Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qed NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <asm/byteorder.h>
   9#include <linux/io.h>
  10#include <linux/bitops.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/errno.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include "qed.h"
  20#include "qed_hsi.h"
  21#include "qed_hw.h"
  22#include "qed_init_ops.h"
  23#include "qed_int.h"
  24#include "qed_mcp.h"
  25#include "qed_reg_addr.h"
  26#include "qed_sp.h"
  27#include "qed_sriov.h"
  28#include "qed_vf.h"
  29
  30struct qed_pi_info {
  31	qed_int_comp_cb_t	comp_cb;
  32	void			*cookie;
  33};
  34
  35struct qed_sb_sp_info {
  36	struct qed_sb_info sb_info;
  37
  38	/* per protocol index data */
  39	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
  40};
  41
  42enum qed_attention_type {
  43	QED_ATTN_TYPE_ATTN,
  44	QED_ATTN_TYPE_PARITY,
  45};
  46
  47#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
  48	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
  49
  50struct aeu_invert_reg_bit {
  51	char bit_name[30];
  52
  53#define ATTENTION_PARITY                (1 << 0)
  54
  55#define ATTENTION_LENGTH_MASK           (0x00000ff0)
  56#define ATTENTION_LENGTH_SHIFT          (4)
  57#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
  58					 ATTENTION_LENGTH_SHIFT)
  59#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
  60#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
  61#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
  62					 ATTENTION_PARITY)
  63
  64/* Multiple bits start with this offset */
  65#define ATTENTION_OFFSET_MASK           (0x000ff000)
  66#define ATTENTION_OFFSET_SHIFT          (12)
  67
  68#define ATTENTION_BB_MASK               (0x00700000)
  69#define ATTENTION_BB_SHIFT              (20)
  70#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
  71#define ATTENTION_BB_DIFFERENT          BIT(23)
  72
  73#define ATTENTION_CLEAR_ENABLE          BIT(28)
  74	unsigned int flags;
  75
  76	/* Callback to call if attention will be triggered */
  77	int (*cb)(struct qed_hwfn *p_hwfn);
  78
  79	enum block_id block_index;
  80};
  81
  82struct aeu_invert_reg {
  83	struct aeu_invert_reg_bit bits[32];
  84};
  85
  86#define MAX_ATTN_GRPS           (8)
  87#define NUM_ATTN_REGS           (9)
  88
  89/* Specific HW attention callbacks */
  90static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
  91{
  92	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
  93
  94	/* This might occur on certain instances; Log it once then mask it */
  95	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
  96		tmp);
  97	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
  98	       0xffffffff);
  99
 100	return 0;
 101}
 102
 103#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
 104#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
 105#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
 106#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
 107#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
 108#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
 109#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
 110#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
 111#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
 112#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
 113#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
 114#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
 115#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
 116static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
 117{
 118	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 119			 PSWHST_REG_INCORRECT_ACCESS_VALID);
 120
 121	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
 122		u32 addr, data, length;
 123
 124		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 125			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
 126		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 127			      PSWHST_REG_INCORRECT_ACCESS_DATA);
 128		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 129				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
 130
 131		DP_INFO(p_hwfn->cdev,
 132			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
 133			addr, length,
 134			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
 135			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
 136			(u8) GET_FIELD(data,
 137				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
 138			(u8) GET_FIELD(data,
 139				       ATTENTION_INCORRECT_ACCESS_CLIENT),
 140			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
 141			(u8) GET_FIELD(data,
 142				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
 143			data);
 144	}
 145
 146	return 0;
 147}
 148
 149#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
 150#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
 151#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
 152#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
 153#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
 154#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
 155#define QED_GRC_ATTENTION_PF_MASK	(0xf)
 156#define QED_GRC_ATTENTION_PF_SHIFT	(0)
 157#define QED_GRC_ATTENTION_VF_MASK	(0xff)
 158#define QED_GRC_ATTENTION_VF_SHIFT	(4)
 159#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
 160#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
 161#define QED_GRC_ATTENTION_PRIV_VF	(0)
 162static const char *attn_master_to_str(u8 master)
 163{
 164	switch (master) {
 165	case 1: return "PXP";
 166	case 2: return "MCP";
 167	case 3: return "MSDM";
 168	case 4: return "PSDM";
 169	case 5: return "YSDM";
 170	case 6: return "USDM";
 171	case 7: return "TSDM";
 172	case 8: return "XSDM";
 173	case 9: return "DBU";
 174	case 10: return "DMAE";
 175	default:
 176		return "Unknown";
 177	}
 178}
 179
 180static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
 181{
 182	u32 tmp, tmp2;
 183
 184	/* We've already cleared the timeout interrupt register, so we learn
 185	 * of interrupts via the validity register
 186	 */
 187	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 188		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
 189	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
 190		goto out;
 191
 192	/* Read the GRC timeout information */
 193	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 194		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
 195	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 196		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
 197
 198	DP_INFO(p_hwfn->cdev,
 199		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
 200		tmp2, tmp,
 201		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
 202		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
 203		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
 204		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
 205		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
 206		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
 207		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
 208
 209out:
 210	/* Regardles of anything else, clean the validity bit */
 211	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 212	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
 213	return 0;
 214}
 215
 216#define PGLUE_ATTENTION_VALID			(1 << 29)
 217#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
 218#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
 219#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
 220#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
 221#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
 222#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
 223#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
 224#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
 225#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
 226#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
 227#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
 228#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
 229#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
 230#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
 231#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
 232#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
 233
 234int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
 235				bool hw_init)
 236{
 237	char msg[256];
 238	u32 tmp;
 239
 240	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
 241	if (tmp & PGLUE_ATTENTION_VALID) {
 242		u32 addr_lo, addr_hi, details;
 243
 244		addr_lo = qed_rd(p_hwfn, p_ptt,
 245				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
 246		addr_hi = qed_rd(p_hwfn, p_ptt,
 247				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
 248		details = qed_rd(p_hwfn, p_ptt,
 249				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
 250
 251		snprintf(msg, sizeof(msg),
 252			 "Illegal write by chip to [%08x:%08x] blocked.\n"
 253			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 254			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
 255			 addr_hi, addr_lo, details,
 256			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 257			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 258			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
 259			 tmp,
 260			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
 261			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
 262			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
 263
 264		if (hw_init)
 265			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
 266		else
 267			DP_NOTICE(p_hwfn, "%s\n", msg);
 268	}
 269
 270	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
 271	if (tmp & PGLUE_ATTENTION_RD_VALID) {
 272		u32 addr_lo, addr_hi, details;
 273
 274		addr_lo = qed_rd(p_hwfn, p_ptt,
 275				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
 276		addr_hi = qed_rd(p_hwfn, p_ptt,
 277				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
 278		details = qed_rd(p_hwfn, p_ptt,
 279				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
 280
 281		DP_NOTICE(p_hwfn,
 282			  "Illegal read by chip from [%08x:%08x] blocked.\n"
 283			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 284			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
 285			  addr_hi, addr_lo, details,
 286			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 287			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 288			  GET_FIELD(details,
 289				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
 290			  tmp,
 291			  GET_FIELD(tmp,
 292				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
 293			  GET_FIELD(tmp,
 294				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
 295			  GET_FIELD(tmp,
 296				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
 297	}
 298
 299	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
 300	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
 301		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
 302
 303		if (hw_init)
 304			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
 305		else
 306			DP_NOTICE(p_hwfn, "%s\n", msg);
 307	}
 308
 309	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
 310	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
 311		u32 addr_hi, addr_lo;
 312
 313		addr_lo = qed_rd(p_hwfn, p_ptt,
 314				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
 315		addr_hi = qed_rd(p_hwfn, p_ptt,
 316				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
 317
 318		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
 319			  tmp, addr_hi, addr_lo);
 320	}
 321
 322	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
 323	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
 324		u32 addr_hi, addr_lo, details;
 325
 326		addr_lo = qed_rd(p_hwfn, p_ptt,
 327				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
 328		addr_hi = qed_rd(p_hwfn, p_ptt,
 329				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
 330		details = qed_rd(p_hwfn, p_ptt,
 331				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
 332
 333		DP_NOTICE(p_hwfn,
 334			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
 335			  details, tmp, addr_hi, addr_lo);
 336	}
 337
 338	/* Clear the indications */
 339	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
 340
 341	return 0;
 342}
 343
 344static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
 345{
 346	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
 347}
 348
 349static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
 350{
 351	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
 352			  "FW assertion!\n");
 353
 354	return -EINVAL;
 355}
 356
 357static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
 358{
 359	DP_INFO(p_hwfn, "General attention 35!\n");
 360
 361	return 0;
 362}
 363
 364#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
 365#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
 366#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
 367#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
 368#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
 369
 370#define QED_DB_REC_COUNT                        1000
 371#define QED_DB_REC_INTERVAL                     100
 372
 373static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
 374				  struct qed_ptt *p_ptt)
 375{
 376	u32 count = QED_DB_REC_COUNT;
 377	u32 usage = 1;
 378
 379	/* Flush any pending (e)dpms as they may never arrive */
 380	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
 381
 382	/* wait for usage to zero or count to run out. This is necessary since
 383	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
 384	 * can "split" over the pci. Possibly, the doorbell drop can happen with
 385	 * half an EDPM in the queue and other half dropped. Another EDPM
 386	 * doorbell to the same address (from doorbell recovery mechanism or
 387	 * from the doorbelling entity) could have first half dropped and second
 388	 * half interpreted as continuation of the first. To prevent such
 389	 * malformed doorbells from reaching the device, flush the queue before
 390	 * releasing the overflow sticky indication.
 391	 */
 392	while (count-- && usage) {
 393		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
 394		udelay(QED_DB_REC_INTERVAL);
 395	}
 396
 397	/* should have been depleted by now */
 398	if (usage) {
 399		DP_NOTICE(p_hwfn->cdev,
 400			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
 401			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
 402		return -EBUSY;
 403	}
 404
 405	return 0;
 406}
 407
 408int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 409{
 410	u32 attn_ovfl, cur_ovfl;
 411	int rc;
 412
 413	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
 414				       &p_hwfn->db_recovery_info.overflow);
 415	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 416	if (!cur_ovfl && !attn_ovfl)
 417		return 0;
 418
 419	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
 420		  attn_ovfl, cur_ovfl);
 421
 422	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
 423		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 424		if (rc)
 425			return rc;
 426	}
 427
 428	/* Release overflow sticky indication (stop silently dropping everything) */
 429	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 430
 431	/* Repeat all last doorbells (doorbell drop recovery) */
 432	qed_db_recovery_execute(p_hwfn);
 433
 434	return 0;
 435}
 436
 437static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
 438{
 439	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 440	u32 overflow;
 441	int rc;
 442
 443	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 444	if (!overflow)
 445		goto out;
 446
 447	/* Run PF doorbell recovery in next periodic handler */
 448	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
 449
 450	if (!p_hwfn->db_bar_no_edpm) {
 451		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 452		if (rc)
 453			goto out;
 454	}
 455
 456	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 457out:
 458	/* Schedule the handler even if overflow was not detected */
 459	qed_periodic_db_rec_start(p_hwfn);
 460}
 461
 462static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
 463{
 464	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
 465	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 466
 467	/* int_sts may be zero since all PFs were interrupted for doorbell
 468	 * overflow but another one already handled it. Can abort here. If
 469	 * This PF also requires overflow recovery we will be interrupted again.
 470	 * The masked almost full indication may also be set. Ignoring.
 471	 */
 472	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
 473	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
 474		return 0;
 475
 476	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
 477
 478	/* check if db_drop or overflow happened */
 479	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
 480		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
 481		/* Obtain data about db drop/overflow */
 482		first_drop_reason = qed_rd(p_hwfn, p_ptt,
 483					   DORQ_REG_DB_DROP_REASON) &
 484		    QED_DORQ_ATTENTION_REASON_MASK;
 485		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
 486		address = qed_rd(p_hwfn, p_ptt,
 487				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
 488		all_drops_reason = qed_rd(p_hwfn, p_ptt,
 489					  DORQ_REG_DB_DROP_DETAILS_REASON);
 490
 491		/* Log info */
 492		DP_NOTICE(p_hwfn->cdev,
 493			  "Doorbell drop occurred\n"
 494			  "Address\t\t0x%08x\t(second BAR address)\n"
 495			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
 496			  "Size\t\t0x%04x\t\t(in bytes)\n"
 497			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
 498			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
 499			  address,
 500			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
 501			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
 502			  first_drop_reason, all_drops_reason);
 503
 504		/* Clear the doorbell drop details and prepare for next drop */
 505		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
 506
 507		/* Mark interrupt as handled (note: even if drop was due to a different
 508		 * reason than overflow we mark as handled)
 509		 */
 510		qed_wr(p_hwfn,
 511		       p_ptt,
 512		       DORQ_REG_INT_STS_WR,
 513		       DORQ_REG_INT_STS_DB_DROP |
 514		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
 515
 516		/* If there are no indications other than drop indications, success */
 517		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
 518				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
 519				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
 520			return 0;
 521	}
 522
 523	/* Some other indication was present - non recoverable */
 524	DP_INFO(p_hwfn, "DORQ fatal attention\n");
 525
 526	return -EINVAL;
 527}
 528
 529static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
 530{
 531	p_hwfn->db_recovery_info.dorq_attn = true;
 532	qed_dorq_attn_overflow(p_hwfn);
 533
 534	return qed_dorq_attn_int_sts(p_hwfn);
 535}
 536
 537static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
 538{
 539	if (p_hwfn->db_recovery_info.dorq_attn)
 540		goto out;
 541
 542	/* Call DORQ callback if the attention was missed */
 543	qed_dorq_attn_cb(p_hwfn);
 544out:
 545	p_hwfn->db_recovery_info.dorq_attn = false;
 546}
 547
 548/* Instead of major changes to the data-structure, we have a some 'special'
 549 * identifiers for sources that changed meaning between adapters.
 550 */
 551enum aeu_invert_reg_special_type {
 552	AEU_INVERT_REG_SPECIAL_CNIG_0,
 553	AEU_INVERT_REG_SPECIAL_CNIG_1,
 554	AEU_INVERT_REG_SPECIAL_CNIG_2,
 555	AEU_INVERT_REG_SPECIAL_CNIG_3,
 556	AEU_INVERT_REG_SPECIAL_MAX,
 557};
 558
 559static struct aeu_invert_reg_bit
 560aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
 561	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 562	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 563	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 564	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 565};
 566
 567/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
 568static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
 569	{
 570		{       /* After Invert 1 */
 571			{"GPIO0 function%d",
 572			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 573		}
 574	},
 575
 576	{
 577		{       /* After Invert 2 */
 578			{"PGLUE config_space", ATTENTION_SINGLE,
 579			 NULL, MAX_BLOCK_ID},
 580			{"PGLUE misc_flr", ATTENTION_SINGLE,
 581			 NULL, MAX_BLOCK_ID},
 582			{"PGLUE B RBC", ATTENTION_PAR_INT,
 583			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
 584			{"PGLUE misc_mctp", ATTENTION_SINGLE,
 585			 NULL, MAX_BLOCK_ID},
 586			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 587			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
 588			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 589			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
 590					  (1 << ATTENTION_OFFSET_SHIFT),
 591			 NULL, MAX_BLOCK_ID},
 592			{"PCIE glue/PXP VPD %d",
 593			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
 594		}
 595	},
 596
 597	{
 598		{       /* After Invert 3 */
 599			{"General Attention %d",
 600			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 601		}
 602	},
 603
 604	{
 605		{       /* After Invert 4 */
 606			{"General Attention 32", ATTENTION_SINGLE |
 607			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
 608			 MAX_BLOCK_ID},
 609			{"General Attention %d",
 610			 (2 << ATTENTION_LENGTH_SHIFT) |
 611			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
 612			{"General Attention 35", ATTENTION_SINGLE |
 613			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
 614			 MAX_BLOCK_ID},
 615			{"NWS Parity",
 616			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 617			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
 618			 NULL, BLOCK_NWS},
 619			{"NWS Interrupt",
 620			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 621			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
 622			 NULL, BLOCK_NWS},
 623			{"NWM Parity",
 624			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 625			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
 626			 NULL, BLOCK_NWM},
 627			{"NWM Interrupt",
 628			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 629			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
 630			 NULL, BLOCK_NWM},
 631			{"MCP CPU", ATTENTION_SINGLE,
 632			 qed_mcp_attn_cb, MAX_BLOCK_ID},
 633			{"MCP Watchdog timer", ATTENTION_SINGLE,
 634			 NULL, MAX_BLOCK_ID},
 635			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 636			{"AVS stop status ready", ATTENTION_SINGLE,
 637			 NULL, MAX_BLOCK_ID},
 638			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 639			{"MSTAT per-path", ATTENTION_PAR_INT,
 640			 NULL, MAX_BLOCK_ID},
 641			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
 642			 NULL, MAX_BLOCK_ID},
 643			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
 644			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
 645			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
 646			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
 647			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
 648		}
 649	},
 650
 651	{
 652		{       /* After Invert 5 */
 653			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
 654			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
 655			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
 656			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
 657			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
 658			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
 659			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
 660			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
 661			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
 662			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
 663			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
 664			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
 665			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
 666			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
 667			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
 668			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
 669		}
 670	},
 671
 672	{
 673		{       /* After Invert 6 */
 674			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
 675			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
 676			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
 677			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
 678			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
 679			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
 680			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
 681			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
 682			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
 683			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
 684			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
 685			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
 686			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
 687			{"DORQ", ATTENTION_PAR_INT,
 688			 qed_dorq_attn_cb, BLOCK_DORQ},
 689			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
 690			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
 691		}
 692	},
 693
 694	{
 695		{       /* After Invert 7 */
 696			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
 697			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
 698			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
 699			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
 700			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 701			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
 702			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
 703			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
 704			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
 705			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
 706			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
 707			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
 708			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
 709			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
 710			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
 711			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
 712			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
 713		}
 714	},
 715
 716	{
 717		{       /* After Invert 8 */
 718			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
 719			 NULL, BLOCK_PSWRQ2},
 720			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
 721			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
 722			 NULL, BLOCK_PSWWR2},
 723			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
 724			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
 725			 NULL, BLOCK_PSWRD2},
 726			{"PSWHST", ATTENTION_PAR_INT,
 727			 qed_pswhst_attn_cb, BLOCK_PSWHST},
 728			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
 729			 NULL, BLOCK_PSWHST2},
 730			{"GRC",	ATTENTION_PAR_INT,
 731			 qed_grc_attn_cb, BLOCK_GRC},
 732			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
 733			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
 734			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 735			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 736			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 737			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 738			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 739			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 740			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
 741			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
 742			 NULL, BLOCK_PGLCS},
 743			{"PERST_B assertion", ATTENTION_SINGLE,
 744			 NULL, MAX_BLOCK_ID},
 745			{"PERST_B deassertion", ATTENTION_SINGLE,
 746			 NULL, MAX_BLOCK_ID},
 747			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
 748			 NULL, MAX_BLOCK_ID},
 749		}
 750	},
 751
 752	{
 753		{       /* After Invert 9 */
 754			{"MCP Latched memory", ATTENTION_PAR,
 755			 NULL, MAX_BLOCK_ID},
 756			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
 757			 NULL, MAX_BLOCK_ID},
 758			{"MCP Latched ump_tx", ATTENTION_PAR,
 759			 NULL, MAX_BLOCK_ID},
 760			{"MCP Latched scratchpad", ATTENTION_PAR,
 761			 NULL, MAX_BLOCK_ID},
 762			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
 763			 NULL, MAX_BLOCK_ID},
 764		}
 765	},
 766};
 767
 768static struct aeu_invert_reg_bit *
 769qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
 770		      struct aeu_invert_reg_bit *p_bit)
 771{
 772	if (!QED_IS_BB(p_hwfn->cdev))
 773		return p_bit;
 774
 775	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
 776		return p_bit;
 777
 778	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
 779				  ATTENTION_BB_SHIFT];
 780}
 781
 782static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
 783				   struct aeu_invert_reg_bit *p_bit)
 784{
 785	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
 786		   ATTENTION_PARITY);
 787}
 788
 789#define ATTN_STATE_BITS         (0xfff)
 790#define ATTN_BITS_MASKABLE      (0x3ff)
 791struct qed_sb_attn_info {
 792	/* Virtual & Physical address of the SB */
 793	struct atten_status_block       *sb_attn;
 794	dma_addr_t			sb_phys;
 795
 796	/* Last seen running index */
 797	u16				index;
 798
 799	/* A mask of the AEU bits resulting in a parity error */
 800	u32				parity_mask[NUM_ATTN_REGS];
 801
 802	/* A pointer to the attention description structure */
 803	struct aeu_invert_reg		*p_aeu_desc;
 804
 805	/* Previously asserted attentions, which are still unasserted */
 806	u16				known_attn;
 807
 808	/* Cleanup address for the link's general hw attention */
 809	u32				mfw_attn_addr;
 810};
 811
 812static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
 813				      struct qed_sb_attn_info *p_sb_desc)
 814{
 815	u16 rc = 0, index;
 816
 817	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
 818	if (p_sb_desc->index != index) {
 819		p_sb_desc->index	= index;
 820		rc		      = QED_SB_ATT_IDX;
 821	}
 822
 823	return rc;
 824}
 825
 826/**
 827 * qed_int_assertion() - Handle asserted attention bits.
 828 *
 829 * @p_hwfn: HW device data.
 830 * @asserted_bits: Newly asserted bits.
 831 *
 832 * Return: Zero value.
 833 */
 834static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
 835{
 836	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
 837	u32 igu_mask;
 838
 839	/* Mask the source of the attention in the IGU */
 840	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
 841	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
 842		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
 843	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
 844	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
 845
 846	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
 847		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
 848		   sb_attn_sw->known_attn,
 849		   sb_attn_sw->known_attn | asserted_bits);
 850	sb_attn_sw->known_attn |= asserted_bits;
 851
 852	/* Handle MCP events */
 853	if (asserted_bits & 0x100) {
 854		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
 855		/* Clean the MCP attention */
 856		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 857		       sb_attn_sw->mfw_attn_addr, 0);
 858	}
 859
 860	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
 861		      GTT_BAR0_MAP_REG_IGU_CMD +
 862		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
 863			IGU_CMD_INT_ACK_BASE) << 3),
 864		      (u32)asserted_bits);
 865
 866	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
 867		   asserted_bits);
 868
 869	return 0;
 870}
 871
 872static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
 873			       enum block_id id,
 874			       enum dbg_attn_type type, bool b_clear)
 875{
 876	struct dbg_attn_block_result attn_results;
 877	enum dbg_status status;
 878
 879	memset(&attn_results, 0, sizeof(attn_results));
 880
 881	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
 882				   b_clear, &attn_results);
 883	if (status != DBG_STATUS_OK)
 884		DP_NOTICE(p_hwfn,
 885			  "Failed to parse attention information [status: %s]\n",
 886			  qed_dbg_get_status_str(status));
 887	else
 888		qed_dbg_parse_attn(p_hwfn, &attn_results);
 889}
 890
 891/**
 892 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
 893 * cause of the attention.
 894 *
 895 * @p_hwfn: HW device data.
 896 * @p_aeu: Descriptor of an AEU bit which caused the attention.
 897 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
 898 *              this bit to this group.
 899 * @p_bit_name: AEU bit description for logging purposes.
 900 * @bitmask: Index of this bit in the aeu_en_reg.
 901 *
 902 * Return: Zero on success, negative errno otherwise.
 903 */
 904static int
 905qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
 906			    struct aeu_invert_reg_bit *p_aeu,
 907			    u32 aeu_en_reg,
 908			    const char *p_bit_name, u32 bitmask)
 909{
 910	bool b_fatal = false;
 911	int rc = -EINVAL;
 912	u32 val;
 913
 914	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
 915		p_bit_name, bitmask);
 916
 917	/* Call callback before clearing the interrupt status */
 918	if (p_aeu->cb) {
 919		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
 920			p_bit_name);
 921		rc = p_aeu->cb(p_hwfn);
 922	}
 923
 924	if (rc)
 925		b_fatal = true;
 926
 927	/* Print HW block interrupt registers */
 928	if (p_aeu->block_index != MAX_BLOCK_ID)
 929		qed_int_attn_print(p_hwfn, p_aeu->block_index,
 930				   ATTN_TYPE_INTERRUPT, !b_fatal);
 931
 932	/* Reach assertion if attention is fatal */
 933	if (b_fatal)
 934		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
 935				  "`%s': Fatal attention\n",
 936				  p_bit_name);
 937	else /* If the attention is benign, no need to prevent it */
 938		goto out;
 939
 940	/* Prevent this Attention from being asserted in the future */
 941	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
 942	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
 943	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
 944		p_bit_name);
 945
 946out:
 947	return rc;
 948}
 949
 950/**
 951 * qed_int_deassertion_parity() - Handle a single parity AEU source.
 952 *
 953 * @p_hwfn: HW device data.
 954 * @p_aeu: Descriptor of an AEU bit which caused the parity.
 955 * @aeu_en_reg: Address of the AEU enable register.
 956 * @bit_index: Index (0-31) of an AEU bit.
 957 */
 958static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
 959				       struct aeu_invert_reg_bit *p_aeu,
 960				       u32 aeu_en_reg, u8 bit_index)
 961{
 962	u32 block_id = p_aeu->block_index, mask, val;
 963
 964	DP_NOTICE(p_hwfn->cdev,
 965		  "%s parity attention is set [address 0x%08x, bit %d]\n",
 966		  p_aeu->bit_name, aeu_en_reg, bit_index);
 967
 968	if (block_id != MAX_BLOCK_ID) {
 969		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
 970
 971		/* In BB, there's a single parity bit for several blocks */
 972		if (block_id == BLOCK_BTB) {
 973			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
 974					   ATTN_TYPE_PARITY, false);
 975			qed_int_attn_print(p_hwfn, BLOCK_MCP,
 976					   ATTN_TYPE_PARITY, false);
 977		}
 978	}
 979
 980	/* Prevent this parity error from being re-asserted */
 981	mask = ~BIT(bit_index);
 982	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
 983	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
 984	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
 985		p_aeu->bit_name);
 986}
 987
 988/**
 989 * qed_int_deassertion() - Handle deassertion of previously asserted
 990 * attentions.
 991 *
 992 * @p_hwfn: HW device data.
 993 * @deasserted_bits: newly deasserted bits.
 994 *
 995 * Return: Zero value.
 996 */
 997static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
 998			       u16 deasserted_bits)
 999{
1000	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1001	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1002	u8 i, j, k, bit_idx;
1003	int rc = 0;
1004
1005	/* Read the attention registers in the AEU */
1006	for (i = 0; i < NUM_ATTN_REGS; i++) {
1007		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1008					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1009					i * 0x4);
1010		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1011			   "Deasserted bits [%d]: %08x\n",
1012			   i, aeu_inv_arr[i]);
1013	}
1014
1015	/* Find parity attentions first */
1016	for (i = 0; i < NUM_ATTN_REGS; i++) {
1017		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1018		u32 parities;
1019
1020		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1021		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1022
1023		/* Skip register in which no parity bit is currently set */
1024		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1025		if (!parities)
1026			continue;
1027
1028		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1029			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1030
1031			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1032			    !!(parities & BIT(bit_idx)))
1033				qed_int_deassertion_parity(p_hwfn, p_bit,
1034							   aeu_en, bit_idx);
1035
1036			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1037		}
1038	}
1039
1040	/* Find non-parity cause for attention and act */
1041	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1042		struct aeu_invert_reg_bit *p_aeu;
1043
1044		/* Handle only groups whose attention is currently deasserted */
1045		if (!(deasserted_bits & (1 << k)))
1046			continue;
1047
1048		for (i = 0; i < NUM_ATTN_REGS; i++) {
1049			u32 bits;
1050
1051			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1052				 i * sizeof(u32) +
1053				 k * sizeof(u32) * NUM_ATTN_REGS;
1054
1055			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1056			bits = aeu_inv_arr[i] & en;
1057
1058			/* Skip if no bit from this group is currently set */
1059			if (!bits)
1060				continue;
1061
1062			/* Find all set bits from current register which belong
1063			 * to current group, making them responsible for the
1064			 * previous assertion.
1065			 */
1066			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1067				long unsigned int bitmask;
1068				u8 bit, bit_len;
1069
1070				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1072
1073				bit = bit_idx;
1074				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1076					/* Skip Parity */
1077					bit++;
1078					bit_len--;
1079				}
1080
1081				bitmask = bits & (((1 << bit_len) - 1) << bit);
1082				bitmask >>= bit;
1083
1084				if (bitmask) {
1085					u32 flags = p_aeu->flags;
1086					char bit_name[30];
1087					u8 num;
1088
1089					num = (u8)find_first_bit(&bitmask,
1090								 bit_len);
1091
1092					/* Some bits represent more than a
1093					 * a single interrupt. Correctly print
1094					 * their name.
1095					 */
1096					if (ATTENTION_LENGTH(flags) > 2 ||
1097					    ((flags & ATTENTION_PAR_INT) &&
1098					     ATTENTION_LENGTH(flags) > 1))
1099						snprintf(bit_name, 30,
1100							 p_aeu->bit_name, num);
1101					else
1102						strlcpy(bit_name,
1103							p_aeu->bit_name, 30);
1104
1105					/* We now need to pass bitmask in its
1106					 * correct position.
1107					 */
1108					bitmask <<= bit;
1109
1110					/* Handle source of the attention */
1111					qed_int_deassertion_aeu_bit(p_hwfn,
1112								    p_aeu,
1113								    aeu_en,
1114								    bit_name,
1115								    bitmask);
1116				}
1117
1118				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1119			}
1120		}
1121	}
1122
1123	/* Handle missed DORQ attention */
1124	qed_dorq_attn_handler(p_hwfn);
1125
1126	/* Clear IGU indication for the deasserted bits */
1127	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1128				    GTT_BAR0_MAP_REG_IGU_CMD +
1129				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1130				      IGU_CMD_INT_ACK_BASE) << 3),
1131				    ~((u32)deasserted_bits));
1132
1133	/* Unmask deasserted attentions in IGU */
1134	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1135	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1136	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1137
1138	/* Clear deassertion from inner state */
1139	sb_attn_sw->known_attn &= ~deasserted_bits;
1140
1141	return rc;
1142}
1143
1144static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1145{
1146	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1147	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1148	u32 attn_bits = 0, attn_acks = 0;
1149	u16 asserted_bits, deasserted_bits;
1150	__le16 index;
1151	int rc = 0;
1152
1153	/* Read current attention bits/acks - safeguard against attentions
1154	 * by guaranting work on a synchronized timeframe
1155	 */
1156	do {
1157		index = p_sb_attn->sb_index;
1158		/* finish reading index before the loop condition */
1159		dma_rmb();
1160		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1161		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1162	} while (index != p_sb_attn->sb_index);
1163	p_sb_attn->sb_index = index;
1164
1165	/* Attention / Deassertion are meaningful (and in correct state)
1166	 * only when they differ and consistent with known state - deassertion
1167	 * when previous attention & current ack, and assertion when current
1168	 * attention with no previous attention
1169	 */
1170	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1171		~p_sb_attn_sw->known_attn;
1172	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1173		p_sb_attn_sw->known_attn;
1174
1175	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1176		DP_INFO(p_hwfn,
1177			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1178			index, attn_bits, attn_acks, asserted_bits,
1179			deasserted_bits, p_sb_attn_sw->known_attn);
1180	} else if (asserted_bits == 0x100) {
1181		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1182			   "MFW indication via attention\n");
1183	} else {
1184		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1185			   "MFW indication [deassertion]\n");
1186	}
1187
1188	if (asserted_bits) {
1189		rc = qed_int_assertion(p_hwfn, asserted_bits);
1190		if (rc)
1191			return rc;
1192	}
1193
1194	if (deasserted_bits)
1195		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1196
1197	return rc;
1198}
1199
1200static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1201			    void __iomem *igu_addr, u32 ack_cons)
1202{
1203	u32 igu_ack;
1204
1205	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1206		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1207		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1208		   (IGU_SEG_ACCESS_ATTN <<
1209		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1210
1211	DIRECT_REG_WR(igu_addr, igu_ack);
1212
1213	/* Both segments (interrupts & acks) are written to same place address;
1214	 * Need to guarantee all commands will be received (in-order) by HW.
1215	 */
1216	barrier();
1217}
1218
1219void qed_int_sp_dpc(struct tasklet_struct *t)
1220{
1221	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1222	struct qed_pi_info *pi_info = NULL;
1223	struct qed_sb_attn_info *sb_attn;
1224	struct qed_sb_info *sb_info;
1225	int arr_size;
1226	u16 rc = 0;
1227
1228	if (!p_hwfn->p_sp_sb) {
1229		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1230		return;
1231	}
1232
1233	sb_info = &p_hwfn->p_sp_sb->sb_info;
1234	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1235	if (!sb_info) {
1236		DP_ERR(p_hwfn->cdev,
1237		       "Status block is NULL - cannot ack interrupts\n");
1238		return;
1239	}
1240
1241	if (!p_hwfn->p_sb_attn) {
1242		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1243		return;
1244	}
1245	sb_attn = p_hwfn->p_sb_attn;
1246
1247	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1248		   p_hwfn, p_hwfn->my_id);
1249
1250	/* Disable ack for def status block. Required both for msix +
1251	 * inta in non-mask mode, in inta does no harm.
1252	 */
1253	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1254
1255	/* Gather Interrupts/Attentions information */
1256	if (!sb_info->sb_virt) {
1257		DP_ERR(p_hwfn->cdev,
1258		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1259	} else {
1260		u32 tmp_index = sb_info->sb_ack;
1261
1262		rc = qed_sb_update_sb_idx(sb_info);
1263		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1264			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1265			   tmp_index, sb_info->sb_ack);
1266	}
1267
1268	if (!sb_attn || !sb_attn->sb_attn) {
1269		DP_ERR(p_hwfn->cdev,
1270		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1271	} else {
1272		u16 tmp_index = sb_attn->index;
1273
1274		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1275		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1276			   "Attention indices: 0x%08x --> 0x%08x\n",
1277			   tmp_index, sb_attn->index);
1278	}
1279
1280	/* Check if we expect interrupts at this time. if not just ack them */
1281	if (!(rc & QED_SB_EVENT_MASK)) {
1282		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1283		return;
1284	}
1285
1286	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1287	if (!p_hwfn->p_dpc_ptt) {
1288		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1289		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290		return;
1291	}
1292
1293	if (rc & QED_SB_ATT_IDX)
1294		qed_int_attentions(p_hwfn);
1295
1296	if (rc & QED_SB_IDX) {
1297		int pi;
1298
1299		/* Look for a free index */
1300		for (pi = 0; pi < arr_size; pi++) {
1301			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1302			if (pi_info->comp_cb)
1303				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1304		}
1305	}
1306
1307	if (sb_attn && (rc & QED_SB_ATT_IDX))
1308		/* This should be done before the interrupts are enabled,
1309		 * since otherwise a new attention will be generated.
1310		 */
1311		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1312
1313	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1314}
1315
1316static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1317{
1318	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1319
1320	if (!p_sb)
1321		return;
1322
1323	if (p_sb->sb_attn)
1324		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1325				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1326				  p_sb->sb_attn, p_sb->sb_phys);
1327	kfree(p_sb);
1328	p_hwfn->p_sb_attn = NULL;
1329}
1330
1331static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1332				  struct qed_ptt *p_ptt)
1333{
1334	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1335
1336	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1337
1338	sb_info->index = 0;
1339	sb_info->known_attn = 0;
1340
1341	/* Configure Attention Status Block in IGU */
1342	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1343	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1344	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1345	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1346}
1347
1348static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1349				 struct qed_ptt *p_ptt,
1350				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1351{
1352	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1353	int i, j, k;
1354
1355	sb_info->sb_attn = sb_virt_addr;
1356	sb_info->sb_phys = sb_phy_addr;
1357
1358	/* Set the pointer to the AEU descriptors */
1359	sb_info->p_aeu_desc = aeu_descs;
1360
1361	/* Calculate Parity Masks */
1362	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1363	for (i = 0; i < NUM_ATTN_REGS; i++) {
1364		/* j is array index, k is bit index */
1365		for (j = 0, k = 0; k < 32; j++) {
1366			struct aeu_invert_reg_bit *p_aeu;
1367
1368			p_aeu = &aeu_descs[i].bits[j];
1369			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1370				sb_info->parity_mask[i] |= 1 << k;
1371
1372			k += ATTENTION_LENGTH(p_aeu->flags);
1373		}
1374		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1375			   "Attn Mask [Reg %d]: 0x%08x\n",
1376			   i, sb_info->parity_mask[i]);
1377	}
1378
1379	/* Set the address of cleanup for the mcp attention */
1380	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1381				 MISC_REG_AEU_GENERAL_ATTN_0;
1382
1383	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1384}
1385
1386static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1387				 struct qed_ptt *p_ptt)
1388{
1389	struct qed_dev *cdev = p_hwfn->cdev;
1390	struct qed_sb_attn_info *p_sb;
1391	dma_addr_t p_phys = 0;
1392	void *p_virt;
1393
1394	/* SB struct */
1395	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1396	if (!p_sb)
1397		return -ENOMEM;
1398
1399	/* SB ring  */
1400	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1401				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1402				    &p_phys, GFP_KERNEL);
1403
1404	if (!p_virt) {
1405		kfree(p_sb);
1406		return -ENOMEM;
1407	}
1408
1409	/* Attention setup */
1410	p_hwfn->p_sb_attn = p_sb;
1411	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1412
1413	return 0;
1414}
1415
1416/* coalescing timeout = timeset << (timer_res + 1) */
1417#define QED_CAU_DEF_RX_USECS 24
1418#define QED_CAU_DEF_TX_USECS 48
1419
1420void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1421			   struct cau_sb_entry *p_sb_entry,
1422			   u8 pf_id, u16 vf_number, u8 vf_valid)
1423{
1424	struct qed_dev *cdev = p_hwfn->cdev;
1425	u32 cau_state, params = 0, data = 0;
1426	u8 timer_res;
1427
1428	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1429
1430	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1431	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1432	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1433	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1434	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1435
1436	cau_state = CAU_HC_DISABLE_STATE;
1437
1438	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1439		cau_state = CAU_HC_ENABLE_STATE;
1440		if (!cdev->rx_coalesce_usecs)
1441			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1442		if (!cdev->tx_coalesce_usecs)
1443			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1444	}
1445
1446	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1447	if (cdev->rx_coalesce_usecs <= 0x7F)
1448		timer_res = 0;
1449	else if (cdev->rx_coalesce_usecs <= 0xFF)
1450		timer_res = 1;
1451	else
1452		timer_res = 2;
1453
1454	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1455
1456	if (cdev->tx_coalesce_usecs <= 0x7F)
1457		timer_res = 0;
1458	else if (cdev->tx_coalesce_usecs <= 0xFF)
1459		timer_res = 1;
1460	else
1461		timer_res = 2;
1462
1463	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1464	p_sb_entry->params = cpu_to_le32(params);
1465
1466	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1467	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1468	p_sb_entry->data = cpu_to_le32(data);
1469}
1470
1471static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1472				struct qed_ptt *p_ptt,
1473				u16 igu_sb_id,
1474				u32 pi_index,
1475				enum qed_coalescing_fsm coalescing_fsm,
1476				u8 timeset)
1477{
1478	u32 sb_offset, pi_offset;
1479	u32 prod = 0;
1480
1481	if (IS_VF(p_hwfn->cdev))
1482		return;
1483
1484	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1485	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1486		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1487	else
1488		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1489
1490	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491	pi_offset = sb_offset + pi_index;
1492
1493	if (p_hwfn->hw_init_done)
1494		qed_wr(p_hwfn, p_ptt,
1495		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1496	else
1497		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1498			     prod);
1499}
1500
1501void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1502			 struct qed_ptt *p_ptt,
1503			 dma_addr_t sb_phys,
1504			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1505{
1506	struct cau_sb_entry sb_entry;
1507
1508	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1509			      vf_number, vf_valid);
1510
1511	if (p_hwfn->hw_init_done) {
1512		/* Wide-bus, initialize via DMAE */
1513		u64 phys_addr = (u64)sb_phys;
1514
1515		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1516				  CAU_REG_SB_ADDR_MEMORY +
1517				  igu_sb_id * sizeof(u64), 2, NULL);
1518		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1519				  CAU_REG_SB_VAR_MEMORY +
1520				  igu_sb_id * sizeof(u64), 2, NULL);
1521	} else {
1522		/* Initialize Status Block Address */
1523		STORE_RT_REG_AGG(p_hwfn,
1524				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1525				 igu_sb_id * 2,
1526				 sb_phys);
1527
1528		STORE_RT_REG_AGG(p_hwfn,
1529				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1530				 igu_sb_id * 2,
1531				 sb_entry);
1532	}
1533
1534	/* Configure pi coalescing if set */
1535	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1536		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1537		u8 timeset, timer_res;
1538		u8 i;
1539
1540		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1541		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1542			timer_res = 0;
1543		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1544			timer_res = 1;
1545		else
1546			timer_res = 2;
1547		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1548		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1549				    QED_COAL_RX_STATE_MACHINE, timeset);
1550
1551		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1552			timer_res = 0;
1553		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1554			timer_res = 1;
1555		else
1556			timer_res = 2;
1557		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1558		for (i = 0; i < num_tc; i++) {
1559			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1560					    igu_sb_id, TX_PI(i),
1561					    QED_COAL_TX_STATE_MACHINE,
1562					    timeset);
1563		}
1564	}
1565}
1566
1567void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1568		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1569{
1570	/* zero status block and ack counter */
1571	sb_info->sb_ack = 0;
1572	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1573
1574	if (IS_PF(p_hwfn->cdev))
1575		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1576				    sb_info->igu_sb_id, 0, 0);
1577}
1578
1579struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1580{
1581	struct qed_igu_block *p_block;
1582	u16 igu_id;
1583
1584	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1585	     igu_id++) {
1586		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1587
1588		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1589		    !(p_block->status & QED_IGU_STATUS_FREE))
1590			continue;
1591
1592		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1593			return p_block;
1594	}
1595
1596	return NULL;
1597}
1598
1599static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1600{
1601	struct qed_igu_block *p_block;
1602	u16 igu_id;
1603
1604	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605	     igu_id++) {
1606		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609		    !p_block->is_pf ||
1610		    p_block->vector_number != vector_id)
1611			continue;
1612
1613		return igu_id;
1614	}
1615
1616	return QED_SB_INVALID_IDX;
1617}
1618
1619u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1620{
1621	u16 igu_sb_id;
1622
1623	/* Assuming continuous set of IGU SBs dedicated for given PF */
1624	if (sb_id == QED_SP_SB_ID)
1625		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1626	else if (IS_PF(p_hwfn->cdev))
1627		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1628	else
1629		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1630
1631	if (sb_id == QED_SP_SB_ID)
1632		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1633			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1634	else
1635		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1636			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1637
1638	return igu_sb_id;
1639}
1640
1641int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1642		    struct qed_ptt *p_ptt,
1643		    struct qed_sb_info *sb_info,
1644		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1645{
1646	sb_info->sb_virt = sb_virt_addr;
1647	sb_info->sb_phys = sb_phy_addr;
1648
1649	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1650
1651	if (sb_id != QED_SP_SB_ID) {
1652		if (IS_PF(p_hwfn->cdev)) {
1653			struct qed_igu_info *p_info;
1654			struct qed_igu_block *p_block;
1655
1656			p_info = p_hwfn->hw_info.p_igu_info;
1657			p_block = &p_info->entry[sb_info->igu_sb_id];
1658
1659			p_block->sb_info = sb_info;
1660			p_block->status &= ~QED_IGU_STATUS_FREE;
1661			p_info->usage.free_cnt--;
1662		} else {
1663			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1664		}
1665	}
1666
1667	sb_info->cdev = p_hwfn->cdev;
1668
1669	/* The igu address will hold the absolute address that needs to be
1670	 * written to for a specific status block
1671	 */
1672	if (IS_PF(p_hwfn->cdev)) {
1673		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1674						  GTT_BAR0_MAP_REG_IGU_CMD +
1675						  (sb_info->igu_sb_id << 3);
1676	} else {
1677		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1678						  PXP_VF_BAR0_START_IGU +
1679						  ((IGU_CMD_INT_ACK_BASE +
1680						    sb_info->igu_sb_id) << 3);
1681	}
1682
1683	sb_info->flags |= QED_SB_INFO_INIT;
1684
1685	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1686
1687	return 0;
1688}
1689
1690int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1691		       struct qed_sb_info *sb_info, u16 sb_id)
1692{
1693	struct qed_igu_block *p_block;
1694	struct qed_igu_info *p_info;
1695
1696	if (!sb_info)
1697		return 0;
1698
1699	/* zero status block and ack counter */
1700	sb_info->sb_ack = 0;
1701	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1702
1703	if (IS_VF(p_hwfn->cdev)) {
1704		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1705		return 0;
1706	}
1707
1708	p_info = p_hwfn->hw_info.p_igu_info;
1709	p_block = &p_info->entry[sb_info->igu_sb_id];
1710
1711	/* Vector 0 is reserved to Default SB */
1712	if (!p_block->vector_number) {
1713		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1714		return -EINVAL;
1715	}
1716
1717	/* Lose reference to client's SB info, and fix counters */
1718	p_block->sb_info = NULL;
1719	p_block->status |= QED_IGU_STATUS_FREE;
1720	p_info->usage.free_cnt++;
1721
1722	return 0;
1723}
1724
1725static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1726{
1727	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1728
1729	if (!p_sb)
1730		return;
1731
1732	if (p_sb->sb_info.sb_virt)
1733		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1734				  SB_ALIGNED_SIZE(p_hwfn),
1735				  p_sb->sb_info.sb_virt,
1736				  p_sb->sb_info.sb_phys);
1737	kfree(p_sb);
1738	p_hwfn->p_sp_sb = NULL;
1739}
1740
1741static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1742{
1743	struct qed_sb_sp_info *p_sb;
1744	dma_addr_t p_phys = 0;
1745	void *p_virt;
1746
1747	/* SB struct */
1748	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1749	if (!p_sb)
1750		return -ENOMEM;
1751
1752	/* SB ring  */
1753	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1754				    SB_ALIGNED_SIZE(p_hwfn),
1755				    &p_phys, GFP_KERNEL);
1756	if (!p_virt) {
1757		kfree(p_sb);
1758		return -ENOMEM;
1759	}
1760
1761	/* Status Block setup */
1762	p_hwfn->p_sp_sb = p_sb;
1763	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1764			p_phys, QED_SP_SB_ID);
1765
1766	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1767
1768	return 0;
1769}
1770
1771int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1772			qed_int_comp_cb_t comp_cb,
1773			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1774{
1775	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1776	int rc = -ENOMEM;
1777	u8 pi;
1778
1779	/* Look for a free index */
1780	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1781		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1782			continue;
1783
1784		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1785		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1786		*sb_idx = pi;
1787		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1788		rc = 0;
1789		break;
1790	}
1791
1792	return rc;
1793}
1794
1795int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1796{
1797	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1798
1799	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1800		return -ENOMEM;
1801
1802	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1803	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1804
1805	return 0;
1806}
1807
1808u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1809{
1810	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1811}
1812
1813void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1814			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1815{
1816	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1817
1818	p_hwfn->cdev->int_mode = int_mode;
1819	switch (p_hwfn->cdev->int_mode) {
1820	case QED_INT_MODE_INTA:
1821		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1822		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1823		break;
1824
1825	case QED_INT_MODE_MSI:
1826		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1827		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1828		break;
1829
1830	case QED_INT_MODE_MSIX:
1831		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1832		break;
1833	case QED_INT_MODE_POLL:
1834		break;
1835	}
1836
1837	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1838}
1839
1840static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1841				    struct qed_ptt *p_ptt)
1842{
1843
1844	/* Configure AEU signal change to produce attentions */
1845	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1846	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1847	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1848	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1849
1850	/* Unmask AEU signals toward IGU */
1851	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1852}
1853
1854int
1855qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1856		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1857{
1858	int rc = 0;
1859
1860	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1861
1862	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1863		rc = qed_slowpath_irq_req(p_hwfn);
1864		if (rc) {
1865			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1866			return -EINVAL;
1867		}
1868		p_hwfn->b_int_requested = true;
1869	}
1870	/* Enable interrupt Generation */
1871	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1872	p_hwfn->b_int_enabled = 1;
1873
1874	return rc;
1875}
1876
1877void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1878{
1879	p_hwfn->b_int_enabled = 0;
1880
1881	if (IS_VF(p_hwfn->cdev))
1882		return;
1883
1884	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1885}
1886
1887#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1888static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1889				   struct qed_ptt *p_ptt,
1890				   u16 igu_sb_id,
1891				   bool cleanup_set, u16 opaque_fid)
1892{
1893	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1894	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1895	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1896
1897	/* Set the data field */
1898	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1899	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1900	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1901
1902	/* Set the control register */
1903	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1904	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1905	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1906
1907	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1908
1909	barrier();
1910
1911	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1912
1913	/* calculate where to read the status bit from */
1914	sb_bit = 1 << (igu_sb_id % 32);
1915	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1916
1917	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1918
1919	/* Now wait for the command to complete */
1920	do {
1921		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1922
1923		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1924			break;
1925
1926		usleep_range(5000, 10000);
1927	} while (--sleep_cnt);
1928
1929	if (!sleep_cnt)
1930		DP_NOTICE(p_hwfn,
1931			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1932			  val, igu_sb_id);
1933}
1934
1935void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1936				     struct qed_ptt *p_ptt,
1937				     u16 igu_sb_id, u16 opaque, bool b_set)
1938{
1939	struct qed_igu_block *p_block;
1940	int pi, i;
1941
1942	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1943	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1944		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1945		   igu_sb_id,
1946		   p_block->function_id,
1947		   p_block->is_pf, p_block->vector_number);
1948
1949	/* Set */
1950	if (b_set)
1951		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1952
1953	/* Clear */
1954	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1955
1956	/* Wait for the IGU SB to cleanup */
1957	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1958		u32 val;
1959
1960		val = qed_rd(p_hwfn, p_ptt,
1961			     IGU_REG_WRITE_DONE_PENDING +
1962			     ((igu_sb_id / 32) * 4));
1963		if (val & BIT((igu_sb_id % 32)))
1964			usleep_range(10, 20);
1965		else
1966			break;
1967	}
1968	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1969		DP_NOTICE(p_hwfn,
1970			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1971			  igu_sb_id);
1972
1973	/* Clear the CAU for the SB */
1974	for (pi = 0; pi < 12; pi++)
1975		qed_wr(p_hwfn, p_ptt,
1976		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1977}
1978
1979void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1980			      struct qed_ptt *p_ptt,
1981			      bool b_set, bool b_slowpath)
1982{
1983	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1984	struct qed_igu_block *p_block;
1985	u16 igu_sb_id = 0;
1986	u32 val = 0;
1987
1988	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1989	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1990	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1991	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1992
1993	for (igu_sb_id = 0;
1994	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1995		p_block = &p_info->entry[igu_sb_id];
1996
1997		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1998		    !p_block->is_pf ||
1999		    (p_block->status & QED_IGU_STATUS_DSB))
2000			continue;
2001
2002		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2003						p_hwfn->hw_info.opaque_fid,
2004						b_set);
2005	}
2006
2007	if (b_slowpath)
2008		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2009						p_info->igu_dsb_id,
2010						p_hwfn->hw_info.opaque_fid,
2011						b_set);
2012}
2013
2014int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2015{
2016	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2017	struct qed_igu_block *p_block;
2018	int pf_sbs, vf_sbs;
2019	u16 igu_sb_id;
2020	u32 val, rval;
2021
2022	if (!RESC_NUM(p_hwfn, QED_SB)) {
2023		p_info->b_allow_pf_vf_change = false;
2024	} else {
2025		/* Use the numbers the MFW have provided -
2026		 * don't forget MFW accounts for the default SB as well.
2027		 */
2028		p_info->b_allow_pf_vf_change = true;
2029
2030		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2031			DP_INFO(p_hwfn,
2032				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2033				RESC_NUM(p_hwfn, QED_SB) - 1,
2034				p_info->usage.cnt);
2035			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2036		}
2037
2038		if (IS_PF_SRIOV(p_hwfn)) {
2039			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2040
2041			if (vfs != p_info->usage.iov_cnt)
2042				DP_VERBOSE(p_hwfn,
2043					   NETIF_MSG_INTR,
2044					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2045					   p_info->usage.iov_cnt, vfs);
2046
2047			/* At this point we know how many SBs we have totally
2048			 * in IGU + number of PF SBs. So we can validate that
2049			 * we'd have sufficient for VF.
2050			 */
2051			if (vfs > p_info->usage.free_cnt +
2052			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2053				DP_NOTICE(p_hwfn,
2054					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2055					  p_info->usage.free_cnt +
2056					  p_info->usage.free_cnt_iov,
2057					  p_info->usage.cnt, vfs);
2058				return -EINVAL;
2059			}
2060
2061			/* Currently cap the number of VFs SBs by the
2062			 * number of VFs.
2063			 */
2064			p_info->usage.iov_cnt = vfs;
2065		}
2066	}
2067
2068	/* Mark all SBs as free, now in the right PF/VFs division */
2069	p_info->usage.free_cnt = p_info->usage.cnt;
2070	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2071	p_info->usage.orig = p_info->usage.cnt;
2072	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2073
2074	/* We now proceed to re-configure the IGU cam to reflect the initial
2075	 * configuration. We can start with the Default SB.
2076	 */
2077	pf_sbs = p_info->usage.cnt;
2078	vf_sbs = p_info->usage.iov_cnt;
2079
2080	for (igu_sb_id = p_info->igu_dsb_id;
2081	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2082		p_block = &p_info->entry[igu_sb_id];
2083		val = 0;
2084
2085		if (!(p_block->status & QED_IGU_STATUS_VALID))
2086			continue;
2087
2088		if (p_block->status & QED_IGU_STATUS_DSB) {
2089			p_block->function_id = p_hwfn->rel_pf_id;
2090			p_block->is_pf = 1;
2091			p_block->vector_number = 0;
2092			p_block->status = QED_IGU_STATUS_VALID |
2093					  QED_IGU_STATUS_PF |
2094					  QED_IGU_STATUS_DSB;
2095		} else if (pf_sbs) {
2096			pf_sbs--;
2097			p_block->function_id = p_hwfn->rel_pf_id;
2098			p_block->is_pf = 1;
2099			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2100			p_block->status = QED_IGU_STATUS_VALID |
2101					  QED_IGU_STATUS_PF |
2102					  QED_IGU_STATUS_FREE;
2103		} else if (vf_sbs) {
2104			p_block->function_id =
2105			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2106			    p_info->usage.iov_cnt - vf_sbs;
2107			p_block->is_pf = 0;
2108			p_block->vector_number = 0;
2109			p_block->status = QED_IGU_STATUS_VALID |
2110					  QED_IGU_STATUS_FREE;
2111			vf_sbs--;
2112		} else {
2113			p_block->function_id = 0;
2114			p_block->is_pf = 0;
2115			p_block->vector_number = 0;
2116		}
2117
2118		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2119			  p_block->function_id);
2120		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2121		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2122			  p_block->vector_number);
2123
2124		/* VF entries would be enabled when VF is initializaed */
2125		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2126
2127		rval = qed_rd(p_hwfn, p_ptt,
2128			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2129
2130		if (rval != val) {
2131			qed_wr(p_hwfn, p_ptt,
2132			       IGU_REG_MAPPING_MEMORY +
2133			       sizeof(u32) * igu_sb_id, val);
2134
2135			DP_VERBOSE(p_hwfn,
2136				   NETIF_MSG_INTR,
2137				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2138				   igu_sb_id,
2139				   p_block->function_id,
2140				   p_block->is_pf,
2141				   p_block->vector_number, rval, val);
2142		}
2143	}
2144
2145	return 0;
2146}
2147
2148static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2149				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2150{
2151	u32 val = qed_rd(p_hwfn, p_ptt,
2152			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2153	struct qed_igu_block *p_block;
2154
2155	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2156
2157	/* Fill the block information */
2158	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2159	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2160	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2161	p_block->igu_sb_id = igu_sb_id;
2162}
2163
2164int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2165{
2166	struct qed_igu_info *p_igu_info;
2167	struct qed_igu_block *p_block;
2168	u32 min_vf = 0, max_vf = 0;
2169	u16 igu_sb_id;
2170
2171	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2172	if (!p_hwfn->hw_info.p_igu_info)
2173		return -ENOMEM;
2174
2175	p_igu_info = p_hwfn->hw_info.p_igu_info;
2176
2177	/* Distinguish between existent and non-existent default SB */
2178	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2179
2180	/* Find the range of VF ids whose SB belong to this PF */
2181	if (p_hwfn->cdev->p_iov_info) {
2182		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2183
2184		min_vf	= p_iov->first_vf_in_pf;
2185		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2186	}
2187
2188	for (igu_sb_id = 0;
2189	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2190		/* Read current entry; Notice it might not belong to this PF */
2191		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2192		p_block = &p_igu_info->entry[igu_sb_id];
2193
2194		if ((p_block->is_pf) &&
2195		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2196			p_block->status = QED_IGU_STATUS_PF |
2197					  QED_IGU_STATUS_VALID |
2198					  QED_IGU_STATUS_FREE;
2199
2200			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2201				p_igu_info->usage.cnt++;
2202		} else if (!(p_block->is_pf) &&
2203			   (p_block->function_id >= min_vf) &&
2204			   (p_block->function_id < max_vf)) {
2205			/* Available for VFs of this PF */
2206			p_block->status = QED_IGU_STATUS_VALID |
2207					  QED_IGU_STATUS_FREE;
2208
2209			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2210				p_igu_info->usage.iov_cnt++;
2211		}
2212
2213		/* Mark the First entry belonging to the PF or its VFs
2214		 * as the default SB [we'll reset IGU prior to first usage].
2215		 */
2216		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2217		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2218			p_igu_info->igu_dsb_id = igu_sb_id;
2219			p_block->status |= QED_IGU_STATUS_DSB;
2220		}
2221
2222		/* limit number of prints by having each PF print only its
2223		 * entries with the exception of PF0 which would print
2224		 * everything.
2225		 */
2226		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2227		    (p_hwfn->abs_pf_id == 0)) {
2228			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2229				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2230				   igu_sb_id, p_block->function_id,
2231				   p_block->is_pf, p_block->vector_number);
2232		}
2233	}
2234
2235	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2236		DP_NOTICE(p_hwfn,
2237			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2238			  p_igu_info->igu_dsb_id);
2239		return -EINVAL;
2240	}
2241
2242	/* All non default SB are considered free at this point */
2243	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2244	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2245
2246	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2247		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2248		   p_igu_info->igu_dsb_id,
2249		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2250
2251	return 0;
2252}
2253
2254/**
2255 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2256 *
2257 * @p_hwfn: HW device data.
2258 */
2259void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2260{
2261	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2262
2263	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2264}
2265
2266u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2267{
2268	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2269			       IGU_CMD_INT_ACK_BASE;
2270	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2271			       IGU_CMD_INT_ACK_BASE;
2272	u32 intr_status_hi = 0, intr_status_lo = 0;
2273	u64 intr_status = 0;
2274
2275	intr_status_lo = REG_RD(p_hwfn,
2276				GTT_BAR0_MAP_REG_IGU_CMD +
2277				lsb_igu_cmd_addr * 8);
2278	intr_status_hi = REG_RD(p_hwfn,
2279				GTT_BAR0_MAP_REG_IGU_CMD +
2280				msb_igu_cmd_addr * 8);
2281	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2282
2283	return intr_status;
2284}
2285
2286static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2287{
2288	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2289	p_hwfn->b_sp_dpc_enabled = true;
2290}
2291
2292int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2293{
2294	int rc = 0;
2295
2296	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2297	if (rc)
2298		return rc;
2299
2300	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2301
2302	return rc;
2303}
2304
2305void qed_int_free(struct qed_hwfn *p_hwfn)
2306{
2307	qed_int_sp_sb_free(p_hwfn);
2308	qed_int_sb_attn_free(p_hwfn);
2309}
2310
2311void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2312{
2313	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2314	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2315	qed_int_sp_dpc_setup(p_hwfn);
2316}
2317
2318void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2319			 struct qed_sb_cnt_info *p_sb_cnt_info)
2320{
2321	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2322
2323	if (!info || !p_sb_cnt_info)
2324		return;
2325
2326	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2327}
2328
2329void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2330{
2331	int i;
2332
2333	for_each_hwfn(cdev, i)
2334		cdev->hwfns[i].b_int_requested = false;
2335}
2336
2337void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2338{
2339	cdev->attn_clr_en = clr_enable;
2340}
2341
2342int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2343			  u8 timer_res, u16 sb_id, bool tx)
2344{
2345	struct cau_sb_entry sb_entry;
2346	u32 params;
2347	int rc;
2348
2349	if (!p_hwfn->hw_init_done) {
2350		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2351		return -EINVAL;
2352	}
2353
2354	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2355			       sb_id * sizeof(u64),
2356			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2357	if (rc) {
2358		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2359		return rc;
2360	}
2361
2362	params = le32_to_cpu(sb_entry.params);
2363
2364	if (tx)
2365		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2366	else
2367		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2368
2369	sb_entry.params = cpu_to_le32(params);
2370
2371	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2372			       (u64)(uintptr_t)&sb_entry,
2373			       CAU_REG_SB_VAR_MEMORY +
2374			       sb_id * sizeof(u64), 2, NULL);
2375	if (rc) {
2376		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2377		return rc;
2378	}
2379
2380	return rc;
2381}