Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (C) 2021, Intel Corporation. */
  3
  4#include "ice_common.h"
  5#include "ice_ptp_hw.h"
  6
  7/* Low level functions for interacting with and managing the device clock used
  8 * for the Precision Time Protocol.
  9 *
 10 * The ice hardware represents the current time using three registers:
 11 *
 12 *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
 13 *  +---------------+ +---------------+ +---------------+
 14 *  |    32 bits    | |    32 bits    | |    32 bits    |
 15 *  +---------------+ +---------------+ +---------------+
 16 *
 17 * The registers are incremented every clock tick using a 40bit increment
 18 * value defined over two registers:
 19 *
 20 *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
 21 *                    +---------------+ +---------------+
 22 *                    |    8 bit s    | |    32 bits    |
 23 *                    +---------------+ +---------------+
 24 *
 25 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
 26 * registers every clock source tick. Depending on the specific device
 27 * configuration, the clock source frequency could be one of a number of
 28 * values.
 29 *
 30 * For E810 devices, the increment frequency is 812.5 MHz
 31 *
 32 * The hardware captures timestamps in the PHY for incoming packets, and for
 33 * outgoing packets on request. To support this, the PHY maintains a timer
 34 * that matches the lower 64 bits of the global source timer.
 35 *
 36 * In order to ensure that the PHY timers and the source timer are equivalent,
 37 * shadow registers are used to prepare the desired initial values. A special
 38 * sync command is issued to trigger copying from the shadow registers into
 39 * the appropriate source and PHY registers simultaneously.
 40 */
 41
 42/**
 43 * ice_get_ptp_src_clock_index - determine source clock index
 44 * @hw: pointer to HW struct
 45 *
 46 * Determine the source clock index currently in use, based on device
 47 * capabilities reported during initialization.
 48 */
 49u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
 50{
 51	return hw->func_caps.ts_func_info.tmr_index_assoc;
 52}
 53
 54/* E810 functions
 55 *
 56 * The following functions operate on the E810 series devices which use
 57 * a separate external PHY.
 58 */
 59
 60/**
 61 * ice_read_phy_reg_e810 - Read register from external PHY on E810
 62 * @hw: pointer to the HW struct
 63 * @addr: the address to read from
 64 * @val: On return, the value read from the PHY
 65 *
 66 * Read a register from the external PHY on the E810 device.
 67 */
 68static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
 69{
 70	struct ice_sbq_msg_input msg = {0};
 71	int status;
 72
 73	msg.msg_addr_low = lower_16_bits(addr);
 74	msg.msg_addr_high = upper_16_bits(addr);
 75	msg.opcode = ice_sbq_msg_rd;
 76	msg.dest_dev = rmn_0;
 77
 78	status = ice_sbq_rw_reg(hw, &msg);
 79	if (status) {
 80		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, status %d\n",
 81			  status);
 82		return status;
 83	}
 84
 85	*val = msg.data;
 86
 87	return 0;
 88}
 89
 90/**
 91 * ice_write_phy_reg_e810 - Write register on external PHY on E810
 92 * @hw: pointer to the HW struct
 93 * @addr: the address to writem to
 94 * @val: the value to write to the PHY
 95 *
 96 * Write a value to a register of the external PHY on the E810 device.
 97 */
 98static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
 99{
100	struct ice_sbq_msg_input msg = {0};
101	int status;
102
103	msg.msg_addr_low = lower_16_bits(addr);
104	msg.msg_addr_high = upper_16_bits(addr);
105	msg.opcode = ice_sbq_msg_wr;
106	msg.dest_dev = rmn_0;
107	msg.data = val;
108
109	status = ice_sbq_rw_reg(hw, &msg);
110	if (status) {
111		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, status %d\n",
112			  status);
113		return status;
114	}
115
116	return 0;
117}
118
119/**
120 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
121 * @hw: pointer to the HW struct
122 * @lport: the lport to read from
123 * @idx: the timestamp index to read
124 * @tstamp: on return, the 40bit timestamp value
125 *
126 * Read a 40bit timestamp value out of the timestamp block of the external PHY
127 * on the E810 device.
128 */
129static int
130ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
131{
132	u32 lo_addr, hi_addr, lo, hi;
133	int status;
134
135	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
136	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
137
138	status = ice_read_phy_reg_e810(hw, lo_addr, &lo);
139	if (status) {
140		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, status %d\n",
141			  status);
142		return status;
143	}
144
145	status = ice_read_phy_reg_e810(hw, hi_addr, &hi);
146	if (status) {
147		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, status %d\n",
148			  status);
149		return status;
150	}
151
152	/* For E810 devices, the timestamp is reported with the lower 32 bits
153	 * in the low register, and the upper 8 bits in the high register.
154	 */
155	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
156
157	return 0;
158}
159
160/**
161 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
162 * @hw: pointer to the HW struct
163 * @lport: the lport to read from
164 * @idx: the timestamp index to reset
165 *
166 * Clear a timestamp, resetting its valid bit, from the timestamp block of the
167 * external PHY on the E810 device.
168 */
169static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
170{
171	u32 lo_addr, hi_addr;
172	int status;
173
174	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
175	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
176
177	status = ice_write_phy_reg_e810(hw, lo_addr, 0);
178	if (status) {
179		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, status %d\n",
180			  status);
181		return status;
182	}
183
184	status = ice_write_phy_reg_e810(hw, hi_addr, 0);
185	if (status) {
186		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, status %d\n",
187			  status);
188		return status;
189	}
190
191	return 0;
192}
193
194/**
195 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
196 * @hw: pointer to HW struct
197 *
198 * Enable the timesync PTP functionality for the external PHY connected to
199 * this function.
200 */
201int ice_ptp_init_phy_e810(struct ice_hw *hw)
202{
203	int status;
204	u8 tmr_idx;
205
206	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
207	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
208					GLTSYN_ENA_TSYN_ENA_M);
209	if (status)
210		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
211			  status);
212
213	return status;
214}
215
216/**
217 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
218 * @hw: Board private structure
219 * @time: Time to initialize the PHY port clock to
220 *
221 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
222 * initial clock time. The time will not actually be programmed until the
223 * driver issues an INIT_TIME command.
224 *
225 * The time value is the upper 32 bits of the PHY timer, usually in units of
226 * nominal nanoseconds.
227 */
228static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
229{
230	int status;
231	u8 tmr_idx;
232
233	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
234	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
235	if (status) {
236		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, status %d\n",
237			  status);
238		return status;
239	}
240
241	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
242	if (status) {
243		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, status %d\n",
244			  status);
245		return status;
246	}
247
248	return 0;
249}
250
251/**
252 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
253 * @hw: pointer to HW struct
254 * @adj: adjustment value to program
255 *
256 * Prepare the PHY port for an atomic adjustment by programming the PHY
257 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
258 * is completed by issuing an ADJ_TIME sync command.
259 *
260 * The adjustment value only contains the portion used for the upper 32bits of
261 * the PHY timer, usually in units of nominal nanoseconds. Negative
262 * adjustments are supported using 2s complement arithmetic.
263 */
264static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
265{
266	int status;
267	u8 tmr_idx;
268
269	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
270
271	/* Adjustments are represented as signed 2's complement values in
272	 * nanoseconds. Sub-nanosecond adjustment is not supported.
273	 */
274	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
275	if (status) {
276		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, status %d\n",
277			  status);
278		return status;
279	}
280
281	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
282	if (status) {
283		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, status %d\n",
284			  status);
285		return status;
286	}
287
288	return 0;
289}
290
291/**
292 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
293 * @hw: pointer to HW struct
294 * @incval: The new 40bit increment value to prepare
295 *
296 * Prepare the PHY port for a new increment value by programming the PHY
297 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
298 * completed by issuing an INIT_INCVAL command.
299 */
300static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
301{
302	u32 high, low;
303	int status;
304	u8 tmr_idx;
305
306	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
307	low = lower_32_bits(incval);
308	high = upper_32_bits(incval);
309
310	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
311	if (status) {
312		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, status %d\n",
313			  status);
314		return status;
315	}
316
317	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
318	if (status) {
319		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, status %d\n",
320			  status);
321		return status;
322	}
323
324	return 0;
325}
326
327/**
328 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
329 * @hw: pointer to HW struct
330 * @cmd: Command to be sent to the port
331 *
332 * Prepare the external PHYs connected to this device for a timer sync
333 * command.
334 */
335static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
336{
337	u32 cmd_val, val;
338	int status;
339
340	switch (cmd) {
341	case INIT_TIME:
342		cmd_val = GLTSYN_CMD_INIT_TIME;
343		break;
344	case INIT_INCVAL:
345		cmd_val = GLTSYN_CMD_INIT_INCVAL;
346		break;
347	case ADJ_TIME:
348		cmd_val = GLTSYN_CMD_ADJ_TIME;
349		break;
350	case READ_TIME:
351		cmd_val = GLTSYN_CMD_READ_TIME;
352		break;
353	case ADJ_TIME_AT_TIME:
354		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
355		break;
356	}
357
358	/* Read, modify, write */
359	status = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
360	if (status) {
361		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, status %d\n", status);
362		return status;
363	}
364
365	/* Modify necessary bits only and perform write */
366	val &= ~TS_CMD_MASK_E810;
367	val |= cmd_val;
368
369	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
370	if (status) {
371		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, status %d\n", status);
372		return status;
373	}
374
375	return 0;
376}
377
378/* Device agnostic functions
379 *
380 * The following functions implement useful behavior to hide the differences
381 * between E810 and other devices. They call the device-specific
382 * implementations where necessary.
383 *
384 * Currently, the driver only supports E810, but future work will enable
385 * support for E822-based devices.
386 */
387
388/**
389 * ice_ptp_lock - Acquire PTP global semaphore register lock
390 * @hw: pointer to the HW struct
391 *
392 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
393 * was acquired, false otherwise.
394 *
395 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
396 * value. If software sees the busy bit cleared, this means that this function
397 * acquired the lock (and the busy bit is now set). If software sees the busy
398 * bit set, it means that another function acquired the lock.
399 *
400 * Software must clear the busy bit with a write to release the lock for other
401 * functions when done.
402 */
403bool ice_ptp_lock(struct ice_hw *hw)
404{
405	u32 hw_lock;
406	int i;
407
408#define MAX_TRIES 5
409
410	for (i = 0; i < MAX_TRIES; i++) {
411		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
412		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
413		if (!hw_lock)
414			break;
415
416		/* Somebody is holding the lock */
417		usleep_range(10000, 20000);
418	}
419
420	return !hw_lock;
421}
422
423/**
424 * ice_ptp_unlock - Release PTP global semaphore register lock
425 * @hw: pointer to the HW struct
426 *
427 * Release the global PTP hardware semaphore lock. This is done by writing to
428 * the PFTSYN_SEM register.
429 */
430void ice_ptp_unlock(struct ice_hw *hw)
431{
432	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
433}
434
435/**
436 * ice_ptp_src_cmd - Prepare source timer for a timer command
437 * @hw: pointer to HW structure
438 * @cmd: Timer command
439 *
440 * Prepare the source timer for an upcoming timer sync command.
441 */
442static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
443{
444	u32 cmd_val;
445	u8 tmr_idx;
446
447	tmr_idx = ice_get_ptp_src_clock_index(hw);
448	cmd_val = tmr_idx << SEL_CPK_SRC;
449
450	switch (cmd) {
451	case INIT_TIME:
452		cmd_val |= GLTSYN_CMD_INIT_TIME;
453		break;
454	case INIT_INCVAL:
455		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
456		break;
457	case ADJ_TIME:
458		cmd_val |= GLTSYN_CMD_ADJ_TIME;
459		break;
460	case ADJ_TIME_AT_TIME:
461		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
462		break;
463	case READ_TIME:
464		cmd_val |= GLTSYN_CMD_READ_TIME;
465		break;
466	}
467
468	wr32(hw, GLTSYN_CMD, cmd_val);
469}
470
471/**
472 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
473 * @hw: pointer to HW struct
474 * @cmd: the command to issue
475 *
476 * Prepare the source timer and PHY timers and then trigger the requested
477 * command. This causes the shadow registers previously written in preparation
478 * for the command to be synchronously applied to both the source and PHY
479 * timers.
480 */
481static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
482{
483	int status;
484
485	/* First, prepare the source timer */
486	ice_ptp_src_cmd(hw, cmd);
487
488	/* Next, prepare the ports */
489	status = ice_ptp_port_cmd_e810(hw, cmd);
490	if (status) {
491		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, status %d\n",
492			  cmd, status);
493		return status;
494	}
495
496	/* Write the sync command register to drive both source and PHY timer commands
497	 * synchronously
498	 */
499	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
500
501	return 0;
502}
503
504/**
505 * ice_ptp_init_time - Initialize device time to provided value
506 * @hw: pointer to HW struct
507 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
508 *
509 * Initialize the device to the specified time provided. This requires a three
510 * step process:
511 *
512 * 1) write the new init time to the source timer shadow registers
513 * 2) write the new init time to the PHY timer shadow registers
514 * 3) issue an init_time timer command to synchronously switch both the source
515 *    and port timers to the new init time value at the next clock cycle.
516 */
517int ice_ptp_init_time(struct ice_hw *hw, u64 time)
518{
519	int status;
520	u8 tmr_idx;
521
522	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
523
524	/* Source timers */
525	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
526	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
527	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
528
529	/* PHY timers */
530	/* Fill Rx and Tx ports and send msg to PHY */
531	status = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
532	if (status)
533		return status;
534
535	return ice_ptp_tmr_cmd(hw, INIT_TIME);
536}
537
538/**
539 * ice_ptp_write_incval - Program PHC with new increment value
540 * @hw: pointer to HW struct
541 * @incval: Source timer increment value per clock cycle
542 *
543 * Program the PHC with a new increment value. This requires a three-step
544 * process:
545 *
546 * 1) Write the increment value to the source timer shadow registers
547 * 2) Write the increment value to the PHY timer shadow registers
548 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
549 *    source and port timers to the new increment value at the next clock
550 *    cycle.
551 */
552int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
553{
554	int status;
555	u8 tmr_idx;
556
557	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
558
559	/* Shadow Adjust */
560	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
561	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
562
563	status = ice_ptp_prep_phy_incval_e810(hw, incval);
564	if (status)
565		return status;
566
567	return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
568}
569
570/**
571 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
572 * @hw: pointer to HW struct
573 * @incval: Source timer increment value per clock cycle
574 *
575 * Program a new PHC incval while holding the PTP semaphore.
576 */
577int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
578{
579	int status;
580
581	if (!ice_ptp_lock(hw))
582		return -EBUSY;
583
584	status = ice_ptp_write_incval(hw, incval);
585
586	ice_ptp_unlock(hw);
587
588	return status;
589}
590
591/**
592 * ice_ptp_adj_clock - Adjust PHC clock time atomically
593 * @hw: pointer to HW struct
594 * @adj: Adjustment in nanoseconds
595 *
596 * Perform an atomic adjustment of the PHC time by the specified number of
597 * nanoseconds. This requires a three-step process:
598 *
599 * 1) Write the adjustment to the source timer shadow registers
600 * 2) Write the adjustment to the PHY timer shadow registers
601 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
602 *    both the source and port timers at the next clock cycle.
603 */
604int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
605{
606	int status;
607	u8 tmr_idx;
608
609	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
610
611	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
612	 * For an ADJ_TIME command, this set of registers represents the value
613	 * to add to the clock time. It supports subtraction by interpreting
614	 * the value as a 2's complement integer.
615	 */
616	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
617	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
618
619	status = ice_ptp_prep_phy_adj_e810(hw, adj);
620	if (status)
621		return status;
622
623	return ice_ptp_tmr_cmd(hw, ADJ_TIME);
624}
625
626/**
627 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
628 * @hw: pointer to the HW struct
629 * @block: the block to read from
630 * @idx: the timestamp index to read
631 * @tstamp: on return, the 40bit timestamp value
632 *
633 * Read a 40bit timestamp value out of the timestamp block.
634 */
635int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
636{
637	return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
638}
639
640/**
641 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
642 * @hw: pointer to the HW struct
643 * @block: the block to read from
644 * @idx: the timestamp index to reset
645 *
646 * Clear a timestamp, resetting its valid bit, from the timestamp block.
647 */
648int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
649{
650	return ice_clear_phy_tstamp_e810(hw, block, idx);
651}