Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qed NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/crc8.h>
   9#include <linux/delay.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/string.h>
  13#include "qed_hsi.h"
  14#include "qed_hw.h"
  15#include "qed_init_ops.h"
  16#include "qed_reg_addr.h"
  17
  18#define CDU_VALIDATION_DEFAULT_CFG	61
  19
  20static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
  21	{400, 336, 352, 368, 304, 384, 416, 352},	/* region 3 offsets */
  22	{528, 496, 416, 512, 448, 512, 544, 480},	/* region 4 offsets */
  23	{608, 544, 496, 576, 576, 592, 624, 560}	/* region 5 offsets */
  24};
  25
  26static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
  27	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
  28};
  29
  30/* General constants */
  31#define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
  32							QM_PQ_ELEMENT_SIZE, \
  33							0x1000) : 0)
  34#define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
  35								0x100) - 1 : 0)
  36#define QM_INVALID_PQ_ID		0xffff
  37
  38/* Max link speed (in Mbps) */
  39#define QM_MAX_LINK_SPEED               100000
  40
  41/* Feature enable */
  42#define QM_BYPASS_EN	1
  43#define QM_BYTE_CRD_EN	1
  44
  45/* Other PQ constants */
  46#define QM_OTHER_PQS_PER_PF	4
  47
  48/* WFQ constants */
  49
  50/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
  51#define QM_WFQ_UPPER_BOUND	62500000
  52
  53/* Bit  of VOQ in WFQ VP PQ map */
  54#define QM_WFQ_VP_PQ_VOQ_SHIFT	0
  55
  56/* Bit  of PF in WFQ VP PQ map */
  57#define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
  58
  59/* 0x9000 = 4*9*1024 */
  60#define QM_WFQ_INC_VAL(weight)	((weight) * 0x9000)
  61
  62/* Max WFQ increment value is 0.7 * upper bound */
  63#define QM_WFQ_MAX_INC_VAL	((QM_WFQ_UPPER_BOUND * 7) / 10)
  64
  65/* RL constants */
  66
  67/* Period in us */
  68#define QM_RL_PERIOD	5
  69
  70/* Period in 25MHz cycles */
  71#define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
  72
  73/* RL increment value - rate is specified in mbps */
  74#define QM_RL_INC_VAL(rate) ({ \
  75	typeof(rate) __rate = (rate); \
  76	max_t(u32, \
  77	      (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
  78		    (8 * 100)), \
  79	      1); })
  80
  81/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
  82#define QM_PF_RL_UPPER_BOUND	62500000
  83
  84/* Max PF RL increment value is 0.7 * upper bound */
  85#define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
  86
  87/* Vport RL Upper bound, link speed is in Mpbs */
  88#define QM_VP_RL_UPPER_BOUND(speed)	((u32)max_t(u32, \
  89						    QM_RL_INC_VAL(speed), \
  90						    9700 + 1000))
  91
  92/* Max Vport RL increment value is the Vport RL upper bound */
  93#define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
  94
  95/* Vport RL credit threshold in case of QM bypass */
  96#define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
  97
  98/* AFullOprtnstcCrdMask constants */
  99#define QM_OPPOR_LINE_VOQ_DEF	1
 100#define QM_OPPOR_FW_STOP_DEF	0
 101#define QM_OPPOR_PQ_EMPTY_DEF	1
 102
 103/* Command Queue constants */
 104
 105/* Pure LB CmdQ lines (+spare) */
 106#define PBF_CMDQ_PURE_LB_LINES	150
 107
 108#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
 109	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
 110	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
 111		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
 112
 113#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
 114	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
 115	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
 116		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
 117
 118/* Returns the VOQ line credit for the specified number of PBF command lines.
 119 * PBF lines are specified in 256b units.
 120 */
 121#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
 122	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
 123
 124/* BTB: blocks constants (block size = 256B) */
 125
 126/* 256B blocks in 9700B packet */
 127#define BTB_JUMBO_PKT_BLOCKS	38
 128
 129/* Headroom per-port */
 130#define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
 131#define BTB_PURE_LB_FACTOR	10
 132
 133/* Factored (hence really 0.7) */
 134#define BTB_PURE_LB_RATIO	7
 135
 136/* QM stop command constants */
 137#define QM_STOP_PQ_MASK_WIDTH		32
 138#define QM_STOP_CMD_ADDR		2
 139#define QM_STOP_CMD_STRUCT_SIZE		2
 140#define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
 141#define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
 142#define QM_STOP_CMD_PAUSE_MASK_MASK	-1
 143#define QM_STOP_CMD_GROUP_ID_OFFSET	1
 144#define QM_STOP_CMD_GROUP_ID_SHIFT	16
 145#define QM_STOP_CMD_GROUP_ID_MASK	15
 146#define QM_STOP_CMD_PQ_TYPE_OFFSET	1
 147#define QM_STOP_CMD_PQ_TYPE_SHIFT	24
 148#define QM_STOP_CMD_PQ_TYPE_MASK	1
 149#define QM_STOP_CMD_MAX_POLL_COUNT	100
 150#define QM_STOP_CMD_POLL_PERIOD_US	500
 151
 152/* QM command macros */
 153#define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
 154#define QM_CMD_SET_FIELD(var, cmd, field, value) \
 155	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
 156		  cmd ## _ ## field, \
 157		  value)
 158
 159#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid,	      \
 160			  rl_id, ext_voq, wrr)				      \
 161	do {								      \
 162		u32 __reg = 0;						      \
 163									      \
 164		BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));	      \
 165									      \
 166		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1);	      \
 167		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_VALID,	      \
 168			  !!(rl_valid));				      \
 169		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, (vp_pq_id)); \
 170		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_ID, (rl_id));	      \
 171		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VOQ, (ext_voq));	      \
 172		SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP,      \
 173			  (wrr));					      \
 174									      \
 175		STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
 176			     __reg);					      \
 177		(map).reg = cpu_to_le32(__reg);				      \
 178	} while (0)
 179
 180#define WRITE_PQ_INFO_TO_RAM	1
 181#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
 182	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
 183	((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
 184	(((rl) >> 8) << 9))
 185
 186#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
 187	XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
 188	XSTORM_PQ_INFO_OFFSET(pq_id)
 189
 190/******************** INTERNAL IMPLEMENTATION *********************/
 191
 192/* Returns the external VOQ number */
 193static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
 194			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
 195{
 196	if (tc == PURE_LB_TC)
 197		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
 198	else
 199		return port_id * max_phys_tcs_per_port + tc;
 200}
 201
 202/* Prepare PF RL enable/disable runtime init values */
 203static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
 204{
 205	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
 206	if (pf_rl_en) {
 207		u8 num_ext_voqs = MAX_NUM_VOQS_E4;
 208		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
 209
 210		/* Enable RLs for all VOQs */
 211		STORE_RT_REG(p_hwfn,
 212			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
 213			     (u32)voq_bit_mask);
 214
 215		/* Write RL period */
 216		STORE_RT_REG(p_hwfn,
 217			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
 218		STORE_RT_REG(p_hwfn,
 219			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
 220			     QM_RL_PERIOD_CLK_25M);
 221
 222		/* Set credit threshold for QM bypass flow */
 223		if (QM_BYPASS_EN)
 224			STORE_RT_REG(p_hwfn,
 225				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
 226				     QM_PF_RL_UPPER_BOUND);
 227	}
 228}
 229
 230/* Prepare PF WFQ enable/disable runtime init values */
 231static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
 232{
 233	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
 234
 235	/* Set credit threshold for QM bypass flow */
 236	if (pf_wfq_en && QM_BYPASS_EN)
 237		STORE_RT_REG(p_hwfn,
 238			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
 239			     QM_WFQ_UPPER_BOUND);
 240}
 241
 242/* Prepare global RL enable/disable runtime init values */
 243static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
 244{
 245	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
 246		     global_rl_en ? 1 : 0);
 247	if (global_rl_en) {
 248		/* Write RL period (use timer 0 only) */
 249		STORE_RT_REG(p_hwfn,
 250			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
 251			     QM_RL_PERIOD_CLK_25M);
 252		STORE_RT_REG(p_hwfn,
 253			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
 254			     QM_RL_PERIOD_CLK_25M);
 255
 256		/* Set credit threshold for QM bypass flow */
 257		if (QM_BYPASS_EN)
 258			STORE_RT_REG(p_hwfn,
 259				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
 260				     QM_VP_RL_BYPASS_THRESH_SPEED);
 261	}
 262}
 263
 264/* Prepare VPORT WFQ enable/disable runtime init values */
 265static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
 266{
 267	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
 268		     vport_wfq_en ? 1 : 0);
 269
 270	/* Set credit threshold for QM bypass flow */
 271	if (vport_wfq_en && QM_BYPASS_EN)
 272		STORE_RT_REG(p_hwfn,
 273			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
 274			     QM_WFQ_UPPER_BOUND);
 275}
 276
 277/* Prepare runtime init values to allocate PBF command queue lines for
 278 * the specified VOQ.
 279 */
 280static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
 281				       u8 ext_voq, u16 cmdq_lines)
 282{
 283	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
 284
 285	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
 286			 (u32)cmdq_lines);
 287	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
 288		     qm_line_crd);
 289	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
 290		     qm_line_crd);
 291}
 292
 293/* Prepare runtime init values to allocate PBF command queue lines. */
 294static void qed_cmdq_lines_rt_init(
 295	struct qed_hwfn *p_hwfn,
 296	u8 max_ports_per_engine,
 297	u8 max_phys_tcs_per_port,
 298	struct init_qm_port_params port_params[MAX_NUM_PORTS])
 299{
 300	u8 tc, ext_voq, port_id, num_tcs_in_port;
 301	u8 num_ext_voqs = MAX_NUM_VOQS_E4;
 302
 303	/* Clear PBF lines of all VOQs */
 304	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
 305		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
 306
 307	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
 308		u16 phys_lines, phys_lines_per_tc;
 309
 310		if (!port_params[port_id].active)
 311			continue;
 312
 313		/* Find number of command queue lines to divide between the
 314		 * active physical TCs.
 315		 */
 316		phys_lines = port_params[port_id].num_pbf_cmd_lines;
 317		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
 318
 319		/* Find #lines per active physical TC */
 320		num_tcs_in_port = 0;
 321		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
 322			if (((port_params[port_id].active_phys_tcs >>
 323			      tc) & 0x1) == 1)
 324				num_tcs_in_port++;
 325		phys_lines_per_tc = phys_lines / num_tcs_in_port;
 326
 327		/* Init registers per active TC */
 328		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
 329			ext_voq = qed_get_ext_voq(p_hwfn,
 330						  port_id,
 331						  tc, max_phys_tcs_per_port);
 332			if (((port_params[port_id].active_phys_tcs >>
 333			      tc) & 0x1) == 1)
 334				qed_cmdq_lines_voq_rt_init(p_hwfn,
 335							   ext_voq,
 336							   phys_lines_per_tc);
 337		}
 338
 339		/* Init registers for pure LB TC */
 340		ext_voq = qed_get_ext_voq(p_hwfn,
 341					  port_id,
 342					  PURE_LB_TC, max_phys_tcs_per_port);
 343		qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
 344					   PBF_CMDQ_PURE_LB_LINES);
 345	}
 346}
 347
 348/* Prepare runtime init values to allocate guaranteed BTB blocks for the
 349 * specified port. The guaranteed BTB space is divided between the TCs as
 350 * follows (shared space Is currently not used):
 351 * 1. Parameters:
 352 *    B - BTB blocks for this port
 353 *    C - Number of physical TCs for this port
 354 * 2. Calculation:
 355 *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
 356 *	 headroom.
 357 *    b. B = B - 38 (remainder after global headroom allocation).
 358 *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
 359 *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
 360 *    e. B/C blocks are allocated for each physical TC.
 361 * Assumptions:
 362 * - MTU is up to 9700 bytes (38 blocks)
 363 * - All TCs are considered symmetrical (same rate and packet size)
 364 * - No optimization for lossy TC (all are considered lossless). Shared space
 365 *   is not enabled and allocated for each TC.
 366 */
 367static void qed_btb_blocks_rt_init(
 368	struct qed_hwfn *p_hwfn,
 369	u8 max_ports_per_engine,
 370	u8 max_phys_tcs_per_port,
 371	struct init_qm_port_params port_params[MAX_NUM_PORTS])
 372{
 373	u32 usable_blocks, pure_lb_blocks, phys_blocks;
 374	u8 tc, ext_voq, port_id, num_tcs_in_port;
 375
 376	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
 377		if (!port_params[port_id].active)
 378			continue;
 379
 380		/* Subtract headroom blocks */
 381		usable_blocks = port_params[port_id].num_btb_blocks -
 382				BTB_HEADROOM_BLOCKS;
 383
 384		/* Find blocks per physical TC. Use factor to avoid floating
 385		 * arithmethic.
 386		 */
 387		num_tcs_in_port = 0;
 388		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
 389			if (((port_params[port_id].active_phys_tcs >>
 390			      tc) & 0x1) == 1)
 391				num_tcs_in_port++;
 392
 393		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
 394				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
 395				  BTB_PURE_LB_RATIO);
 396		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
 397				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
 398		phys_blocks = (usable_blocks - pure_lb_blocks) /
 399			      num_tcs_in_port;
 400
 401		/* Init physical TCs */
 402		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
 403			if (((port_params[port_id].active_phys_tcs >>
 404			      tc) & 0x1) == 1) {
 405				ext_voq =
 406					qed_get_ext_voq(p_hwfn,
 407							port_id,
 408							tc,
 409							max_phys_tcs_per_port);
 410				STORE_RT_REG(p_hwfn,
 411					     PBF_BTB_GUARANTEED_RT_OFFSET
 412					     (ext_voq), phys_blocks);
 413			}
 414		}
 415
 416		/* Init pure LB TC */
 417		ext_voq = qed_get_ext_voq(p_hwfn,
 418					  port_id,
 419					  PURE_LB_TC, max_phys_tcs_per_port);
 420		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
 421			     pure_lb_blocks);
 422	}
 423}
 424
 425/* Prepare runtime init values for the specified RL.
 426 * Set max link speed (100Gbps) per rate limiter.
 427 * Return -1 on error.
 428 */
 429static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
 430{
 431	u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
 432			  (u32)QM_RL_CRD_REG_SIGN_BIT;
 433	u32 inc_val;
 434	u16 rl_id;
 435
 436	/* Go over all global RLs */
 437	for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
 438		inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
 439
 440		STORE_RT_REG(p_hwfn,
 441			     QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
 442			     (u32)QM_RL_CRD_REG_SIGN_BIT);
 443		STORE_RT_REG(p_hwfn,
 444			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
 445			     upper_bound);
 446		STORE_RT_REG(p_hwfn,
 447			     QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
 448	}
 449
 450	return 0;
 451}
 452
 453/* Prepare Tx PQ mapping runtime init values for the specified PF */
 454static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
 455				  struct qed_ptt *p_ptt,
 456				  struct qed_qm_pf_rt_init_params *p_params,
 457				  u32 base_mem_addr_4kb)
 458{
 459	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
 460	struct init_qm_vport_params *vport_params = p_params->vport_params;
 461	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
 462	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
 463	struct init_qm_pq_params *pq_params = p_params->pq_params;
 464	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
 465
 466	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
 467
 468	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
 469	last_pq_group = (p_params->start_pq + num_pqs - 1) /
 470			QM_PF_QUEUE_GROUP_SIZE;
 471
 472	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
 473	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
 474	mem_addr_4kb = base_mem_addr_4kb;
 475
 476	/* Set mapping from PQ group to PF */
 477	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
 478		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
 479			     (u32)(p_params->pf_id));
 480
 481	/* Set PQ sizes */
 482	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
 483		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
 484	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
 485		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
 486
 487	/* Go over all Tx PQs */
 488	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
 489		u16 *p_first_tx_pq_id, vport_id_in_pf;
 490		struct qm_rf_pq_map_e4 tx_pq_map;
 491		u8 tc_id = pq_params[i].tc_id;
 492		bool is_vf_pq;
 493		u8 ext_voq;
 494
 495		ext_voq = qed_get_ext_voq(p_hwfn,
 496					  pq_params[i].port_id,
 497					  tc_id,
 498					  p_params->max_phys_tcs_per_port);
 499		is_vf_pq = (i >= p_params->num_pf_pqs);
 500
 501		/* Update first Tx PQ of VPORT/TC */
 502		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
 503		p_first_tx_pq_id =
 504		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
 505		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
 506			u32 map_val =
 507				(ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
 508				(p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
 509
 510			/* Create new VP PQ */
 511			*p_first_tx_pq_id = pq_id;
 512
 513			/* Map VP PQ to VOQ and PF */
 514			STORE_RT_REG(p_hwfn,
 515				     QM_REG_WFQVPMAP_RT_OFFSET +
 516				     *p_first_tx_pq_id,
 517				     map_val);
 518		}
 519
 520		/* Prepare PQ map entry */
 521		QM_INIT_TX_PQ_MAP(p_hwfn,
 522				  tx_pq_map,
 523				  E4,
 524				  pq_id,
 525				  *p_first_tx_pq_id,
 526				  pq_params[i].rl_valid,
 527				  pq_params[i].rl_id,
 528				  ext_voq, pq_params[i].wrr_group);
 529
 530		/* Set PQ base address */
 531		STORE_RT_REG(p_hwfn,
 532			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
 533			     mem_addr_4kb);
 534
 535		/* Clear PQ pointer table entry (64 bit) */
 536		if (p_params->is_pf_loading)
 537			for (j = 0; j < 2; j++)
 538				STORE_RT_REG(p_hwfn,
 539					     QM_REG_PTRTBLTX_RT_OFFSET +
 540					     (pq_id * 2) + j, 0);
 541
 542		/* Write PQ info to RAM */
 543		if (WRITE_PQ_INFO_TO_RAM != 0) {
 544			u32 pq_info = 0;
 545
 546			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
 547						  p_params->pf_id,
 548						  tc_id,
 549						  pq_params[i].port_id,
 550						  pq_params[i].rl_valid,
 551						  pq_params[i].rl_id);
 552			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
 553			       pq_info);
 554		}
 555
 556		/* If VF PQ, add indication to PQ VF mask */
 557		if (is_vf_pq) {
 558			tx_pq_vf_mask[pq_id /
 559				      QM_PF_QUEUE_GROUP_SIZE] |=
 560			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
 561			mem_addr_4kb += vport_pq_mem_4kb;
 562		} else {
 563			mem_addr_4kb += pq_mem_4kb;
 564		}
 565	}
 566
 567	/* Store Tx PQ VF mask to size select register */
 568	for (i = 0; i < num_tx_pq_vf_masks; i++)
 569		if (tx_pq_vf_mask[i])
 570			STORE_RT_REG(p_hwfn,
 571				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
 572				     tx_pq_vf_mask[i]);
 573}
 574
 575/* Prepare Other PQ mapping runtime init values for the specified PF */
 576static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
 577				     u8 pf_id,
 578				     bool is_pf_loading,
 579				     u32 num_pf_cids,
 580				     u32 num_tids, u32 base_mem_addr_4kb)
 581{
 582	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
 583	u16 i, j, pq_id, pq_group;
 584
 585	/* A single other PQ group is used in each PF, where PQ group i is used
 586	 * in PF i.
 587	 */
 588	pq_group = pf_id;
 589	pq_size = num_pf_cids + num_tids;
 590	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
 591	mem_addr_4kb = base_mem_addr_4kb;
 592
 593	/* Map PQ group to PF */
 594	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
 595		     (u32)(pf_id));
 596
 597	/* Set PQ sizes */
 598	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
 599		     QM_PQ_SIZE_256B(pq_size));
 600
 601	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
 602	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
 603		/* Set PQ base address */
 604		STORE_RT_REG(p_hwfn,
 605			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
 606			     mem_addr_4kb);
 607
 608		/* Clear PQ pointer table entry */
 609		if (is_pf_loading)
 610			for (j = 0; j < 2; j++)
 611				STORE_RT_REG(p_hwfn,
 612					     QM_REG_PTRTBLOTHER_RT_OFFSET +
 613					     (pq_id * 2) + j, 0);
 614
 615		mem_addr_4kb += pq_mem_4kb;
 616	}
 617}
 618
 619/* Prepare PF WFQ runtime init values for the specified PF.
 620 * Return -1 on error.
 621 */
 622static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
 623
 624			      struct qed_qm_pf_rt_init_params *p_params)
 625{
 626	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
 627	struct init_qm_pq_params *pq_params = p_params->pq_params;
 628	u32 inc_val, crd_reg_offset;
 629	u8 ext_voq;
 630	u16 i;
 631
 632	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
 633	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
 634		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
 635		return -1;
 636	}
 637
 638	for (i = 0; i < num_tx_pqs; i++) {
 639		ext_voq = qed_get_ext_voq(p_hwfn,
 640					  pq_params[i].port_id,
 641					  pq_params[i].tc_id,
 642					  p_params->max_phys_tcs_per_port);
 643		crd_reg_offset =
 644			(p_params->pf_id < MAX_NUM_PFS_BB ?
 645			 QM_REG_WFQPFCRD_RT_OFFSET :
 646			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
 647			ext_voq * MAX_NUM_PFS_BB +
 648			(p_params->pf_id % MAX_NUM_PFS_BB);
 649		OVERWRITE_RT_REG(p_hwfn,
 650				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 651	}
 652
 653	STORE_RT_REG(p_hwfn,
 654		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
 655		     QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 656	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
 657		     inc_val);
 658
 659	return 0;
 660}
 661
 662/* Prepare PF RL runtime init values for the specified PF.
 663 * Return -1 on error.
 664 */
 665static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
 666{
 667	u32 inc_val = QM_RL_INC_VAL(pf_rl);
 668
 669	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
 670		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
 671		return -1;
 672	}
 673
 674	STORE_RT_REG(p_hwfn,
 675		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
 676		     (u32)QM_RL_CRD_REG_SIGN_BIT);
 677	STORE_RT_REG(p_hwfn,
 678		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
 679		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
 680	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
 681
 682	return 0;
 683}
 684
 685/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
 686 * Return -1 on error.
 687 */
 688static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
 689			      u16 num_vports,
 690			      struct init_qm_vport_params *vport_params)
 691{
 692	u16 vport_pq_id, i;
 693	u32 inc_val;
 694	u8 tc;
 695
 696	/* Go over all PF VPORTs */
 697	for (i = 0; i < num_vports; i++) {
 698		if (!vport_params[i].wfq)
 699			continue;
 700
 701		inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq);
 702		if (inc_val > QM_WFQ_MAX_INC_VAL) {
 703			DP_NOTICE(p_hwfn,
 704				  "Invalid VPORT WFQ weight configuration\n");
 705			return -1;
 706		}
 707
 708		/* Each VPORT can have several VPORT PQ IDs for various TCs */
 709		for (tc = 0; tc < NUM_OF_TCS; tc++) {
 710			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
 711			if (vport_pq_id != QM_INVALID_PQ_ID) {
 712				STORE_RT_REG(p_hwfn,
 713					     QM_REG_WFQVPCRD_RT_OFFSET +
 714					     vport_pq_id,
 715					     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
 716				STORE_RT_REG(p_hwfn,
 717					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
 718					     vport_pq_id, inc_val);
 719			}
 720		}
 721	}
 722
 723	return 0;
 724}
 725
 726static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
 727				     struct qed_ptt *p_ptt)
 728{
 729	u32 reg_val, i;
 730
 731	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
 732	     i++) {
 733		udelay(QM_STOP_CMD_POLL_PERIOD_US);
 734		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
 735	}
 736
 737	/* Check if timeout while waiting for SDM command ready */
 738	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
 739		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
 740			   "Timeout when waiting for QM SDM command ready signal\n");
 741		return false;
 742	}
 743
 744	return true;
 745}
 746
 747static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
 748			    struct qed_ptt *p_ptt,
 749			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
 750{
 751	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
 752		return false;
 753
 754	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
 755	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
 756	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
 757	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
 758	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
 759
 760	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
 761}
 762
 763/******************** INTERFACE IMPLEMENTATION *********************/
 764
 765u32 qed_qm_pf_mem_size(u32 num_pf_cids,
 766		       u32 num_vf_cids,
 767		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
 768{
 769	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
 770	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
 771	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
 772}
 773
 774int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
 775			  struct qed_qm_common_rt_init_params *p_params)
 776{
 777	u32 mask = 0;
 778
 779	/* Init AFullOprtnstcCrdMask */
 780	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
 781		  QM_OPPOR_LINE_VOQ_DEF);
 782	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
 783	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en);
 784	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en);
 785	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en);
 786	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
 787		  p_params->global_rl_en);
 788	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
 789	SET_FIELD(mask,
 790		  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
 791	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
 792
 793	/* Enable/disable PF RL */
 794	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
 795
 796	/* Enable/disable PF WFQ */
 797	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
 798
 799	/* Enable/disable global RL */
 800	qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
 801
 802	/* Enable/disable VPORT WFQ */
 803	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
 804
 805	/* Init PBF CMDQ line credit */
 806	qed_cmdq_lines_rt_init(p_hwfn,
 807			       p_params->max_ports_per_engine,
 808			       p_params->max_phys_tcs_per_port,
 809			       p_params->port_params);
 810
 811	/* Init BTB blocks in PBF */
 812	qed_btb_blocks_rt_init(p_hwfn,
 813			       p_params->max_ports_per_engine,
 814			       p_params->max_phys_tcs_per_port,
 815			       p_params->port_params);
 816
 817	qed_global_rl_rt_init(p_hwfn);
 818
 819	return 0;
 820}
 821
 822int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
 823		      struct qed_ptt *p_ptt,
 824		      struct qed_qm_pf_rt_init_params *p_params)
 825{
 826	struct init_qm_vport_params *vport_params = p_params->vport_params;
 827	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
 828					       p_params->num_tids) *
 829				 QM_OTHER_PQS_PER_PF;
 830	u16 i;
 831	u8 tc;
 832
 833
 834	/* Clear first Tx PQ ID array for each VPORT */
 835	for (i = 0; i < p_params->num_vports; i++)
 836		for (tc = 0; tc < NUM_OF_TCS; tc++)
 837			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
 838
 839	/* Map Other PQs (if any) */
 840	qed_other_pq_map_rt_init(p_hwfn,
 841				 p_params->pf_id,
 842				 p_params->is_pf_loading, p_params->num_pf_cids,
 843				 p_params->num_tids, 0);
 844
 845	/* Map Tx PQs */
 846	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
 847
 848	/* Init PF WFQ */
 849	if (p_params->pf_wfq)
 850		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
 851			return -1;
 852
 853	/* Init PF RL */
 854	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
 855		return -1;
 856
 857	/* Init VPORT WFQ */
 858	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
 859		return -1;
 860
 861	return 0;
 862}
 863
 864int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
 865		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
 866{
 867	u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
 868
 869	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
 870		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
 871		return -1;
 872	}
 873
 874	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
 875
 876	return 0;
 877}
 878
 879int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
 880		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
 881{
 882	u32 inc_val = QM_RL_INC_VAL(pf_rl);
 883
 884	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
 885		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
 886		return -1;
 887	}
 888
 889	qed_wr(p_hwfn,
 890	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
 891	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
 892
 893	return 0;
 894}
 895
 896int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
 897		       struct qed_ptt *p_ptt,
 898		       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
 899{
 900	u16 vport_pq_id;
 901	u32 inc_val;
 902	u8 tc;
 903
 904	inc_val = QM_WFQ_INC_VAL(wfq);
 905	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
 906		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
 907		return -1;
 908	}
 909
 910	/* A VPORT can have several VPORT PQ IDs for various TCs */
 911	for (tc = 0; tc < NUM_OF_TCS; tc++) {
 912		vport_pq_id = first_tx_pq_id[tc];
 913		if (vport_pq_id != QM_INVALID_PQ_ID)
 914			qed_wr(p_hwfn,
 915			       p_ptt,
 916			       QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
 917	}
 918
 919	return 0;
 920}
 921
 922int qed_init_global_rl(struct qed_hwfn *p_hwfn,
 923		       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit)
 924{
 925	u32 inc_val;
 926
 927	inc_val = QM_RL_INC_VAL(rate_limit);
 928	if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) {
 929		DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n");
 930		return -1;
 931	}
 932
 933	qed_wr(p_hwfn, p_ptt,
 934	       QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
 935	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
 936
 937	return 0;
 938}
 939
 940bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
 941			  struct qed_ptt *p_ptt,
 942			  bool is_release_cmd,
 943			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
 944{
 945	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
 946	u32 pq_mask = 0, last_pq, pq_id;
 947
 948	last_pq = start_pq + num_pqs - 1;
 949
 950	/* Set command's PQ type */
 951	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
 952
 953	/* Go over requested PQs */
 954	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
 955		/* Set PQ bit in mask (stop command only) */
 956		if (!is_release_cmd)
 957			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
 958
 959		/* If last PQ or end of PQ mask, write command */
 960		if ((pq_id == last_pq) ||
 961		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
 962		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
 963			QM_CMD_SET_FIELD(cmd_arr,
 964					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
 965			QM_CMD_SET_FIELD(cmd_arr,
 966					 QM_STOP_CMD,
 967					 GROUP_ID,
 968					 pq_id / QM_STOP_PQ_MASK_WIDTH);
 969			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
 970					     cmd_arr[0], cmd_arr[1]))
 971				return false;
 972			pq_mask = 0;
 973		}
 974	}
 975
 976	return true;
 977}
 978
 979#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
 980	do { \
 981		typeof(var) *__p_var = &(var); \
 982		typeof(offset) __offset = offset; \
 983		*__p_var = (*__p_var & ~BIT(__offset)) | \
 984			   ((enable) ? BIT(__offset) : 0); \
 985	} while (0)
 986
 987#define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
 988#define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
 989
 990#define ARR_REG_WR(dev, ptt, addr, arr,	arr_size) \
 991	do { \
 992		u32 i; \
 993		\
 994		for (i = 0; i < (arr_size); i++) \
 995			qed_wr(dev, ptt, \
 996			       ((addr) + (4 * i)), \
 997			       ((u32 *)&(arr))[i]); \
 998	} while (0)
 999
1000/**
1001 * qed_dmae_to_grc() - Internal function for writing from host to
1002 * wide-bus registers (split registers are not supported yet).
1003 *
1004 * @p_hwfn: HW device data.
1005 * @p_ptt: PTT window used for writing the registers.
1006 * @p_data: Pointer to source data.
1007 * @addr: Destination register address.
1008 * @len_in_dwords: Data length in dwords (u32).
1009 *
1010 * Return: Length of the written data in dwords (u32) or -1 on invalid
1011 *         input.
1012 */
1013static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1014			   __le32 *p_data, u32 addr, u32 len_in_dwords)
1015{
1016	struct qed_dmae_params params = {};
1017	u32 *data_cpu;
1018	int rc;
1019
1020	if (!p_data)
1021		return -1;
1022
1023	/* Set DMAE params */
1024	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1025
1026	/* Execute DMAE command */
1027	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1028			       (u64)(uintptr_t)(p_data),
1029			       addr, len_in_dwords, &params);
1030
1031	/* If not read using DMAE, read using GRC */
1032	if (rc) {
1033		DP_VERBOSE(p_hwfn,
1034			   QED_MSG_DEBUG,
1035			   "Failed writing to chip using DMAE, using GRC instead\n");
1036
1037		/* Swap to CPU byteorder and write to registers using GRC */
1038		data_cpu = (__force u32 *)p_data;
1039		le32_to_cpu_array(data_cpu, len_in_dwords);
1040
1041		ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1042		cpu_to_le32_array(data_cpu, len_in_dwords);
1043	}
1044
1045	return len_in_dwords;
1046}
1047
1048void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1049			     struct qed_ptt *p_ptt, u16 dest_port)
1050{
1051	/* Update PRS register */
1052	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1053
1054	/* Update NIG register */
1055	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1056
1057	/* Update PBF register */
1058	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1059}
1060
1061void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1062			  struct qed_ptt *p_ptt, bool vxlan_enable)
1063{
1064	u32 reg_val;
1065	u8 shift;
1066
1067	/* Update PRS register */
1068	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1069	shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1070	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1071	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1072	if (reg_val) {
1073		reg_val =
1074		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1075
1076		/* Update output  only if tunnel blocks not included. */
1077		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1078			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1079			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1080	}
1081
1082	/* Update NIG register */
1083	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1084	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1085	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1086	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1087
1088	/* Update DORQ register */
1089	qed_wr(p_hwfn,
1090	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1091}
1092
1093void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1094			struct qed_ptt *p_ptt,
1095			bool eth_gre_enable, bool ip_gre_enable)
1096{
1097	u32 reg_val;
1098	u8 shift;
1099
1100	/* Update PRS register */
1101	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1102	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1103	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1104	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1105	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1106	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1107	if (reg_val) {
1108		reg_val =
1109		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1110
1111		/* Update output  only if tunnel blocks not included. */
1112		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1113			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1114			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1115	}
1116
1117	/* Update NIG register */
1118	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1119	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1120	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1121	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1122	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1123	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1124
1125	/* Update DORQ registers */
1126	qed_wr(p_hwfn,
1127	       p_ptt,
1128	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1129	qed_wr(p_hwfn,
1130	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1131}
1132
1133void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1134			      struct qed_ptt *p_ptt, u16 dest_port)
1135{
1136	/* Update PRS register */
1137	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1138
1139	/* Update NIG register */
1140	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1141
1142	/* Update PBF register */
1143	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1144}
1145
1146void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1147			   struct qed_ptt *p_ptt,
1148			   bool eth_geneve_enable, bool ip_geneve_enable)
1149{
1150	u32 reg_val;
1151	u8 shift;
1152
1153	/* Update PRS register */
1154	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1155	shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1156	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1157	shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1158	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1159	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1160	if (reg_val) {
1161		reg_val =
1162		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1163
1164		/* Update output  only if tunnel blocks not included. */
1165		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1166			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1167			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1168	}
1169
1170	/* Update NIG register */
1171	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1172	       eth_geneve_enable ? 1 : 0);
1173	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1174
1175	/* EDPM with geneve tunnel not supported in BB */
1176	if (QED_IS_BB_B0(p_hwfn->cdev))
1177		return;
1178
1179	/* Update DORQ registers */
1180	qed_wr(p_hwfn,
1181	       p_ptt,
1182	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1183	       eth_geneve_enable ? 1 : 0);
1184	qed_wr(p_hwfn,
1185	       p_ptt,
1186	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1187	       ip_geneve_enable ? 1 : 0);
1188}
1189
1190#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1191#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   -925189872
1192
1193void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1194				struct qed_ptt *p_ptt, bool enable)
1195{
1196	u32 reg_val, cfg_mask;
1197
1198	/* read PRS config register */
1199	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1200
1201	/* set VXLAN_NO_L2_ENABLE mask */
1202	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1203
1204	if (enable) {
1205		/* set VXLAN_NO_L2_ENABLE flag */
1206		reg_val |= cfg_mask;
1207
1208		/* update PRS FIC  register */
1209		qed_wr(p_hwfn,
1210		       p_ptt,
1211		       PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1212		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1213	} else {
1214		/* clear VXLAN_NO_L2_ENABLE flag */
1215		reg_val &= ~cfg_mask;
1216	}
1217
1218	/* write PRS config register */
1219	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1220}
1221
1222#define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1223#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1224#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1225#define PARSER_ETH_CONN_CM_HDR 0
1226#define CAM_LINE_SIZE sizeof(u32)
1227#define RAM_LINE_SIZE sizeof(u64)
1228#define REG_SIZE sizeof(u32)
1229
1230void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1231{
1232	struct regpair ram_line = { };
1233
1234	/* Disable gft search for PF */
1235	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1236
1237	/* Clean ram & cam for next gft session */
1238
1239	/* Zero camline */
1240	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1241
1242	/* Zero ramline */
1243	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1244			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1245			sizeof(ram_line) / REG_SIZE);
1246}
1247
1248void qed_gft_config(struct qed_hwfn *p_hwfn,
1249		    struct qed_ptt *p_ptt,
1250		    u16 pf_id,
1251		    bool tcp,
1252		    bool udp,
1253		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1254{
1255	struct regpair ram_line;
1256	u32 search_non_ip_as_gft;
1257	u32 reg_val, cam_line;
1258	u32 lo = 0, hi = 0;
1259
1260	if (!ipv6 && !ipv4)
1261		DP_NOTICE(p_hwfn,
1262			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1263	if (!tcp && !udp)
1264		DP_NOTICE(p_hwfn,
1265			  "gft_config: must accept at least on of - udp or tcp\n");
1266	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1267		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1268
1269	/* Set RFS event ID to be awakened i Tstorm By Prs */
1270	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1271		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1272	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1273	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1274
1275	/* Do not load context only cid in PRS on match. */
1276	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1277
1278	/* Do not use tenant ID exist bit for gft search */
1279	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1280
1281	/* Set Cam */
1282	cam_line = 0;
1283	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1284
1285	/* Filters are per PF!! */
1286	SET_FIELD(cam_line,
1287		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1288		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1289	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1290
1291	if (!(tcp && udp)) {
1292		SET_FIELD(cam_line,
1293			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1294			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1295		if (tcp)
1296			SET_FIELD(cam_line,
1297				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1298				  GFT_PROFILE_TCP_PROTOCOL);
1299		else
1300			SET_FIELD(cam_line,
1301				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1302				  GFT_PROFILE_UDP_PROTOCOL);
1303	}
1304
1305	if (!(ipv4 && ipv6)) {
1306		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1307		if (ipv4)
1308			SET_FIELD(cam_line,
1309				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1310				  GFT_PROFILE_IPV4);
1311		else
1312			SET_FIELD(cam_line,
1313				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1314				  GFT_PROFILE_IPV6);
1315	}
1316
1317	/* Write characteristics to cam */
1318	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1319	       cam_line);
1320	cam_line =
1321	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1322
1323	/* Write line to RAM - compare to filter 4 tuple */
1324
1325	/* Search no IP as GFT */
1326	search_non_ip_as_gft = 0;
1327
1328	/* Tunnel type */
1329	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1330	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1331
1332	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1333		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1334		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1335		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1336		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1337		SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1338		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1339	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1340		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1341		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1342		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1343	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1344		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1345		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1346	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1347		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1348		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1349	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1350		SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1351
1352		/* Allow tunneled traffic without inner IP */
1353		search_non_ip_as_gft = 1;
1354	}
1355
1356	ram_line.lo = cpu_to_le32(lo);
1357	ram_line.hi = cpu_to_le32(hi);
1358
1359	qed_wr(p_hwfn,
1360	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1361	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1362			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1363			sizeof(ram_line) / REG_SIZE);
1364
1365	/* Set default profile so that no filter match will happen */
1366	ram_line.lo = cpu_to_le32(0xffffffff);
1367	ram_line.hi = cpu_to_le32(0x3ff);
1368	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1369			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1370			PRS_GFT_CAM_LINES_NO_MATCH,
1371			sizeof(ram_line) / REG_SIZE);
1372
1373	/* Enable gft search */
1374	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1375}
1376
1377DECLARE_CRC8_TABLE(cdu_crc8_table);
1378
1379/* Calculate and return CDU validation byte per connection type/region/cid */
1380static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1381{
1382	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1383	u8 crc, validation_byte = 0;
1384	static u8 crc8_table_valid; /* automatically initialized to 0 */
1385	u32 validation_string = 0;
1386	__be32 data_to_crc;
1387
1388	if (!crc8_table_valid) {
1389		crc8_populate_msb(cdu_crc8_table, 0x07);
1390		crc8_table_valid = 1;
1391	}
1392
1393	/* The CRC is calculated on the String-to-compress:
1394	 * [31:8]  = {CID[31:20],CID[11:0]}
1395	 * [7:4]   = Region
1396	 * [3:0]   = Type
1397	 */
1398	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1399		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1400
1401	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1402		validation_string |= ((region & 0xF) << 4);
1403
1404	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1405		validation_string |= (conn_type & 0xF);
1406
1407	/* Convert to big-endian and calculate CRC8 */
1408	data_to_crc = cpu_to_be32(validation_string);
1409	crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1410		   CRC8_INIT_VALUE);
1411
1412	/* The validation byte [7:0] is composed:
1413	 * for type A validation
1414	 * [7]          = active configuration bit
1415	 * [6:0]        = crc[6:0]
1416	 *
1417	 * for type B validation
1418	 * [7]          = active configuration bit
1419	 * [6:3]        = connection_type[3:0]
1420	 * [2:0]        = crc[2:0]
1421	 */
1422	validation_byte |=
1423	    ((validation_cfg >>
1424	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1425
1426	if ((validation_cfg >>
1427	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1428		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1429	else
1430		validation_byte |= crc & 0x7F;
1431
1432	return validation_byte;
1433}
1434
1435/* Calcualte and set validation bytes for session context */
1436void qed_calc_session_ctx_validation(void *p_ctx_mem,
1437				     u16 ctx_size, u8 ctx_type, u32 cid)
1438{
1439	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1440
1441	p_ctx = (u8 * const)p_ctx_mem;
1442	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1443	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1444	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1445
1446	memset(p_ctx, 0, ctx_size);
1447
1448	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1449	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1450	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1451}
1452
1453/* Calcualte and set validation bytes for task context */
1454void qed_calc_task_ctx_validation(void *p_ctx_mem,
1455				  u16 ctx_size, u8 ctx_type, u32 tid)
1456{
1457	u8 *p_ctx, *region1_val_ptr;
1458
1459	p_ctx = (u8 * const)p_ctx_mem;
1460	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1461
1462	memset(p_ctx, 0, ctx_size);
1463
1464	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1465}
1466
1467/* Memset session context to 0 while preserving validation bytes */
1468void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1469{
1470	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1471	u8 x_val, t_val, u_val;
1472
1473	p_ctx = (u8 * const)p_ctx_mem;
1474	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1475	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1476	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1477
1478	x_val = *x_val_ptr;
1479	t_val = *t_val_ptr;
1480	u_val = *u_val_ptr;
1481
1482	memset(p_ctx, 0, ctx_size);
1483
1484	*x_val_ptr = x_val;
1485	*t_val_ptr = t_val;
1486	*u_val_ptr = u_val;
1487}
1488
1489/* Memset task context to 0 while preserving validation bytes */
1490void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1491{
1492	u8 *p_ctx, *region1_val_ptr;
1493	u8 region1_val;
1494
1495	p_ctx = (u8 * const)p_ctx_mem;
1496	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1497
1498	region1_val = *region1_val_ptr;
1499
1500	memset(p_ctx, 0, ctx_size);
1501
1502	*region1_val_ptr = region1_val;
1503}
1504
1505/* Enable and configure context validation */
1506void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1507				   struct qed_ptt *p_ptt)
1508{
1509	u32 ctx_validation;
1510
1511	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1512	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1513	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1514
1515	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1516	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1517	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1518
1519	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1520	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1521	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1522}
1523
1524static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1525{
1526	switch (storm_id) {
1527	case 0:
1528		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1529		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1530	case 1:
1531		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1532		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1533	case 2:
1534		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1535		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1536	case 3:
1537		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1538		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1539	case 4:
1540		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1541		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1542	case 5:
1543		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1544		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1545
1546	default:
1547		return 0;
1548	}
1549}
1550
1551void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1552			      struct qed_ptt *p_ptt,
1553			      u8 assert_level[NUM_STORMS])
1554{
1555	u8 storm_id;
1556
1557	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1558		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1559
1560		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1561	}
1562}
1563
1564#define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1565#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1566
1567static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1568{
1569	switch (storm_id) {
1570	case 0:
1571		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1572		    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1573	case 1:
1574		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1575		    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1576	case 2:
1577		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1578		    USTORM_OVERLAY_BUF_ADDR_OFFSET;
1579	case 3:
1580		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1581		    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1582	case 4:
1583		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1584		    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1585	case 5:
1586		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1587		    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1588
1589	default:
1590		return 0;
1591	}
1592}
1593
1594struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1595					       const u32 * const
1596					       fw_overlay_in_buf,
1597					       u32 buf_size_in_bytes)
1598{
1599	u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1600	struct phys_mem_desc *allocated_mem;
1601
1602	if (!buf_size)
1603		return NULL;
1604
1605	allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1606				GFP_KERNEL);
1607	if (!allocated_mem)
1608		return NULL;
1609
1610	memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc));
1611
1612	/* For each Storm, set physical address in RAM */
1613	while (buf_offset < buf_size) {
1614		struct phys_mem_desc *storm_mem_desc;
1615		struct fw_overlay_buf_hdr *hdr;
1616		u32 storm_buf_size;
1617		u8 storm_id;
1618
1619		hdr =
1620		    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1621		storm_buf_size = GET_FIELD(hdr->data,
1622					   FW_OVERLAY_BUF_HDR_BUF_SIZE);
1623		storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1624		storm_mem_desc = allocated_mem + storm_id;
1625		storm_mem_desc->size = storm_buf_size * sizeof(u32);
1626
1627		/* Allocate physical memory for Storm's overlays buffer */
1628		storm_mem_desc->virt_addr =
1629		    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1630				       storm_mem_desc->size,
1631				       &storm_mem_desc->phys_addr, GFP_KERNEL);
1632		if (!storm_mem_desc->virt_addr)
1633			break;
1634
1635		/* Skip overlays buffer header */
1636		buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1637
1638		/* Copy Storm's overlays buffer to allocated memory */
1639		memcpy(storm_mem_desc->virt_addr,
1640		       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1641
1642		/* Advance to next Storm */
1643		buf_offset += storm_buf_size;
1644	}
1645
1646	/* If memory allocation has failed, free all allocated memory */
1647	if (buf_offset < buf_size) {
1648		qed_fw_overlay_mem_free(p_hwfn, allocated_mem);
1649		return NULL;
1650	}
1651
1652	return allocated_mem;
1653}
1654
1655void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1656			     struct qed_ptt *p_ptt,
1657			     struct phys_mem_desc *fw_overlay_mem)
1658{
1659	u8 storm_id;
1660
1661	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1662		struct phys_mem_desc *storm_mem_desc =
1663		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1664		u32 ram_addr, i;
1665
1666		/* Skip Storms with no FW overlays */
1667		if (!storm_mem_desc->virt_addr)
1668			continue;
1669
1670		/* Calculate overlay RAM GRC address of current PF */
1671		ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1672			   sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1673
1674		/* Write Storm's overlay physical address to RAM */
1675		for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1676			qed_wr(p_hwfn, p_ptt, ram_addr,
1677			       ((u32 *)&storm_mem_desc->phys_addr)[i]);
1678	}
1679}
1680
1681void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1682			     struct phys_mem_desc *fw_overlay_mem)
1683{
1684	u8 storm_id;
1685
1686	if (!fw_overlay_mem)
1687		return;
1688
1689	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1690		struct phys_mem_desc *storm_mem_desc =
1691		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1692
1693		/* Free Storm's physical memory */
1694		if (storm_mem_desc->virt_addr)
1695			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1696					  storm_mem_desc->size,
1697					  storm_mem_desc->virt_addr,
1698					  storm_mem_desc->phys_addr);
1699	}
1700
1701	/* Free allocated virtual memory */
1702	kfree(fw_overlay_mem);
1703}