Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
  30
  31#include <linux/interrupt.h>
  32#include <linux/module.h>
  33#include <linux/kernel.h>
  34#include <linux/pci.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/init.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/if_vlan.h>
  43#include <linux/mm.h>
  44#include <linux/firmware.h>
  45#include <asm/processor.h>		/* Processor type for cache alignment. */
  46#include <linux/uaccess.h>
  47#include <asm/io.h>
  48
  49/*
  50 * The current frame processor firmware fails to checksum a fragment
  51 * of length 1. If and when this is fixed, the #define below can be removed.
  52 */
  53#define HAS_BROKEN_FIRMWARE
  54
  55/*
  56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  57 */
  58#ifdef HAS_BROKEN_FIRMWARE
  59#define PADDING_MASK 3
  60#endif
  61
  62/*
  63 * Define this if using the driver with the zero-copy patch
  64 */
  65#define ZEROCOPY
  66
  67#if IS_ENABLED(CONFIG_VLAN_8021Q)
  68#define VLAN_SUPPORT
  69#endif
  70
  71/* The user-configurable values.
  72   These may be modified when a driver module is loaded.*/
  73
  74/* Used for tuning interrupt latency vs. overhead. */
  75static int intr_latency;
  76static int small_frames;
  77
  78static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  79static int max_interrupt_work = 20;
  80static int mtu;
  81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  82   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  83static const int multicast_filter_limit = 512;
  84/* Whether to do TCP/UDP checksums in hardware */
  85static int enable_hw_cksum = 1;
  86
  87#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  88/*
  89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  90 * Setting to > 1518 effectively disables this feature.
  91 *
  92 * NOTE:
  93 * The ia64 doesn't allow for unaligned loads even of integers being
  94 * misaligned on a 2 byte boundary. Thus always force copying of
  95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  96 * 23/10/2000 - Jes
  97 *
  98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
  99 * at least, having unaligned frames leads to a rather serious performance
 100 * penalty. -Ion
 101 */
 102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 103static int rx_copybreak = PKT_BUF_SZ;
 104#else
 105static int rx_copybreak /* = 0 */;
 106#endif
 107
 108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 109#ifdef __sparc__
 110#define DMA_BURST_SIZE 64
 111#else
 112#define DMA_BURST_SIZE 128
 113#endif
 114
 115/* Operational parameters that are set at compile time. */
 116
 117/* The "native" ring sizes are either 256 or 2048.
 118   However in some modes a descriptor may be marked to wrap the ring earlier.
 119*/
 120#define RX_RING_SIZE	256
 121#define TX_RING_SIZE	32
 122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 123#define DONE_Q_SIZE	1024
 124/* All queues must be aligned on a 256-byte boundary */
 125#define QUEUE_ALIGN	256
 126
 127#if RX_RING_SIZE > 256
 128#define RX_Q_ENTRIES Rx2048QEntries
 129#else
 130#define RX_Q_ENTRIES Rx256QEntries
 131#endif
 132
 133/* Operational parameters that usually are not changed. */
 134/* Time in jiffies before concluding the transmitter is hung. */
 135#define TX_TIMEOUT	(2 * HZ)
 136
 137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 138/* 64-bit dma_addr_t */
 139#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 140#define netdrv_addr_t __le64
 141#define cpu_to_dma(x) cpu_to_le64(x)
 142#define dma_to_cpu(x) le64_to_cpu(x)
 143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 148#else  /* 32-bit dma_addr_t */
 149#define netdrv_addr_t __le32
 150#define cpu_to_dma(x) cpu_to_le32(x)
 151#define dma_to_cpu(x) le32_to_cpu(x)
 152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 157#endif
 158
 159#define skb_first_frag_len(skb)	skb_headlen(skb)
 160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 161
 162/* Firmware names */
 163#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 164#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 165
 166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 168MODULE_LICENSE("GPL");
 169MODULE_FIRMWARE(FIRMWARE_RX);
 170MODULE_FIRMWARE(FIRMWARE_TX);
 171
 172module_param(max_interrupt_work, int, 0);
 173module_param(mtu, int, 0);
 174module_param(debug, int, 0);
 175module_param(rx_copybreak, int, 0);
 176module_param(intr_latency, int, 0);
 177module_param(small_frames, int, 0);
 178module_param(enable_hw_cksum, int, 0);
 179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 180MODULE_PARM_DESC(mtu, "MTU (all boards)");
 181MODULE_PARM_DESC(debug, "Debug level (0-6)");
 182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 186
 187/*
 188				Theory of Operation
 189
 190I. Board Compatibility
 191
 192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 193
 194II. Board-specific settings
 195
 196III. Driver operation
 197
 198IIIa. Ring buffers
 199
 200The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 201ring sizes are set fixed by the hardware, but may optionally be wrapped
 202earlier by the END bit in the descriptor.
 203This driver uses that hardware queue size for the Rx ring, where a large
 204number of entries has no ill effect beyond increases the potential backlog.
 205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 206disables the queue layer priority ordering and we have no mechanism to
 207utilize the hardware two-level priority queue.  When modifying the
 208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 209levels.
 210
 211IIIb/c. Transmit/Receive Structure
 212
 213See the Adaptec manual for the many possible structures, and options for
 214each structure.  There are far too many to document all of them here.
 215
 216For transmit this driver uses type 0/1 transmit descriptors (depending
 217on the 32/64 bitness of the architecture), and relies on automatic
 218minimum-length padding.  It does not use the completion queue
 219consumer index, but instead checks for non-zero status entries.
 220
 221For receive this driver uses type 2/3 receive descriptors.  The driver
 222allocates full frame size skbuffs for the Rx ring buffers, so all frames
 223should fit in a single descriptor.  The driver does not use the completion
 224queue consumer index, but instead checks for non-zero status entries.
 225
 226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 227is allocated and the frame is copied to the new skbuff.  When the incoming
 228frame is larger, the skbuff is passed directly up the protocol stack.
 229Buffers consumed this way are replaced by newly allocated skbuffs in a later
 230phase of receive.
 231
 232A notable aspect of operation is that unaligned buffers are not permitted by
 233the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 234isn't longword aligned, which may cause problems on some machine
 235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 236the frame into a new skbuff unconditionally. Copied frames are put into the
 237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 238
 239IIId. Synchronization
 240
 241The driver runs as two independent, single-threaded flows of control.  One
 242is the send-packet routine, which enforces single-threaded use by the
 243dev->tbusy flag.  The other thread is the interrupt handler, which is single
 244threaded by the hardware and interrupt handling software.
 245
 246The send packet thread has partial control over the Tx ring and the netif_queue
 247status. If the number of free Tx slots in the ring falls below a certain number
 248(currently hardcoded to 4), it signals the upper layer to stop the queue.
 249
 250The interrupt handler has exclusive control over the Rx ring and records stats
 251from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 253number of free Tx slow is above the threshold, it signals the upper layer to
 254restart the queue.
 255
 256IV. Notes
 257
 258IVb. References
 259
 260The Adaptec Starfire manuals, available only from Adaptec.
 261http://www.scyld.com/expert/100mbps.html
 262http://www.scyld.com/expert/NWay.html
 263
 264IVc. Errata
 265
 266- StopOnPerr is broken, don't enable
 267- Hardware ethernet padding exposes random data, perform software padding
 268  instead (unverified -- works correctly for all the hardware I have)
 269
 270*/
 271
 272
 273
 274enum chip_capability_flags {CanHaveMII=1, };
 275
 276enum chipset {
 277	CH_6915 = 0,
 278};
 279
 280static const struct pci_device_id starfire_pci_tbl[] = {
 281	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 282	{ 0, }
 283};
 284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 285
 286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 287static const struct chip_info {
 288	const char *name;
 289	int drv_flags;
 290} netdrv_tbl[] = {
 291	{ "Adaptec Starfire 6915", CanHaveMII },
 292};
 293
 294
 295/* Offsets to the device registers.
 296   Unlike software-only systems, device drivers interact with complex hardware.
 297   It's not useful to define symbolic names for every register bit in the
 298   device.  The name can only partially document the semantics and make
 299   the driver longer and more difficult to read.
 300   In general, only the important configuration values or bits changed
 301   multiple times should be defined symbolically.
 302*/
 303enum register_offsets {
 304	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 305	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 306	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 307	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 308	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 309	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 310	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 311	TxThreshold=0x500B0,
 312	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 313	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 314	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 315	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 316	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 317	TxMode=0x55000, VlanType=0x55064,
 318	PerfFilterTable=0x56000, HashTable=0x56100,
 319	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 320};
 321
 322/*
 323 * Bits in the interrupt status/mask registers.
 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 325 * enables all the interrupt sources that are or'ed into those status bits.
 326 */
 327enum intr_status_bits {
 328	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 329	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 330	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 331	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 332	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 333	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 334	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 335	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 336	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 337	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 338	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 339	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 340	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 341	IntrTxGfp=0x02, IntrPCIPad=0x01,
 342	/* not quite bits */
 343	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 344	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 345	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 346};
 347
 348/* Bits in the RxFilterMode register. */
 349enum rx_mode_bits {
 350	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 351	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 352	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 353	WakeupOnGFP=0x0800,
 354};
 355
 356/* Bits in the TxMode register */
 357enum tx_mode_bits {
 358	MiiSoftReset=0x8000, MIILoopback=0x4000,
 359	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 360	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 361};
 362
 363/* Bits in the TxDescCtrl register. */
 364enum tx_ctrl_bits {
 365	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 366	TxDescSpace128=0x30, TxDescSpace256=0x40,
 367	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 368	TxDescType3=0x03, TxDescType4=0x04,
 369	TxNoDMACompletion=0x08,
 370	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 371	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 372	TxDMABurstSizeShift=8,
 373};
 374
 375/* Bits in the RxDescQCtrl register. */
 376enum rx_ctrl_bits {
 377	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 378	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 379	Rx2048QEntries=0x4000, Rx256QEntries=0,
 380	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 381	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 382	RxDescSpace4=0x000, RxDescSpace8=0x100,
 383	RxDescSpace16=0x200, RxDescSpace32=0x300,
 384	RxDescSpace64=0x400, RxDescSpace128=0x500,
 385	RxConsumerWrEn=0x80,
 386};
 387
 388/* Bits in the RxDMACtrl register. */
 389enum rx_dmactrl_bits {
 390	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 391	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 392	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 393	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 394	RxChecksumRejectTCPOnly=0x01000000,
 395	RxCompletionQ2Enable=0x800000,
 396	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 397	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 398	RxDMAQ2NonIP=0x400000,
 399	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 400	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 401	RxBurstSizeShift=0,
 402};
 403
 404/* Bits in the RxCompletionAddr register */
 405enum rx_compl_bits {
 406	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 407	RxComplProducerWrEn=0x40,
 408	RxComplType0=0x00, RxComplType1=0x10,
 409	RxComplType2=0x20, RxComplType3=0x30,
 410	RxComplThreshShift=0,
 411};
 412
 413/* Bits in the TxCompletionAddr register */
 414enum tx_compl_bits {
 415	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 416	TxComplProducerWrEn=0x40,
 417	TxComplIntrStatus=0x20,
 418	CommonQueueMode=0x10,
 419	TxComplThreshShift=0,
 420};
 421
 422/* Bits in the GenCtrl register */
 423enum gen_ctrl_bits {
 424	RxEnable=0x05, TxEnable=0x0a,
 425	RxGFPEnable=0x10, TxGFPEnable=0x20,
 426};
 427
 428/* Bits in the IntrTimerCtrl register */
 429enum intr_ctrl_bits {
 430	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 431	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 432	IntrLatencyMask=0x1f,
 433};
 434
 435/* The Rx and Tx buffer descriptors. */
 436struct starfire_rx_desc {
 437	netdrv_addr_t rxaddr;
 438};
 439enum rx_desc_bits {
 440	RxDescValid=1, RxDescEndRing=2,
 441};
 442
 443/* Completion queue entry. */
 444struct short_rx_done_desc {
 445	__le32 status;			/* Low 16 bits is length. */
 446};
 447struct basic_rx_done_desc {
 448	__le32 status;			/* Low 16 bits is length. */
 449	__le16 vlanid;
 450	__le16 status2;
 451};
 452struct csum_rx_done_desc {
 453	__le32 status;			/* Low 16 bits is length. */
 454	__le16 csum;			/* Partial checksum */
 455	__le16 status2;
 456};
 457struct full_rx_done_desc {
 458	__le32 status;			/* Low 16 bits is length. */
 459	__le16 status3;
 460	__le16 status2;
 461	__le16 vlanid;
 462	__le16 csum;			/* partial checksum */
 463	__le32 timestamp;
 464};
 465/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 466#ifdef VLAN_SUPPORT
 467typedef struct full_rx_done_desc rx_done_desc;
 468#define RxComplType RxComplType3
 469#else  /* not VLAN_SUPPORT */
 470typedef struct csum_rx_done_desc rx_done_desc;
 471#define RxComplType RxComplType2
 472#endif /* not VLAN_SUPPORT */
 473
 474enum rx_done_bits {
 475	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 476};
 477
 478/* Type 1 Tx descriptor. */
 479struct starfire_tx_desc_1 {
 480	__le32 status;			/* Upper bits are status, lower 16 length. */
 481	__le32 addr;
 482};
 483
 484/* Type 2 Tx descriptor. */
 485struct starfire_tx_desc_2 {
 486	__le32 status;			/* Upper bits are status, lower 16 length. */
 487	__le32 reserved;
 488	__le64 addr;
 489};
 490
 491#ifdef ADDR_64BITS
 492typedef struct starfire_tx_desc_2 starfire_tx_desc;
 493#define TX_DESC_TYPE TxDescType2
 494#else  /* not ADDR_64BITS */
 495typedef struct starfire_tx_desc_1 starfire_tx_desc;
 496#define TX_DESC_TYPE TxDescType1
 497#endif /* not ADDR_64BITS */
 498#define TX_DESC_SPACING TxDescSpaceUnlim
 499
 500enum tx_desc_bits {
 501	TxDescID=0xB0000000,
 502	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 503	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 504};
 505struct tx_done_desc {
 506	__le32 status;			/* timestamp, index. */
 507#if 0
 508	__le32 intrstatus;		/* interrupt status */
 509#endif
 510};
 511
 512struct rx_ring_info {
 513	struct sk_buff *skb;
 514	dma_addr_t mapping;
 515};
 516struct tx_ring_info {
 517	struct sk_buff *skb;
 518	dma_addr_t mapping;
 519	unsigned int used_slots;
 520};
 521
 522#define PHY_CNT		2
 523struct netdev_private {
 524	/* Descriptor rings first for alignment. */
 525	struct starfire_rx_desc *rx_ring;
 526	starfire_tx_desc *tx_ring;
 527	dma_addr_t rx_ring_dma;
 528	dma_addr_t tx_ring_dma;
 529	/* The addresses of rx/tx-in-place skbuffs. */
 530	struct rx_ring_info rx_info[RX_RING_SIZE];
 531	struct tx_ring_info tx_info[TX_RING_SIZE];
 532	/* Pointers to completion queues (full pages). */
 533	rx_done_desc *rx_done_q;
 534	dma_addr_t rx_done_q_dma;
 535	unsigned int rx_done;
 536	struct tx_done_desc *tx_done_q;
 537	dma_addr_t tx_done_q_dma;
 538	unsigned int tx_done;
 539	struct napi_struct napi;
 540	struct net_device *dev;
 541	struct pci_dev *pci_dev;
 542#ifdef VLAN_SUPPORT
 543	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 544#endif
 545	void *queue_mem;
 546	dma_addr_t queue_mem_dma;
 547	size_t queue_mem_size;
 548
 549	/* Frequently used values: keep some adjacent for cache effect. */
 550	spinlock_t lock;
 551	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 552	unsigned int cur_tx, dirty_tx, reap_tx;
 553	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 554	/* These values keep track of the transceiver/media in use. */
 555	int speed100;			/* Set if speed == 100MBit. */
 556	u32 tx_mode;
 557	u32 intr_timer_ctrl;
 558	u8 tx_threshold;
 559	/* MII transceiver section. */
 560	struct mii_if_info mii_if;		/* MII lib hooks/info */
 561	int phy_cnt;			/* MII device addresses. */
 562	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 563	void __iomem *base;
 564};
 565
 566
 567static int	mdio_read(struct net_device *dev, int phy_id, int location);
 568static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 569static int	netdev_open(struct net_device *dev);
 570static void	check_duplex(struct net_device *dev);
 571static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
 572static void	init_ring(struct net_device *dev);
 573static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 574static irqreturn_t intr_handler(int irq, void *dev_instance);
 575static void	netdev_error(struct net_device *dev, int intr_status);
 576static int	__netdev_rx(struct net_device *dev, int *quota);
 577static int	netdev_poll(struct napi_struct *napi, int budget);
 578static void	refill_rx_ring(struct net_device *dev);
 579static void	netdev_error(struct net_device *dev, int intr_status);
 580static void	set_rx_mode(struct net_device *dev);
 581static struct net_device_stats *get_stats(struct net_device *dev);
 582static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 583static int	netdev_close(struct net_device *dev);
 584static void	netdev_media_change(struct net_device *dev);
 585static const struct ethtool_ops ethtool_ops;
 586
 587
 588#ifdef VLAN_SUPPORT
 589static int netdev_vlan_rx_add_vid(struct net_device *dev,
 590				  __be16 proto, u16 vid)
 591{
 592	struct netdev_private *np = netdev_priv(dev);
 593
 594	spin_lock(&np->lock);
 595	if (debug > 1)
 596		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 597	set_bit(vid, np->active_vlans);
 598	set_rx_mode(dev);
 599	spin_unlock(&np->lock);
 600
 601	return 0;
 602}
 603
 604static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 605				   __be16 proto, u16 vid)
 606{
 607	struct netdev_private *np = netdev_priv(dev);
 608
 609	spin_lock(&np->lock);
 610	if (debug > 1)
 611		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 612	clear_bit(vid, np->active_vlans);
 613	set_rx_mode(dev);
 614	spin_unlock(&np->lock);
 615
 616	return 0;
 617}
 618#endif /* VLAN_SUPPORT */
 619
 620
 621static const struct net_device_ops netdev_ops = {
 622	.ndo_open		= netdev_open,
 623	.ndo_stop		= netdev_close,
 624	.ndo_start_xmit		= start_tx,
 625	.ndo_tx_timeout		= tx_timeout,
 626	.ndo_get_stats		= get_stats,
 627	.ndo_set_rx_mode	= set_rx_mode,
 628	.ndo_do_ioctl		= netdev_ioctl,
 629	.ndo_set_mac_address	= eth_mac_addr,
 630	.ndo_validate_addr	= eth_validate_addr,
 631#ifdef VLAN_SUPPORT
 632	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 633	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 634#endif
 635};
 636
 637static int starfire_init_one(struct pci_dev *pdev,
 638			     const struct pci_device_id *ent)
 639{
 640	struct device *d = &pdev->dev;
 641	struct netdev_private *np;
 642	int i, irq, chip_idx = ent->driver_data;
 643	struct net_device *dev;
 644	long ioaddr;
 645	void __iomem *base;
 646	int drv_flags, io_size;
 647	int boguscnt;
 648
 649	if (pci_enable_device (pdev))
 650		return -EIO;
 651
 652	ioaddr = pci_resource_start(pdev, 0);
 653	io_size = pci_resource_len(pdev, 0);
 654	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 655		dev_err(d, "no PCI MEM resources, aborting\n");
 656		return -ENODEV;
 657	}
 658
 659	dev = alloc_etherdev(sizeof(*np));
 660	if (!dev)
 661		return -ENOMEM;
 662
 663	SET_NETDEV_DEV(dev, &pdev->dev);
 664
 665	irq = pdev->irq;
 666
 667	if (pci_request_regions (pdev, DRV_NAME)) {
 668		dev_err(d, "cannot reserve PCI resources, aborting\n");
 669		goto err_out_free_netdev;
 670	}
 671
 672	base = ioremap(ioaddr, io_size);
 673	if (!base) {
 674		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 675			io_size, ioaddr);
 676		goto err_out_free_res;
 677	}
 678
 679	pci_set_master(pdev);
 680
 681	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 682	pci_try_set_mwi(pdev);
 683
 684#ifdef ZEROCOPY
 685	/* Starfire can do TCP/UDP checksumming */
 686	if (enable_hw_cksum)
 687		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 688#endif /* ZEROCOPY */
 689
 690#ifdef VLAN_SUPPORT
 691	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 692#endif /* VLAN_RX_KILL_VID */
 693#ifdef ADDR_64BITS
 694	dev->features |= NETIF_F_HIGHDMA;
 695#endif /* ADDR_64BITS */
 696
 697	/* Serial EEPROM reads are hidden by the hardware. */
 698	for (i = 0; i < 6; i++)
 699		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
 700
 701#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 702	if (debug > 4)
 703		for (i = 0; i < 0x20; i++)
 704			printk("%2.2x%s",
 705			       (unsigned int)readb(base + EEPROMCtrl + i),
 706			       i % 16 != 15 ? " " : "\n");
 707#endif
 708
 709	/* Issue soft reset */
 710	writel(MiiSoftReset, base + TxMode);
 711	udelay(1000);
 712	writel(0, base + TxMode);
 713
 714	/* Reset the chip to erase previous misconfiguration. */
 715	writel(1, base + PCIDeviceConfig);
 716	boguscnt = 1000;
 717	while (--boguscnt > 0) {
 718		udelay(10);
 719		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 720			break;
 721	}
 722	if (boguscnt == 0)
 723		printk("%s: chipset reset never completed!\n", dev->name);
 724	/* wait a little longer */
 725	udelay(1000);
 726
 727	np = netdev_priv(dev);
 728	np->dev = dev;
 729	np->base = base;
 730	spin_lock_init(&np->lock);
 731	pci_set_drvdata(pdev, dev);
 732
 733	np->pci_dev = pdev;
 734
 735	np->mii_if.dev = dev;
 736	np->mii_if.mdio_read = mdio_read;
 737	np->mii_if.mdio_write = mdio_write;
 738	np->mii_if.phy_id_mask = 0x1f;
 739	np->mii_if.reg_num_mask = 0x1f;
 740
 741	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 742
 743	np->speed100 = 1;
 744
 745	/* timer resolution is 128 * 0.8us */
 746	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 747		Timer10X | EnableIntrMasking;
 748
 749	if (small_frames > 0) {
 750		np->intr_timer_ctrl |= SmallFrameBypass;
 751		switch (small_frames) {
 752		case 1 ... 64:
 753			np->intr_timer_ctrl |= SmallFrame64;
 754			break;
 755		case 65 ... 128:
 756			np->intr_timer_ctrl |= SmallFrame128;
 757			break;
 758		case 129 ... 256:
 759			np->intr_timer_ctrl |= SmallFrame256;
 760			break;
 761		default:
 762			np->intr_timer_ctrl |= SmallFrame512;
 763			if (small_frames > 512)
 764				printk("Adjusting small_frames down to 512\n");
 765			break;
 766		}
 767	}
 768
 769	dev->netdev_ops = &netdev_ops;
 770	dev->watchdog_timeo = TX_TIMEOUT;
 771	dev->ethtool_ops = &ethtool_ops;
 772
 773	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
 774
 775	if (mtu)
 776		dev->mtu = mtu;
 777
 778	if (register_netdev(dev))
 779		goto err_out_cleardev;
 780
 781	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 782	       dev->name, netdrv_tbl[chip_idx].name, base,
 783	       dev->dev_addr, irq);
 784
 785	if (drv_flags & CanHaveMII) {
 786		int phy, phy_idx = 0;
 787		int mii_status;
 788		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 789			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 790			msleep(100);
 791			boguscnt = 1000;
 792			while (--boguscnt > 0)
 793				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 794					break;
 795			if (boguscnt == 0) {
 796				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 797				continue;
 798			}
 799			mii_status = mdio_read(dev, phy, MII_BMSR);
 800			if (mii_status != 0) {
 801				np->phys[phy_idx++] = phy;
 802				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 803				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 804					   "%#4.4x advertising %#4.4x.\n",
 805					   dev->name, phy, mii_status, np->mii_if.advertising);
 806				/* there can be only one PHY on-board */
 807				break;
 808			}
 809		}
 810		np->phy_cnt = phy_idx;
 811		if (np->phy_cnt > 0)
 812			np->mii_if.phy_id = np->phys[0];
 813		else
 814			memset(&np->mii_if, 0, sizeof(np->mii_if));
 815	}
 816
 817	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 818	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 819	return 0;
 820
 821err_out_cleardev:
 822	iounmap(base);
 823err_out_free_res:
 824	pci_release_regions (pdev);
 825err_out_free_netdev:
 826	free_netdev(dev);
 827	return -ENODEV;
 828}
 829
 830
 831/* Read the MII Management Data I/O (MDIO) interfaces. */
 832static int mdio_read(struct net_device *dev, int phy_id, int location)
 833{
 834	struct netdev_private *np = netdev_priv(dev);
 835	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 836	int result, boguscnt=1000;
 837	/* ??? Should we add a busy-wait here? */
 838	do {
 839		result = readl(mdio_addr);
 840	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 841	if (boguscnt == 0)
 842		return 0;
 843	if ((result & 0xffff) == 0xffff)
 844		return 0;
 845	return result & 0xffff;
 846}
 847
 848
 849static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 850{
 851	struct netdev_private *np = netdev_priv(dev);
 852	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 853	writel(value, mdio_addr);
 854	/* The busy-wait will occur before a read. */
 855}
 856
 857
 858static int netdev_open(struct net_device *dev)
 859{
 860	const struct firmware *fw_rx, *fw_tx;
 861	const __be32 *fw_rx_data, *fw_tx_data;
 862	struct netdev_private *np = netdev_priv(dev);
 863	void __iomem *ioaddr = np->base;
 864	const int irq = np->pci_dev->irq;
 865	int i, retval;
 866	size_t tx_size, rx_size;
 867	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 868
 869	/* Do we ever need to reset the chip??? */
 870
 871	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 872	if (retval)
 873		return retval;
 874
 875	/* Disable the Rx and Tx, and reset the chip. */
 876	writel(0, ioaddr + GenCtrl);
 877	writel(1, ioaddr + PCIDeviceConfig);
 878	if (debug > 1)
 879		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 880		       dev->name, irq);
 881
 882	/* Allocate the various queues. */
 883	if (!np->queue_mem) {
 884		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 885		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 886		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 887		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 888		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 889		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
 890						   np->queue_mem_size,
 891						   &np->queue_mem_dma, GFP_ATOMIC);
 892		if (np->queue_mem == NULL) {
 893			free_irq(irq, dev);
 894			return -ENOMEM;
 895		}
 896
 897		np->tx_done_q     = np->queue_mem;
 898		np->tx_done_q_dma = np->queue_mem_dma;
 899		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 900		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 901		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 902		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 903		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 904		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 905	}
 906
 907	/* Start with no carrier, it gets adjusted later */
 908	netif_carrier_off(dev);
 909	init_ring(dev);
 910	/* Set the size of the Rx buffers. */
 911	writel((np->rx_buf_sz << RxBufferLenShift) |
 912	       (0 << RxMinDescrThreshShift) |
 913	       RxPrefetchMode | RxVariableQ |
 914	       RX_Q_ENTRIES |
 915	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 916	       RxDescSpace4,
 917	       ioaddr + RxDescQCtrl);
 918
 919	/* Set up the Rx DMA controller. */
 920	writel(RxChecksumIgnore |
 921	       (0 << RxEarlyIntThreshShift) |
 922	       (6 << RxHighPrioThreshShift) |
 923	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 924	       ioaddr + RxDMACtrl);
 925
 926	/* Set Tx descriptor */
 927	writel((2 << TxHiPriFIFOThreshShift) |
 928	       (0 << TxPadLenShift) |
 929	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 930	       TX_DESC_Q_ADDR_SIZE |
 931	       TX_DESC_SPACING | TX_DESC_TYPE,
 932	       ioaddr + TxDescCtrl);
 933
 934	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 935	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 936	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 937	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 938	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 939
 940	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 941	writel(np->rx_done_q_dma |
 942	       RxComplType |
 943	       (0 << RxComplThreshShift),
 944	       ioaddr + RxCompletionAddr);
 945
 946	if (debug > 1)
 947		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 948
 949	/* Fill both the Tx SA register and the Rx perfect filter. */
 950	for (i = 0; i < 6; i++)
 951		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 952	/* The first entry is special because it bypasses the VLAN filter.
 953	   Don't use it. */
 954	writew(0, ioaddr + PerfFilterTable);
 955	writew(0, ioaddr + PerfFilterTable + 4);
 956	writew(0, ioaddr + PerfFilterTable + 8);
 957	for (i = 1; i < 16; i++) {
 958		__be16 *eaddrs = (__be16 *)dev->dev_addr;
 959		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 960		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 961		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 962		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 963	}
 964
 965	/* Initialize other registers. */
 966	/* Configure the PCI bus bursts and FIFO thresholds. */
 967	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 968	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 969	udelay(1000);
 970	writel(np->tx_mode, ioaddr + TxMode);
 971	np->tx_threshold = 4;
 972	writel(np->tx_threshold, ioaddr + TxThreshold);
 973
 974	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 975
 976	napi_enable(&np->napi);
 977
 978	netif_start_queue(dev);
 979
 980	if (debug > 1)
 981		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 982	set_rx_mode(dev);
 983
 984	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 985	check_duplex(dev);
 986
 987	/* Enable GPIO interrupts on link change */
 988	writel(0x0f00ff00, ioaddr + GPIOCtrl);
 989
 990	/* Set the interrupt mask */
 991	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
 992	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
 993	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
 994	       ioaddr + IntrEnable);
 995	/* Enable PCI interrupts. */
 996	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
 997	       ioaddr + PCIDeviceConfig);
 998
 999#ifdef VLAN_SUPPORT
1000	/* Set VLAN type to 802.1q */
1001	writel(ETH_P_8021Q, ioaddr + VlanType);
1002#endif /* VLAN_SUPPORT */
1003
1004	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1005	if (retval) {
1006		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1007		       FIRMWARE_RX);
1008		goto out_init;
1009	}
1010	if (fw_rx->size % 4) {
1011		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1012		       fw_rx->size, FIRMWARE_RX);
1013		retval = -EINVAL;
1014		goto out_rx;
1015	}
1016	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1017	if (retval) {
1018		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1019		       FIRMWARE_TX);
1020		goto out_rx;
1021	}
1022	if (fw_tx->size % 4) {
1023		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1024		       fw_tx->size, FIRMWARE_TX);
1025		retval = -EINVAL;
1026		goto out_tx;
1027	}
1028	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1029	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1030	rx_size = fw_rx->size / 4;
1031	tx_size = fw_tx->size / 4;
1032
1033	/* Load Rx/Tx firmware into the frame processors */
1034	for (i = 0; i < rx_size; i++)
1035		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1036	for (i = 0; i < tx_size; i++)
1037		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1038	if (enable_hw_cksum)
1039		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1040		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1041	else
1042		/* Enable the Rx and Tx units only. */
1043		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1044
1045	if (debug > 1)
1046		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1047		       dev->name);
1048
1049out_tx:
1050	release_firmware(fw_tx);
1051out_rx:
1052	release_firmware(fw_rx);
1053out_init:
1054	if (retval)
1055		netdev_close(dev);
1056	return retval;
1057}
1058
1059
1060static void check_duplex(struct net_device *dev)
1061{
1062	struct netdev_private *np = netdev_priv(dev);
1063	u16 reg0;
1064	int silly_count = 1000;
1065
1066	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1067	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1068	udelay(500);
1069	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1070		/* do nothing */;
1071	if (!silly_count) {
1072		printk("%s: MII reset failed!\n", dev->name);
1073		return;
1074	}
1075
1076	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1077
1078	if (!np->mii_if.force_media) {
1079		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1080	} else {
1081		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1082		if (np->speed100)
1083			reg0 |= BMCR_SPEED100;
1084		if (np->mii_if.full_duplex)
1085			reg0 |= BMCR_FULLDPLX;
1086		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1087		       dev->name,
1088		       np->speed100 ? "100" : "10",
1089		       np->mii_if.full_duplex ? "full" : "half");
1090	}
1091	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1092}
1093
1094
1095static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1096{
1097	struct netdev_private *np = netdev_priv(dev);
1098	void __iomem *ioaddr = np->base;
1099	int old_debug;
1100
1101	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1102	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1103
1104	/* Perhaps we should reinitialize the hardware here. */
1105
1106	/*
1107	 * Stop and restart the interface.
1108	 * Cheat and increase the debug level temporarily.
1109	 */
1110	old_debug = debug;
1111	debug = 2;
1112	netdev_close(dev);
1113	netdev_open(dev);
1114	debug = old_debug;
1115
1116	/* Trigger an immediate transmit demand. */
1117
1118	netif_trans_update(dev); /* prevent tx timeout */
1119	dev->stats.tx_errors++;
1120	netif_wake_queue(dev);
1121}
1122
1123
1124/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1125static void init_ring(struct net_device *dev)
1126{
1127	struct netdev_private *np = netdev_priv(dev);
1128	int i;
1129
1130	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1131	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1132
1133	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1134
1135	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1136	for (i = 0; i < RX_RING_SIZE; i++) {
1137		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1138		np->rx_info[i].skb = skb;
1139		if (skb == NULL)
1140			break;
1141		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1142							skb->data,
1143							np->rx_buf_sz,
1144							DMA_FROM_DEVICE);
1145		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1146			dev_kfree_skb(skb);
1147			np->rx_info[i].skb = NULL;
1148			break;
1149		}
1150		/* Grrr, we cannot offset to correctly align the IP header. */
1151		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1152	}
1153	writew(i - 1, np->base + RxDescQIdx);
1154	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1155
1156	/* Clear the remainder of the Rx buffer ring. */
1157	for (  ; i < RX_RING_SIZE; i++) {
1158		np->rx_ring[i].rxaddr = 0;
1159		np->rx_info[i].skb = NULL;
1160		np->rx_info[i].mapping = 0;
1161	}
1162	/* Mark the last entry as wrapping the ring. */
1163	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1164
1165	/* Clear the completion rings. */
1166	for (i = 0; i < DONE_Q_SIZE; i++) {
1167		np->rx_done_q[i].status = 0;
1168		np->tx_done_q[i].status = 0;
1169	}
1170
1171	for (i = 0; i < TX_RING_SIZE; i++)
1172		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1173}
1174
1175
1176static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1177{
1178	struct netdev_private *np = netdev_priv(dev);
1179	unsigned int entry;
1180	unsigned int prev_tx;
1181	u32 status;
1182	int i, j;
1183
1184	/*
1185	 * be cautious here, wrapping the queue has weird semantics
1186	 * and we may not have enough slots even when it seems we do.
1187	 */
1188	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1189		netif_stop_queue(dev);
1190		return NETDEV_TX_BUSY;
1191	}
1192
1193#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1194	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1195		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1196			return NETDEV_TX_OK;
1197	}
1198#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1199
1200	prev_tx = np->cur_tx;
1201	entry = np->cur_tx % TX_RING_SIZE;
1202	for (i = 0; i < skb_num_frags(skb); i++) {
1203		int wrap_ring = 0;
1204		status = TxDescID;
1205
1206		if (i == 0) {
1207			np->tx_info[entry].skb = skb;
1208			status |= TxCRCEn;
1209			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1210				status |= TxRingWrap;
1211				wrap_ring = 1;
1212			}
1213			if (np->reap_tx) {
1214				status |= TxDescIntr;
1215				np->reap_tx = 0;
1216			}
1217			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1218				status |= TxCalTCP;
1219				dev->stats.tx_compressed++;
1220			}
1221			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1222
1223			np->tx_info[entry].mapping =
1224				dma_map_single(&np->pci_dev->dev, skb->data,
1225					       skb_first_frag_len(skb),
1226					       DMA_TO_DEVICE);
1227		} else {
1228			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1229			status |= skb_frag_size(this_frag);
1230			np->tx_info[entry].mapping =
1231				dma_map_single(&np->pci_dev->dev,
1232					       skb_frag_address(this_frag),
1233					       skb_frag_size(this_frag),
1234					       DMA_TO_DEVICE);
1235		}
1236		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1237			dev->stats.tx_dropped++;
1238			goto err_out;
1239		}
1240
1241		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1242		np->tx_ring[entry].status = cpu_to_le32(status);
1243		if (debug > 3)
1244			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1245			       dev->name, np->cur_tx, np->dirty_tx,
1246			       entry, status);
1247		if (wrap_ring) {
1248			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1249			np->cur_tx += np->tx_info[entry].used_slots;
1250			entry = 0;
1251		} else {
1252			np->tx_info[entry].used_slots = 1;
1253			np->cur_tx += np->tx_info[entry].used_slots;
1254			entry++;
1255		}
1256		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1257		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1258			np->reap_tx = 1;
1259	}
1260
1261	/* Non-x86: explicitly flush descriptor cache lines here. */
1262	/* Ensure all descriptors are written back before the transmit is
1263	   initiated. - Jes */
1264	wmb();
1265
1266	/* Update the producer index. */
1267	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1268
1269	/* 4 is arbitrary, but should be ok */
1270	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1271		netif_stop_queue(dev);
1272
1273	return NETDEV_TX_OK;
1274
1275err_out:
1276	entry = prev_tx % TX_RING_SIZE;
1277	np->tx_info[entry].skb = NULL;
1278	if (i > 0) {
1279		dma_unmap_single(&np->pci_dev->dev,
1280				 np->tx_info[entry].mapping,
1281				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1282		np->tx_info[entry].mapping = 0;
1283		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1284		for (j = 1; j < i; j++) {
1285			dma_unmap_single(&np->pci_dev->dev,
1286					 np->tx_info[entry].mapping,
1287					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1288					 DMA_TO_DEVICE);
1289			entry++;
1290		}
1291	}
1292	dev_kfree_skb_any(skb);
1293	np->cur_tx = prev_tx;
1294	return NETDEV_TX_OK;
1295}
1296
1297/* The interrupt handler does all of the Rx thread work and cleans up
1298   after the Tx thread. */
1299static irqreturn_t intr_handler(int irq, void *dev_instance)
1300{
1301	struct net_device *dev = dev_instance;
1302	struct netdev_private *np = netdev_priv(dev);
1303	void __iomem *ioaddr = np->base;
1304	int boguscnt = max_interrupt_work;
1305	int consumer;
1306	int tx_status;
1307	int handled = 0;
1308
1309	do {
1310		u32 intr_status = readl(ioaddr + IntrClear);
1311
1312		if (debug > 4)
1313			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1314			       dev->name, intr_status);
1315
1316		if (intr_status == 0 || intr_status == (u32) -1)
1317			break;
1318
1319		handled = 1;
1320
1321		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1322			u32 enable;
1323
1324			if (likely(napi_schedule_prep(&np->napi))) {
1325				__napi_schedule(&np->napi);
1326				enable = readl(ioaddr + IntrEnable);
1327				enable &= ~(IntrRxDone | IntrRxEmpty);
1328				writel(enable, ioaddr + IntrEnable);
1329				/* flush PCI posting buffers */
1330				readl(ioaddr + IntrEnable);
1331			} else {
1332				/* Paranoia check */
1333				enable = readl(ioaddr + IntrEnable);
1334				if (enable & (IntrRxDone | IntrRxEmpty)) {
1335					printk(KERN_INFO
1336					       "%s: interrupt while in poll!\n",
1337					       dev->name);
1338					enable &= ~(IntrRxDone | IntrRxEmpty);
1339					writel(enable, ioaddr + IntrEnable);
1340				}
1341			}
1342		}
1343
1344		/* Scavenge the skbuff list based on the Tx-done queue.
1345		   There are redundant checks here that may be cleaned up
1346		   after the driver has proven to be reliable. */
1347		consumer = readl(ioaddr + TxConsumerIdx);
1348		if (debug > 3)
1349			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1350			       dev->name, consumer);
1351
1352		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1353			if (debug > 3)
1354				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1355				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1356			if ((tx_status & 0xe0000000) == 0xa0000000) {
1357				dev->stats.tx_packets++;
1358			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1359				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1360				struct sk_buff *skb = np->tx_info[entry].skb;
1361				np->tx_info[entry].skb = NULL;
1362				dma_unmap_single(&np->pci_dev->dev,
1363						 np->tx_info[entry].mapping,
1364						 skb_first_frag_len(skb),
1365						 DMA_TO_DEVICE);
1366				np->tx_info[entry].mapping = 0;
1367				np->dirty_tx += np->tx_info[entry].used_slots;
1368				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1369				{
1370					int i;
1371					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1372						dma_unmap_single(&np->pci_dev->dev,
1373								 np->tx_info[entry].mapping,
1374								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1375								 DMA_TO_DEVICE);
1376						np->dirty_tx++;
1377						entry++;
1378					}
1379				}
1380
1381				dev_consume_skb_irq(skb);
1382			}
1383			np->tx_done_q[np->tx_done].status = 0;
1384			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1385		}
1386		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1387
1388		if (netif_queue_stopped(dev) &&
1389		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1390			/* The ring is no longer full, wake the queue. */
1391			netif_wake_queue(dev);
1392		}
1393
1394		/* Stats overflow */
1395		if (intr_status & IntrStatsMax)
1396			get_stats(dev);
1397
1398		/* Media change interrupt. */
1399		if (intr_status & IntrLinkChange)
1400			netdev_media_change(dev);
1401
1402		/* Abnormal error summary/uncommon events handlers. */
1403		if (intr_status & IntrAbnormalSummary)
1404			netdev_error(dev, intr_status);
1405
1406		if (--boguscnt < 0) {
1407			if (debug > 1)
1408				printk(KERN_WARNING "%s: Too much work at interrupt, "
1409				       "status=%#8.8x.\n",
1410				       dev->name, intr_status);
1411			break;
1412		}
1413	} while (1);
1414
1415	if (debug > 4)
1416		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1417		       dev->name, (int) readl(ioaddr + IntrStatus));
1418	return IRQ_RETVAL(handled);
1419}
1420
1421
1422/*
1423 * This routine is logically part of the interrupt/poll handler, but separated
1424 * for clarity and better register allocation.
1425 */
1426static int __netdev_rx(struct net_device *dev, int *quota)
1427{
1428	struct netdev_private *np = netdev_priv(dev);
1429	u32 desc_status;
1430	int retcode = 0;
1431
1432	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1433	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1434		struct sk_buff *skb;
1435		u16 pkt_len;
1436		int entry;
1437		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1438
1439		if (debug > 4)
1440			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1441		if (!(desc_status & RxOK)) {
1442			/* There was an error. */
1443			if (debug > 2)
1444				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1445			dev->stats.rx_errors++;
1446			if (desc_status & RxFIFOErr)
1447				dev->stats.rx_fifo_errors++;
1448			goto next_rx;
1449		}
1450
1451		if (*quota <= 0) {	/* out of rx quota */
1452			retcode = 1;
1453			goto out;
1454		}
1455		(*quota)--;
1456
1457		pkt_len = desc_status;	/* Implicitly Truncate */
1458		entry = (desc_status >> 16) & 0x7ff;
1459
1460		if (debug > 4)
1461			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1462		/* Check if the packet is long enough to accept without copying
1463		   to a minimally-sized skbuff. */
1464		if (pkt_len < rx_copybreak &&
1465		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1466			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1467			dma_sync_single_for_cpu(&np->pci_dev->dev,
1468						np->rx_info[entry].mapping,
1469						pkt_len, DMA_FROM_DEVICE);
1470			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1471			dma_sync_single_for_device(&np->pci_dev->dev,
1472						   np->rx_info[entry].mapping,
1473						   pkt_len, DMA_FROM_DEVICE);
1474			skb_put(skb, pkt_len);
1475		} else {
1476			dma_unmap_single(&np->pci_dev->dev,
1477					 np->rx_info[entry].mapping,
1478					 np->rx_buf_sz, DMA_FROM_DEVICE);
1479			skb = np->rx_info[entry].skb;
1480			skb_put(skb, pkt_len);
1481			np->rx_info[entry].skb = NULL;
1482			np->rx_info[entry].mapping = 0;
1483		}
1484#ifndef final_version			/* Remove after testing. */
1485		/* You will want this info for the initial debug. */
1486		if (debug > 5) {
1487			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1488			       skb->data, skb->data + 6,
1489			       skb->data[12], skb->data[13]);
1490		}
1491#endif
1492
1493		skb->protocol = eth_type_trans(skb, dev);
1494#ifdef VLAN_SUPPORT
1495		if (debug > 4)
1496			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1497#endif
1498		if (le16_to_cpu(desc->status2) & 0x0100) {
1499			skb->ip_summed = CHECKSUM_UNNECESSARY;
1500			dev->stats.rx_compressed++;
1501		}
1502		/*
1503		 * This feature doesn't seem to be working, at least
1504		 * with the two firmware versions I have. If the GFP sees
1505		 * an IP fragment, it either ignores it completely, or reports
1506		 * "bad checksum" on it.
1507		 *
1508		 * Maybe I missed something -- corrections are welcome.
1509		 * Until then, the printk stays. :-) -Ion
1510		 */
1511		else if (le16_to_cpu(desc->status2) & 0x0040) {
1512			skb->ip_summed = CHECKSUM_COMPLETE;
1513			skb->csum = le16_to_cpu(desc->csum);
1514			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1515		}
1516#ifdef VLAN_SUPPORT
1517		if (le16_to_cpu(desc->status2) & 0x0200) {
1518			u16 vlid = le16_to_cpu(desc->vlanid);
1519
1520			if (debug > 4) {
1521				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1522				       vlid);
1523			}
1524			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1525		}
1526#endif /* VLAN_SUPPORT */
1527		netif_receive_skb(skb);
1528		dev->stats.rx_packets++;
1529
1530	next_rx:
1531		np->cur_rx++;
1532		desc->status = 0;
1533		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1534	}
1535
1536	if (*quota == 0) {	/* out of rx quota */
1537		retcode = 1;
1538		goto out;
1539	}
1540	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1541
1542 out:
1543	refill_rx_ring(dev);
1544	if (debug > 5)
1545		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1546		       retcode, np->rx_done, desc_status);
1547	return retcode;
1548}
1549
1550static int netdev_poll(struct napi_struct *napi, int budget)
1551{
1552	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1553	struct net_device *dev = np->dev;
1554	u32 intr_status;
1555	void __iomem *ioaddr = np->base;
1556	int quota = budget;
1557
1558	do {
1559		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1560
1561		if (__netdev_rx(dev, &quota))
1562			goto out;
1563
1564		intr_status = readl(ioaddr + IntrStatus);
1565	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1566
1567	napi_complete(napi);
1568	intr_status = readl(ioaddr + IntrEnable);
1569	intr_status |= IntrRxDone | IntrRxEmpty;
1570	writel(intr_status, ioaddr + IntrEnable);
1571
1572 out:
1573	if (debug > 5)
1574		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1575		       budget - quota);
1576
1577	/* Restart Rx engine if stopped. */
1578	return budget - quota;
1579}
1580
1581static void refill_rx_ring(struct net_device *dev)
1582{
1583	struct netdev_private *np = netdev_priv(dev);
1584	struct sk_buff *skb;
1585	int entry = -1;
1586
1587	/* Refill the Rx ring buffers. */
1588	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1589		entry = np->dirty_rx % RX_RING_SIZE;
1590		if (np->rx_info[entry].skb == NULL) {
1591			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1592			np->rx_info[entry].skb = skb;
1593			if (skb == NULL)
1594				break;	/* Better luck next round. */
1595			np->rx_info[entry].mapping =
1596				dma_map_single(&np->pci_dev->dev, skb->data,
1597					       np->rx_buf_sz, DMA_FROM_DEVICE);
1598			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1599				dev_kfree_skb(skb);
1600				np->rx_info[entry].skb = NULL;
1601				break;
1602			}
1603			np->rx_ring[entry].rxaddr =
1604				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1605		}
1606		if (entry == RX_RING_SIZE - 1)
1607			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1608	}
1609	if (entry >= 0)
1610		writew(entry, np->base + RxDescQIdx);
1611}
1612
1613
1614static void netdev_media_change(struct net_device *dev)
1615{
1616	struct netdev_private *np = netdev_priv(dev);
1617	void __iomem *ioaddr = np->base;
1618	u16 reg0, reg1, reg4, reg5;
1619	u32 new_tx_mode;
1620	u32 new_intr_timer_ctrl;
1621
1622	/* reset status first */
1623	mdio_read(dev, np->phys[0], MII_BMCR);
1624	mdio_read(dev, np->phys[0], MII_BMSR);
1625
1626	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1627	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1628
1629	if (reg1 & BMSR_LSTATUS) {
1630		/* link is up */
1631		if (reg0 & BMCR_ANENABLE) {
1632			/* autonegotiation is enabled */
1633			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1634			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1635			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1636				np->speed100 = 1;
1637				np->mii_if.full_duplex = 1;
1638			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1639				np->speed100 = 1;
1640				np->mii_if.full_duplex = 0;
1641			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1642				np->speed100 = 0;
1643				np->mii_if.full_duplex = 1;
1644			} else {
1645				np->speed100 = 0;
1646				np->mii_if.full_duplex = 0;
1647			}
1648		} else {
1649			/* autonegotiation is disabled */
1650			if (reg0 & BMCR_SPEED100)
1651				np->speed100 = 1;
1652			else
1653				np->speed100 = 0;
1654			if (reg0 & BMCR_FULLDPLX)
1655				np->mii_if.full_duplex = 1;
1656			else
1657				np->mii_if.full_duplex = 0;
1658		}
1659		netif_carrier_on(dev);
1660		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1661		       dev->name,
1662		       np->speed100 ? "100" : "10",
1663		       np->mii_if.full_duplex ? "full" : "half");
1664
1665		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1666		if (np->mii_if.full_duplex)
1667			new_tx_mode |= FullDuplex;
1668		if (np->tx_mode != new_tx_mode) {
1669			np->tx_mode = new_tx_mode;
1670			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1671			udelay(1000);
1672			writel(np->tx_mode, ioaddr + TxMode);
1673		}
1674
1675		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1676		if (np->speed100)
1677			new_intr_timer_ctrl |= Timer10X;
1678		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1679			np->intr_timer_ctrl = new_intr_timer_ctrl;
1680			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1681		}
1682	} else {
1683		netif_carrier_off(dev);
1684		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1685	}
1686}
1687
1688
1689static void netdev_error(struct net_device *dev, int intr_status)
1690{
1691	struct netdev_private *np = netdev_priv(dev);
1692
1693	/* Came close to underrunning the Tx FIFO, increase threshold. */
1694	if (intr_status & IntrTxDataLow) {
1695		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1696			writel(++np->tx_threshold, np->base + TxThreshold);
1697			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1698			       dev->name, np->tx_threshold * 16);
1699		} else
1700			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1701	}
1702	if (intr_status & IntrRxGFPDead) {
1703		dev->stats.rx_fifo_errors++;
1704		dev->stats.rx_errors++;
1705	}
1706	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1707		dev->stats.tx_fifo_errors++;
1708		dev->stats.tx_errors++;
1709	}
1710	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1711		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1712		       dev->name, intr_status);
1713}
1714
1715
1716static struct net_device_stats *get_stats(struct net_device *dev)
1717{
1718	struct netdev_private *np = netdev_priv(dev);
1719	void __iomem *ioaddr = np->base;
1720
1721	/* This adapter architecture needs no SMP locks. */
1722	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1723	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1724	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1725	dev->stats.tx_aborted_errors =
1726		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1727	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1728	dev->stats.collisions =
1729		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1730
1731	/* The chip only need report frame silently dropped. */
1732	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1733	writew(0, ioaddr + RxDMAStatus);
1734	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1735	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1736	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1737	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1738
1739	return &dev->stats;
1740}
1741
1742#ifdef VLAN_SUPPORT
1743static u32 set_vlan_mode(struct netdev_private *np)
1744{
1745	u32 ret = VlanMode;
1746	u16 vid;
1747	void __iomem *filter_addr = np->base + HashTable + 8;
1748	int vlan_count = 0;
1749
1750	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1751		if (vlan_count == 32)
1752			break;
1753		writew(vid, filter_addr);
1754		filter_addr += 16;
1755		vlan_count++;
1756	}
1757	if (vlan_count == 32) {
1758		ret |= PerfectFilterVlan;
1759		while (vlan_count < 32) {
1760			writew(0, filter_addr);
1761			filter_addr += 16;
1762			vlan_count++;
1763		}
1764	}
1765	return ret;
1766}
1767#endif /* VLAN_SUPPORT */
1768
1769static void set_rx_mode(struct net_device *dev)
1770{
1771	struct netdev_private *np = netdev_priv(dev);
1772	void __iomem *ioaddr = np->base;
1773	u32 rx_mode = MinVLANPrio;
1774	struct netdev_hw_addr *ha;
1775	int i;
1776
1777#ifdef VLAN_SUPPORT
1778	rx_mode |= set_vlan_mode(np);
1779#endif /* VLAN_SUPPORT */
1780
1781	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1782		rx_mode |= AcceptAll;
1783	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1784		   (dev->flags & IFF_ALLMULTI)) {
1785		/* Too many to match, or accept all multicasts. */
1786		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1787	} else if (netdev_mc_count(dev) <= 14) {
1788		/* Use the 16 element perfect filter, skip first two entries. */
1789		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1790		__be16 *eaddrs;
1791		netdev_for_each_mc_addr(ha, dev) {
1792			eaddrs = (__be16 *) ha->addr;
1793			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1794			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1796		}
1797		eaddrs = (__be16 *)dev->dev_addr;
1798		i = netdev_mc_count(dev) + 2;
1799		while (i++ < 16) {
1800			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1801			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1803		}
1804		rx_mode |= AcceptBroadcast|PerfectFilter;
1805	} else {
1806		/* Must use a multicast hash table. */
1807		void __iomem *filter_addr;
1808		__be16 *eaddrs;
1809		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1810
1811		memset(mc_filter, 0, sizeof(mc_filter));
1812		netdev_for_each_mc_addr(ha, dev) {
1813			/* The chip uses the upper 9 CRC bits
1814			   as index into the hash table */
1815			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1816			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1817
1818			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1819		}
1820		/* Clear the perfect filter list, skip first two entries. */
1821		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1822		eaddrs = (__be16 *)dev->dev_addr;
1823		for (i = 2; i < 16; i++) {
1824			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1825			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1826			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1827		}
1828		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1829			writew(mc_filter[i], filter_addr);
1830		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1831	}
1832	writel(rx_mode, ioaddr + RxFilterMode);
1833}
1834
1835static int check_if_running(struct net_device *dev)
1836{
1837	if (!netif_running(dev))
1838		return -EINVAL;
1839	return 0;
1840}
1841
1842static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1843{
1844	struct netdev_private *np = netdev_priv(dev);
1845	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1846	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1847}
1848
1849static int get_link_ksettings(struct net_device *dev,
1850			      struct ethtool_link_ksettings *cmd)
1851{
1852	struct netdev_private *np = netdev_priv(dev);
1853	spin_lock_irq(&np->lock);
1854	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1855	spin_unlock_irq(&np->lock);
1856	return 0;
1857}
1858
1859static int set_link_ksettings(struct net_device *dev,
1860			      const struct ethtool_link_ksettings *cmd)
1861{
1862	struct netdev_private *np = netdev_priv(dev);
1863	int res;
1864	spin_lock_irq(&np->lock);
1865	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1866	spin_unlock_irq(&np->lock);
1867	check_duplex(dev);
1868	return res;
1869}
1870
1871static int nway_reset(struct net_device *dev)
1872{
1873	struct netdev_private *np = netdev_priv(dev);
1874	return mii_nway_restart(&np->mii_if);
1875}
1876
1877static u32 get_link(struct net_device *dev)
1878{
1879	struct netdev_private *np = netdev_priv(dev);
1880	return mii_link_ok(&np->mii_if);
1881}
1882
1883static u32 get_msglevel(struct net_device *dev)
1884{
1885	return debug;
1886}
1887
1888static void set_msglevel(struct net_device *dev, u32 val)
1889{
1890	debug = val;
1891}
1892
1893static const struct ethtool_ops ethtool_ops = {
1894	.begin = check_if_running,
1895	.get_drvinfo = get_drvinfo,
1896	.nway_reset = nway_reset,
1897	.get_link = get_link,
1898	.get_msglevel = get_msglevel,
1899	.set_msglevel = set_msglevel,
1900	.get_link_ksettings = get_link_ksettings,
1901	.set_link_ksettings = set_link_ksettings,
1902};
1903
1904static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1905{
1906	struct netdev_private *np = netdev_priv(dev);
1907	struct mii_ioctl_data *data = if_mii(rq);
1908	int rc;
1909
1910	if (!netif_running(dev))
1911		return -EINVAL;
1912
1913	spin_lock_irq(&np->lock);
1914	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1915	spin_unlock_irq(&np->lock);
1916
1917	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1918		check_duplex(dev);
1919
1920	return rc;
1921}
1922
1923static int netdev_close(struct net_device *dev)
1924{
1925	struct netdev_private *np = netdev_priv(dev);
1926	void __iomem *ioaddr = np->base;
1927	int i;
1928
1929	netif_stop_queue(dev);
1930
1931	napi_disable(&np->napi);
1932
1933	if (debug > 1) {
1934		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1935			   dev->name, (int) readl(ioaddr + IntrStatus));
1936		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1937		       dev->name, np->cur_tx, np->dirty_tx,
1938		       np->cur_rx, np->dirty_rx);
1939	}
1940
1941	/* Disable interrupts by clearing the interrupt mask. */
1942	writel(0, ioaddr + IntrEnable);
1943
1944	/* Stop the chip's Tx and Rx processes. */
1945	writel(0, ioaddr + GenCtrl);
1946	readl(ioaddr + GenCtrl);
1947
1948	if (debug > 5) {
1949		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1950		       (long long) np->tx_ring_dma);
1951		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1952			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1953			       i, le32_to_cpu(np->tx_ring[i].status),
1954			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1955			       le32_to_cpu(np->tx_done_q[i].status));
1956		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1957		       (long long) np->rx_ring_dma, np->rx_done_q);
1958		if (np->rx_done_q)
1959			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1960				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1961				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1962		}
1963	}
1964
1965	free_irq(np->pci_dev->irq, dev);
1966
1967	/* Free all the skbuffs in the Rx queue. */
1968	for (i = 0; i < RX_RING_SIZE; i++) {
1969		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1970		if (np->rx_info[i].skb != NULL) {
1971			dma_unmap_single(&np->pci_dev->dev,
1972					 np->rx_info[i].mapping,
1973					 np->rx_buf_sz, DMA_FROM_DEVICE);
1974			dev_kfree_skb(np->rx_info[i].skb);
1975		}
1976		np->rx_info[i].skb = NULL;
1977		np->rx_info[i].mapping = 0;
1978	}
1979	for (i = 0; i < TX_RING_SIZE; i++) {
1980		struct sk_buff *skb = np->tx_info[i].skb;
1981		if (skb == NULL)
1982			continue;
1983		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1984				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1985		np->tx_info[i].mapping = 0;
1986		dev_kfree_skb(skb);
1987		np->tx_info[i].skb = NULL;
1988	}
1989
1990	return 0;
1991}
1992
1993static int __maybe_unused starfire_suspend(struct device *dev_d)
1994{
1995	struct net_device *dev = dev_get_drvdata(dev_d);
1996
1997	if (netif_running(dev)) {
1998		netif_device_detach(dev);
1999		netdev_close(dev);
2000	}
2001
2002	return 0;
2003}
2004
2005static int __maybe_unused starfire_resume(struct device *dev_d)
2006{
2007	struct net_device *dev = dev_get_drvdata(dev_d);
2008
2009	if (netif_running(dev)) {
2010		netdev_open(dev);
2011		netif_device_attach(dev);
2012	}
2013
2014	return 0;
2015}
2016
2017static void starfire_remove_one(struct pci_dev *pdev)
2018{
2019	struct net_device *dev = pci_get_drvdata(pdev);
2020	struct netdev_private *np = netdev_priv(dev);
2021
2022	BUG_ON(!dev);
2023
2024	unregister_netdev(dev);
2025
2026	if (np->queue_mem)
2027		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2028				  np->queue_mem, np->queue_mem_dma);
2029
2030
2031	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2032	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2033	pci_disable_device(pdev);
2034
2035	iounmap(np->base);
2036	pci_release_regions(pdev);
2037
2038	free_netdev(dev);			/* Will also free np!! */
2039}
2040
2041static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2042
2043static struct pci_driver starfire_driver = {
2044	.name		= DRV_NAME,
2045	.probe		= starfire_init_one,
2046	.remove		= starfire_remove_one,
2047	.driver.pm	= &starfire_pm_ops,
2048	.id_table	= starfire_pci_tbl,
2049};
2050
2051
2052static int __init starfire_init (void)
2053{
2054/* when a module, this is printed whether or not devices are found in probe */
2055#ifdef MODULE
2056	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2057#endif
2058
2059	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2060
2061	return pci_register_driver(&starfire_driver);
2062}
2063
2064
2065static void __exit starfire_cleanup (void)
2066{
2067	pci_unregister_driver (&starfire_driver);
2068}
2069
2070
2071module_init(starfire_init);
2072module_exit(starfire_cleanup);