829 if (of_device_is_compatible(child, compatible))
830 break;
831 }
832
833 return child;
834}
835EXPORT_SYMBOL(of_get_compatible_child);
836
837/**
838 * of_get_child_by_name - Find the child node by name for a given parent
839 * @node: parent node
840 * @name: child name to look for.
841 *
842 * This function looks for child node for given matching name
843 *
844 * Return: A node pointer if found, with refcount incremented, use
845 * of_node_put() on it when done.
846 * Returns NULL if node is not found.
847 */
848struct device_node *of_get_child_by_name(const struct device_node *node,
849 const char *name)
850{
851 struct device_node *child;
852
853 for_each_child_of_node(node, child)
854 if (of_node_name_eq(child, name))
855 break;
856 return child;
857}
858EXPORT_SYMBOL(of_get_child_by_name);
859
860struct device_node *__of_find_node_by_path(struct device_node *parent,
861 const char *path)
862{
863 struct device_node *child;
864 int len;
865
866 len = strcspn(path, "/:");
867 if (!len)
868 return NULL;
869
870 __for_each_child_of_node(parent, child) {
871 const char *name = kbasename(child->full_name);
872 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
873 return child;
874 }
875 return NULL;
876}
877
878struct device_node *__of_find_node_by_full_path(struct device_node *node,
879 const char *path)
880{
881 const char *separator = strchr(path, ':');
882
883 while (node && *path == '/') {
884 struct device_node *tmp = node;
885
886 path++; /* Increment past '/' delimiter */
887 node = __of_find_node_by_path(node, path);
888 of_node_put(tmp);
889 path = strchrnul(path, '/');
890 if (separator && separator < path)
891 break;
892 }
893 return node;
894}
895
896/**
897 * of_find_node_opts_by_path - Find a node matching a full OF path
898 * @path: Either the full path to match, or if the path does not
899 * start with '/', the name of a property of the /aliases
900 * node (an alias). In the case of an alias, the node
901 * matching the alias' value will be returned.
902 * @opts: Address of a pointer into which to store the start of
903 * an options string appended to the end of the path with
904 * a ':' separator.
905 *
906 * Valid paths:
907 * * /foo/bar Full path
908 * * foo Valid alias
909 * * foo/bar Valid alias + relative path
910 *
911 * Return: A node pointer with refcount incremented, use
912 * of_node_put() on it when done.
913 */
914struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
915{
916 struct device_node *np = NULL;
917 struct property *pp;
918 unsigned long flags;
919 const char *separator = strchr(path, ':');
920
921 if (opts)
922 *opts = separator ? separator + 1 : NULL;
923
924 if (strcmp(path, "/") == 0)
925 return of_node_get(of_root);
926
927 /* The path could begin with an alias */
928 if (*path != '/') {
929 int len;
930 const char *p = separator;
931
932 if (!p)
933 p = strchrnul(path, '/');
934 len = p - path;
935
936 /* of_aliases must not be NULL */
937 if (!of_aliases)
938 return NULL;
939
940 for_each_property_of_node(of_aliases, pp) {
941 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
942 np = of_find_node_by_path(pp->value);
943 break;
944 }
945 }
946 if (!np)
947 return NULL;
948 path = p;
949 }
950
951 /* Step down the tree matching path components */
952 raw_spin_lock_irqsave(&devtree_lock, flags);
953 if (!np)
954 np = of_node_get(of_root);
955 np = __of_find_node_by_full_path(np, path);
956 raw_spin_unlock_irqrestore(&devtree_lock, flags);
957 return np;
958}
959EXPORT_SYMBOL(of_find_node_opts_by_path);
960
961/**
962 * of_find_node_by_name - Find a node by its "name" property
963 * @from: The node to start searching from or NULL; the node
964 * you pass will not be searched, only the next one
965 * will. Typically, you pass what the previous call
966 * returned. of_node_put() will be called on @from.
967 * @name: The name string to match against
968 *
969 * Return: A node pointer with refcount incremented, use
970 * of_node_put() on it when done.
971 */
972struct device_node *of_find_node_by_name(struct device_node *from,
973 const char *name)
974{
975 struct device_node *np;
976 unsigned long flags;
977
978 raw_spin_lock_irqsave(&devtree_lock, flags);
979 for_each_of_allnodes_from(from, np)
980 if (of_node_name_eq(np, name) && of_node_get(np))
981 break;
982 of_node_put(from);
983 raw_spin_unlock_irqrestore(&devtree_lock, flags);
984 return np;
985}
986EXPORT_SYMBOL(of_find_node_by_name);
987
988/**
989 * of_find_node_by_type - Find a node by its "device_type" property
990 * @from: The node to start searching from, or NULL to start searching
991 * the entire device tree. The node you pass will not be
992 * searched, only the next one will; typically, you pass
993 * what the previous call returned. of_node_put() will be
994 * called on from for you.
995 * @type: The type string to match against
996 *
997 * Return: A node pointer with refcount incremented, use
998 * of_node_put() on it when done.
999 */
1000struct device_node *of_find_node_by_type(struct device_node *from,
1001 const char *type)
1002{
1003 struct device_node *np;
1004 unsigned long flags;
1005
1006 raw_spin_lock_irqsave(&devtree_lock, flags);
1007 for_each_of_allnodes_from(from, np)
1008 if (__of_node_is_type(np, type) && of_node_get(np))
1009 break;
1010 of_node_put(from);
1011 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1012 return np;
1013}
1014EXPORT_SYMBOL(of_find_node_by_type);
1015
1016/**
1017 * of_find_compatible_node - Find a node based on type and one of the
1018 * tokens in its "compatible" property
1019 * @from: The node to start searching from or NULL, the node
1020 * you pass will not be searched, only the next one
1021 * will; typically, you pass what the previous call
1022 * returned. of_node_put() will be called on it
1023 * @type: The type string to match "device_type" or NULL to ignore
1024 * @compatible: The string to match to one of the tokens in the device
1025 * "compatible" list.
1026 *
1027 * Return: A node pointer with refcount incremented, use
1028 * of_node_put() on it when done.
1029 */
1030struct device_node *of_find_compatible_node(struct device_node *from,
1031 const char *type, const char *compatible)
1032{
1033 struct device_node *np;
1034 unsigned long flags;
1035
1036 raw_spin_lock_irqsave(&devtree_lock, flags);
1037 for_each_of_allnodes_from(from, np)
1038 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1039 of_node_get(np))
1040 break;
1041 of_node_put(from);
1042 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1043 return np;
1044}
1045EXPORT_SYMBOL(of_find_compatible_node);
1046
1047/**
1048 * of_find_node_with_property - Find a node which has a property with
1049 * the given name.
1050 * @from: The node to start searching from or NULL, the node
1051 * you pass will not be searched, only the next one
1052 * will; typically, you pass what the previous call
1053 * returned. of_node_put() will be called on it
1054 * @prop_name: The name of the property to look for.
1055 *
1056 * Return: A node pointer with refcount incremented, use
1057 * of_node_put() on it when done.
1058 */
1059struct device_node *of_find_node_with_property(struct device_node *from,
1060 const char *prop_name)
1061{
1062 struct device_node *np;
1063 struct property *pp;
1064 unsigned long flags;
1065
1066 raw_spin_lock_irqsave(&devtree_lock, flags);
1067 for_each_of_allnodes_from(from, np) {
1068 for (pp = np->properties; pp; pp = pp->next) {
1069 if (of_prop_cmp(pp->name, prop_name) == 0) {
1070 of_node_get(np);
1071 goto out;
1072 }
1073 }
1074 }
1075out:
1076 of_node_put(from);
1077 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1078 return np;
1079}
1080EXPORT_SYMBOL(of_find_node_with_property);
1081
1082static
1083const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1084 const struct device_node *node)
1085{
1086 const struct of_device_id *best_match = NULL;
1087 int score, best_score = 0;
1088
1089 if (!matches)
1090 return NULL;
1091
1092 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1093 score = __of_device_is_compatible(node, matches->compatible,
1094 matches->type, matches->name);
1095 if (score > best_score) {
1096 best_match = matches;
1097 best_score = score;
1098 }
1099 }
1100
1101 return best_match;
1102}
1103
1104/**
1105 * of_match_node - Tell if a device_node has a matching of_match structure
1106 * @matches: array of of device match structures to search in
1107 * @node: the of device structure to match against
1108 *
1109 * Low level utility function used by device matching.
1110 */
1111const struct of_device_id *of_match_node(const struct of_device_id *matches,
1112 const struct device_node *node)
1113{
1114 const struct of_device_id *match;
1115 unsigned long flags;
1116
1117 raw_spin_lock_irqsave(&devtree_lock, flags);
1118 match = __of_match_node(matches, node);
1119 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1120 return match;
1121}
1122EXPORT_SYMBOL(of_match_node);
1123
1124/**
1125 * of_find_matching_node_and_match - Find a node based on an of_device_id
1126 * match table.
1127 * @from: The node to start searching from or NULL, the node
1128 * you pass will not be searched, only the next one
1129 * will; typically, you pass what the previous call
1130 * returned. of_node_put() will be called on it
1131 * @matches: array of of device match structures to search in
1132 * @match: Updated to point at the matches entry which matched
1133 *
1134 * Return: A node pointer with refcount incremented, use
1135 * of_node_put() on it when done.
1136 */
1137struct device_node *of_find_matching_node_and_match(struct device_node *from,
1138 const struct of_device_id *matches,
1139 const struct of_device_id **match)
1140{
1141 struct device_node *np;
1142 const struct of_device_id *m;
1143 unsigned long flags;
1144
1145 if (match)
1146 *match = NULL;
1147
1148 raw_spin_lock_irqsave(&devtree_lock, flags);
1149 for_each_of_allnodes_from(from, np) {
1150 m = __of_match_node(matches, np);
1151 if (m && of_node_get(np)) {
1152 if (match)
1153 *match = m;
1154 break;
1155 }
1156 }
1157 of_node_put(from);
1158 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1159 return np;
1160}
1161EXPORT_SYMBOL(of_find_matching_node_and_match);
1162
1163/**
1164 * of_modalias_node - Lookup appropriate modalias for a device node
1165 * @node: pointer to a device tree node
1166 * @modalias: Pointer to buffer that modalias value will be copied into
1167 * @len: Length of modalias value
1168 *
1169 * Based on the value of the compatible property, this routine will attempt
1170 * to choose an appropriate modalias value for a particular device tree node.
1171 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1172 * from the first entry in the compatible list property.
1173 *
1174 * Return: This routine returns 0 on success, <0 on failure.
1175 */
1176int of_modalias_node(struct device_node *node, char *modalias, int len)
1177{
1178 const char *compatible, *p;
1179 int cplen;
1180
1181 compatible = of_get_property(node, "compatible", &cplen);
1182 if (!compatible || strlen(compatible) > cplen)
1183 return -ENODEV;
1184 p = strchr(compatible, ',');
1185 strlcpy(modalias, p ? p + 1 : compatible, len);
1186 return 0;
1187}
1188EXPORT_SYMBOL_GPL(of_modalias_node);
1189
1190/**
1191 * of_find_node_by_phandle - Find a node given a phandle
1192 * @handle: phandle of the node to find
1193 *
1194 * Return: A node pointer with refcount incremented, use
1195 * of_node_put() on it when done.
1196 */
1197struct device_node *of_find_node_by_phandle(phandle handle)
1198{
1199 struct device_node *np = NULL;
1200 unsigned long flags;
1201 u32 handle_hash;
1202
1203 if (!handle)
1204 return NULL;
1205
1206 handle_hash = of_phandle_cache_hash(handle);
1207
1208 raw_spin_lock_irqsave(&devtree_lock, flags);
1209
1210 if (phandle_cache[handle_hash] &&
1211 handle == phandle_cache[handle_hash]->phandle)
1212 np = phandle_cache[handle_hash];
1213
1214 if (!np) {
1215 for_each_of_allnodes(np)
1216 if (np->phandle == handle &&
1217 !of_node_check_flag(np, OF_DETACHED)) {
1218 phandle_cache[handle_hash] = np;
1219 break;
1220 }
1221 }
1222
1223 of_node_get(np);
1224 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1225 return np;
1226}
1227EXPORT_SYMBOL(of_find_node_by_phandle);
1228
1229void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1230{
1231 int i;
1232 printk("%s %pOF", msg, args->np);
1233 for (i = 0; i < args->args_count; i++) {
1234 const char delim = i ? ',' : ':';
1235
1236 pr_cont("%c%08x", delim, args->args[i]);
1237 }
1238 pr_cont("\n");
1239}
1240
1241int of_phandle_iterator_init(struct of_phandle_iterator *it,
1242 const struct device_node *np,
1243 const char *list_name,
1244 const char *cells_name,
1245 int cell_count)
1246{
1247 const __be32 *list;
1248 int size;
1249
1250 memset(it, 0, sizeof(*it));
1251
1252 /*
1253 * one of cell_count or cells_name must be provided to determine the
1254 * argument length.
1255 */
1256 if (cell_count < 0 && !cells_name)
1257 return -EINVAL;
1258
1259 list = of_get_property(np, list_name, &size);
1260 if (!list)
1261 return -ENOENT;
1262
1263 it->cells_name = cells_name;
1264 it->cell_count = cell_count;
1265 it->parent = np;
1266 it->list_end = list + size / sizeof(*list);
1267 it->phandle_end = list;
1268 it->cur = list;
1269
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1273
1274int of_phandle_iterator_next(struct of_phandle_iterator *it)
1275{
1276 uint32_t count = 0;
1277
1278 if (it->node) {
1279 of_node_put(it->node);
1280 it->node = NULL;
1281 }
1282
1283 if (!it->cur || it->phandle_end >= it->list_end)
1284 return -ENOENT;
1285
1286 it->cur = it->phandle_end;
1287
1288 /* If phandle is 0, then it is an empty entry with no arguments. */
1289 it->phandle = be32_to_cpup(it->cur++);
1290
1291 if (it->phandle) {
1292
1293 /*
1294 * Find the provider node and parse the #*-cells property to
1295 * determine the argument length.
1296 */
1297 it->node = of_find_node_by_phandle(it->phandle);
1298
1299 if (it->cells_name) {
1300 if (!it->node) {
1301 pr_err("%pOF: could not find phandle %d\n",
1302 it->parent, it->phandle);
1303 goto err;
1304 }
1305
1306 if (of_property_read_u32(it->node, it->cells_name,
1307 &count)) {
1308 /*
1309 * If both cell_count and cells_name is given,
1310 * fall back to cell_count in absence
1311 * of the cells_name property
1312 */
1313 if (it->cell_count >= 0) {
1314 count = it->cell_count;
1315 } else {
1316 pr_err("%pOF: could not get %s for %pOF\n",
1317 it->parent,
1318 it->cells_name,
1319 it->node);
1320 goto err;
1321 }
1322 }
1323 } else {
1324 count = it->cell_count;
1325 }
1326
1327 /*
1328 * Make sure that the arguments actually fit in the remaining
1329 * property data length
1330 */
1331 if (it->cur + count > it->list_end) {
1332 pr_err("%pOF: %s = %d found %d\n",
1333 it->parent, it->cells_name,
1334 count, it->cell_count);
1335 goto err;
1336 }
1337 }
1338
1339 it->phandle_end = it->cur + count;
1340 it->cur_count = count;
1341
1342 return 0;
1343
1344err:
1345 if (it->node) {
1346 of_node_put(it->node);
1347 it->node = NULL;
1348 }
1349
1350 return -EINVAL;
1351}
1352EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1353
1354int of_phandle_iterator_args(struct of_phandle_iterator *it,
1355 uint32_t *args,
1356 int size)
1357{
1358 int i, count;
1359
1360 count = it->cur_count;
1361
1362 if (WARN_ON(size < count))
1363 count = size;
1364
1365 for (i = 0; i < count; i++)
1366 args[i] = be32_to_cpup(it->cur++);
1367
1368 return count;
1369}
1370
1371static int __of_parse_phandle_with_args(const struct device_node *np,
1372 const char *list_name,
1373 const char *cells_name,
1374 int cell_count, int index,
1375 struct of_phandle_args *out_args)
1376{
1377 struct of_phandle_iterator it;
1378 int rc, cur_index = 0;
1379
1380 /* Loop over the phandles until all the requested entry is found */
1381 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1382 /*
1383 * All of the error cases bail out of the loop, so at
1384 * this point, the parsing is successful. If the requested
1385 * index matches, then fill the out_args structure and return,
1386 * or return -ENOENT for an empty entry.
1387 */
1388 rc = -ENOENT;
1389 if (cur_index == index) {
1390 if (!it.phandle)
1391 goto err;
1392
1393 if (out_args) {
1394 int c;
1395
1396 c = of_phandle_iterator_args(&it,
1397 out_args->args,
1398 MAX_PHANDLE_ARGS);
1399 out_args->np = it.node;
1400 out_args->args_count = c;
1401 } else {
1402 of_node_put(it.node);
1403 }
1404
1405 /* Found it! return success */
1406 return 0;
1407 }
1408
1409 cur_index++;
1410 }
1411
1412 /*
1413 * Unlock node before returning result; will be one of:
1414 * -ENOENT : index is for empty phandle
1415 * -EINVAL : parsing error on data
1416 */
1417
1418 err:
1419 of_node_put(it.node);
1420 return rc;
1421}
1422
1423/**
1424 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1425 * @np: Pointer to device node holding phandle property
1426 * @phandle_name: Name of property holding a phandle value
1427 * @index: For properties holding a table of phandles, this is the index into
1428 * the table
1429 *
1430 * Return: The device_node pointer with refcount incremented. Use
1431 * of_node_put() on it when done.
1432 */
1433struct device_node *of_parse_phandle(const struct device_node *np,
1434 const char *phandle_name, int index)
1435{
1436 struct of_phandle_args args;
1437
1438 if (index < 0)
1439 return NULL;
1440
1441 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1442 index, &args))
1443 return NULL;
1444
1445 return args.np;
1446}
1447EXPORT_SYMBOL(of_parse_phandle);
1448
1449/**
1450 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1451 * @np: pointer to a device tree node containing a list
1452 * @list_name: property name that contains a list
1453 * @cells_name: property name that specifies phandles' arguments count
1454 * @index: index of a phandle to parse out
1455 * @out_args: optional pointer to output arguments structure (will be filled)
1456 *
1457 * This function is useful to parse lists of phandles and their arguments.
1458 * Returns 0 on success and fills out_args, on error returns appropriate
1459 * errno value.
1460 *
1461 * Caller is responsible to call of_node_put() on the returned out_args->np
1462 * pointer.
1463 *
1464 * Example::
1465 *
1466 * phandle1: node1 {
1467 * #list-cells = <2>;
1468 * };
1469 *
1470 * phandle2: node2 {
1471 * #list-cells = <1>;
1472 * };
1473 *
1474 * node3 {
1475 * list = <&phandle1 1 2 &phandle2 3>;
1476 * };
1477 *
1478 * To get a device_node of the ``node2`` node you may call this:
1479 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1480 */
1481int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1482 const char *cells_name, int index,
1483 struct of_phandle_args *out_args)
1484{
1485 int cell_count = -1;
1486
1487 if (index < 0)
1488 return -EINVAL;
1489
1490 /* If cells_name is NULL we assume a cell count of 0 */
1491 if (!cells_name)
1492 cell_count = 0;
1493
1494 return __of_parse_phandle_with_args(np, list_name, cells_name,
1495 cell_count, index, out_args);
1496}
1497EXPORT_SYMBOL(of_parse_phandle_with_args);
1498
1499/**
1500 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1501 * @np: pointer to a device tree node containing a list
1502 * @list_name: property name that contains a list
1503 * @stem_name: stem of property names that specify phandles' arguments count
1504 * @index: index of a phandle to parse out
1505 * @out_args: optional pointer to output arguments structure (will be filled)
1506 *
1507 * This function is useful to parse lists of phandles and their arguments.
1508 * Returns 0 on success and fills out_args, on error returns appropriate errno
1509 * value. The difference between this function and of_parse_phandle_with_args()
1510 * is that this API remaps a phandle if the node the phandle points to has
1511 * a <@stem_name>-map property.
1512 *
1513 * Caller is responsible to call of_node_put() on the returned out_args->np
1514 * pointer.
1515 *
1516 * Example::
1517 *
1518 * phandle1: node1 {
1519 * #list-cells = <2>;
1520 * };
1521 *
1522 * phandle2: node2 {
1523 * #list-cells = <1>;
1524 * };
1525 *
1526 * phandle3: node3 {
1527 * #list-cells = <1>;
1528 * list-map = <0 &phandle2 3>,
1529 * <1 &phandle2 2>,
1530 * <2 &phandle1 5 1>;
1531 * list-map-mask = <0x3>;
1532 * };
1533 *
1534 * node4 {
1535 * list = <&phandle1 1 2 &phandle3 0>;
1536 * };
1537 *
1538 * To get a device_node of the ``node2`` node you may call this:
1539 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1540 */
1541int of_parse_phandle_with_args_map(const struct device_node *np,
1542 const char *list_name,
1543 const char *stem_name,
1544 int index, struct of_phandle_args *out_args)
1545{
1546 char *cells_name, *map_name = NULL, *mask_name = NULL;
1547 char *pass_name = NULL;
1548 struct device_node *cur, *new = NULL;
1549 const __be32 *map, *mask, *pass;
1550 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1551 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1552 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1553 const __be32 *match_array = initial_match_array;
1554 int i, ret, map_len, match;
1555 u32 list_size, new_size;
1556
1557 if (index < 0)
1558 return -EINVAL;
1559
1560 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1561 if (!cells_name)
1562 return -ENOMEM;
1563
1564 ret = -ENOMEM;
1565 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1566 if (!map_name)
1567 goto free;
1568
1569 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1570 if (!mask_name)
1571 goto free;
1572
1573 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1574 if (!pass_name)
1575 goto free;
1576
1577 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1578 out_args);
1579 if (ret)
1580 goto free;
1581
1582 /* Get the #<list>-cells property */
1583 cur = out_args->np;
1584 ret = of_property_read_u32(cur, cells_name, &list_size);
1585 if (ret < 0)
1586 goto put;
1587
1588 /* Precalculate the match array - this simplifies match loop */
1589 for (i = 0; i < list_size; i++)
1590 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1591
1592 ret = -EINVAL;
1593 while (cur) {
1594 /* Get the <list>-map property */
1595 map = of_get_property(cur, map_name, &map_len);
1596 if (!map) {
1597 ret = 0;
1598 goto free;
1599 }
1600 map_len /= sizeof(u32);
1601
1602 /* Get the <list>-map-mask property (optional) */
1603 mask = of_get_property(cur, mask_name, NULL);
1604 if (!mask)
1605 mask = dummy_mask;
1606 /* Iterate through <list>-map property */
1607 match = 0;
1608 while (map_len > (list_size + 1) && !match) {
1609 /* Compare specifiers */
1610 match = 1;
1611 for (i = 0; i < list_size; i++, map_len--)
1612 match &= !((match_array[i] ^ *map++) & mask[i]);
1613
1614 of_node_put(new);
1615 new = of_find_node_by_phandle(be32_to_cpup(map));
1616 map++;
1617 map_len--;
1618
1619 /* Check if not found */
1620 if (!new)
1621 goto put;
1622
1623 if (!of_device_is_available(new))
1624 match = 0;
1625
1626 ret = of_property_read_u32(new, cells_name, &new_size);
1627 if (ret)
1628 goto put;
1629
1630 /* Check for malformed properties */
1631 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1632 goto put;
1633 if (map_len < new_size)
1634 goto put;
1635
1636 /* Move forward by new node's #<list>-cells amount */
1637 map += new_size;
1638 map_len -= new_size;
1639 }
1640 if (!match)
1641 goto put;
1642
1643 /* Get the <list>-map-pass-thru property (optional) */
1644 pass = of_get_property(cur, pass_name, NULL);
1645 if (!pass)
1646 pass = dummy_pass;
1647
1648 /*
1649 * Successfully parsed a <list>-map translation; copy new
1650 * specifier into the out_args structure, keeping the
1651 * bits specified in <list>-map-pass-thru.
1652 */
1653 match_array = map - new_size;
1654 for (i = 0; i < new_size; i++) {
1655 __be32 val = *(map - new_size + i);
1656
1657 if (i < list_size) {
1658 val &= ~pass[i];
1659 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1660 }
1661
1662 out_args->args[i] = be32_to_cpu(val);
1663 }
1664 out_args->args_count = list_size = new_size;
1665 /* Iterate again with new provider */
1666 out_args->np = new;
1667 of_node_put(cur);
1668 cur = new;
1669 }
1670put:
1671 of_node_put(cur);
1672 of_node_put(new);
1673free:
1674 kfree(mask_name);
1675 kfree(map_name);
1676 kfree(cells_name);
1677 kfree(pass_name);
1678
1679 return ret;
1680}
1681EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1682
1683/**
1684 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1685 * @np: pointer to a device tree node containing a list
1686 * @list_name: property name that contains a list
1687 * @cell_count: number of argument cells following the phandle
1688 * @index: index of a phandle to parse out
1689 * @out_args: optional pointer to output arguments structure (will be filled)
1690 *
1691 * This function is useful to parse lists of phandles and their arguments.
1692 * Returns 0 on success and fills out_args, on error returns appropriate
1693 * errno value.
1694 *
1695 * Caller is responsible to call of_node_put() on the returned out_args->np
1696 * pointer.
1697 *
1698 * Example::
1699 *
1700 * phandle1: node1 {
1701 * };
1702 *
1703 * phandle2: node2 {
1704 * };
1705 *
1706 * node3 {
1707 * list = <&phandle1 0 2 &phandle2 2 3>;
1708 * };
1709 *
1710 * To get a device_node of the ``node2`` node you may call this:
1711 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1712 */
1713int of_parse_phandle_with_fixed_args(const struct device_node *np,
1714 const char *list_name, int cell_count,
1715 int index, struct of_phandle_args *out_args)
1716{
1717 if (index < 0)
1718 return -EINVAL;
1719 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1720 index, out_args);
1721}
1722EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1723
1724/**
1725 * of_count_phandle_with_args() - Find the number of phandles references in a property
1726 * @np: pointer to a device tree node containing a list
1727 * @list_name: property name that contains a list
1728 * @cells_name: property name that specifies phandles' arguments count
1729 *
1730 * Return: The number of phandle + argument tuples within a property. It
1731 * is a typical pattern to encode a list of phandle and variable
1732 * arguments into a single property. The number of arguments is encoded
1733 * by a property in the phandle-target node. For example, a gpios
1734 * property would contain a list of GPIO specifies consisting of a
1735 * phandle and 1 or more arguments. The number of arguments are
1736 * determined by the #gpio-cells property in the node pointed to by the
1737 * phandle.
1738 */
1739int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1740 const char *cells_name)
1741{
1742 struct of_phandle_iterator it;
1743 int rc, cur_index = 0;
1744
1745 /*
1746 * If cells_name is NULL we assume a cell count of 0. This makes
1747 * counting the phandles trivial as each 32bit word in the list is a
1748 * phandle and no arguments are to consider. So we don't iterate through
1749 * the list but just use the length to determine the phandle count.
1750 */
1751 if (!cells_name) {
1752 const __be32 *list;
1753 int size;
1754
1755 list = of_get_property(np, list_name, &size);
1756 if (!list)
1757 return -ENOENT;
1758
1759 return size / sizeof(*list);
1760 }
1761
1762 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1763 if (rc)
1764 return rc;
1765
1766 while ((rc = of_phandle_iterator_next(&it)) == 0)
1767 cur_index += 1;
1768
1769 if (rc != -ENOENT)
1770 return rc;
1771
1772 return cur_index;
1773}
1774EXPORT_SYMBOL(of_count_phandle_with_args);
1775
1776/**
1777 * __of_add_property - Add a property to a node without lock operations
1778 * @np: Caller's Device Node
1779 * @prop: Property to add
1780 */
1781int __of_add_property(struct device_node *np, struct property *prop)
1782{
1783 struct property **next;
1784
1785 prop->next = NULL;
1786 next = &np->properties;
1787 while (*next) {
1788 if (strcmp(prop->name, (*next)->name) == 0)
1789 /* duplicate ! don't insert it */
1790 return -EEXIST;
1791
1792 next = &(*next)->next;
1793 }
1794 *next = prop;
1795
1796 return 0;
1797}
1798
1799/**
1800 * of_add_property - Add a property to a node
1801 * @np: Caller's Device Node
1802 * @prop: Property to add
1803 */
1804int of_add_property(struct device_node *np, struct property *prop)
1805{
1806 unsigned long flags;
1807 int rc;
1808
1809 mutex_lock(&of_mutex);
1810
1811 raw_spin_lock_irqsave(&devtree_lock, flags);
1812 rc = __of_add_property(np, prop);
1813 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1814
1815 if (!rc)
1816 __of_add_property_sysfs(np, prop);
1817
1818 mutex_unlock(&of_mutex);
1819
1820 if (!rc)
1821 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1822
1823 return rc;
1824}
1825
1826int __of_remove_property(struct device_node *np, struct property *prop)
1827{
1828 struct property **next;
1829
1830 for (next = &np->properties; *next; next = &(*next)->next) {
1831 if (*next == prop)
1832 break;
1833 }
1834 if (*next == NULL)
1835 return -ENODEV;
1836
1837 /* found the node */
1838 *next = prop->next;
1839 prop->next = np->deadprops;
1840 np->deadprops = prop;
1841
1842 return 0;
1843}
1844
1845/**
1846 * of_remove_property - Remove a property from a node.
1847 * @np: Caller's Device Node
1848 * @prop: Property to remove
1849 *
1850 * Note that we don't actually remove it, since we have given out
1851 * who-knows-how-many pointers to the data using get-property.
1852 * Instead we just move the property to the "dead properties"
1853 * list, so it won't be found any more.
1854 */
1855int of_remove_property(struct device_node *np, struct property *prop)
1856{
1857 unsigned long flags;
1858 int rc;
1859
1860 if (!prop)
1861 return -ENODEV;
1862
1863 mutex_lock(&of_mutex);
1864
1865 raw_spin_lock_irqsave(&devtree_lock, flags);
1866 rc = __of_remove_property(np, prop);
1867 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1868
1869 if (!rc)
1870 __of_remove_property_sysfs(np, prop);
1871
1872 mutex_unlock(&of_mutex);
1873
1874 if (!rc)
1875 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1876
1877 return rc;
1878}
1879EXPORT_SYMBOL_GPL(of_remove_property);
1880
1881int __of_update_property(struct device_node *np, struct property *newprop,
1882 struct property **oldpropp)
1883{
1884 struct property **next, *oldprop;
1885
1886 for (next = &np->properties; *next; next = &(*next)->next) {
1887 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1888 break;
1889 }
1890 *oldpropp = oldprop = *next;
1891
1892 if (oldprop) {
1893 /* replace the node */
1894 newprop->next = oldprop->next;
1895 *next = newprop;
1896 oldprop->next = np->deadprops;
1897 np->deadprops = oldprop;
1898 } else {
1899 /* new node */
1900 newprop->next = NULL;
1901 *next = newprop;
1902 }
1903
1904 return 0;
1905}
1906
1907/*
1908 * of_update_property - Update a property in a node, if the property does
1909 * not exist, add it.
1910 *
1911 * Note that we don't actually remove it, since we have given out
1912 * who-knows-how-many pointers to the data using get-property.
1913 * Instead we just move the property to the "dead properties" list,
1914 * and add the new property to the property list
1915 */
1916int of_update_property(struct device_node *np, struct property *newprop)
1917{
1918 struct property *oldprop;
1919 unsigned long flags;
1920 int rc;
1921
1922 if (!newprop->name)
1923 return -EINVAL;
1924
1925 mutex_lock(&of_mutex);
1926
1927 raw_spin_lock_irqsave(&devtree_lock, flags);
1928 rc = __of_update_property(np, newprop, &oldprop);
1929 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1930
1931 if (!rc)
1932 __of_update_property_sysfs(np, newprop, oldprop);
1933
1934 mutex_unlock(&of_mutex);
1935
1936 if (!rc)
1937 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1938
1939 return rc;
1940}
1941
1942static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1943 int id, const char *stem, int stem_len)
1944{
1945 ap->np = np;
1946 ap->id = id;
1947 strncpy(ap->stem, stem, stem_len);
1948 ap->stem[stem_len] = 0;
1949 list_add_tail(&ap->link, &aliases_lookup);
1950 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1951 ap->alias, ap->stem, ap->id, np);
1952}
1953
1954/**
1955 * of_alias_scan - Scan all properties of the 'aliases' node
1956 * @dt_alloc: An allocator that provides a virtual address to memory
1957 * for storing the resulting tree
1958 *
1959 * The function scans all the properties of the 'aliases' node and populates
1960 * the global lookup table with the properties. It returns the
1961 * number of alias properties found, or an error code in case of failure.
1962 */
1963void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1964{
1965 struct property *pp;
1966
1967 of_aliases = of_find_node_by_path("/aliases");
1968 of_chosen = of_find_node_by_path("/chosen");
1969 if (of_chosen == NULL)
1970 of_chosen = of_find_node_by_path("/chosen@0");
1971
1972 if (of_chosen) {
1973 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1974 const char *name = NULL;
1975
1976 if (of_property_read_string(of_chosen, "stdout-path", &name))
1977 of_property_read_string(of_chosen, "linux,stdout-path",
1978 &name);
1979 if (IS_ENABLED(CONFIG_PPC) && !name)
1980 of_property_read_string(of_aliases, "stdout", &name);
1981 if (name)
1982 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1983 }
1984
1985 if (!of_aliases)
1986 return;
1987
1988 for_each_property_of_node(of_aliases, pp) {
1989 const char *start = pp->name;
1990 const char *end = start + strlen(start);
1991 struct device_node *np;
1992 struct alias_prop *ap;
1993 int id, len;
1994
1995 /* Skip those we do not want to proceed */
1996 if (!strcmp(pp->name, "name") ||
1997 !strcmp(pp->name, "phandle") ||
1998 !strcmp(pp->name, "linux,phandle"))
1999 continue;
2000
2001 np = of_find_node_by_path(pp->value);
2002 if (!np)
2003 continue;
2004
2005 /* walk the alias backwards to extract the id and work out
2006 * the 'stem' string */
2007 while (isdigit(*(end-1)) && end > start)
2008 end--;
2009 len = end - start;
2010
2011 if (kstrtoint(end, 10, &id) < 0)
2012 continue;
2013
2014 /* Allocate an alias_prop with enough space for the stem */
2015 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2016 if (!ap)
2017 continue;
2018 memset(ap, 0, sizeof(*ap) + len + 1);
2019 ap->alias = start;
2020 of_alias_add(ap, np, id, start, len);
2021 }
2022}
2023
2024/**
2025 * of_alias_get_id - Get alias id for the given device_node
2026 * @np: Pointer to the given device_node
2027 * @stem: Alias stem of the given device_node
2028 *
2029 * The function travels the lookup table to get the alias id for the given
2030 * device_node and alias stem.
2031 *
2032 * Return: The alias id if found.
2033 */
2034int of_alias_get_id(struct device_node *np, const char *stem)
2035{
2036 struct alias_prop *app;
2037 int id = -ENODEV;
2038
2039 mutex_lock(&of_mutex);
2040 list_for_each_entry(app, &aliases_lookup, link) {
2041 if (strcmp(app->stem, stem) != 0)
2042 continue;
2043
2044 if (np == app->np) {
2045 id = app->id;
2046 break;
2047 }
2048 }
2049 mutex_unlock(&of_mutex);
2050
2051 return id;
2052}
2053EXPORT_SYMBOL_GPL(of_alias_get_id);
2054
2055/**
2056 * of_alias_get_alias_list - Get alias list for the given device driver
2057 * @matches: Array of OF device match structures to search in
2058 * @stem: Alias stem of the given device_node
2059 * @bitmap: Bitmap field pointer
2060 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2061 *
2062 * The function travels the lookup table to record alias ids for the given
2063 * device match structures and alias stem.
2064 *
2065 * Return: 0 or -ENOSYS when !CONFIG_OF or
2066 * -EOVERFLOW if alias ID is greater then allocated nbits
2067 */
2068int of_alias_get_alias_list(const struct of_device_id *matches,
2069 const char *stem, unsigned long *bitmap,
2070 unsigned int nbits)
2071{
2072 struct alias_prop *app;
2073 int ret = 0;
2074
2075 /* Zero bitmap field to make sure that all the time it is clean */
2076 bitmap_zero(bitmap, nbits);
2077
2078 mutex_lock(&of_mutex);
2079 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2080 list_for_each_entry(app, &aliases_lookup, link) {
2081 pr_debug("%s: stem: %s, id: %d\n",
2082 __func__, app->stem, app->id);
2083
2084 if (strcmp(app->stem, stem) != 0) {
2085 pr_debug("%s: stem comparison didn't pass %s\n",
2086 __func__, app->stem);
2087 continue;
2088 }
2089
2090 if (of_match_node(matches, app->np)) {
2091 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2092
2093 if (app->id >= nbits) {
2094 pr_warn("%s: ID %d >= than bitmap field %d\n",
2095 __func__, app->id, nbits);
2096 ret = -EOVERFLOW;
2097 } else {
2098 set_bit(app->id, bitmap);
2099 }
2100 }
2101 }
2102 mutex_unlock(&of_mutex);
2103
2104 return ret;
2105}
2106EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2107
2108/**
2109 * of_alias_get_highest_id - Get highest alias id for the given stem
2110 * @stem: Alias stem to be examined
2111 *
2112 * The function travels the lookup table to get the highest alias id for the
2113 * given alias stem. It returns the alias id if found.
2114 */
2115int of_alias_get_highest_id(const char *stem)
2116{
2117 struct alias_prop *app;
2118 int id = -ENODEV;
2119
2120 mutex_lock(&of_mutex);
2121 list_for_each_entry(app, &aliases_lookup, link) {
2122 if (strcmp(app->stem, stem) != 0)
2123 continue;
2124
2125 if (app->id > id)
2126 id = app->id;
2127 }
2128 mutex_unlock(&of_mutex);
2129
2130 return id;
2131}
2132EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2133
2134/**
2135 * of_console_check() - Test and setup console for DT setup
2136 * @dn: Pointer to device node
2137 * @name: Name to use for preferred console without index. ex. "ttyS"
2138 * @index: Index to use for preferred console.
2139 *
2140 * Check if the given device node matches the stdout-path property in the
2141 * /chosen node. If it does then register it as the preferred console.
2142 *
2143 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2144 */
2145bool of_console_check(struct device_node *dn, char *name, int index)
2146{
2147 if (!dn || dn != of_stdout || console_set_on_cmdline)
2148 return false;
2149
2150 /*
2151 * XXX: cast `options' to char pointer to suppress complication
2152 * warnings: printk, UART and console drivers expect char pointer.
2153 */
2154 return !add_preferred_console(name, index, (char *)of_stdout_options);
2155}
2156EXPORT_SYMBOL_GPL(of_console_check);
2157
2158/**
2159 * of_find_next_cache_node - Find a node's subsidiary cache
2160 * @np: node of type "cpu" or "cache"
2161 *
2162 * Return: A node pointer with refcount incremented, use
2163 * of_node_put() on it when done. Caller should hold a reference
2164 * to np.
2165 */
2166struct device_node *of_find_next_cache_node(const struct device_node *np)
2167{
2168 struct device_node *child, *cache_node;
2169
2170 cache_node = of_parse_phandle(np, "l2-cache", 0);
2171 if (!cache_node)
2172 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2173
2174 if (cache_node)
2175 return cache_node;
2176
2177 /* OF on pmac has nodes instead of properties named "l2-cache"
2178 * beneath CPU nodes.
2179 */
2180 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2181 for_each_child_of_node(np, child)
2182 if (of_node_is_type(child, "cache"))
2183 return child;
2184
2185 return NULL;
2186}
2187
2188/**
2189 * of_find_last_cache_level - Find the level at which the last cache is
2190 * present for the given logical cpu
2191 *
2192 * @cpu: cpu number(logical index) for which the last cache level is needed
2193 *
2194 * Return: The the level at which the last cache is present. It is exactly
2195 * same as the total number of cache levels for the given logical cpu.
2196 */
2197int of_find_last_cache_level(unsigned int cpu)
2198{
2199 u32 cache_level = 0;
2200 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2201
2202 while (np) {
2203 prev = np;
2204 of_node_put(np);
2205 np = of_find_next_cache_node(np);
2206 }
2207
2208 of_property_read_u32(prev, "cache-level", &cache_level);
2209
2210 return cache_level;
2211}
2212
2213/**
2214 * of_map_id - Translate an ID through a downstream mapping.
2215 * @np: root complex device node.
2216 * @id: device ID to map.
2217 * @map_name: property name of the map to use.
2218 * @map_mask_name: optional property name of the mask to use.
2219 * @target: optional pointer to a target device node.
2220 * @id_out: optional pointer to receive the translated ID.
2221 *
2222 * Given a device ID, look up the appropriate implementation-defined
2223 * platform ID and/or the target device which receives transactions on that
2224 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2225 * @id_out may be NULL if only the other is required. If @target points to
2226 * a non-NULL device node pointer, only entries targeting that node will be
2227 * matched; if it points to a NULL value, it will receive the device node of
2228 * the first matching target phandle, with a reference held.
2229 *
2230 * Return: 0 on success or a standard error code on failure.
2231 */
2232int of_map_id(struct device_node *np, u32 id,
2233 const char *map_name, const char *map_mask_name,
2234 struct device_node **target, u32 *id_out)
2235{
2236 u32 map_mask, masked_id;
2237 int map_len;
2238 const __be32 *map = NULL;
2239
2240 if (!np || !map_name || (!target && !id_out))
2241 return -EINVAL;
2242
2243 map = of_get_property(np, map_name, &map_len);
2244 if (!map) {
2245 if (target)
2246 return -ENODEV;
2247 /* Otherwise, no map implies no translation */
2248 *id_out = id;
2249 return 0;
2250 }
2251
2252 if (!map_len || map_len % (4 * sizeof(*map))) {
2253 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2254 map_name, map_len);
2255 return -EINVAL;
2256 }
2257
2258 /* The default is to select all bits. */
2259 map_mask = 0xffffffff;
2260
2261 /*
2262 * Can be overridden by "{iommu,msi}-map-mask" property.
2263 * If of_property_read_u32() fails, the default is used.
2264 */
2265 if (map_mask_name)
2266 of_property_read_u32(np, map_mask_name, &map_mask);
2267
2268 masked_id = map_mask & id;
2269 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2270 struct device_node *phandle_node;
2271 u32 id_base = be32_to_cpup(map + 0);
2272 u32 phandle = be32_to_cpup(map + 1);
2273 u32 out_base = be32_to_cpup(map + 2);
2274 u32 id_len = be32_to_cpup(map + 3);
2275
2276 if (id_base & ~map_mask) {
2277 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2278 np, map_name, map_name,
2279 map_mask, id_base);
2280 return -EFAULT;
2281 }
2282
2283 if (masked_id < id_base || masked_id >= id_base + id_len)
2284 continue;
2285
2286 phandle_node = of_find_node_by_phandle(phandle);
2287 if (!phandle_node)
2288 return -ENODEV;
2289
2290 if (target) {
2291 if (*target)
2292 of_node_put(phandle_node);
2293 else
2294 *target = phandle_node;
2295
2296 if (*target != phandle_node)
2297 continue;
2298 }
2299
2300 if (id_out)
2301 *id_out = masked_id - id_base + out_base;
2302
2303 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2304 np, map_name, map_mask, id_base, out_base,
2305 id_len, id, masked_id - id_base + out_base);
2306 return 0;
2307 }
2308
2309 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2310 id, target && *target ? *target : NULL);
2311
2312 /* Bypasses translation */
2313 if (id_out)
2314 *id_out = id;
2315 return 0;
2316}
2317EXPORT_SYMBOL_GPL(of_map_id);