Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return IXGBE_ERR_SWFW_SYNC;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return IXGBE_ERR_I2C;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return IXGBE_ERR_SWFW_SYNC;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return IXGBE_ERR_I2C;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 phy_addr;
 266	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = (hw->phy.nw_mng_if_sel &
 280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 282		if (ixgbe_probe_phy(hw, phy_addr))
 283			return 0;
 284		else
 285			return IXGBE_ERR_PHY_ADDR_INVALID;
 286	}
 287
 288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 289		if (ixgbe_probe_phy(hw, phy_addr)) {
 290			status = 0;
 291			break;
 292		}
 293	}
 294
 295	/* Certain media types do not have a phy so an address will not
 296	 * be found and the code will take this path.  Caller has to
 297	 * decide if it is an error or not.
 298	 */
 299	if (status)
 300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 301
 302	return status;
 303}
 304
 305/**
 306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 307 * @hw: pointer to the hardware structure
 308 *
 309 * This function checks the MMNGC.MNG_VETO bit to see if there are
 310 * any constraints on link from manageability.  For MAC's that don't
 311 * have this bit just return false since the link can not be blocked
 312 * via this method.
 313 **/
 314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 315{
 316	u32 mmngc;
 317
 318	/* If we don't have this bit, it can't be blocking */
 319	if (hw->mac.type == ixgbe_mac_82598EB)
 320		return false;
 321
 322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 324		hw_dbg(hw, "MNG_VETO bit detected.\n");
 325		return true;
 326	}
 327
 328	return false;
 329}
 330
 331/**
 332 *  ixgbe_get_phy_id - Get the phy type
 333 *  @hw: pointer to hardware structure
 334 *
 335 **/
 336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 337{
 338	s32 status;
 339	u16 phy_id_high = 0;
 340	u16 phy_id_low = 0;
 341
 342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 343				      &phy_id_high);
 344
 345	if (!status) {
 346		hw->phy.id = (u32)(phy_id_high << 16);
 347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 348					      &phy_id_low);
 349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 351	}
 352	return status;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_type_from_id - Get the phy type
 357 *  @phy_id: hardware phy id
 358 *
 359 **/
 360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 361{
 362	enum ixgbe_phy_type phy_type;
 363
 364	switch (phy_id) {
 365	case TN1010_PHY_ID:
 366		phy_type = ixgbe_phy_tn;
 367		break;
 368	case X550_PHY_ID2:
 369	case X550_PHY_ID3:
 370	case X540_PHY_ID:
 371		phy_type = ixgbe_phy_aq;
 372		break;
 373	case QT2022_PHY_ID:
 374		phy_type = ixgbe_phy_qt;
 375		break;
 376	case ATH_PHY_ID:
 377		phy_type = ixgbe_phy_nl;
 378		break;
 379	case X557_PHY_ID:
 380	case X557_PHY_ID2:
 381		phy_type = ixgbe_phy_x550em_ext_t;
 382		break;
 383	case BCM54616S_E_PHY_ID:
 384		phy_type = ixgbe_phy_ext_1g_t;
 385		break;
 386	default:
 387		phy_type = ixgbe_phy_unknown;
 388		break;
 389	}
 390
 391	return phy_type;
 392}
 393
 394/**
 395 *  ixgbe_reset_phy_generic - Performs a PHY reset
 396 *  @hw: pointer to hardware structure
 397 **/
 398s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 399{
 400	u32 i;
 401	u16 ctrl = 0;
 402	s32 status = 0;
 403
 404	if (hw->phy.type == ixgbe_phy_unknown)
 405		status = ixgbe_identify_phy_generic(hw);
 406
 407	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 408		return status;
 409
 410	/* Don't reset PHY if it's shut down due to overtemp. */
 411	if (!hw->phy.reset_if_overtemp &&
 412	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 413		return 0;
 414
 415	/* Blocked by MNG FW so bail */
 416	if (ixgbe_check_reset_blocked(hw))
 417		return 0;
 418
 419	/*
 420	 * Perform soft PHY reset to the PHY_XS.
 421	 * This will cause a soft reset to the PHY
 422	 */
 423	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 424			      MDIO_MMD_PHYXS,
 425			      MDIO_CTRL1_RESET);
 426
 427	/*
 428	 * Poll for reset bit to self-clear indicating reset is complete.
 429	 * Some PHYs could take up to 3 seconds to complete and need about
 430	 * 1.7 usec delay after the reset is complete.
 431	 */
 432	for (i = 0; i < 30; i++) {
 433		msleep(100);
 434		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 435			status = hw->phy.ops.read_reg(hw,
 436						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 437						  MDIO_MMD_PMAPMD, &ctrl);
 438			if (status)
 439				return status;
 440
 441			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 442				udelay(2);
 443				break;
 444			}
 445		} else {
 446			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 447						      MDIO_MMD_PHYXS, &ctrl);
 448			if (status)
 449				return status;
 450
 451			if (!(ctrl & MDIO_CTRL1_RESET)) {
 452				udelay(2);
 453				break;
 454			}
 455		}
 456	}
 457
 458	if (ctrl & MDIO_CTRL1_RESET) {
 459		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 460		return IXGBE_ERR_RESET_FAILED;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 *  ixgbe_read_phy_reg_mdi - read PHY register
 468 *  @hw: pointer to hardware structure
 469 *  @reg_addr: 32 bit address of PHY register to read
 470 *  @device_type: 5 bit device type
 471 *  @phy_data: Pointer to read data from PHY register
 472 *
 473 *  Reads a value from a specified PHY register without the SWFW lock
 474 **/
 475s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 476		       u16 *phy_data)
 477{
 478	u32 i, data, command;
 479
 480	/* Setup and write the address cycle command */
 481	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 482		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 483		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 484		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 485
 486	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 487
 488	/* Check every 10 usec to see if the address cycle completed.
 489	 * The MDI Command bit will clear when the operation is
 490	 * complete
 491	 */
 492	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 493		udelay(10);
 494
 495		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 496		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 497				break;
 498	}
 499
 500
 501	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 502		hw_dbg(hw, "PHY address command did not complete.\n");
 503		return IXGBE_ERR_PHY;
 504	}
 505
 506	/* Address cycle complete, setup and write the read
 507	 * command
 508	 */
 509	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 510		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 511		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 512		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 513
 514	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 515
 516	/* Check every 10 usec to see if the address cycle
 517	 * completed. The MDI Command bit will clear when the
 518	 * operation is complete
 519	 */
 520	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 521		udelay(10);
 522
 523		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 524		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 525			break;
 526	}
 527
 528	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 529		hw_dbg(hw, "PHY read command didn't complete\n");
 530		return IXGBE_ERR_PHY;
 531	}
 532
 533	/* Read operation is complete.  Get the data
 534	 * from MSRWD
 535	 */
 536	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 537	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 538	*phy_data = (u16)(data);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 545 *  using the SWFW lock - this function is needed in most cases
 546 *  @hw: pointer to hardware structure
 547 *  @reg_addr: 32 bit address of PHY register to read
 548 *  @device_type: 5 bit device type
 549 *  @phy_data: Pointer to read data from PHY register
 550 **/
 551s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 552			       u32 device_type, u16 *phy_data)
 553{
 554	s32 status;
 555	u32 gssr = hw->phy.phy_semaphore_mask;
 556
 557	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 558		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 559						phy_data);
 560		hw->mac.ops.release_swfw_sync(hw, gssr);
 561	} else {
 562		return IXGBE_ERR_SWFW_SYNC;
 563	}
 564
 565	return status;
 566}
 567
 568/**
 569 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 570 *  without SWFW lock
 571 *  @hw: pointer to hardware structure
 572 *  @reg_addr: 32 bit PHY register to write
 573 *  @device_type: 5 bit device type
 574 *  @phy_data: Data to write to the PHY register
 575 **/
 576s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 577				u32 device_type, u16 phy_data)
 578{
 579	u32 i, command;
 580
 581	/* Put the data in the MDI single read and write data register*/
 582	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 583
 584	/* Setup and write the address cycle command */
 585	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 586		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 587		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 588		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 589
 590	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 591
 592	/*
 593	 * Check every 10 usec to see if the address cycle completed.
 594	 * The MDI Command bit will clear when the operation is
 595	 * complete
 596	 */
 597	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 598		udelay(10);
 599
 600		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 601		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 602			break;
 603	}
 604
 605	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 606		hw_dbg(hw, "PHY address cmd didn't complete\n");
 607		return IXGBE_ERR_PHY;
 608	}
 609
 610	/*
 611	 * Address cycle complete, setup and write the write
 612	 * command
 613	 */
 614	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 615		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 616		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 617		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 618
 619	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 620
 621	/* Check every 10 usec to see if the address cycle
 622	 * completed. The MDI Command bit will clear when the
 623	 * operation is complete
 624	 */
 625	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 626		udelay(10);
 627
 628		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 629		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 630			break;
 631	}
 632
 633	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 634		hw_dbg(hw, "PHY write cmd didn't complete\n");
 635		return IXGBE_ERR_PHY;
 636	}
 637
 638	return 0;
 639}
 640
 641/**
 642 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 643 *  using SWFW lock- this function is needed in most cases
 644 *  @hw: pointer to hardware structure
 645 *  @reg_addr: 32 bit PHY register to write
 646 *  @device_type: 5 bit device type
 647 *  @phy_data: Data to write to the PHY register
 648 **/
 649s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 650				u32 device_type, u16 phy_data)
 651{
 652	s32 status;
 653	u32 gssr = hw->phy.phy_semaphore_mask;
 654
 655	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 656		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 657						 phy_data);
 658		hw->mac.ops.release_swfw_sync(hw, gssr);
 659	} else {
 660		return IXGBE_ERR_SWFW_SYNC;
 661	}
 662
 663	return status;
 664}
 665
 666#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 667
 668/**
 669 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 670 *  @hw: pointer to hardware structure
 671 *  @cmd: command register value to write
 672 **/
 673static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 674{
 675	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 676
 677	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 678				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 679				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 680}
 681
 682/**
 683 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
 684 *  @hw: pointer to hardware structure
 685 *  @addr: address
 686 *  @regnum: register number
 687 *  @gssr: semaphore flags to acquire
 688 **/
 689static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
 690				      int regnum, u32 gssr)
 691{
 692	u32 hwaddr, cmd;
 693	s32 data;
 694
 695	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 696		return -EBUSY;
 697
 698	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 699	if (regnum & MII_ADDR_C45) {
 700		hwaddr |= regnum & GENMASK(21, 0);
 701		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 702	} else {
 703		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 704		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 705			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 706	}
 707
 708	data = ixgbe_msca_cmd(hw, cmd);
 709	if (data < 0)
 710		goto mii_bus_read_done;
 711
 712	/* For a clause 45 access the address cycle just completed, we still
 713	 * need to do the read command, otherwise just get the data
 714	 */
 715	if (!(regnum & MII_ADDR_C45))
 716		goto do_mii_bus_read;
 717
 718	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 719	data = ixgbe_msca_cmd(hw, cmd);
 720	if (data < 0)
 721		goto mii_bus_read_done;
 722
 723do_mii_bus_read:
 724	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 725	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 726
 727mii_bus_read_done:
 728	hw->mac.ops.release_swfw_sync(hw, gssr);
 729	return data;
 730}
 731
 732/**
 733 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
 734 *  @hw: pointer to hardware structure
 735 *  @addr: address
 736 *  @regnum: register number
 737 *  @val: value to write
 738 *  @gssr: semaphore flags to acquire
 739 **/
 740static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
 741				       int regnum, u16 val, u32 gssr)
 742{
 743	u32 hwaddr, cmd;
 744	s32 err;
 745
 746	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 747		return -EBUSY;
 748
 749	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 750
 751	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 752	if (regnum & MII_ADDR_C45) {
 753		hwaddr |= regnum & GENMASK(21, 0);
 754		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 755	} else {
 756		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 757		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 758			IXGBE_MSCA_MDI_COMMAND;
 759	}
 760
 761	/* For clause 45 this is an address cycle, for clause 22 this is the
 762	 * entire transaction
 763	 */
 764	err = ixgbe_msca_cmd(hw, cmd);
 765	if (err < 0 || !(regnum & MII_ADDR_C45))
 766		goto mii_bus_write_done;
 767
 768	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 769	err = ixgbe_msca_cmd(hw, cmd);
 770
 771mii_bus_write_done:
 772	hw->mac.ops.release_swfw_sync(hw, gssr);
 773	return err;
 774}
 775
 776/**
 777 *  ixgbe_mii_bus_read - Read a clause 22/45 register
 778 *  @bus: pointer to mii_bus structure which points to our driver private
 779 *  @addr: address
 780 *  @regnum: register number
 781 **/
 782static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
 783{
 784	struct ixgbe_adapter *adapter = bus->priv;
 785	struct ixgbe_hw *hw = &adapter->hw;
 786	u32 gssr = hw->phy.phy_semaphore_mask;
 787
 788	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 789}
 790
 791/**
 792 *  ixgbe_mii_bus_write - Write a clause 22/45 register
 793 *  @bus: pointer to mii_bus structure which points to our driver private
 794 *  @addr: address
 795 *  @regnum: register number
 796 *  @val: value to write
 797 **/
 798static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
 799			       u16 val)
 800{
 801	struct ixgbe_adapter *adapter = bus->priv;
 802	struct ixgbe_hw *hw = &adapter->hw;
 803	u32 gssr = hw->phy.phy_semaphore_mask;
 804
 805	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 806}
 807
 808/**
 809 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
 810 *  @bus: pointer to mii_bus structure which points to our driver private
 811 *  @addr: address
 812 *  @regnum: register number
 813 **/
 814static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
 815				       int regnum)
 816{
 817	struct ixgbe_adapter *adapter = bus->priv;
 818	struct ixgbe_hw *hw = &adapter->hw;
 819	u32 gssr = hw->phy.phy_semaphore_mask;
 820
 821	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 822	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 823}
 824
 825/**
 826 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
 827 *  @bus: pointer to mii_bus structure which points to our driver private
 828 *  @addr: address
 829 *  @regnum: register number
 830 *  @val: value to write
 831 **/
 832static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
 833					int regnum, u16 val)
 834{
 835	struct ixgbe_adapter *adapter = bus->priv;
 836	struct ixgbe_hw *hw = &adapter->hw;
 837	u32 gssr = hw->phy.phy_semaphore_mask;
 838
 839	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 840	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 841}
 842
 843/**
 844 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 845 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 846 *
 847 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 848 * on domain 0, bus 0, devfn = 'devfn'
 849 **/
 850static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 851{
 852	struct pci_dev *rp_pdev;
 853	int bus;
 854
 855	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 856	if (rp_pdev && rp_pdev->subordinate) {
 857		bus = rp_pdev->subordinate->number;
 858		return pci_get_domain_bus_and_slot(0, bus, 0);
 859	}
 860
 861	return NULL;
 862}
 863
 864/**
 865 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 866 * @hw: pointer to hardware structure
 867 *
 868 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 869 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 870 * but we only want to register one MDIO bus.
 871 **/
 872static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 873{
 874	struct ixgbe_adapter *adapter = hw->back;
 875	struct pci_dev *pdev = adapter->pdev;
 876	struct pci_dev *func0_pdev;
 877
 878	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 879	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 880	 * It's not valid for function 0 to be disabled and function 1 is up,
 881	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
 882	 * of those two root ports
 883	 */
 884	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
 885	if (func0_pdev) {
 886		if (func0_pdev == pdev)
 887			return true;
 888		else
 889			return false;
 890	}
 891	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
 892	if (func0_pdev == pdev)
 893		return true;
 894
 895	return false;
 896}
 897
 898/**
 899 * ixgbe_mii_bus_init - mii_bus structure setup
 900 * @hw: pointer to hardware structure
 901 *
 902 * Returns 0 on success, negative on failure
 903 *
 904 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
 905 **/
 906s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
 907{
 908	s32 (*write)(struct mii_bus *bus, int addr, int regnum, u16 val);
 909	s32 (*read)(struct mii_bus *bus, int addr, int regnum);
 910	struct ixgbe_adapter *adapter = hw->back;
 911	struct pci_dev *pdev = adapter->pdev;
 912	struct device *dev = &adapter->netdev->dev;
 913	struct mii_bus *bus;
 914
 915	switch (hw->device_id) {
 916	/* C3000 SoCs */
 917	case IXGBE_DEV_ID_X550EM_A_KR:
 918	case IXGBE_DEV_ID_X550EM_A_KR_L:
 919	case IXGBE_DEV_ID_X550EM_A_SFP_N:
 920	case IXGBE_DEV_ID_X550EM_A_SGMII:
 921	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
 922	case IXGBE_DEV_ID_X550EM_A_10G_T:
 923	case IXGBE_DEV_ID_X550EM_A_SFP:
 924	case IXGBE_DEV_ID_X550EM_A_1G_T:
 925	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 926		if (!ixgbe_x550em_a_has_mii(hw))
 927			return 0;
 928		read = &ixgbe_x550em_a_mii_bus_read;
 929		write = &ixgbe_x550em_a_mii_bus_write;
 930		break;
 931	default:
 932		read = &ixgbe_mii_bus_read;
 933		write = &ixgbe_mii_bus_write;
 934		break;
 935	}
 936
 937	bus = devm_mdiobus_alloc(dev);
 938	if (!bus)
 939		return -ENOMEM;
 940
 941	bus->read = read;
 942	bus->write = write;
 943
 944	/* Use the position of the device in the PCI hierarchy as the id */
 945	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
 946		 pci_name(pdev));
 947
 948	bus->name = "ixgbe-mdio";
 949	bus->priv = adapter;
 950	bus->parent = dev;
 951	bus->phy_mask = GENMASK(31, 0);
 952
 953	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
 954	 * unfortunately that causes some clause 22 frames to be sent with
 955	 * clause 45 addressing.  We don't want that.
 956	 */
 957	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
 958
 959	adapter->mii_bus = bus;
 960	return mdiobus_register(bus);
 961}
 962
 963/**
 964 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 965 *  @hw: pointer to hardware structure
 966 *
 967 *  Restart autonegotiation and PHY and waits for completion.
 968 **/
 969s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 970{
 971	s32 status = 0;
 972	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 973	bool autoneg = false;
 974	ixgbe_link_speed speed;
 975
 976	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 977
 978	/* Set or unset auto-negotiation 10G advertisement */
 979	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 980
 981	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 982	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 983	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 984		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 985
 986	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 987
 988	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 989			     MDIO_MMD_AN, &autoneg_reg);
 990
 991	if (hw->mac.type == ixgbe_mac_X550) {
 992		/* Set or unset auto-negotiation 5G advertisement */
 993		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 994		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 995		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
 996			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
 997
 998		/* Set or unset auto-negotiation 2.5G advertisement */
 999		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1000		if ((hw->phy.autoneg_advertised &
1001		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1002		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1003			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1004	}
1005
1006	/* Set or unset auto-negotiation 1G advertisement */
1007	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1008	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1009	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1010		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1011
1012	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1013			      MDIO_MMD_AN, autoneg_reg);
1014
1015	/* Set or unset auto-negotiation 100M advertisement */
1016	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1017
1018	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1019	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1020	    (speed & IXGBE_LINK_SPEED_100_FULL))
1021		autoneg_reg |= ADVERTISE_100FULL;
1022
1023	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1024
1025	/* Blocked by MNG FW so don't reset PHY */
1026	if (ixgbe_check_reset_blocked(hw))
1027		return 0;
1028
1029	/* Restart PHY autonegotiation and wait for completion */
1030	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1031			     MDIO_MMD_AN, &autoneg_reg);
1032
1033	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1034
1035	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1036			      MDIO_MMD_AN, autoneg_reg);
1037
1038	return status;
1039}
1040
1041/**
1042 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1043 *  @hw: pointer to hardware structure
1044 *  @speed: new link speed
1045 *  @autoneg_wait_to_complete: unused
1046 **/
1047s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1048				       ixgbe_link_speed speed,
1049				       bool autoneg_wait_to_complete)
1050{
1051	/* Clear autoneg_advertised and set new values based on input link
1052	 * speed.
1053	 */
1054	hw->phy.autoneg_advertised = 0;
1055
1056	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1057		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1058
1059	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1060		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1061
1062	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1063		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1064
1065	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1066		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1067
1068	if (speed & IXGBE_LINK_SPEED_100_FULL)
1069		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1070
1071	if (speed & IXGBE_LINK_SPEED_10_FULL)
1072		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1073
1074	/* Setup link based on the new speed settings */
1075	if (hw->phy.ops.setup_link)
1076		hw->phy.ops.setup_link(hw);
1077
1078	return 0;
1079}
1080
1081/**
1082 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1083 * @hw: pointer to hardware structure
1084 *
1085 * Determines the supported link capabilities by reading the PHY auto
1086 * negotiation register.
1087 */
1088static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1089{
1090	u16 speed_ability;
1091	s32 status;
1092
1093	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1094				      &speed_ability);
1095	if (status)
1096		return status;
1097
1098	if (speed_ability & MDIO_SPEED_10G)
1099		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1100	if (speed_ability & MDIO_PMA_SPEED_1000)
1101		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1102	if (speed_ability & MDIO_PMA_SPEED_100)
1103		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1104
1105	switch (hw->mac.type) {
1106	case ixgbe_mac_X550:
1107		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1108		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1109		break;
1110	case ixgbe_mac_X550EM_x:
1111	case ixgbe_mac_x550em_a:
1112		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1113		break;
1114	default:
1115		break;
1116	}
1117
1118	return 0;
1119}
1120
1121/**
1122 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1123 * @hw: pointer to hardware structure
1124 * @speed: pointer to link speed
1125 * @autoneg: boolean auto-negotiation value
1126 */
1127s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1128					       ixgbe_link_speed *speed,
1129					       bool *autoneg)
1130{
1131	s32 status = 0;
1132
1133	*autoneg = true;
1134	if (!hw->phy.speeds_supported)
1135		status = ixgbe_get_copper_speeds_supported(hw);
1136
1137	*speed = hw->phy.speeds_supported;
1138	return status;
1139}
1140
1141/**
1142 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1143 *  @hw: pointer to hardware structure
1144 *  @speed: link speed
1145 *  @link_up: status of link
1146 *
1147 *  Reads the VS1 register to determine if link is up and the current speed for
1148 *  the PHY.
1149 **/
1150s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1151			     bool *link_up)
1152{
1153	s32 status;
1154	u32 time_out;
1155	u32 max_time_out = 10;
1156	u16 phy_link = 0;
1157	u16 phy_speed = 0;
1158	u16 phy_data = 0;
1159
1160	/* Initialize speed and link to default case */
1161	*link_up = false;
1162	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1163
1164	/*
1165	 * Check current speed and link status of the PHY register.
1166	 * This is a vendor specific register and may have to
1167	 * be changed for other copper PHYs.
1168	 */
1169	for (time_out = 0; time_out < max_time_out; time_out++) {
1170		udelay(10);
1171		status = hw->phy.ops.read_reg(hw,
1172					      MDIO_STAT1,
1173					      MDIO_MMD_VEND1,
1174					      &phy_data);
1175		phy_link = phy_data &
1176			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1177		phy_speed = phy_data &
1178			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1179		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1180			*link_up = true;
1181			if (phy_speed ==
1182			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1183				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1184			break;
1185		}
1186	}
1187
1188	return status;
1189}
1190
1191/**
1192 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1193 *	@hw: pointer to hardware structure
1194 *
1195 *	Restart autonegotiation and PHY and waits for completion.
1196 *      This function always returns success, this is nessary since
1197 *	it is called via a function pointer that could call other
1198 *	functions that could return an error.
1199 **/
1200s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1201{
1202	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1203	bool autoneg = false;
1204	ixgbe_link_speed speed;
1205
1206	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1207
1208	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1209		/* Set or unset auto-negotiation 10G advertisement */
1210		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1211				     MDIO_MMD_AN,
1212				     &autoneg_reg);
1213
1214		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1215		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1216			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1217
1218		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1219				      MDIO_MMD_AN,
1220				      autoneg_reg);
1221	}
1222
1223	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1224		/* Set or unset auto-negotiation 1G advertisement */
1225		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1226				     MDIO_MMD_AN,
1227				     &autoneg_reg);
1228
1229		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1230		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1231			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1232
1233		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1234				      MDIO_MMD_AN,
1235				      autoneg_reg);
1236	}
1237
1238	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1239		/* Set or unset auto-negotiation 100M advertisement */
1240		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1241				     MDIO_MMD_AN,
1242				     &autoneg_reg);
1243
1244		autoneg_reg &= ~(ADVERTISE_100FULL |
1245				 ADVERTISE_100HALF);
1246		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1247			autoneg_reg |= ADVERTISE_100FULL;
1248
1249		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1250				      MDIO_MMD_AN,
1251				      autoneg_reg);
1252	}
1253
1254	/* Blocked by MNG FW so don't reset PHY */
1255	if (ixgbe_check_reset_blocked(hw))
1256		return 0;
1257
1258	/* Restart PHY autonegotiation and wait for completion */
1259	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1260			     MDIO_MMD_AN, &autoneg_reg);
1261
1262	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1263
1264	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1265			      MDIO_MMD_AN, autoneg_reg);
1266	return 0;
1267}
1268
1269/**
1270 *  ixgbe_reset_phy_nl - Performs a PHY reset
1271 *  @hw: pointer to hardware structure
1272 **/
1273s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1274{
1275	u16 phy_offset, control, eword, edata, block_crc;
1276	bool end_data = false;
1277	u16 list_offset, data_offset;
1278	u16 phy_data = 0;
1279	s32 ret_val;
1280	u32 i;
1281
1282	/* Blocked by MNG FW so bail */
1283	if (ixgbe_check_reset_blocked(hw))
1284		return 0;
1285
1286	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1287
1288	/* reset the PHY and poll for completion */
1289	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1290			      (phy_data | MDIO_CTRL1_RESET));
1291
1292	for (i = 0; i < 100; i++) {
1293		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1294				     &phy_data);
1295		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1296			break;
1297		usleep_range(10000, 20000);
1298	}
1299
1300	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1301		hw_dbg(hw, "PHY reset did not complete.\n");
1302		return IXGBE_ERR_PHY;
1303	}
1304
1305	/* Get init offsets */
1306	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1307						      &data_offset);
1308	if (ret_val)
1309		return ret_val;
1310
1311	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1312	data_offset++;
1313	while (!end_data) {
1314		/*
1315		 * Read control word from PHY init contents offset
1316		 */
1317		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1318		if (ret_val)
1319			goto err_eeprom;
1320		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1321			   IXGBE_CONTROL_SHIFT_NL;
1322		edata = eword & IXGBE_DATA_MASK_NL;
1323		switch (control) {
1324		case IXGBE_DELAY_NL:
1325			data_offset++;
1326			hw_dbg(hw, "DELAY: %d MS\n", edata);
1327			usleep_range(edata * 1000, edata * 2000);
1328			break;
1329		case IXGBE_DATA_NL:
1330			hw_dbg(hw, "DATA:\n");
1331			data_offset++;
1332			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1333						      &phy_offset);
1334			if (ret_val)
1335				goto err_eeprom;
1336			for (i = 0; i < edata; i++) {
1337				ret_val = hw->eeprom.ops.read(hw, data_offset,
1338							      &eword);
1339				if (ret_val)
1340					goto err_eeprom;
1341				hw->phy.ops.write_reg(hw, phy_offset,
1342						      MDIO_MMD_PMAPMD, eword);
1343				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1344				       phy_offset);
1345				data_offset++;
1346				phy_offset++;
1347			}
1348			break;
1349		case IXGBE_CONTROL_NL:
1350			data_offset++;
1351			hw_dbg(hw, "CONTROL:\n");
1352			if (edata == IXGBE_CONTROL_EOL_NL) {
1353				hw_dbg(hw, "EOL\n");
1354				end_data = true;
1355			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1356				hw_dbg(hw, "SOL\n");
1357			} else {
1358				hw_dbg(hw, "Bad control value\n");
1359				return IXGBE_ERR_PHY;
1360			}
1361			break;
1362		default:
1363			hw_dbg(hw, "Bad control type\n");
1364			return IXGBE_ERR_PHY;
1365		}
1366	}
1367
1368	return ret_val;
1369
1370err_eeprom:
1371	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1372	return IXGBE_ERR_PHY;
1373}
1374
1375/**
1376 *  ixgbe_identify_module_generic - Identifies module type
1377 *  @hw: pointer to hardware structure
1378 *
1379 *  Determines HW type and calls appropriate function.
1380 **/
1381s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1382{
1383	switch (hw->mac.ops.get_media_type(hw)) {
1384	case ixgbe_media_type_fiber:
1385		return ixgbe_identify_sfp_module_generic(hw);
1386	case ixgbe_media_type_fiber_qsfp:
1387		return ixgbe_identify_qsfp_module_generic(hw);
1388	default:
1389		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1390		return IXGBE_ERR_SFP_NOT_PRESENT;
1391	}
1392
1393	return IXGBE_ERR_SFP_NOT_PRESENT;
1394}
1395
1396/**
1397 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1398 *  @hw: pointer to hardware structure
1399 *
1400 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1401 **/
1402s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1403{
1404	struct ixgbe_adapter *adapter = hw->back;
1405	s32 status;
1406	u32 vendor_oui = 0;
1407	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1408	u8 identifier = 0;
1409	u8 comp_codes_1g = 0;
1410	u8 comp_codes_10g = 0;
1411	u8 oui_bytes[3] = {0, 0, 0};
1412	u8 cable_tech = 0;
1413	u8 cable_spec = 0;
1414	u16 enforce_sfp = 0;
1415
1416	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1417		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1418		return IXGBE_ERR_SFP_NOT_PRESENT;
1419	}
1420
1421	/* LAN ID is needed for sfp_type determination */
1422	hw->mac.ops.set_lan_id(hw);
1423
1424	status = hw->phy.ops.read_i2c_eeprom(hw,
1425					     IXGBE_SFF_IDENTIFIER,
1426					     &identifier);
1427
1428	if (status)
1429		goto err_read_i2c_eeprom;
1430
1431	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1432		hw->phy.type = ixgbe_phy_sfp_unsupported;
1433		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1434	}
1435	status = hw->phy.ops.read_i2c_eeprom(hw,
1436					     IXGBE_SFF_1GBE_COMP_CODES,
1437					     &comp_codes_1g);
1438
1439	if (status)
1440		goto err_read_i2c_eeprom;
1441
1442	status = hw->phy.ops.read_i2c_eeprom(hw,
1443					     IXGBE_SFF_10GBE_COMP_CODES,
1444					     &comp_codes_10g);
1445
1446	if (status)
1447		goto err_read_i2c_eeprom;
1448	status = hw->phy.ops.read_i2c_eeprom(hw,
1449					     IXGBE_SFF_CABLE_TECHNOLOGY,
1450					     &cable_tech);
1451
1452	if (status)
1453		goto err_read_i2c_eeprom;
1454
1455	 /* ID Module
1456	  * =========
1457	  * 0   SFP_DA_CU
1458	  * 1   SFP_SR
1459	  * 2   SFP_LR
1460	  * 3   SFP_DA_CORE0 - 82599-specific
1461	  * 4   SFP_DA_CORE1 - 82599-specific
1462	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1463	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1464	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1465	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1466	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1467	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1468	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1469	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1470	  */
1471	if (hw->mac.type == ixgbe_mac_82598EB) {
1472		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1473			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1474		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1475			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1476		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1477			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1478		else
1479			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1480	} else {
1481		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1482			if (hw->bus.lan_id == 0)
1483				hw->phy.sfp_type =
1484					     ixgbe_sfp_type_da_cu_core0;
1485			else
1486				hw->phy.sfp_type =
1487					     ixgbe_sfp_type_da_cu_core1;
1488		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1489			hw->phy.ops.read_i2c_eeprom(
1490					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1491					&cable_spec);
1492			if (cable_spec &
1493			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1494				if (hw->bus.lan_id == 0)
1495					hw->phy.sfp_type =
1496					ixgbe_sfp_type_da_act_lmt_core0;
1497				else
1498					hw->phy.sfp_type =
1499					ixgbe_sfp_type_da_act_lmt_core1;
1500			} else {
1501				hw->phy.sfp_type =
1502						ixgbe_sfp_type_unknown;
1503			}
1504		} else if (comp_codes_10g &
1505			   (IXGBE_SFF_10GBASESR_CAPABLE |
1506			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1507			if (hw->bus.lan_id == 0)
1508				hw->phy.sfp_type =
1509					      ixgbe_sfp_type_srlr_core0;
1510			else
1511				hw->phy.sfp_type =
1512					      ixgbe_sfp_type_srlr_core1;
1513		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1514			if (hw->bus.lan_id == 0)
1515				hw->phy.sfp_type =
1516					ixgbe_sfp_type_1g_cu_core0;
1517			else
1518				hw->phy.sfp_type =
1519					ixgbe_sfp_type_1g_cu_core1;
1520		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1521			if (hw->bus.lan_id == 0)
1522				hw->phy.sfp_type =
1523					ixgbe_sfp_type_1g_sx_core0;
1524			else
1525				hw->phy.sfp_type =
1526					ixgbe_sfp_type_1g_sx_core1;
1527		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1528			if (hw->bus.lan_id == 0)
1529				hw->phy.sfp_type =
1530					ixgbe_sfp_type_1g_lx_core0;
1531			else
1532				hw->phy.sfp_type =
1533					ixgbe_sfp_type_1g_lx_core1;
1534		} else {
1535			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1536		}
1537	}
1538
1539	if (hw->phy.sfp_type != stored_sfp_type)
1540		hw->phy.sfp_setup_needed = true;
1541
1542	/* Determine if the SFP+ PHY is dual speed or not. */
1543	hw->phy.multispeed_fiber = false;
1544	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1545	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1546	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1547	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1548		hw->phy.multispeed_fiber = true;
1549
1550	/* Determine PHY vendor */
1551	if (hw->phy.type != ixgbe_phy_nl) {
1552		hw->phy.id = identifier;
1553		status = hw->phy.ops.read_i2c_eeprom(hw,
1554					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1555					    &oui_bytes[0]);
1556
1557		if (status != 0)
1558			goto err_read_i2c_eeprom;
1559
1560		status = hw->phy.ops.read_i2c_eeprom(hw,
1561					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1562					    &oui_bytes[1]);
1563
1564		if (status != 0)
1565			goto err_read_i2c_eeprom;
1566
1567		status = hw->phy.ops.read_i2c_eeprom(hw,
1568					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1569					    &oui_bytes[2]);
1570
1571		if (status != 0)
1572			goto err_read_i2c_eeprom;
1573
1574		vendor_oui =
1575		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1576		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1577		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1578
1579		switch (vendor_oui) {
1580		case IXGBE_SFF_VENDOR_OUI_TYCO:
1581			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1582				hw->phy.type =
1583					    ixgbe_phy_sfp_passive_tyco;
1584			break;
1585		case IXGBE_SFF_VENDOR_OUI_FTL:
1586			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1587				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1588			else
1589				hw->phy.type = ixgbe_phy_sfp_ftl;
1590			break;
1591		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1592			hw->phy.type = ixgbe_phy_sfp_avago;
1593			break;
1594		case IXGBE_SFF_VENDOR_OUI_INTEL:
1595			hw->phy.type = ixgbe_phy_sfp_intel;
1596			break;
1597		default:
1598			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1599				hw->phy.type =
1600					 ixgbe_phy_sfp_passive_unknown;
1601			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1602				hw->phy.type =
1603					ixgbe_phy_sfp_active_unknown;
1604			else
1605				hw->phy.type = ixgbe_phy_sfp_unknown;
1606			break;
1607		}
1608	}
1609
1610	/* Allow any DA cable vendor */
1611	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1612	    IXGBE_SFF_DA_ACTIVE_CABLE))
1613		return 0;
1614
1615	/* Verify supported 1G SFP modules */
1616	if (comp_codes_10g == 0 &&
1617	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1618	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1619	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1620	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1621	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1622	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1623		hw->phy.type = ixgbe_phy_sfp_unsupported;
1624		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1625	}
1626
1627	/* Anything else 82598-based is supported */
1628	if (hw->mac.type == ixgbe_mac_82598EB)
1629		return 0;
1630
1631	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1632	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1633	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1634	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1635	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1636	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1637	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1638	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1639		/* Make sure we're a supported PHY type */
1640		if (hw->phy.type == ixgbe_phy_sfp_intel)
1641			return 0;
1642		if (hw->allow_unsupported_sfp) {
1643			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1644			return 0;
1645		}
1646		hw_dbg(hw, "SFP+ module not supported\n");
1647		hw->phy.type = ixgbe_phy_sfp_unsupported;
1648		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1649	}
1650	return 0;
1651
1652err_read_i2c_eeprom:
1653	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1654	if (hw->phy.type != ixgbe_phy_nl) {
1655		hw->phy.id = 0;
1656		hw->phy.type = ixgbe_phy_unknown;
1657	}
1658	return IXGBE_ERR_SFP_NOT_PRESENT;
1659}
1660
1661/**
1662 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1663 * @hw: pointer to hardware structure
1664 *
1665 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1666 **/
1667static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1668{
1669	struct ixgbe_adapter *adapter = hw->back;
1670	s32 status;
1671	u32 vendor_oui = 0;
1672	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1673	u8 identifier = 0;
1674	u8 comp_codes_1g = 0;
1675	u8 comp_codes_10g = 0;
1676	u8 oui_bytes[3] = {0, 0, 0};
1677	u16 enforce_sfp = 0;
1678	u8 connector = 0;
1679	u8 cable_length = 0;
1680	u8 device_tech = 0;
1681	bool active_cable = false;
1682
1683	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1684		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1685		return IXGBE_ERR_SFP_NOT_PRESENT;
1686	}
1687
1688	/* LAN ID is needed for sfp_type determination */
1689	hw->mac.ops.set_lan_id(hw);
1690
1691	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1692					     &identifier);
1693
1694	if (status != 0)
1695		goto err_read_i2c_eeprom;
1696
1697	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1698		hw->phy.type = ixgbe_phy_sfp_unsupported;
1699		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1700	}
1701
1702	hw->phy.id = identifier;
1703
1704	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1705					     &comp_codes_10g);
1706
1707	if (status != 0)
1708		goto err_read_i2c_eeprom;
1709
1710	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1711					     &comp_codes_1g);
1712
1713	if (status != 0)
1714		goto err_read_i2c_eeprom;
1715
1716	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1717		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1718		if (hw->bus.lan_id == 0)
1719			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1720		else
1721			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1722	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1723				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1724		if (hw->bus.lan_id == 0)
1725			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1726		else
1727			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1728	} else {
1729		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1730			active_cable = true;
1731
1732		if (!active_cable) {
1733			/* check for active DA cables that pre-date
1734			 * SFF-8436 v3.6
1735			 */
1736			hw->phy.ops.read_i2c_eeprom(hw,
1737					IXGBE_SFF_QSFP_CONNECTOR,
1738					&connector);
1739
1740			hw->phy.ops.read_i2c_eeprom(hw,
1741					IXGBE_SFF_QSFP_CABLE_LENGTH,
1742					&cable_length);
1743
1744			hw->phy.ops.read_i2c_eeprom(hw,
1745					IXGBE_SFF_QSFP_DEVICE_TECH,
1746					&device_tech);
1747
1748			if ((connector ==
1749				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1750			    (cable_length > 0) &&
1751			    ((device_tech >> 4) ==
1752				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1753				active_cable = true;
1754		}
1755
1756		if (active_cable) {
1757			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1758			if (hw->bus.lan_id == 0)
1759				hw->phy.sfp_type =
1760						ixgbe_sfp_type_da_act_lmt_core0;
1761			else
1762				hw->phy.sfp_type =
1763						ixgbe_sfp_type_da_act_lmt_core1;
1764		} else {
1765			/* unsupported module type */
1766			hw->phy.type = ixgbe_phy_sfp_unsupported;
1767			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1768		}
1769	}
1770
1771	if (hw->phy.sfp_type != stored_sfp_type)
1772		hw->phy.sfp_setup_needed = true;
1773
1774	/* Determine if the QSFP+ PHY is dual speed or not. */
1775	hw->phy.multispeed_fiber = false;
1776	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1777	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1778	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1779	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1780		hw->phy.multispeed_fiber = true;
1781
1782	/* Determine PHY vendor for optical modules */
1783	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1784			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1785		status = hw->phy.ops.read_i2c_eeprom(hw,
1786					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1787					&oui_bytes[0]);
1788
1789		if (status != 0)
1790			goto err_read_i2c_eeprom;
1791
1792		status = hw->phy.ops.read_i2c_eeprom(hw,
1793					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1794					&oui_bytes[1]);
1795
1796		if (status != 0)
1797			goto err_read_i2c_eeprom;
1798
1799		status = hw->phy.ops.read_i2c_eeprom(hw,
1800					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1801					&oui_bytes[2]);
1802
1803		if (status != 0)
1804			goto err_read_i2c_eeprom;
1805
1806		vendor_oui =
1807			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1808			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1809			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1810
1811		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1812			hw->phy.type = ixgbe_phy_qsfp_intel;
1813		else
1814			hw->phy.type = ixgbe_phy_qsfp_unknown;
1815
1816		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1817		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1818			/* Make sure we're a supported PHY type */
1819			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1820				return 0;
1821			if (hw->allow_unsupported_sfp) {
1822				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1823				return 0;
1824			}
1825			hw_dbg(hw, "QSFP module not supported\n");
1826			hw->phy.type = ixgbe_phy_sfp_unsupported;
1827			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1828		}
1829		return 0;
1830	}
1831	return 0;
1832
1833err_read_i2c_eeprom:
1834	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835	hw->phy.id = 0;
1836	hw->phy.type = ixgbe_phy_unknown;
1837
1838	return IXGBE_ERR_SFP_NOT_PRESENT;
1839}
1840
1841/**
1842 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1843 *  @hw: pointer to hardware structure
1844 *  @list_offset: offset to the SFP ID list
1845 *  @data_offset: offset to the SFP data block
1846 *
1847 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1848 *  so it returns the offsets to the phy init sequence block.
1849 **/
1850s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1851					u16 *list_offset,
1852					u16 *data_offset)
1853{
1854	u16 sfp_id;
1855	u16 sfp_type = hw->phy.sfp_type;
1856
1857	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1858		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1859
1860	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1861		return IXGBE_ERR_SFP_NOT_PRESENT;
1862
1863	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1864	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1865		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1866
1867	/*
1868	 * Limiting active cables and 1G Phys must be initialized as
1869	 * SR modules
1870	 */
1871	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1872	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1873	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1874	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
1875		sfp_type = ixgbe_sfp_type_srlr_core0;
1876	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1877		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1878		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1879		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1880		sfp_type = ixgbe_sfp_type_srlr_core1;
1881
1882	/* Read offset to PHY init contents */
1883	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1884		hw_err(hw, "eeprom read at %d failed\n",
1885		       IXGBE_PHY_INIT_OFFSET_NL);
1886		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1887	}
1888
1889	if ((!*list_offset) || (*list_offset == 0xFFFF))
1890		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1891
1892	/* Shift offset to first ID word */
1893	(*list_offset)++;
1894
1895	/*
1896	 * Find the matching SFP ID in the EEPROM
1897	 * and program the init sequence
1898	 */
1899	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1900		goto err_phy;
1901
1902	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1903		if (sfp_id == sfp_type) {
1904			(*list_offset)++;
1905			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1906				goto err_phy;
1907			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1908				hw_dbg(hw, "SFP+ module not supported\n");
1909				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1910			} else {
1911				break;
1912			}
1913		} else {
1914			(*list_offset) += 2;
1915			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1916				goto err_phy;
1917		}
1918	}
1919
1920	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1921		hw_dbg(hw, "No matching SFP+ module found\n");
1922		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1923	}
1924
1925	return 0;
1926
1927err_phy:
1928	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1929	return IXGBE_ERR_PHY;
1930}
1931
1932/**
1933 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1934 *  @hw: pointer to hardware structure
1935 *  @byte_offset: EEPROM byte offset to read
1936 *  @eeprom_data: value read
1937 *
1938 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1939 **/
1940s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1941				  u8 *eeprom_data)
1942{
1943	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1944					 IXGBE_I2C_EEPROM_DEV_ADDR,
1945					 eeprom_data);
1946}
1947
1948/**
1949 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1950 *  @hw: pointer to hardware structure
1951 *  @byte_offset: byte offset at address 0xA2
1952 *  @sff8472_data: value read
1953 *
1954 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1955 **/
1956s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1957				   u8 *sff8472_data)
1958{
1959	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1960					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1961					 sff8472_data);
1962}
1963
1964/**
1965 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1966 *  @hw: pointer to hardware structure
1967 *  @byte_offset: EEPROM byte offset to write
1968 *  @eeprom_data: value to write
1969 *
1970 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1971 **/
1972s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1973				   u8 eeprom_data)
1974{
1975	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1976					  IXGBE_I2C_EEPROM_DEV_ADDR,
1977					  eeprom_data);
1978}
1979
1980/**
1981 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1982 * @hw: pointer to hardware structure
1983 * @offset: eeprom offset to be read
1984 * @addr: I2C address to be read
1985 */
1986static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1987{
1988	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1989	    offset == IXGBE_SFF_IDENTIFIER &&
1990	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1991		return true;
1992	return false;
1993}
1994
1995/**
1996 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1997 *  @hw: pointer to hardware structure
1998 *  @byte_offset: byte offset to read
1999 *  @dev_addr: device address
2000 *  @data: value read
2001 *  @lock: true if to take and release semaphore
2002 *
2003 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2004 *  a specified device address.
2005 */
2006static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2007					   u8 dev_addr, u8 *data, bool lock)
2008{
2009	s32 status;
2010	u32 max_retry = 10;
2011	u32 retry = 0;
2012	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2013	bool nack = true;
2014
2015	if (hw->mac.type >= ixgbe_mac_X550)
2016		max_retry = 3;
2017	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2018		max_retry = IXGBE_SFP_DETECT_RETRIES;
2019
2020	*data = 0;
2021
2022	do {
2023		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2024			return IXGBE_ERR_SWFW_SYNC;
2025
2026		ixgbe_i2c_start(hw);
2027
2028		/* Device Address and write indication */
2029		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2030		if (status != 0)
2031			goto fail;
2032
2033		status = ixgbe_get_i2c_ack(hw);
2034		if (status != 0)
2035			goto fail;
2036
2037		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2038		if (status != 0)
2039			goto fail;
2040
2041		status = ixgbe_get_i2c_ack(hw);
2042		if (status != 0)
2043			goto fail;
2044
2045		ixgbe_i2c_start(hw);
2046
2047		/* Device Address and read indication */
2048		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2049		if (status != 0)
2050			goto fail;
2051
2052		status = ixgbe_get_i2c_ack(hw);
2053		if (status != 0)
2054			goto fail;
2055
2056		status = ixgbe_clock_in_i2c_byte(hw, data);
2057		if (status != 0)
2058			goto fail;
2059
2060		status = ixgbe_clock_out_i2c_bit(hw, nack);
2061		if (status != 0)
2062			goto fail;
2063
2064		ixgbe_i2c_stop(hw);
2065		if (lock)
2066			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2067		return 0;
2068
2069fail:
2070		ixgbe_i2c_bus_clear(hw);
2071		if (lock) {
2072			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2073			msleep(100);
2074		}
2075		retry++;
2076		if (retry < max_retry)
2077			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2078		else
2079			hw_dbg(hw, "I2C byte read error.\n");
2080
2081	} while (retry < max_retry);
2082
2083	return status;
2084}
2085
2086/**
2087 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2088 *  @hw: pointer to hardware structure
2089 *  @byte_offset: byte offset to read
2090 *  @dev_addr: device address
2091 *  @data: value read
2092 *
2093 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2094 *  a specified device address.
2095 */
2096s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2097				u8 dev_addr, u8 *data)
2098{
2099	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2100					       data, true);
2101}
2102
2103/**
2104 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2105 *  @hw: pointer to hardware structure
2106 *  @byte_offset: byte offset to read
2107 *  @dev_addr: device address
2108 *  @data: value read
2109 *
2110 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2111 *  a specified device address.
2112 */
2113s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2114					 u8 dev_addr, u8 *data)
2115{
2116	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2117					       data, false);
2118}
2119
2120/**
2121 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2122 *  @hw: pointer to hardware structure
2123 *  @byte_offset: byte offset to write
2124 *  @dev_addr: device address
2125 *  @data: value to write
2126 *  @lock: true if to take and release semaphore
2127 *
2128 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2129 *  a specified device address.
2130 */
2131static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2132					    u8 dev_addr, u8 data, bool lock)
2133{
2134	s32 status;
2135	u32 max_retry = 1;
2136	u32 retry = 0;
2137	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2138
2139	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2140		return IXGBE_ERR_SWFW_SYNC;
2141
2142	do {
2143		ixgbe_i2c_start(hw);
2144
2145		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2146		if (status != 0)
2147			goto fail;
2148
2149		status = ixgbe_get_i2c_ack(hw);
2150		if (status != 0)
2151			goto fail;
2152
2153		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2154		if (status != 0)
2155			goto fail;
2156
2157		status = ixgbe_get_i2c_ack(hw);
2158		if (status != 0)
2159			goto fail;
2160
2161		status = ixgbe_clock_out_i2c_byte(hw, data);
2162		if (status != 0)
2163			goto fail;
2164
2165		status = ixgbe_get_i2c_ack(hw);
2166		if (status != 0)
2167			goto fail;
2168
2169		ixgbe_i2c_stop(hw);
2170		if (lock)
2171			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2172		return 0;
2173
2174fail:
2175		ixgbe_i2c_bus_clear(hw);
2176		retry++;
2177		if (retry < max_retry)
2178			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2179		else
2180			hw_dbg(hw, "I2C byte write error.\n");
2181	} while (retry < max_retry);
2182
2183	if (lock)
2184		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2185
2186	return status;
2187}
2188
2189/**
2190 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2191 *  @hw: pointer to hardware structure
2192 *  @byte_offset: byte offset to write
2193 *  @dev_addr: device address
2194 *  @data: value to write
2195 *
2196 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2197 *  a specified device address.
2198 */
2199s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2200				 u8 dev_addr, u8 data)
2201{
2202	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2203						data, true);
2204}
2205
2206/**
2207 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2208 *  @hw: pointer to hardware structure
2209 *  @byte_offset: byte offset to write
2210 *  @dev_addr: device address
2211 *  @data: value to write
2212 *
2213 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2214 *  a specified device address.
2215 */
2216s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2217					  u8 dev_addr, u8 data)
2218{
2219	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2220						data, false);
2221}
2222
2223/**
2224 *  ixgbe_i2c_start - Sets I2C start condition
2225 *  @hw: pointer to hardware structure
2226 *
2227 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2228 *  Set bit-bang mode on X550 hardware.
2229 **/
2230static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2231{
2232	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2233
2234	i2cctl |= IXGBE_I2C_BB_EN(hw);
2235
2236	/* Start condition must begin with data and clock high */
2237	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2238	ixgbe_raise_i2c_clk(hw, &i2cctl);
2239
2240	/* Setup time for start condition (4.7us) */
2241	udelay(IXGBE_I2C_T_SU_STA);
2242
2243	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2244
2245	/* Hold time for start condition (4us) */
2246	udelay(IXGBE_I2C_T_HD_STA);
2247
2248	ixgbe_lower_i2c_clk(hw, &i2cctl);
2249
2250	/* Minimum low period of clock is 4.7 us */
2251	udelay(IXGBE_I2C_T_LOW);
2252
2253}
2254
2255/**
2256 *  ixgbe_i2c_stop - Sets I2C stop condition
2257 *  @hw: pointer to hardware structure
2258 *
2259 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2260 *  Disables bit-bang mode and negates data output enable on X550
2261 *  hardware.
2262 **/
2263static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2264{
2265	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2266	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2267	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2268	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2269
2270	/* Stop condition must begin with data low and clock high */
2271	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2272	ixgbe_raise_i2c_clk(hw, &i2cctl);
2273
2274	/* Setup time for stop condition (4us) */
2275	udelay(IXGBE_I2C_T_SU_STO);
2276
2277	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2278
2279	/* bus free time between stop and start (4.7us)*/
2280	udelay(IXGBE_I2C_T_BUF);
2281
2282	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2283		i2cctl &= ~bb_en_bit;
2284		i2cctl |= data_oe_bit | clk_oe_bit;
2285		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2286		IXGBE_WRITE_FLUSH(hw);
2287	}
2288}
2289
2290/**
2291 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2292 *  @hw: pointer to hardware structure
2293 *  @data: data byte to clock in
2294 *
2295 *  Clocks in one byte data via I2C data/clock
2296 **/
2297static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2298{
2299	s32 i;
2300	bool bit = false;
2301
2302	*data = 0;
2303	for (i = 7; i >= 0; i--) {
2304		ixgbe_clock_in_i2c_bit(hw, &bit);
2305		*data |= bit << i;
2306	}
2307
2308	return 0;
2309}
2310
2311/**
2312 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2313 *  @hw: pointer to hardware structure
2314 *  @data: data byte clocked out
2315 *
2316 *  Clocks out one byte data via I2C data/clock
2317 **/
2318static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2319{
2320	s32 status;
2321	s32 i;
2322	u32 i2cctl;
2323	bool bit = false;
2324
2325	for (i = 7; i >= 0; i--) {
2326		bit = (data >> i) & 0x1;
2327		status = ixgbe_clock_out_i2c_bit(hw, bit);
2328
2329		if (status != 0)
2330			break;
2331	}
2332
2333	/* Release SDA line (set high) */
2334	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2335	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2336	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2337	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2338	IXGBE_WRITE_FLUSH(hw);
2339
2340	return status;
2341}
2342
2343/**
2344 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2345 *  @hw: pointer to hardware structure
2346 *
2347 *  Clocks in/out one bit via I2C data/clock
2348 **/
2349static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2350{
2351	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2352	s32 status = 0;
2353	u32 i = 0;
2354	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2355	u32 timeout = 10;
2356	bool ack = true;
2357
2358	if (data_oe_bit) {
2359		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2360		i2cctl |= data_oe_bit;
2361		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2362		IXGBE_WRITE_FLUSH(hw);
2363	}
2364	ixgbe_raise_i2c_clk(hw, &i2cctl);
2365
2366	/* Minimum high period of clock is 4us */
2367	udelay(IXGBE_I2C_T_HIGH);
2368
2369	/* Poll for ACK.  Note that ACK in I2C spec is
2370	 * transition from 1 to 0 */
2371	for (i = 0; i < timeout; i++) {
2372		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2373		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2374
2375		udelay(1);
2376		if (ack == 0)
2377			break;
2378	}
2379
2380	if (ack == 1) {
2381		hw_dbg(hw, "I2C ack was not received.\n");
2382		status = IXGBE_ERR_I2C;
2383	}
2384
2385	ixgbe_lower_i2c_clk(hw, &i2cctl);
2386
2387	/* Minimum low period of clock is 4.7 us */
2388	udelay(IXGBE_I2C_T_LOW);
2389
2390	return status;
2391}
2392
2393/**
2394 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2395 *  @hw: pointer to hardware structure
2396 *  @data: read data value
2397 *
2398 *  Clocks in one bit via I2C data/clock
2399 **/
2400static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2401{
2402	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2403	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2404
2405	if (data_oe_bit) {
2406		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2407		i2cctl |= data_oe_bit;
2408		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2409		IXGBE_WRITE_FLUSH(hw);
2410	}
2411	ixgbe_raise_i2c_clk(hw, &i2cctl);
2412
2413	/* Minimum high period of clock is 4us */
2414	udelay(IXGBE_I2C_T_HIGH);
2415
2416	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2417	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2418
2419	ixgbe_lower_i2c_clk(hw, &i2cctl);
2420
2421	/* Minimum low period of clock is 4.7 us */
2422	udelay(IXGBE_I2C_T_LOW);
2423
2424	return 0;
2425}
2426
2427/**
2428 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2429 *  @hw: pointer to hardware structure
2430 *  @data: data value to write
2431 *
2432 *  Clocks out one bit via I2C data/clock
2433 **/
2434static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2435{
2436	s32 status;
2437	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2438
2439	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2440	if (status == 0) {
2441		ixgbe_raise_i2c_clk(hw, &i2cctl);
2442
2443		/* Minimum high period of clock is 4us */
2444		udelay(IXGBE_I2C_T_HIGH);
2445
2446		ixgbe_lower_i2c_clk(hw, &i2cctl);
2447
2448		/* Minimum low period of clock is 4.7 us.
2449		 * This also takes care of the data hold time.
2450		 */
2451		udelay(IXGBE_I2C_T_LOW);
2452	} else {
2453		hw_dbg(hw, "I2C data was not set to %X\n", data);
2454		return IXGBE_ERR_I2C;
2455	}
2456
2457	return 0;
2458}
2459/**
2460 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2461 *  @hw: pointer to hardware structure
2462 *  @i2cctl: Current value of I2CCTL register
2463 *
2464 *  Raises the I2C clock line '0'->'1'
2465 *  Negates the I2C clock output enable on X550 hardware.
2466 **/
2467static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2468{
2469	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2470	u32 i = 0;
2471	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2472	u32 i2cctl_r = 0;
2473
2474	if (clk_oe_bit) {
2475		*i2cctl |= clk_oe_bit;
2476		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2477	}
2478
2479	for (i = 0; i < timeout; i++) {
2480		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2481		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2482		IXGBE_WRITE_FLUSH(hw);
2483		/* SCL rise time (1000ns) */
2484		udelay(IXGBE_I2C_T_RISE);
2485
2486		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2488			break;
2489	}
2490}
2491
2492/**
2493 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2494 *  @hw: pointer to hardware structure
2495 *  @i2cctl: Current value of I2CCTL register
2496 *
2497 *  Lowers the I2C clock line '1'->'0'
2498 *  Asserts the I2C clock output enable on X550 hardware.
2499 **/
2500static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2501{
2502
2503	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2504	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2505
2506	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2507	IXGBE_WRITE_FLUSH(hw);
2508
2509	/* SCL fall time (300ns) */
2510	udelay(IXGBE_I2C_T_FALL);
2511}
2512
2513/**
2514 *  ixgbe_set_i2c_data - Sets the I2C data bit
2515 *  @hw: pointer to hardware structure
2516 *  @i2cctl: Current value of I2CCTL register
2517 *  @data: I2C data value (0 or 1) to set
2518 *
2519 *  Sets the I2C data bit
2520 *  Asserts the I2C data output enable on X550 hardware.
2521 **/
2522static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2523{
2524	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2525
2526	if (data)
2527		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2528	else
2529		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2530	*i2cctl &= ~data_oe_bit;
2531
2532	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2533	IXGBE_WRITE_FLUSH(hw);
2534
2535	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2536	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2537
2538	if (!data)	/* Can't verify data in this case */
2539		return 0;
2540	if (data_oe_bit) {
2541		*i2cctl |= data_oe_bit;
2542		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2543		IXGBE_WRITE_FLUSH(hw);
2544	}
2545
2546	/* Verify data was set correctly */
2547	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2548	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2549		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2550		return IXGBE_ERR_I2C;
2551	}
2552
2553	return 0;
2554}
2555
2556/**
2557 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2558 *  @hw: pointer to hardware structure
2559 *  @i2cctl: Current value of I2CCTL register
2560 *
2561 *  Returns the I2C data bit value
2562 *  Negates the I2C data output enable on X550 hardware.
2563 **/
2564static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2565{
2566	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2567
2568	if (data_oe_bit) {
2569		*i2cctl |= data_oe_bit;
2570		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2571		IXGBE_WRITE_FLUSH(hw);
2572		udelay(IXGBE_I2C_T_FALL);
2573	}
2574
2575	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2576		return true;
2577	return false;
2578}
2579
2580/**
2581 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2582 *  @hw: pointer to hardware structure
2583 *
2584 *  Clears the I2C bus by sending nine clock pulses.
2585 *  Used when data line is stuck low.
2586 **/
2587static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2588{
2589	u32 i2cctl;
2590	u32 i;
2591
2592	ixgbe_i2c_start(hw);
2593	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2594
2595	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2596
2597	for (i = 0; i < 9; i++) {
2598		ixgbe_raise_i2c_clk(hw, &i2cctl);
2599
2600		/* Min high period of clock is 4us */
2601		udelay(IXGBE_I2C_T_HIGH);
2602
2603		ixgbe_lower_i2c_clk(hw, &i2cctl);
2604
2605		/* Min low period of clock is 4.7us*/
2606		udelay(IXGBE_I2C_T_LOW);
2607	}
2608
2609	ixgbe_i2c_start(hw);
2610
2611	/* Put the i2c bus back to default state */
2612	ixgbe_i2c_stop(hw);
2613}
2614
2615/**
2616 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2617 *  @hw: pointer to hardware structure
2618 *
2619 *  Checks if the LASI temp alarm status was triggered due to overtemp
2620 **/
2621s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2622{
2623	u16 phy_data = 0;
2624
2625	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2626		return 0;
2627
2628	/* Check that the LASI temp alarm status was triggered */
2629	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2630			     MDIO_MMD_PMAPMD, &phy_data);
2631
2632	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2633		return 0;
2634
2635	return IXGBE_ERR_OVERTEMP;
2636}
2637
2638/** ixgbe_set_copper_phy_power - Control power for copper phy
2639 *  @hw: pointer to hardware structure
2640 *  @on: true for on, false for off
2641 **/
2642s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2643{
2644	u32 status;
2645	u16 reg;
2646
2647	/* Bail if we don't have copper phy */
2648	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2649		return 0;
2650
2651	if (!on && ixgbe_mng_present(hw))
2652		return 0;
2653
2654	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2655	if (status)
2656		return status;
2657
2658	if (on) {
2659		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2660	} else {
2661		if (ixgbe_check_reset_blocked(hw))
2662			return 0;
2663		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2664	}
2665
2666	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2667	return status;
2668}