Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 1999 - 2018 Intel Corporation. */
  3
  4/* Linux PRO/1000 Ethernet Driver main header file */
  5
  6#ifndef _E1000_H_
  7#define _E1000_H_
  8
  9#include <linux/bitops.h>
 10#include <linux/types.h>
 11#include <linux/timer.h>
 12#include <linux/workqueue.h>
 13#include <linux/io.h>
 14#include <linux/netdevice.h>
 15#include <linux/pci.h>
 16#include <linux/crc32.h>
 17#include <linux/if_vlan.h>
 18#include <linux/timecounter.h>
 19#include <linux/net_tstamp.h>
 20#include <linux/ptp_clock_kernel.h>
 21#include <linux/ptp_classify.h>
 22#include <linux/mii.h>
 23#include <linux/mdio.h>
 24#include <linux/pm_qos.h>
 25#include "hw.h"
 26
 27struct e1000_info;
 28
 29#define e_dbg(format, arg...) \
 30	netdev_dbg(hw->adapter->netdev, format, ## arg)
 31#define e_err(format, arg...) \
 32	netdev_err(adapter->netdev, format, ## arg)
 33#define e_info(format, arg...) \
 34	netdev_info(adapter->netdev, format, ## arg)
 35#define e_warn(format, arg...) \
 36	netdev_warn(adapter->netdev, format, ## arg)
 37#define e_notice(format, arg...) \
 38	netdev_notice(adapter->netdev, format, ## arg)
 39
 40/* Interrupt modes, as used by the IntMode parameter */
 41#define E1000E_INT_MODE_LEGACY		0
 42#define E1000E_INT_MODE_MSI		1
 43#define E1000E_INT_MODE_MSIX		2
 44
 45/* Tx/Rx descriptor defines */
 46#define E1000_DEFAULT_TXD		256
 47#define E1000_MAX_TXD			4096
 48#define E1000_MIN_TXD			64
 49
 50#define E1000_DEFAULT_RXD		256
 51#define E1000_MAX_RXD			4096
 52#define E1000_MIN_RXD			64
 53
 54#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
 55#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
 56
 57#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
 58
 59/* How many Tx Descriptors do we need to call netif_wake_queue ? */
 60/* How many Rx Buffers do we bundle into one write to the hardware ? */
 61#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
 62
 63#define AUTO_ALL_MODES			0
 64#define E1000_EEPROM_APME		0x0400
 65
 66#define E1000_MNG_VLAN_NONE		(-1)
 67
 68#define DEFAULT_JUMBO			9234
 69
 70/* Time to wait before putting the device into D3 if there's no link (in ms). */
 71#define LINK_TIMEOUT		100
 72
 73/* Count for polling __E1000_RESET condition every 10-20msec.
 74 * Experimentation has shown the reset can take approximately 210msec.
 75 */
 76#define E1000_CHECK_RESET_COUNT		25
 77
 78#define PCICFG_DESC_RING_STATUS		0xe4
 79#define FLUSH_DESC_REQUIRED		0x100
 80
 81/* in the case of WTHRESH, it appears at least the 82571/2 hardware
 82 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
 83 * WTHRESH=4, so a setting of 5 gives the most efficient bus
 84 * utilization but to avoid possible Tx stalls, set it to 1
 85 */
 86#define E1000_TXDCTL_DMA_BURST_ENABLE                          \
 87	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
 88	 E1000_TXDCTL_COUNT_DESC |                             \
 89	 (1u << 16) | /* wthresh must be +1 more than desired */\
 90	 (1u << 8)  | /* hthresh */                             \
 91	 0x1f)        /* pthresh */
 92
 93#define E1000_RXDCTL_DMA_BURST_ENABLE                          \
 94	(0x01000000 | /* set descriptor granularity */         \
 95	 (4u << 16) | /* set writeback threshold    */         \
 96	 (4u << 8)  | /* set prefetch threshold     */         \
 97	 0x20)        /* set hthresh                */
 98
 99#define E1000_TIDV_FPD BIT(31)
100#define E1000_RDTR_FPD BIT(31)
101
102enum e1000_boards {
103	board_82571,
104	board_82572,
105	board_82573,
106	board_82574,
107	board_82583,
108	board_80003es2lan,
109	board_ich8lan,
110	board_ich9lan,
111	board_ich10lan,
112	board_pchlan,
113	board_pch2lan,
114	board_pch_lpt,
115	board_pch_spt,
116	board_pch_cnp,
117	board_pch_tgp
118};
119
120struct e1000_ps_page {
121	struct page *page;
122	u64 dma; /* must be u64 - written to hw */
123};
124
125/* wrappers around a pointer to a socket buffer,
126 * so a DMA handle can be stored along with the buffer
127 */
128struct e1000_buffer {
129	dma_addr_t dma;
130	struct sk_buff *skb;
131	union {
132		/* Tx */
133		struct {
134			unsigned long time_stamp;
135			u16 length;
136			u16 next_to_watch;
137			unsigned int segs;
138			unsigned int bytecount;
139			u16 mapped_as_page;
140		};
141		/* Rx */
142		struct {
143			/* arrays of page information for packet split */
144			struct e1000_ps_page *ps_pages;
145			struct page *page;
146		};
147	};
148};
149
150struct e1000_ring {
151	struct e1000_adapter *adapter;	/* back pointer to adapter */
152	void *desc;			/* pointer to ring memory  */
153	dma_addr_t dma;			/* phys address of ring    */
154	unsigned int size;		/* length of ring in bytes */
155	unsigned int count;		/* number of desc. in ring */
156
157	u16 next_to_use;
158	u16 next_to_clean;
159
160	void __iomem *head;
161	void __iomem *tail;
162
163	/* array of buffer information structs */
164	struct e1000_buffer *buffer_info;
165
166	char name[IFNAMSIZ + 5];
167	u32 ims_val;
168	u32 itr_val;
169	void __iomem *itr_register;
170	int set_itr;
171
172	struct sk_buff *rx_skb_top;
173};
174
175/* PHY register snapshot values */
176struct e1000_phy_regs {
177	u16 bmcr;		/* basic mode control register    */
178	u16 bmsr;		/* basic mode status register     */
179	u16 advertise;		/* auto-negotiation advertisement */
180	u16 lpa;		/* link partner ability register  */
181	u16 expansion;		/* auto-negotiation expansion reg */
182	u16 ctrl1000;		/* 1000BASE-T control register    */
183	u16 stat1000;		/* 1000BASE-T status register     */
184	u16 estatus;		/* extended status register       */
185};
186
187/* board specific private data structure */
188struct e1000_adapter {
189	struct timer_list watchdog_timer;
190	struct timer_list phy_info_timer;
191	struct timer_list blink_timer;
192
193	struct work_struct reset_task;
194	struct work_struct watchdog_task;
195
196	const struct e1000_info *ei;
197
198	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
199	u32 bd_number;
200	u32 rx_buffer_len;
201	u16 mng_vlan_id;
202	u16 link_speed;
203	u16 link_duplex;
204	u16 eeprom_vers;
205
206	/* track device up/down/testing state */
207	unsigned long state;
208
209	/* Interrupt Throttle Rate */
210	u32 itr;
211	u32 itr_setting;
212	u16 tx_itr;
213	u16 rx_itr;
214
215	/* Tx - one ring per active queue */
216	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
217	u32 tx_fifo_limit;
218
219	struct napi_struct napi;
220
221	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
222	unsigned int corr_errors;	/* correctable ECC errors */
223	unsigned int restart_queue;
224	u32 txd_cmd;
225
226	bool detect_tx_hung;
227	bool tx_hang_recheck;
228	u8 tx_timeout_factor;
229
230	u32 tx_int_delay;
231	u32 tx_abs_int_delay;
232
233	unsigned int total_tx_bytes;
234	unsigned int total_tx_packets;
235	unsigned int total_rx_bytes;
236	unsigned int total_rx_packets;
237
238	/* Tx stats */
239	u64 tpt_old;
240	u64 colc_old;
241	u32 gotc;
242	u64 gotc_old;
243	u32 tx_timeout_count;
244	u32 tx_fifo_head;
245	u32 tx_head_addr;
246	u32 tx_fifo_size;
247	u32 tx_dma_failed;
248	u32 tx_hwtstamp_timeouts;
249	u32 tx_hwtstamp_skipped;
250
251	/* Rx */
252	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
253			 int work_to_do) ____cacheline_aligned_in_smp;
254	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
255			     gfp_t gfp);
256	struct e1000_ring *rx_ring;
257
258	u32 rx_int_delay;
259	u32 rx_abs_int_delay;
260
261	/* Rx stats */
262	u64 hw_csum_err;
263	u64 hw_csum_good;
264	u64 rx_hdr_split;
265	u32 gorc;
266	u64 gorc_old;
267	u32 alloc_rx_buff_failed;
268	u32 rx_dma_failed;
269	u32 rx_hwtstamp_cleared;
270
271	unsigned int rx_ps_pages;
272	u16 rx_ps_bsize0;
273	u32 max_frame_size;
274	u32 min_frame_size;
275
276	/* OS defined structs */
277	struct net_device *netdev;
278	struct pci_dev *pdev;
279
280	/* structs defined in e1000_hw.h */
281	struct e1000_hw hw;
282
283	spinlock_t stats64_lock;	/* protects statistics counters */
284	struct e1000_hw_stats stats;
285	struct e1000_phy_info phy_info;
286	struct e1000_phy_stats phy_stats;
287
288	/* Snapshot of PHY registers */
289	struct e1000_phy_regs phy_regs;
290
291	struct e1000_ring test_tx_ring;
292	struct e1000_ring test_rx_ring;
293	u32 test_icr;
294
295	u32 msg_enable;
296	unsigned int num_vectors;
297	struct msix_entry *msix_entries;
298	int int_mode;
299	u32 eiac_mask;
300
301	u32 eeprom_wol;
302	u32 wol;
303	u32 pba;
304	u32 max_hw_frame_size;
305
306	bool fc_autoneg;
307
308	unsigned int flags;
309	unsigned int flags2;
310	struct work_struct downshift_task;
311	struct work_struct update_phy_task;
312	struct work_struct print_hang_task;
313
314	int phy_hang_count;
315
316	u16 tx_ring_count;
317	u16 rx_ring_count;
318
319	struct hwtstamp_config hwtstamp_config;
320	struct delayed_work systim_overflow_work;
321	struct sk_buff *tx_hwtstamp_skb;
322	unsigned long tx_hwtstamp_start;
323	struct work_struct tx_hwtstamp_work;
324	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
325	struct cyclecounter cc;
326	struct timecounter tc;
327	struct ptp_clock *ptp_clock;
328	struct ptp_clock_info ptp_clock_info;
329	struct pm_qos_request pm_qos_req;
330	s32 ptp_delta;
331
332	u16 eee_advert;
333};
334
335struct e1000_info {
336	enum e1000_mac_type	mac;
337	unsigned int		flags;
338	unsigned int		flags2;
339	u32			pba;
340	u32			max_hw_frame_size;
341	s32			(*get_variants)(struct e1000_adapter *);
342	const struct e1000_mac_operations *mac_ops;
343	const struct e1000_phy_operations *phy_ops;
344	const struct e1000_nvm_operations *nvm_ops;
345};
346
347s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
348
349/* The system time is maintained by a 64-bit counter comprised of the 32-bit
350 * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
351 * its resolution) is based on the contents of the TIMINCA register - it
352 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
353 * For the best accuracy, the incperiod should be as small as possible.  The
354 * incvalue is scaled by a factor as large as possible (while still fitting
355 * in bits 23:0) so that relatively small clock corrections can be made.
356 *
357 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
358 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
359 * bits to count nanoseconds leaving the rest for fractional nonseconds.
360 */
361#define INCVALUE_96MHZ		125
362#define INCVALUE_SHIFT_96MHZ	17
363#define INCPERIOD_SHIFT_96MHZ	2
364#define INCPERIOD_96MHZ		(12 >> INCPERIOD_SHIFT_96MHZ)
365
366#define INCVALUE_25MHZ		40
367#define INCVALUE_SHIFT_25MHZ	18
368#define INCPERIOD_25MHZ		1
369
370#define INCVALUE_24MHZ		125
371#define INCVALUE_SHIFT_24MHZ	14
372#define INCPERIOD_24MHZ		3
373
374#define INCVALUE_38400KHZ	26
375#define INCVALUE_SHIFT_38400KHZ	19
376#define INCPERIOD_38400KHZ	1
377
378/* Another drawback of scaling the incvalue by a large factor is the
379 * 64-bit SYSTIM register overflows more quickly.  This is dealt with
380 * by simply reading the clock before it overflows.
381 *
382 * Clock	ns bits	Overflows after
383 * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
384 * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
385 * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
386 */
387#define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
388#define E1000_MAX_82574_SYSTIM_REREADS	50
389#define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
390
391/* hardware capability, feature, and workaround flags */
392#define FLAG_HAS_AMT                      BIT(0)
393#define FLAG_HAS_FLASH                    BIT(1)
394#define FLAG_HAS_HW_VLAN_FILTER           BIT(2)
395#define FLAG_HAS_WOL                      BIT(3)
396/* reserved BIT(4) */
397#define FLAG_HAS_CTRLEXT_ON_LOAD          BIT(5)
398#define FLAG_HAS_SWSM_ON_LOAD             BIT(6)
399#define FLAG_HAS_JUMBO_FRAMES             BIT(7)
400#define FLAG_READ_ONLY_NVM                BIT(8)
401#define FLAG_IS_ICH                       BIT(9)
402#define FLAG_HAS_MSIX                     BIT(10)
403#define FLAG_HAS_SMART_POWER_DOWN         BIT(11)
404#define FLAG_IS_QUAD_PORT_A               BIT(12)
405#define FLAG_IS_QUAD_PORT                 BIT(13)
406#define FLAG_HAS_HW_TIMESTAMP             BIT(14)
407#define FLAG_APME_IN_WUC                  BIT(15)
408#define FLAG_APME_IN_CTRL3                BIT(16)
409#define FLAG_APME_CHECK_PORT_B            BIT(17)
410#define FLAG_DISABLE_FC_PAUSE_TIME        BIT(18)
411#define FLAG_NO_WAKE_UCAST                BIT(19)
412#define FLAG_MNG_PT_ENABLED               BIT(20)
413#define FLAG_RESET_OVERWRITES_LAA         BIT(21)
414#define FLAG_TARC_SPEED_MODE_BIT          BIT(22)
415#define FLAG_TARC_SET_BIT_ZERO            BIT(23)
416#define FLAG_RX_NEEDS_RESTART             BIT(24)
417#define FLAG_LSC_GIG_SPEED_DROP           BIT(25)
418#define FLAG_SMART_POWER_DOWN             BIT(26)
419#define FLAG_MSI_ENABLED                  BIT(27)
420/* reserved BIT(28) */
421#define FLAG_TSO_FORCE                    BIT(29)
422#define FLAG_RESTART_NOW                  BIT(30)
423#define FLAG_MSI_TEST_FAILED              BIT(31)
424
425#define FLAG2_CRC_STRIPPING               BIT(0)
426#define FLAG2_HAS_PHY_WAKEUP              BIT(1)
427#define FLAG2_IS_DISCARDING               BIT(2)
428#define FLAG2_DISABLE_ASPM_L1             BIT(3)
429#define FLAG2_HAS_PHY_STATS               BIT(4)
430#define FLAG2_HAS_EEE                     BIT(5)
431#define FLAG2_DMA_BURST                   BIT(6)
432#define FLAG2_DISABLE_ASPM_L0S            BIT(7)
433#define FLAG2_DISABLE_AIM                 BIT(8)
434#define FLAG2_CHECK_PHY_HANG              BIT(9)
435#define FLAG2_NO_DISABLE_RX               BIT(10)
436#define FLAG2_PCIM2PCI_ARBITER_WA         BIT(11)
437#define FLAG2_DFLT_CRC_STRIPPING          BIT(12)
438#define FLAG2_CHECK_RX_HWTSTAMP           BIT(13)
439#define FLAG2_CHECK_SYSTIM_OVERFLOW       BIT(14)
440#define FLAG2_ENABLE_S0IX_FLOWS           BIT(15)
441
442#define E1000_RX_DESC_PS(R, i)	    \
443	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
444#define E1000_RX_DESC_EXT(R, i)	    \
445	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
446#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
447#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
448#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
449
450enum e1000_state_t {
451	__E1000_TESTING,
452	__E1000_RESETTING,
453	__E1000_ACCESS_SHARED_RESOURCE,
454	__E1000_DOWN
455};
456
457enum latency_range {
458	lowest_latency = 0,
459	low_latency = 1,
460	bulk_latency = 2,
461	latency_invalid = 255
462};
463
464extern char e1000e_driver_name[];
465
466void e1000e_check_options(struct e1000_adapter *adapter);
467void e1000e_set_ethtool_ops(struct net_device *netdev);
468
469int e1000e_open(struct net_device *netdev);
470int e1000e_close(struct net_device *netdev);
471void e1000e_up(struct e1000_adapter *adapter);
472void e1000e_down(struct e1000_adapter *adapter, bool reset);
473void e1000e_reinit_locked(struct e1000_adapter *adapter);
474void e1000e_reset(struct e1000_adapter *adapter);
475void e1000e_power_up_phy(struct e1000_adapter *adapter);
476int e1000e_setup_rx_resources(struct e1000_ring *ring);
477int e1000e_setup_tx_resources(struct e1000_ring *ring);
478void e1000e_free_rx_resources(struct e1000_ring *ring);
479void e1000e_free_tx_resources(struct e1000_ring *ring);
480void e1000e_get_stats64(struct net_device *netdev,
481			struct rtnl_link_stats64 *stats);
482void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
483void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
484void e1000e_get_hw_control(struct e1000_adapter *adapter);
485void e1000e_release_hw_control(struct e1000_adapter *adapter);
486void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
487
488extern unsigned int copybreak;
489
490extern const struct e1000_info e1000_82571_info;
491extern const struct e1000_info e1000_82572_info;
492extern const struct e1000_info e1000_82573_info;
493extern const struct e1000_info e1000_82574_info;
494extern const struct e1000_info e1000_82583_info;
495extern const struct e1000_info e1000_ich8_info;
496extern const struct e1000_info e1000_ich9_info;
497extern const struct e1000_info e1000_ich10_info;
498extern const struct e1000_info e1000_pch_info;
499extern const struct e1000_info e1000_pch2_info;
500extern const struct e1000_info e1000_pch_lpt_info;
501extern const struct e1000_info e1000_pch_spt_info;
502extern const struct e1000_info e1000_pch_cnp_info;
503extern const struct e1000_info e1000_pch_tgp_info;
504extern const struct e1000_info e1000_es2_info;
505
506void e1000e_ptp_init(struct e1000_adapter *adapter);
507void e1000e_ptp_remove(struct e1000_adapter *adapter);
508
509u64 e1000e_read_systim(struct e1000_adapter *adapter,
510		       struct ptp_system_timestamp *sts);
511
512static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
513{
514	return hw->phy.ops.reset(hw);
515}
516
517static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
518{
519	return hw->phy.ops.read_reg(hw, offset, data);
520}
521
522static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
523{
524	return hw->phy.ops.read_reg_locked(hw, offset, data);
525}
526
527static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
528{
529	return hw->phy.ops.write_reg(hw, offset, data);
530}
531
532static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
533{
534	return hw->phy.ops.write_reg_locked(hw, offset, data);
535}
536
537void e1000e_reload_nvm_generic(struct e1000_hw *hw);
538
539static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
540{
541	if (hw->mac.ops.read_mac_addr)
542		return hw->mac.ops.read_mac_addr(hw);
543
544	return e1000_read_mac_addr_generic(hw);
545}
546
547static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
548{
549	return hw->nvm.ops.validate(hw);
550}
551
552static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
553{
554	return hw->nvm.ops.update(hw);
555}
556
557static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
558				 u16 *data)
559{
560	return hw->nvm.ops.read(hw, offset, words, data);
561}
562
563static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
564				  u16 *data)
565{
566	return hw->nvm.ops.write(hw, offset, words, data);
567}
568
569static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
570{
571	return hw->phy.ops.get_info(hw);
572}
573
574static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
575{
576	return readl(hw->hw_addr + reg);
577}
578
579#define er32(reg)	__er32(hw, E1000_##reg)
580
581void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
582
583#define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
584
585#define e1e_flush()	er32(STATUS)
586
587#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
588	(__ew32((a), (reg + ((offset) << 2)), (value)))
589
590#define E1000_READ_REG_ARRAY(a, reg, offset) \
591	(readl((a)->hw_addr + reg + ((offset) << 2)))
592
593#endif /* _E1000_H_ */