Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Realtek SMI subdriver for the Realtek RTL8366RB ethernet switch
   3 *
   4 * This is a sparsely documented chip, the only viable documentation seems
   5 * to be a patched up code drop from the vendor that appear in various
   6 * GPL source trees.
   7 *
   8 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
   9 * Copyright (C) 2009-2010 Gabor Juhos <juhosg@openwrt.org>
  10 * Copyright (C) 2010 Antti Seppälä <a.seppala@gmail.com>
  11 * Copyright (C) 2010 Roman Yeryomin <roman@advem.lv>
  12 * Copyright (C) 2011 Colin Leitner <colin.leitner@googlemail.com>
  13 */
  14
  15#include <linux/bitops.h>
  16#include <linux/etherdevice.h>
  17#include <linux/interrupt.h>
  18#include <linux/irqdomain.h>
  19#include <linux/irqchip/chained_irq.h>
  20#include <linux/of_irq.h>
  21#include <linux/regmap.h>
  22
  23#include "realtek-smi-core.h"
  24
  25#define RTL8366RB_PORT_NUM_CPU		5
  26#define RTL8366RB_NUM_PORTS		6
  27#define RTL8366RB_PHY_NO_MAX		4
  28#define RTL8366RB_PHY_ADDR_MAX		31
  29
  30/* Switch Global Configuration register */
  31#define RTL8366RB_SGCR				0x0000
  32#define RTL8366RB_SGCR_EN_BC_STORM_CTRL		BIT(0)
  33#define RTL8366RB_SGCR_MAX_LENGTH(a)		((a) << 4)
  34#define RTL8366RB_SGCR_MAX_LENGTH_MASK		RTL8366RB_SGCR_MAX_LENGTH(0x3)
  35#define RTL8366RB_SGCR_MAX_LENGTH_1522		RTL8366RB_SGCR_MAX_LENGTH(0x0)
  36#define RTL8366RB_SGCR_MAX_LENGTH_1536		RTL8366RB_SGCR_MAX_LENGTH(0x1)
  37#define RTL8366RB_SGCR_MAX_LENGTH_1552		RTL8366RB_SGCR_MAX_LENGTH(0x2)
  38#define RTL8366RB_SGCR_MAX_LENGTH_16000		RTL8366RB_SGCR_MAX_LENGTH(0x3)
  39#define RTL8366RB_SGCR_EN_VLAN			BIT(13)
  40#define RTL8366RB_SGCR_EN_VLAN_4KTB		BIT(14)
  41
  42/* Port Enable Control register */
  43#define RTL8366RB_PECR				0x0001
  44
  45/* Switch Security Control registers */
  46#define RTL8366RB_SSCR0				0x0002
  47#define RTL8366RB_SSCR1				0x0003
  48#define RTL8366RB_SSCR2				0x0004
  49#define RTL8366RB_SSCR2_DROP_UNKNOWN_DA		BIT(0)
  50
  51/* Port Mode Control registers */
  52#define RTL8366RB_PMC0				0x0005
  53#define RTL8366RB_PMC0_SPI			BIT(0)
  54#define RTL8366RB_PMC0_EN_AUTOLOAD		BIT(1)
  55#define RTL8366RB_PMC0_PROBE			BIT(2)
  56#define RTL8366RB_PMC0_DIS_BISR			BIT(3)
  57#define RTL8366RB_PMC0_ADCTEST			BIT(4)
  58#define RTL8366RB_PMC0_SRAM_DIAG		BIT(5)
  59#define RTL8366RB_PMC0_EN_SCAN			BIT(6)
  60#define RTL8366RB_PMC0_P4_IOMODE_SHIFT		7
  61#define RTL8366RB_PMC0_P4_IOMODE_MASK		GENMASK(9, 7)
  62#define RTL8366RB_PMC0_P5_IOMODE_SHIFT		10
  63#define RTL8366RB_PMC0_P5_IOMODE_MASK		GENMASK(12, 10)
  64#define RTL8366RB_PMC0_SDSMODE_SHIFT		13
  65#define RTL8366RB_PMC0_SDSMODE_MASK		GENMASK(15, 13)
  66#define RTL8366RB_PMC1				0x0006
  67
  68/* Port Mirror Control Register */
  69#define RTL8366RB_PMCR				0x0007
  70#define RTL8366RB_PMCR_SOURCE_PORT(a)		(a)
  71#define RTL8366RB_PMCR_SOURCE_PORT_MASK		0x000f
  72#define RTL8366RB_PMCR_MONITOR_PORT(a)		((a) << 4)
  73#define RTL8366RB_PMCR_MONITOR_PORT_MASK	0x00f0
  74#define RTL8366RB_PMCR_MIRROR_RX		BIT(8)
  75#define RTL8366RB_PMCR_MIRROR_TX		BIT(9)
  76#define RTL8366RB_PMCR_MIRROR_SPC		BIT(10)
  77#define RTL8366RB_PMCR_MIRROR_ISO		BIT(11)
  78
  79/* bits 0..7 = port 0, bits 8..15 = port 1 */
  80#define RTL8366RB_PAACR0		0x0010
  81/* bits 0..7 = port 2, bits 8..15 = port 3 */
  82#define RTL8366RB_PAACR1		0x0011
  83/* bits 0..7 = port 4, bits 8..15 = port 5 */
  84#define RTL8366RB_PAACR2		0x0012
  85#define RTL8366RB_PAACR_SPEED_10M	0
  86#define RTL8366RB_PAACR_SPEED_100M	1
  87#define RTL8366RB_PAACR_SPEED_1000M	2
  88#define RTL8366RB_PAACR_FULL_DUPLEX	BIT(2)
  89#define RTL8366RB_PAACR_LINK_UP		BIT(4)
  90#define RTL8366RB_PAACR_TX_PAUSE	BIT(5)
  91#define RTL8366RB_PAACR_RX_PAUSE	BIT(6)
  92#define RTL8366RB_PAACR_AN		BIT(7)
  93
  94#define RTL8366RB_PAACR_CPU_PORT	(RTL8366RB_PAACR_SPEED_1000M | \
  95					 RTL8366RB_PAACR_FULL_DUPLEX | \
  96					 RTL8366RB_PAACR_LINK_UP | \
  97					 RTL8366RB_PAACR_TX_PAUSE | \
  98					 RTL8366RB_PAACR_RX_PAUSE)
  99
 100/* bits 0..7 = port 0, bits 8..15 = port 1 */
 101#define RTL8366RB_PSTAT0		0x0014
 102/* bits 0..7 = port 2, bits 8..15 = port 3 */
 103#define RTL8366RB_PSTAT1		0x0015
 104/* bits 0..7 = port 4, bits 8..15 = port 5 */
 105#define RTL8366RB_PSTAT2		0x0016
 106
 107#define RTL8366RB_POWER_SAVING_REG	0x0021
 108
 109/* CPU port control reg */
 110#define RTL8368RB_CPU_CTRL_REG		0x0061
 111#define RTL8368RB_CPU_PORTS_MSK		0x00FF
 112/* Disables inserting custom tag length/type 0x8899 */
 113#define RTL8368RB_CPU_NO_TAG		BIT(15)
 114
 115#define RTL8366RB_SMAR0			0x0070 /* bits 0..15 */
 116#define RTL8366RB_SMAR1			0x0071 /* bits 16..31 */
 117#define RTL8366RB_SMAR2			0x0072 /* bits 32..47 */
 118
 119#define RTL8366RB_RESET_CTRL_REG		0x0100
 120#define RTL8366RB_CHIP_CTRL_RESET_HW		BIT(0)
 121#define RTL8366RB_CHIP_CTRL_RESET_SW		BIT(1)
 122
 123#define RTL8366RB_CHIP_ID_REG			0x0509
 124#define RTL8366RB_CHIP_ID_8366			0x5937
 125#define RTL8366RB_CHIP_VERSION_CTRL_REG		0x050A
 126#define RTL8366RB_CHIP_VERSION_MASK		0xf
 127
 128/* PHY registers control */
 129#define RTL8366RB_PHY_ACCESS_CTRL_REG		0x8000
 130#define RTL8366RB_PHY_CTRL_READ			BIT(0)
 131#define RTL8366RB_PHY_CTRL_WRITE		0
 132#define RTL8366RB_PHY_ACCESS_BUSY_REG		0x8001
 133#define RTL8366RB_PHY_INT_BUSY			BIT(0)
 134#define RTL8366RB_PHY_EXT_BUSY			BIT(4)
 135#define RTL8366RB_PHY_ACCESS_DATA_REG		0x8002
 136#define RTL8366RB_PHY_EXT_CTRL_REG		0x8010
 137#define RTL8366RB_PHY_EXT_WRDATA_REG		0x8011
 138#define RTL8366RB_PHY_EXT_RDDATA_REG		0x8012
 139
 140#define RTL8366RB_PHY_REG_MASK			0x1f
 141#define RTL8366RB_PHY_PAGE_OFFSET		5
 142#define RTL8366RB_PHY_PAGE_MASK			(0xf << 5)
 143#define RTL8366RB_PHY_NO_OFFSET			9
 144#define RTL8366RB_PHY_NO_MASK			(0x1f << 9)
 145
 146#define RTL8366RB_VLAN_INGRESS_CTRL2_REG	0x037f
 147
 148/* LED control registers */
 149#define RTL8366RB_LED_BLINKRATE_REG		0x0430
 150#define RTL8366RB_LED_BLINKRATE_MASK		0x0007
 151#define RTL8366RB_LED_BLINKRATE_28MS		0x0000
 152#define RTL8366RB_LED_BLINKRATE_56MS		0x0001
 153#define RTL8366RB_LED_BLINKRATE_84MS		0x0002
 154#define RTL8366RB_LED_BLINKRATE_111MS		0x0003
 155#define RTL8366RB_LED_BLINKRATE_222MS		0x0004
 156#define RTL8366RB_LED_BLINKRATE_446MS		0x0005
 157
 158#define RTL8366RB_LED_CTRL_REG			0x0431
 159#define RTL8366RB_LED_OFF			0x0
 160#define RTL8366RB_LED_DUP_COL			0x1
 161#define RTL8366RB_LED_LINK_ACT			0x2
 162#define RTL8366RB_LED_SPD1000			0x3
 163#define RTL8366RB_LED_SPD100			0x4
 164#define RTL8366RB_LED_SPD10			0x5
 165#define RTL8366RB_LED_SPD1000_ACT		0x6
 166#define RTL8366RB_LED_SPD100_ACT		0x7
 167#define RTL8366RB_LED_SPD10_ACT			0x8
 168#define RTL8366RB_LED_SPD100_10_ACT		0x9
 169#define RTL8366RB_LED_FIBER			0xa
 170#define RTL8366RB_LED_AN_FAULT			0xb
 171#define RTL8366RB_LED_LINK_RX			0xc
 172#define RTL8366RB_LED_LINK_TX			0xd
 173#define RTL8366RB_LED_MASTER			0xe
 174#define RTL8366RB_LED_FORCE			0xf
 175#define RTL8366RB_LED_0_1_CTRL_REG		0x0432
 176#define RTL8366RB_LED_1_OFFSET			6
 177#define RTL8366RB_LED_2_3_CTRL_REG		0x0433
 178#define RTL8366RB_LED_3_OFFSET			6
 179
 180#define RTL8366RB_MIB_COUNT			33
 181#define RTL8366RB_GLOBAL_MIB_COUNT		1
 182#define RTL8366RB_MIB_COUNTER_PORT_OFFSET	0x0050
 183#define RTL8366RB_MIB_COUNTER_BASE		0x1000
 184#define RTL8366RB_MIB_CTRL_REG			0x13F0
 185#define RTL8366RB_MIB_CTRL_USER_MASK		0x0FFC
 186#define RTL8366RB_MIB_CTRL_BUSY_MASK		BIT(0)
 187#define RTL8366RB_MIB_CTRL_RESET_MASK		BIT(1)
 188#define RTL8366RB_MIB_CTRL_PORT_RESET(_p)	BIT(2 + (_p))
 189#define RTL8366RB_MIB_CTRL_GLOBAL_RESET		BIT(11)
 190
 191#define RTL8366RB_PORT_VLAN_CTRL_BASE		0x0063
 192#define RTL8366RB_PORT_VLAN_CTRL_REG(_p)  \
 193		(RTL8366RB_PORT_VLAN_CTRL_BASE + (_p) / 4)
 194#define RTL8366RB_PORT_VLAN_CTRL_MASK		0xf
 195#define RTL8366RB_PORT_VLAN_CTRL_SHIFT(_p)	(4 * ((_p) % 4))
 196
 197#define RTL8366RB_VLAN_TABLE_READ_BASE		0x018C
 198#define RTL8366RB_VLAN_TABLE_WRITE_BASE		0x0185
 199
 200#define RTL8366RB_TABLE_ACCESS_CTRL_REG		0x0180
 201#define RTL8366RB_TABLE_VLAN_READ_CTRL		0x0E01
 202#define RTL8366RB_TABLE_VLAN_WRITE_CTRL		0x0F01
 203
 204#define RTL8366RB_VLAN_MC_BASE(_x)		(0x0020 + (_x) * 3)
 205
 206#define RTL8366RB_PORT_LINK_STATUS_BASE		0x0014
 207#define RTL8366RB_PORT_STATUS_SPEED_MASK	0x0003
 208#define RTL8366RB_PORT_STATUS_DUPLEX_MASK	0x0004
 209#define RTL8366RB_PORT_STATUS_LINK_MASK		0x0010
 210#define RTL8366RB_PORT_STATUS_TXPAUSE_MASK	0x0020
 211#define RTL8366RB_PORT_STATUS_RXPAUSE_MASK	0x0040
 212#define RTL8366RB_PORT_STATUS_AN_MASK		0x0080
 213
 214#define RTL8366RB_NUM_VLANS		16
 215#define RTL8366RB_NUM_LEDGROUPS		4
 216#define RTL8366RB_NUM_VIDS		4096
 217#define RTL8366RB_PRIORITYMAX		7
 218#define RTL8366RB_FIDMAX		7
 219
 220#define RTL8366RB_PORT_1		BIT(0) /* In userspace port 0 */
 221#define RTL8366RB_PORT_2		BIT(1) /* In userspace port 1 */
 222#define RTL8366RB_PORT_3		BIT(2) /* In userspace port 2 */
 223#define RTL8366RB_PORT_4		BIT(3) /* In userspace port 3 */
 224#define RTL8366RB_PORT_5		BIT(4) /* In userspace port 4 */
 225
 226#define RTL8366RB_PORT_CPU		BIT(5) /* CPU port */
 227
 228#define RTL8366RB_PORT_ALL		(RTL8366RB_PORT_1 |	\
 229					 RTL8366RB_PORT_2 |	\
 230					 RTL8366RB_PORT_3 |	\
 231					 RTL8366RB_PORT_4 |	\
 232					 RTL8366RB_PORT_5 |	\
 233					 RTL8366RB_PORT_CPU)
 234
 235#define RTL8366RB_PORT_ALL_BUT_CPU	(RTL8366RB_PORT_1 |	\
 236					 RTL8366RB_PORT_2 |	\
 237					 RTL8366RB_PORT_3 |	\
 238					 RTL8366RB_PORT_4 |	\
 239					 RTL8366RB_PORT_5)
 240
 241#define RTL8366RB_PORT_ALL_EXTERNAL	(RTL8366RB_PORT_1 |	\
 242					 RTL8366RB_PORT_2 |	\
 243					 RTL8366RB_PORT_3 |	\
 244					 RTL8366RB_PORT_4)
 245
 246#define RTL8366RB_PORT_ALL_INTERNAL	 RTL8366RB_PORT_CPU
 247
 248/* First configuration word per member config, VID and prio */
 249#define RTL8366RB_VLAN_VID_MASK		0xfff
 250#define RTL8366RB_VLAN_PRIORITY_SHIFT	12
 251#define RTL8366RB_VLAN_PRIORITY_MASK	0x7
 252/* Second configuration word per member config, member and untagged */
 253#define RTL8366RB_VLAN_UNTAG_SHIFT	8
 254#define RTL8366RB_VLAN_UNTAG_MASK	0xff
 255#define RTL8366RB_VLAN_MEMBER_MASK	0xff
 256/* Third config word per member config, STAG currently unused */
 257#define RTL8366RB_VLAN_STAG_MBR_MASK	0xff
 258#define RTL8366RB_VLAN_STAG_MBR_SHIFT	8
 259#define RTL8366RB_VLAN_STAG_IDX_MASK	0x7
 260#define RTL8366RB_VLAN_STAG_IDX_SHIFT	5
 261#define RTL8366RB_VLAN_FID_MASK		0x7
 262
 263/* Port ingress bandwidth control */
 264#define RTL8366RB_IB_BASE		0x0200
 265#define RTL8366RB_IB_REG(pnum)		(RTL8366RB_IB_BASE + (pnum))
 266#define RTL8366RB_IB_BDTH_MASK		0x3fff
 267#define RTL8366RB_IB_PREIFG		BIT(14)
 268
 269/* Port egress bandwidth control */
 270#define RTL8366RB_EB_BASE		0x02d1
 271#define RTL8366RB_EB_REG(pnum)		(RTL8366RB_EB_BASE + (pnum))
 272#define RTL8366RB_EB_BDTH_MASK		0x3fff
 273#define RTL8366RB_EB_PREIFG_REG		0x02f8
 274#define RTL8366RB_EB_PREIFG		BIT(9)
 275
 276#define RTL8366RB_BDTH_SW_MAX		1048512 /* 1048576? */
 277#define RTL8366RB_BDTH_UNIT		64
 278#define RTL8366RB_BDTH_REG_DEFAULT	16383
 279
 280/* QOS */
 281#define RTL8366RB_QOS			BIT(15)
 282/* Include/Exclude Preamble and IFG (20 bytes). 0:Exclude, 1:Include. */
 283#define RTL8366RB_QOS_DEFAULT_PREIFG	1
 284
 285/* Interrupt handling */
 286#define RTL8366RB_INTERRUPT_CONTROL_REG	0x0440
 287#define RTL8366RB_INTERRUPT_POLARITY	BIT(0)
 288#define RTL8366RB_P4_RGMII_LED		BIT(2)
 289#define RTL8366RB_INTERRUPT_MASK_REG	0x0441
 290#define RTL8366RB_INTERRUPT_LINK_CHGALL	GENMASK(11, 0)
 291#define RTL8366RB_INTERRUPT_ACLEXCEED	BIT(8)
 292#define RTL8366RB_INTERRUPT_STORMEXCEED	BIT(9)
 293#define RTL8366RB_INTERRUPT_P4_FIBER	BIT(12)
 294#define RTL8366RB_INTERRUPT_P4_UTP	BIT(13)
 295#define RTL8366RB_INTERRUPT_VALID	(RTL8366RB_INTERRUPT_LINK_CHGALL | \
 296					 RTL8366RB_INTERRUPT_ACLEXCEED | \
 297					 RTL8366RB_INTERRUPT_STORMEXCEED | \
 298					 RTL8366RB_INTERRUPT_P4_FIBER | \
 299					 RTL8366RB_INTERRUPT_P4_UTP)
 300#define RTL8366RB_INTERRUPT_STATUS_REG	0x0442
 301#define RTL8366RB_NUM_INTERRUPT		14 /* 0..13 */
 302
 303/* bits 0..5 enable force when cleared */
 304#define RTL8366RB_MAC_FORCE_CTRL_REG	0x0F11
 305
 306#define RTL8366RB_OAM_PARSER_REG	0x0F14
 307#define RTL8366RB_OAM_MULTIPLEXER_REG	0x0F15
 308
 309#define RTL8366RB_GREEN_FEATURE_REG	0x0F51
 310#define RTL8366RB_GREEN_FEATURE_MSK	0x0007
 311#define RTL8366RB_GREEN_FEATURE_TX	BIT(0)
 312#define RTL8366RB_GREEN_FEATURE_RX	BIT(2)
 313
 314/**
 315 * struct rtl8366rb - RTL8366RB-specific data
 316 * @max_mtu: per-port max MTU setting
 317 */
 318struct rtl8366rb {
 319	unsigned int max_mtu[RTL8366RB_NUM_PORTS];
 320};
 321
 322static struct rtl8366_mib_counter rtl8366rb_mib_counters[] = {
 323	{ 0,  0, 4, "IfInOctets"				},
 324	{ 0,  4, 4, "EtherStatsOctets"				},
 325	{ 0,  8, 2, "EtherStatsUnderSizePkts"			},
 326	{ 0, 10, 2, "EtherFragments"				},
 327	{ 0, 12, 2, "EtherStatsPkts64Octets"			},
 328	{ 0, 14, 2, "EtherStatsPkts65to127Octets"		},
 329	{ 0, 16, 2, "EtherStatsPkts128to255Octets"		},
 330	{ 0, 18, 2, "EtherStatsPkts256to511Octets"		},
 331	{ 0, 20, 2, "EtherStatsPkts512to1023Octets"		},
 332	{ 0, 22, 2, "EtherStatsPkts1024to1518Octets"		},
 333	{ 0, 24, 2, "EtherOversizeStats"			},
 334	{ 0, 26, 2, "EtherStatsJabbers"				},
 335	{ 0, 28, 2, "IfInUcastPkts"				},
 336	{ 0, 30, 2, "EtherStatsMulticastPkts"			},
 337	{ 0, 32, 2, "EtherStatsBroadcastPkts"			},
 338	{ 0, 34, 2, "EtherStatsDropEvents"			},
 339	{ 0, 36, 2, "Dot3StatsFCSErrors"			},
 340	{ 0, 38, 2, "Dot3StatsSymbolErrors"			},
 341	{ 0, 40, 2, "Dot3InPauseFrames"				},
 342	{ 0, 42, 2, "Dot3ControlInUnknownOpcodes"		},
 343	{ 0, 44, 4, "IfOutOctets"				},
 344	{ 0, 48, 2, "Dot3StatsSingleCollisionFrames"		},
 345	{ 0, 50, 2, "Dot3StatMultipleCollisionFrames"		},
 346	{ 0, 52, 2, "Dot3sDeferredTransmissions"		},
 347	{ 0, 54, 2, "Dot3StatsLateCollisions"			},
 348	{ 0, 56, 2, "EtherStatsCollisions"			},
 349	{ 0, 58, 2, "Dot3StatsExcessiveCollisions"		},
 350	{ 0, 60, 2, "Dot3OutPauseFrames"			},
 351	{ 0, 62, 2, "Dot1dBasePortDelayExceededDiscards"	},
 352	{ 0, 64, 2, "Dot1dTpPortInDiscards"			},
 353	{ 0, 66, 2, "IfOutUcastPkts"				},
 354	{ 0, 68, 2, "IfOutMulticastPkts"			},
 355	{ 0, 70, 2, "IfOutBroadcastPkts"			},
 356};
 357
 358static int rtl8366rb_get_mib_counter(struct realtek_smi *smi,
 359				     int port,
 360				     struct rtl8366_mib_counter *mib,
 361				     u64 *mibvalue)
 362{
 363	u32 addr, val;
 364	int ret;
 365	int i;
 366
 367	addr = RTL8366RB_MIB_COUNTER_BASE +
 368		RTL8366RB_MIB_COUNTER_PORT_OFFSET * (port) +
 369		mib->offset;
 370
 371	/* Writing access counter address first
 372	 * then ASIC will prepare 64bits counter wait for being retrived
 373	 */
 374	ret = regmap_write(smi->map, addr, 0); /* Write whatever */
 375	if (ret)
 376		return ret;
 377
 378	/* Read MIB control register */
 379	ret = regmap_read(smi->map, RTL8366RB_MIB_CTRL_REG, &val);
 380	if (ret)
 381		return -EIO;
 382
 383	if (val & RTL8366RB_MIB_CTRL_BUSY_MASK)
 384		return -EBUSY;
 385
 386	if (val & RTL8366RB_MIB_CTRL_RESET_MASK)
 387		return -EIO;
 388
 389	/* Read each individual MIB 16 bits at the time */
 390	*mibvalue = 0;
 391	for (i = mib->length; i > 0; i--) {
 392		ret = regmap_read(smi->map, addr + (i - 1), &val);
 393		if (ret)
 394			return ret;
 395		*mibvalue = (*mibvalue << 16) | (val & 0xFFFF);
 396	}
 397	return 0;
 398}
 399
 400static u32 rtl8366rb_get_irqmask(struct irq_data *d)
 401{
 402	int line = irqd_to_hwirq(d);
 403	u32 val;
 404
 405	/* For line interrupts we combine link down in bits
 406	 * 6..11 with link up in bits 0..5 into one interrupt.
 407	 */
 408	if (line < 12)
 409		val = BIT(line) | BIT(line + 6);
 410	else
 411		val = BIT(line);
 412	return val;
 413}
 414
 415static void rtl8366rb_mask_irq(struct irq_data *d)
 416{
 417	struct realtek_smi *smi = irq_data_get_irq_chip_data(d);
 418	int ret;
 419
 420	ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG,
 421				 rtl8366rb_get_irqmask(d), 0);
 422	if (ret)
 423		dev_err(smi->dev, "could not mask IRQ\n");
 424}
 425
 426static void rtl8366rb_unmask_irq(struct irq_data *d)
 427{
 428	struct realtek_smi *smi = irq_data_get_irq_chip_data(d);
 429	int ret;
 430
 431	ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG,
 432				 rtl8366rb_get_irqmask(d),
 433				 rtl8366rb_get_irqmask(d));
 434	if (ret)
 435		dev_err(smi->dev, "could not unmask IRQ\n");
 436}
 437
 438static irqreturn_t rtl8366rb_irq(int irq, void *data)
 439{
 440	struct realtek_smi *smi = data;
 441	u32 stat;
 442	int ret;
 443
 444	/* This clears the IRQ status register */
 445	ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG,
 446			  &stat);
 447	if (ret) {
 448		dev_err(smi->dev, "can't read interrupt status\n");
 449		return IRQ_NONE;
 450	}
 451	stat &= RTL8366RB_INTERRUPT_VALID;
 452	if (!stat)
 453		return IRQ_NONE;
 454	while (stat) {
 455		int line = __ffs(stat);
 456		int child_irq;
 457
 458		stat &= ~BIT(line);
 459		/* For line interrupts we combine link down in bits
 460		 * 6..11 with link up in bits 0..5 into one interrupt.
 461		 */
 462		if (line < 12 && line > 5)
 463			line -= 5;
 464		child_irq = irq_find_mapping(smi->irqdomain, line);
 465		handle_nested_irq(child_irq);
 466	}
 467	return IRQ_HANDLED;
 468}
 469
 470static struct irq_chip rtl8366rb_irq_chip = {
 471	.name = "RTL8366RB",
 472	.irq_mask = rtl8366rb_mask_irq,
 473	.irq_unmask = rtl8366rb_unmask_irq,
 474};
 475
 476static int rtl8366rb_irq_map(struct irq_domain *domain, unsigned int irq,
 477			     irq_hw_number_t hwirq)
 478{
 479	irq_set_chip_data(irq, domain->host_data);
 480	irq_set_chip_and_handler(irq, &rtl8366rb_irq_chip, handle_simple_irq);
 481	irq_set_nested_thread(irq, 1);
 482	irq_set_noprobe(irq);
 483
 484	return 0;
 485}
 486
 487static void rtl8366rb_irq_unmap(struct irq_domain *d, unsigned int irq)
 488{
 489	irq_set_nested_thread(irq, 0);
 490	irq_set_chip_and_handler(irq, NULL, NULL);
 491	irq_set_chip_data(irq, NULL);
 492}
 493
 494static const struct irq_domain_ops rtl8366rb_irqdomain_ops = {
 495	.map = rtl8366rb_irq_map,
 496	.unmap = rtl8366rb_irq_unmap,
 497	.xlate  = irq_domain_xlate_onecell,
 498};
 499
 500static int rtl8366rb_setup_cascaded_irq(struct realtek_smi *smi)
 501{
 502	struct device_node *intc;
 503	unsigned long irq_trig;
 504	int irq;
 505	int ret;
 506	u32 val;
 507	int i;
 508
 509	intc = of_get_child_by_name(smi->dev->of_node, "interrupt-controller");
 510	if (!intc) {
 511		dev_err(smi->dev, "missing child interrupt-controller node\n");
 512		return -EINVAL;
 513	}
 514	/* RB8366RB IRQs cascade off this one */
 515	irq = of_irq_get(intc, 0);
 516	if (irq <= 0) {
 517		dev_err(smi->dev, "failed to get parent IRQ\n");
 518		ret = irq ? irq : -EINVAL;
 519		goto out_put_node;
 520	}
 521
 522	/* This clears the IRQ status register */
 523	ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG,
 524			  &val);
 525	if (ret) {
 526		dev_err(smi->dev, "can't read interrupt status\n");
 527		goto out_put_node;
 528	}
 529
 530	/* Fetch IRQ edge information from the descriptor */
 531	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
 532	switch (irq_trig) {
 533	case IRQF_TRIGGER_RISING:
 534	case IRQF_TRIGGER_HIGH:
 535		dev_info(smi->dev, "active high/rising IRQ\n");
 536		val = 0;
 537		break;
 538	case IRQF_TRIGGER_FALLING:
 539	case IRQF_TRIGGER_LOW:
 540		dev_info(smi->dev, "active low/falling IRQ\n");
 541		val = RTL8366RB_INTERRUPT_POLARITY;
 542		break;
 543	}
 544	ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_CONTROL_REG,
 545				 RTL8366RB_INTERRUPT_POLARITY,
 546				 val);
 547	if (ret) {
 548		dev_err(smi->dev, "could not configure IRQ polarity\n");
 549		goto out_put_node;
 550	}
 551
 552	ret = devm_request_threaded_irq(smi->dev, irq, NULL,
 553					rtl8366rb_irq, IRQF_ONESHOT,
 554					"RTL8366RB", smi);
 555	if (ret) {
 556		dev_err(smi->dev, "unable to request irq: %d\n", ret);
 557		goto out_put_node;
 558	}
 559	smi->irqdomain = irq_domain_add_linear(intc,
 560					       RTL8366RB_NUM_INTERRUPT,
 561					       &rtl8366rb_irqdomain_ops,
 562					       smi);
 563	if (!smi->irqdomain) {
 564		dev_err(smi->dev, "failed to create IRQ domain\n");
 565		ret = -EINVAL;
 566		goto out_put_node;
 567	}
 568	for (i = 0; i < smi->num_ports; i++)
 569		irq_set_parent(irq_create_mapping(smi->irqdomain, i), irq);
 570
 571out_put_node:
 572	of_node_put(intc);
 573	return ret;
 574}
 575
 576static int rtl8366rb_set_addr(struct realtek_smi *smi)
 577{
 578	u8 addr[ETH_ALEN];
 579	u16 val;
 580	int ret;
 581
 582	eth_random_addr(addr);
 583
 584	dev_info(smi->dev, "set MAC: %02X:%02X:%02X:%02X:%02X:%02X\n",
 585		 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
 586	val = addr[0] << 8 | addr[1];
 587	ret = regmap_write(smi->map, RTL8366RB_SMAR0, val);
 588	if (ret)
 589		return ret;
 590	val = addr[2] << 8 | addr[3];
 591	ret = regmap_write(smi->map, RTL8366RB_SMAR1, val);
 592	if (ret)
 593		return ret;
 594	val = addr[4] << 8 | addr[5];
 595	ret = regmap_write(smi->map, RTL8366RB_SMAR2, val);
 596	if (ret)
 597		return ret;
 598
 599	return 0;
 600}
 601
 602/* Found in a vendor driver */
 603
 604/* Struct for handling the jam tables' entries */
 605struct rtl8366rb_jam_tbl_entry {
 606	u16 reg;
 607	u16 val;
 608};
 609
 610/* For the "version 0" early silicon, appear in most source releases */
 611static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_0[] = {
 612	{0x000B, 0x0001}, {0x03A6, 0x0100}, {0x03A7, 0x0001}, {0x02D1, 0x3FFF},
 613	{0x02D2, 0x3FFF}, {0x02D3, 0x3FFF}, {0x02D4, 0x3FFF}, {0x02D5, 0x3FFF},
 614	{0x02D6, 0x3FFF}, {0x02D7, 0x3FFF}, {0x02D8, 0x3FFF}, {0x022B, 0x0688},
 615	{0x022C, 0x0FAC}, {0x03D0, 0x4688}, {0x03D1, 0x01F5}, {0x0000, 0x0830},
 616	{0x02F9, 0x0200}, {0x02F7, 0x7FFF}, {0x02F8, 0x03FF}, {0x0080, 0x03E8},
 617	{0x0081, 0x00CE}, {0x0082, 0x00DA}, {0x0083, 0x0230}, {0xBE0F, 0x2000},
 618	{0x0231, 0x422A}, {0x0232, 0x422A}, {0x0233, 0x422A}, {0x0234, 0x422A},
 619	{0x0235, 0x422A}, {0x0236, 0x422A}, {0x0237, 0x422A}, {0x0238, 0x422A},
 620	{0x0239, 0x422A}, {0x023A, 0x422A}, {0x023B, 0x422A}, {0x023C, 0x422A},
 621	{0x023D, 0x422A}, {0x023E, 0x422A}, {0x023F, 0x422A}, {0x0240, 0x422A},
 622	{0x0241, 0x422A}, {0x0242, 0x422A}, {0x0243, 0x422A}, {0x0244, 0x422A},
 623	{0x0245, 0x422A}, {0x0246, 0x422A}, {0x0247, 0x422A}, {0x0248, 0x422A},
 624	{0x0249, 0x0146}, {0x024A, 0x0146}, {0x024B, 0x0146}, {0xBE03, 0xC961},
 625	{0x024D, 0x0146}, {0x024E, 0x0146}, {0x024F, 0x0146}, {0x0250, 0x0146},
 626	{0xBE64, 0x0226}, {0x0252, 0x0146}, {0x0253, 0x0146}, {0x024C, 0x0146},
 627	{0x0251, 0x0146}, {0x0254, 0x0146}, {0xBE62, 0x3FD0}, {0x0084, 0x0320},
 628	{0x0255, 0x0146}, {0x0256, 0x0146}, {0x0257, 0x0146}, {0x0258, 0x0146},
 629	{0x0259, 0x0146}, {0x025A, 0x0146}, {0x025B, 0x0146}, {0x025C, 0x0146},
 630	{0x025D, 0x0146}, {0x025E, 0x0146}, {0x025F, 0x0146}, {0x0260, 0x0146},
 631	{0x0261, 0xA23F}, {0x0262, 0x0294}, {0x0263, 0xA23F}, {0x0264, 0x0294},
 632	{0x0265, 0xA23F}, {0x0266, 0x0294}, {0x0267, 0xA23F}, {0x0268, 0x0294},
 633	{0x0269, 0xA23F}, {0x026A, 0x0294}, {0x026B, 0xA23F}, {0x026C, 0x0294},
 634	{0x026D, 0xA23F}, {0x026E, 0x0294}, {0x026F, 0xA23F}, {0x0270, 0x0294},
 635	{0x02F5, 0x0048}, {0xBE09, 0x0E00}, {0xBE1E, 0x0FA0}, {0xBE14, 0x8448},
 636	{0xBE15, 0x1007}, {0xBE4A, 0xA284}, {0xC454, 0x3F0B}, {0xC474, 0x3F0B},
 637	{0xBE48, 0x3672}, {0xBE4B, 0x17A7}, {0xBE4C, 0x0B15}, {0xBE52, 0x0EDD},
 638	{0xBE49, 0x8C00}, {0xBE5B, 0x785C}, {0xBE5C, 0x785C}, {0xBE5D, 0x785C},
 639	{0xBE61, 0x368A}, {0xBE63, 0x9B84}, {0xC456, 0xCC13}, {0xC476, 0xCC13},
 640	{0xBE65, 0x307D}, {0xBE6D, 0x0005}, {0xBE6E, 0xE120}, {0xBE2E, 0x7BAF},
 641};
 642
 643/* This v1 init sequence is from Belkin F5D8235 U-Boot release */
 644static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_1[] = {
 645	{0x0000, 0x0830}, {0x0001, 0x8000}, {0x0400, 0x8130}, {0xBE78, 0x3C3C},
 646	{0x0431, 0x5432}, {0xBE37, 0x0CE4}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
 647	{0xC44C, 0x1585}, {0xC44C, 0x1185}, {0xC44C, 0x1585}, {0xC46C, 0x1585},
 648	{0xC46C, 0x1185}, {0xC46C, 0x1585}, {0xC451, 0x2135}, {0xC471, 0x2135},
 649	{0xBE10, 0x8140}, {0xBE15, 0x0007}, {0xBE6E, 0xE120}, {0xBE69, 0xD20F},
 650	{0xBE6B, 0x0320}, {0xBE24, 0xB000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF20},
 651	{0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800}, {0xBE24, 0x0000},
 652	{0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60}, {0xBE21, 0x0140},
 653	{0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000}, {0xBE2E, 0x7B7A},
 654	{0xBE36, 0x0CE4}, {0x02F5, 0x0048}, {0xBE77, 0x2940}, {0x000A, 0x83E0},
 655	{0xBE79, 0x3C3C}, {0xBE00, 0x1340},
 656};
 657
 658/* This v2 init sequence is from Belkin F5D8235 U-Boot release */
 659static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_2[] = {
 660	{0x0450, 0x0000}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
 661	{0xC44F, 0x6250}, {0xC46F, 0x6250}, {0xC456, 0x0C14}, {0xC476, 0x0C14},
 662	{0xC44C, 0x1C85}, {0xC44C, 0x1885}, {0xC44C, 0x1C85}, {0xC46C, 0x1C85},
 663	{0xC46C, 0x1885}, {0xC46C, 0x1C85}, {0xC44C, 0x0885}, {0xC44C, 0x0881},
 664	{0xC44C, 0x0885}, {0xC46C, 0x0885}, {0xC46C, 0x0881}, {0xC46C, 0x0885},
 665	{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
 666	{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6E, 0x0320},
 667	{0xBE77, 0x2940}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
 668	{0x8000, 0x0001}, {0xBE15, 0x1007}, {0x8000, 0x0000}, {0xBE15, 0x1007},
 669	{0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160}, {0xBE10, 0x8140},
 670	{0xBE00, 0x1340}, {0x0F51, 0x0010},
 671};
 672
 673/* Appears in a DDWRT code dump */
 674static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_3[] = {
 675	{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
 676	{0x0F51, 0x0017}, {0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
 677	{0xC456, 0x0C14}, {0xC476, 0x0C14}, {0xC454, 0x3F8B}, {0xC474, 0x3F8B},
 678	{0xC450, 0x2071}, {0xC470, 0x2071}, {0xC451, 0x226B}, {0xC471, 0x226B},
 679	{0xC452, 0xA293}, {0xC472, 0xA293}, {0xC44C, 0x1585}, {0xC44C, 0x1185},
 680	{0xC44C, 0x1585}, {0xC46C, 0x1585}, {0xC46C, 0x1185}, {0xC46C, 0x1585},
 681	{0xC44C, 0x0185}, {0xC44C, 0x0181}, {0xC44C, 0x0185}, {0xC46C, 0x0185},
 682	{0xC46C, 0x0181}, {0xC46C, 0x0185}, {0xBE24, 0xB000}, {0xBE23, 0xFF51},
 683	{0xBE22, 0xDF20}, {0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800},
 684	{0xBE24, 0x0000}, {0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60},
 685	{0xBE21, 0x0140}, {0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000},
 686	{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
 687	{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6B, 0x0320},
 688	{0xBE77, 0x2800}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
 689	{0x8000, 0x0001}, {0xBE10, 0x8140}, {0x8000, 0x0000}, {0xBE10, 0x8140},
 690	{0xBE15, 0x1007}, {0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160},
 691	{0xBE10, 0x8140}, {0xBE00, 0x1340}, {0x0450, 0x0000}, {0x0401, 0x0000},
 692};
 693
 694/* Belkin F5D8235 v1, "belkin,f5d8235-v1" */
 695static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_f5d8235[] = {
 696	{0x0242, 0x02BF}, {0x0245, 0x02BF}, {0x0248, 0x02BF}, {0x024B, 0x02BF},
 697	{0x024E, 0x02BF}, {0x0251, 0x02BF}, {0x0254, 0x0A3F}, {0x0256, 0x0A3F},
 698	{0x0258, 0x0A3F}, {0x025A, 0x0A3F}, {0x025C, 0x0A3F}, {0x025E, 0x0A3F},
 699	{0x0263, 0x007C}, {0x0100, 0x0004}, {0xBE5B, 0x3500}, {0x800E, 0x200F},
 700	{0xBE1D, 0x0F00}, {0x8001, 0x5011}, {0x800A, 0xA2F4}, {0x800B, 0x17A3},
 701	{0xBE4B, 0x17A3}, {0xBE41, 0x5011}, {0xBE17, 0x2100}, {0x8000, 0x8304},
 702	{0xBE40, 0x8304}, {0xBE4A, 0xA2F4}, {0x800C, 0xA8D5}, {0x8014, 0x5500},
 703	{0x8015, 0x0004}, {0xBE4C, 0xA8D5}, {0xBE59, 0x0008}, {0xBE09, 0x0E00},
 704	{0xBE36, 0x1036}, {0xBE37, 0x1036}, {0x800D, 0x00FF}, {0xBE4D, 0x00FF},
 705};
 706
 707/* DGN3500, "netgear,dgn3500", "netgear,dgn3500b" */
 708static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_dgn3500[] = {
 709	{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0F51, 0x0017},
 710	{0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0x0450, 0x0000},
 711	{0x0401, 0x0000}, {0x0431, 0x0960},
 712};
 713
 714/* This jam table activates "green ethernet", which means low power mode
 715 * and is claimed to detect the cable length and not use more power than
 716 * necessary, and the ports should enter power saving mode 10 seconds after
 717 * a cable is disconnected. Seems to always be the same.
 718 */
 719static const struct rtl8366rb_jam_tbl_entry rtl8366rb_green_jam[] = {
 720	{0xBE78, 0x323C}, {0xBE77, 0x5000}, {0xBE2E, 0x7BA7},
 721	{0xBE59, 0x3459}, {0xBE5A, 0x745A}, {0xBE5B, 0x785C},
 722	{0xBE5C, 0x785C}, {0xBE6E, 0xE120}, {0xBE79, 0x323C},
 723};
 724
 725/* Function that jams the tables in the proper registers */
 726static int rtl8366rb_jam_table(const struct rtl8366rb_jam_tbl_entry *jam_table,
 727			       int jam_size, struct realtek_smi *smi,
 728			       bool write_dbg)
 729{
 730	u32 val;
 731	int ret;
 732	int i;
 733
 734	for (i = 0; i < jam_size; i++) {
 735		if ((jam_table[i].reg & 0xBE00) == 0xBE00) {
 736			ret = regmap_read(smi->map,
 737					  RTL8366RB_PHY_ACCESS_BUSY_REG,
 738					  &val);
 739			if (ret)
 740				return ret;
 741			if (!(val & RTL8366RB_PHY_INT_BUSY)) {
 742				ret = regmap_write(smi->map,
 743						RTL8366RB_PHY_ACCESS_CTRL_REG,
 744						RTL8366RB_PHY_CTRL_WRITE);
 745				if (ret)
 746					return ret;
 747			}
 748		}
 749		if (write_dbg)
 750			dev_dbg(smi->dev, "jam %04x into register %04x\n",
 751				jam_table[i].val,
 752				jam_table[i].reg);
 753		ret = regmap_write(smi->map,
 754				   jam_table[i].reg,
 755				   jam_table[i].val);
 756		if (ret)
 757			return ret;
 758	}
 759	return 0;
 760}
 761
 762static int rtl8366rb_setup(struct dsa_switch *ds)
 763{
 764	struct realtek_smi *smi = ds->priv;
 765	const struct rtl8366rb_jam_tbl_entry *jam_table;
 766	struct rtl8366rb *rb;
 767	u32 chip_ver = 0;
 768	u32 chip_id = 0;
 769	int jam_size;
 770	u32 val;
 771	int ret;
 772	int i;
 773
 774	rb = smi->chip_data;
 775
 776	ret = regmap_read(smi->map, RTL8366RB_CHIP_ID_REG, &chip_id);
 777	if (ret) {
 778		dev_err(smi->dev, "unable to read chip id\n");
 779		return ret;
 780	}
 781
 782	switch (chip_id) {
 783	case RTL8366RB_CHIP_ID_8366:
 784		break;
 785	default:
 786		dev_err(smi->dev, "unknown chip id (%04x)\n", chip_id);
 787		return -ENODEV;
 788	}
 789
 790	ret = regmap_read(smi->map, RTL8366RB_CHIP_VERSION_CTRL_REG,
 791			  &chip_ver);
 792	if (ret) {
 793		dev_err(smi->dev, "unable to read chip version\n");
 794		return ret;
 795	}
 796
 797	dev_info(smi->dev, "RTL%04x ver %u chip found\n",
 798		 chip_id, chip_ver & RTL8366RB_CHIP_VERSION_MASK);
 799
 800	/* Do the init dance using the right jam table */
 801	switch (chip_ver) {
 802	case 0:
 803		jam_table = rtl8366rb_init_jam_ver_0;
 804		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_0);
 805		break;
 806	case 1:
 807		jam_table = rtl8366rb_init_jam_ver_1;
 808		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_1);
 809		break;
 810	case 2:
 811		jam_table = rtl8366rb_init_jam_ver_2;
 812		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_2);
 813		break;
 814	default:
 815		jam_table = rtl8366rb_init_jam_ver_3;
 816		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_3);
 817		break;
 818	}
 819
 820	/* Special jam tables for special routers
 821	 * TODO: are these necessary? Maintainers, please test
 822	 * without them, using just the off-the-shelf tables.
 823	 */
 824	if (of_machine_is_compatible("belkin,f5d8235-v1")) {
 825		jam_table = rtl8366rb_init_jam_f5d8235;
 826		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_f5d8235);
 827	}
 828	if (of_machine_is_compatible("netgear,dgn3500") ||
 829	    of_machine_is_compatible("netgear,dgn3500b")) {
 830		jam_table = rtl8366rb_init_jam_dgn3500;
 831		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_dgn3500);
 832	}
 833
 834	ret = rtl8366rb_jam_table(jam_table, jam_size, smi, true);
 835	if (ret)
 836		return ret;
 837
 838	/* Set up the "green ethernet" feature */
 839	ret = rtl8366rb_jam_table(rtl8366rb_green_jam,
 840				  ARRAY_SIZE(rtl8366rb_green_jam), smi, false);
 841	if (ret)
 842		return ret;
 843
 844	ret = regmap_write(smi->map,
 845			   RTL8366RB_GREEN_FEATURE_REG,
 846			   (chip_ver == 1) ? 0x0007 : 0x0003);
 847	if (ret)
 848		return ret;
 849
 850	/* Vendor driver sets 0x240 in registers 0xc and 0xd (undocumented) */
 851	ret = regmap_write(smi->map, 0x0c, 0x240);
 852	if (ret)
 853		return ret;
 854	ret = regmap_write(smi->map, 0x0d, 0x240);
 855	if (ret)
 856		return ret;
 857
 858	/* Set some random MAC address */
 859	ret = rtl8366rb_set_addr(smi);
 860	if (ret)
 861		return ret;
 862
 863	/* Enable CPU port with custom DSA tag 8899.
 864	 *
 865	 * If you set RTL8368RB_CPU_NO_TAG (bit 15) in this registers
 866	 * the custom tag is turned off.
 867	 */
 868	ret = regmap_update_bits(smi->map, RTL8368RB_CPU_CTRL_REG,
 869				 0xFFFF,
 870				 BIT(smi->cpu_port));
 871	if (ret)
 872		return ret;
 873
 874	/* Make sure we default-enable the fixed CPU port */
 875	ret = regmap_update_bits(smi->map, RTL8366RB_PECR,
 876				 BIT(smi->cpu_port),
 877				 0);
 878	if (ret)
 879		return ret;
 880
 881	/* Set maximum packet length to 1536 bytes */
 882	ret = regmap_update_bits(smi->map, RTL8366RB_SGCR,
 883				 RTL8366RB_SGCR_MAX_LENGTH_MASK,
 884				 RTL8366RB_SGCR_MAX_LENGTH_1536);
 885	if (ret)
 886		return ret;
 887	for (i = 0; i < RTL8366RB_NUM_PORTS; i++)
 888		/* layer 2 size, see rtl8366rb_change_mtu() */
 889		rb->max_mtu[i] = 1532;
 890
 891	/* Enable learning for all ports */
 892	ret = regmap_write(smi->map, RTL8366RB_SSCR0, 0);
 893	if (ret)
 894		return ret;
 895
 896	/* Enable auto ageing for all ports */
 897	ret = regmap_write(smi->map, RTL8366RB_SSCR1, 0);
 898	if (ret)
 899		return ret;
 900
 901	/* Port 4 setup: this enables Port 4, usually the WAN port,
 902	 * common PHY IO mode is apparently mode 0, and this is not what
 903	 * the port is initialized to. There is no explanation of the
 904	 * IO modes in the Realtek source code, if your WAN port is
 905	 * connected to something exotic such as fiber, then this might
 906	 * be worth experimenting with.
 907	 */
 908	ret = regmap_update_bits(smi->map, RTL8366RB_PMC0,
 909				 RTL8366RB_PMC0_P4_IOMODE_MASK,
 910				 0 << RTL8366RB_PMC0_P4_IOMODE_SHIFT);
 911	if (ret)
 912		return ret;
 913
 914	/* Discard VLAN tagged packets if the port is not a member of
 915	 * the VLAN with which the packets is associated.
 916	 */
 917	ret = regmap_write(smi->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG,
 918			   RTL8366RB_PORT_ALL);
 919	if (ret)
 920		return ret;
 921
 922	/* Don't drop packets whose DA has not been learned */
 923	ret = regmap_update_bits(smi->map, RTL8366RB_SSCR2,
 924				 RTL8366RB_SSCR2_DROP_UNKNOWN_DA, 0);
 925	if (ret)
 926		return ret;
 927
 928	/* Set blinking, TODO: make this configurable */
 929	ret = regmap_update_bits(smi->map, RTL8366RB_LED_BLINKRATE_REG,
 930				 RTL8366RB_LED_BLINKRATE_MASK,
 931				 RTL8366RB_LED_BLINKRATE_56MS);
 932	if (ret)
 933		return ret;
 934
 935	/* Set up LED activity:
 936	 * Each port has 4 LEDs, we configure all ports to the same
 937	 * behaviour (no individual config) but we can set up each
 938	 * LED separately.
 939	 */
 940	if (smi->leds_disabled) {
 941		/* Turn everything off */
 942		regmap_update_bits(smi->map,
 943				   RTL8366RB_LED_0_1_CTRL_REG,
 944				   0x0FFF, 0);
 945		regmap_update_bits(smi->map,
 946				   RTL8366RB_LED_2_3_CTRL_REG,
 947				   0x0FFF, 0);
 948		regmap_update_bits(smi->map,
 949				   RTL8366RB_INTERRUPT_CONTROL_REG,
 950				   RTL8366RB_P4_RGMII_LED,
 951				   0);
 952		val = RTL8366RB_LED_OFF;
 953	} else {
 954		/* TODO: make this configurable per LED */
 955		val = RTL8366RB_LED_FORCE;
 956	}
 957	for (i = 0; i < 4; i++) {
 958		ret = regmap_update_bits(smi->map,
 959					 RTL8366RB_LED_CTRL_REG,
 960					 0xf << (i * 4),
 961					 val << (i * 4));
 962		if (ret)
 963			return ret;
 964	}
 965
 966	ret = rtl8366_init_vlan(smi);
 967	if (ret)
 968		return ret;
 969
 970	ret = rtl8366rb_setup_cascaded_irq(smi);
 971	if (ret)
 972		dev_info(smi->dev, "no interrupt support\n");
 973
 974	ret = realtek_smi_setup_mdio(smi);
 975	if (ret) {
 976		dev_info(smi->dev, "could not set up MDIO bus\n");
 977		return -ENODEV;
 978	}
 979
 980	ds->configure_vlan_while_not_filtering = false;
 981
 982	return 0;
 983}
 984
 985static enum dsa_tag_protocol rtl8366_get_tag_protocol(struct dsa_switch *ds,
 986						      int port,
 987						      enum dsa_tag_protocol mp)
 988{
 989	/* This switch uses the 4 byte protocol A Realtek DSA tag */
 990	return DSA_TAG_PROTO_RTL4_A;
 991}
 992
 993static void
 994rtl8366rb_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode,
 995		      phy_interface_t interface, struct phy_device *phydev,
 996		      int speed, int duplex, bool tx_pause, bool rx_pause)
 997{
 998	struct realtek_smi *smi = ds->priv;
 999	int ret;
1000
1001	if (port != smi->cpu_port)
1002		return;
1003
1004	dev_dbg(smi->dev, "MAC link up on CPU port (%d)\n", port);
1005
1006	/* Force the fixed CPU port into 1Gbit mode, no autonegotiation */
1007	ret = regmap_update_bits(smi->map, RTL8366RB_MAC_FORCE_CTRL_REG,
1008				 BIT(port), BIT(port));
1009	if (ret) {
1010		dev_err(smi->dev, "failed to force 1Gbit on CPU port\n");
1011		return;
1012	}
1013
1014	ret = regmap_update_bits(smi->map, RTL8366RB_PAACR2,
1015				 0xFF00U,
1016				 RTL8366RB_PAACR_CPU_PORT << 8);
1017	if (ret) {
1018		dev_err(smi->dev, "failed to set PAACR on CPU port\n");
1019		return;
1020	}
1021
1022	/* Enable the CPU port */
1023	ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
1024				 0);
1025	if (ret) {
1026		dev_err(smi->dev, "failed to enable the CPU port\n");
1027		return;
1028	}
1029}
1030
1031static void
1032rtl8366rb_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode,
1033			phy_interface_t interface)
1034{
1035	struct realtek_smi *smi = ds->priv;
1036	int ret;
1037
1038	if (port != smi->cpu_port)
1039		return;
1040
1041	dev_dbg(smi->dev, "MAC link down on CPU port (%d)\n", port);
1042
1043	/* Disable the CPU port */
1044	ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
1045				 BIT(port));
1046	if (ret) {
1047		dev_err(smi->dev, "failed to disable the CPU port\n");
1048		return;
1049	}
1050}
1051
1052static void rb8366rb_set_port_led(struct realtek_smi *smi,
1053				  int port, bool enable)
1054{
1055	u16 val = enable ? 0x3f : 0;
1056	int ret;
1057
1058	if (smi->leds_disabled)
1059		return;
1060
1061	switch (port) {
1062	case 0:
1063		ret = regmap_update_bits(smi->map,
1064					 RTL8366RB_LED_0_1_CTRL_REG,
1065					 0x3F, val);
1066		break;
1067	case 1:
1068		ret = regmap_update_bits(smi->map,
1069					 RTL8366RB_LED_0_1_CTRL_REG,
1070					 0x3F << RTL8366RB_LED_1_OFFSET,
1071					 val << RTL8366RB_LED_1_OFFSET);
1072		break;
1073	case 2:
1074		ret = regmap_update_bits(smi->map,
1075					 RTL8366RB_LED_2_3_CTRL_REG,
1076					 0x3F, val);
1077		break;
1078	case 3:
1079		ret = regmap_update_bits(smi->map,
1080					 RTL8366RB_LED_2_3_CTRL_REG,
1081					 0x3F << RTL8366RB_LED_3_OFFSET,
1082					 val << RTL8366RB_LED_3_OFFSET);
1083		break;
1084	case 4:
1085		ret = regmap_update_bits(smi->map,
1086					 RTL8366RB_INTERRUPT_CONTROL_REG,
1087					 RTL8366RB_P4_RGMII_LED,
1088					 enable ? RTL8366RB_P4_RGMII_LED : 0);
1089		break;
1090	default:
1091		dev_err(smi->dev, "no LED for port %d\n", port);
1092		return;
1093	}
1094	if (ret)
1095		dev_err(smi->dev, "error updating LED on port %d\n", port);
1096}
1097
1098static int
1099rtl8366rb_port_enable(struct dsa_switch *ds, int port,
1100		      struct phy_device *phy)
1101{
1102	struct realtek_smi *smi = ds->priv;
1103	int ret;
1104
1105	dev_dbg(smi->dev, "enable port %d\n", port);
1106	ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
1107				 0);
1108	if (ret)
1109		return ret;
1110
1111	rb8366rb_set_port_led(smi, port, true);
1112	return 0;
1113}
1114
1115static void
1116rtl8366rb_port_disable(struct dsa_switch *ds, int port)
1117{
1118	struct realtek_smi *smi = ds->priv;
1119	int ret;
1120
1121	dev_dbg(smi->dev, "disable port %d\n", port);
1122	ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
1123				 BIT(port));
1124	if (ret)
1125		return;
1126
1127	rb8366rb_set_port_led(smi, port, false);
1128}
1129
1130static int rtl8366rb_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1131{
1132	struct realtek_smi *smi = ds->priv;
1133	struct rtl8366rb *rb;
1134	unsigned int max_mtu;
1135	u32 len;
1136	int i;
1137
1138	/* Cache the per-port MTU setting */
1139	rb = smi->chip_data;
1140	rb->max_mtu[port] = new_mtu;
1141
1142	/* Roof out the MTU for the entire switch to the greatest
1143	 * common denominator: the biggest set for any one port will
1144	 * be the biggest MTU for the switch.
1145	 *
1146	 * The first setting, 1522 bytes, is max IP packet 1500 bytes,
1147	 * plus ethernet header, 1518 bytes, plus CPU tag, 4 bytes.
1148	 * This function should consider the parameter an SDU, so the
1149	 * MTU passed for this setting is 1518 bytes. The same logic
1150	 * of subtracting the DSA tag of 4 bytes apply to the other
1151	 * settings.
1152	 */
1153	max_mtu = 1518;
1154	for (i = 0; i < RTL8366RB_NUM_PORTS; i++) {
1155		if (rb->max_mtu[i] > max_mtu)
1156			max_mtu = rb->max_mtu[i];
1157	}
1158	if (max_mtu <= 1518)
1159		len = RTL8366RB_SGCR_MAX_LENGTH_1522;
1160	else if (max_mtu > 1518 && max_mtu <= 1532)
1161		len = RTL8366RB_SGCR_MAX_LENGTH_1536;
1162	else if (max_mtu > 1532 && max_mtu <= 1548)
1163		len = RTL8366RB_SGCR_MAX_LENGTH_1552;
1164	else
1165		len = RTL8366RB_SGCR_MAX_LENGTH_16000;
1166
1167	return regmap_update_bits(smi->map, RTL8366RB_SGCR,
1168				  RTL8366RB_SGCR_MAX_LENGTH_MASK,
1169				  len);
1170}
1171
1172static int rtl8366rb_max_mtu(struct dsa_switch *ds, int port)
1173{
1174	/* The max MTU is 16000 bytes, so we subtract the CPU tag
1175	 * and the max presented to the system is 15996 bytes.
1176	 */
1177	return 15996;
1178}
1179
1180static int rtl8366rb_get_vlan_4k(struct realtek_smi *smi, u32 vid,
1181				 struct rtl8366_vlan_4k *vlan4k)
1182{
1183	u32 data[3];
1184	int ret;
1185	int i;
1186
1187	memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k));
1188
1189	if (vid >= RTL8366RB_NUM_VIDS)
1190		return -EINVAL;
1191
1192	/* write VID */
1193	ret = regmap_write(smi->map, RTL8366RB_VLAN_TABLE_WRITE_BASE,
1194			   vid & RTL8366RB_VLAN_VID_MASK);
1195	if (ret)
1196		return ret;
1197
1198	/* write table access control word */
1199	ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
1200			   RTL8366RB_TABLE_VLAN_READ_CTRL);
1201	if (ret)
1202		return ret;
1203
1204	for (i = 0; i < 3; i++) {
1205		ret = regmap_read(smi->map,
1206				  RTL8366RB_VLAN_TABLE_READ_BASE + i,
1207				  &data[i]);
1208		if (ret)
1209			return ret;
1210	}
1211
1212	vlan4k->vid = vid;
1213	vlan4k->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
1214			RTL8366RB_VLAN_UNTAG_MASK;
1215	vlan4k->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
1216	vlan4k->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
1217
1218	return 0;
1219}
1220
1221static int rtl8366rb_set_vlan_4k(struct realtek_smi *smi,
1222				 const struct rtl8366_vlan_4k *vlan4k)
1223{
1224	u32 data[3];
1225	int ret;
1226	int i;
1227
1228	if (vlan4k->vid >= RTL8366RB_NUM_VIDS ||
1229	    vlan4k->member > RTL8366RB_VLAN_MEMBER_MASK ||
1230	    vlan4k->untag > RTL8366RB_VLAN_UNTAG_MASK ||
1231	    vlan4k->fid > RTL8366RB_FIDMAX)
1232		return -EINVAL;
1233
1234	data[0] = vlan4k->vid & RTL8366RB_VLAN_VID_MASK;
1235	data[1] = (vlan4k->member & RTL8366RB_VLAN_MEMBER_MASK) |
1236		  ((vlan4k->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
1237			RTL8366RB_VLAN_UNTAG_SHIFT);
1238	data[2] = vlan4k->fid & RTL8366RB_VLAN_FID_MASK;
1239
1240	for (i = 0; i < 3; i++) {
1241		ret = regmap_write(smi->map,
1242				   RTL8366RB_VLAN_TABLE_WRITE_BASE + i,
1243				   data[i]);
1244		if (ret)
1245			return ret;
1246	}
1247
1248	/* write table access control word */
1249	ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
1250			   RTL8366RB_TABLE_VLAN_WRITE_CTRL);
1251
1252	return ret;
1253}
1254
1255static int rtl8366rb_get_vlan_mc(struct realtek_smi *smi, u32 index,
1256				 struct rtl8366_vlan_mc *vlanmc)
1257{
1258	u32 data[3];
1259	int ret;
1260	int i;
1261
1262	memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc));
1263
1264	if (index >= RTL8366RB_NUM_VLANS)
1265		return -EINVAL;
1266
1267	for (i = 0; i < 3; i++) {
1268		ret = regmap_read(smi->map,
1269				  RTL8366RB_VLAN_MC_BASE(index) + i,
1270				  &data[i]);
1271		if (ret)
1272			return ret;
1273	}
1274
1275	vlanmc->vid = data[0] & RTL8366RB_VLAN_VID_MASK;
1276	vlanmc->priority = (data[0] >> RTL8366RB_VLAN_PRIORITY_SHIFT) &
1277		RTL8366RB_VLAN_PRIORITY_MASK;
1278	vlanmc->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
1279		RTL8366RB_VLAN_UNTAG_MASK;
1280	vlanmc->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
1281	vlanmc->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
1282
1283	return 0;
1284}
1285
1286static int rtl8366rb_set_vlan_mc(struct realtek_smi *smi, u32 index,
1287				 const struct rtl8366_vlan_mc *vlanmc)
1288{
1289	u32 data[3];
1290	int ret;
1291	int i;
1292
1293	if (index >= RTL8366RB_NUM_VLANS ||
1294	    vlanmc->vid >= RTL8366RB_NUM_VIDS ||
1295	    vlanmc->priority > RTL8366RB_PRIORITYMAX ||
1296	    vlanmc->member > RTL8366RB_VLAN_MEMBER_MASK ||
1297	    vlanmc->untag > RTL8366RB_VLAN_UNTAG_MASK ||
1298	    vlanmc->fid > RTL8366RB_FIDMAX)
1299		return -EINVAL;
1300
1301	data[0] = (vlanmc->vid & RTL8366RB_VLAN_VID_MASK) |
1302		  ((vlanmc->priority & RTL8366RB_VLAN_PRIORITY_MASK) <<
1303			RTL8366RB_VLAN_PRIORITY_SHIFT);
1304	data[1] = (vlanmc->member & RTL8366RB_VLAN_MEMBER_MASK) |
1305		  ((vlanmc->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
1306			RTL8366RB_VLAN_UNTAG_SHIFT);
1307	data[2] = vlanmc->fid & RTL8366RB_VLAN_FID_MASK;
1308
1309	for (i = 0; i < 3; i++) {
1310		ret = regmap_write(smi->map,
1311				   RTL8366RB_VLAN_MC_BASE(index) + i,
1312				   data[i]);
1313		if (ret)
1314			return ret;
1315	}
1316
1317	return 0;
1318}
1319
1320static int rtl8366rb_get_mc_index(struct realtek_smi *smi, int port, int *val)
1321{
1322	u32 data;
1323	int ret;
1324
1325	if (port >= smi->num_ports)
1326		return -EINVAL;
1327
1328	ret = regmap_read(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
1329			  &data);
1330	if (ret)
1331		return ret;
1332
1333	*val = (data >> RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)) &
1334		RTL8366RB_PORT_VLAN_CTRL_MASK;
1335
1336	return 0;
1337}
1338
1339static int rtl8366rb_set_mc_index(struct realtek_smi *smi, int port, int index)
1340{
1341	if (port >= smi->num_ports || index >= RTL8366RB_NUM_VLANS)
1342		return -EINVAL;
1343
1344	return regmap_update_bits(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
1345				RTL8366RB_PORT_VLAN_CTRL_MASK <<
1346					RTL8366RB_PORT_VLAN_CTRL_SHIFT(port),
1347				(index & RTL8366RB_PORT_VLAN_CTRL_MASK) <<
1348					RTL8366RB_PORT_VLAN_CTRL_SHIFT(port));
1349}
1350
1351static bool rtl8366rb_is_vlan_valid(struct realtek_smi *smi, unsigned int vlan)
1352{
1353	unsigned int max = RTL8366RB_NUM_VLANS;
1354
1355	if (smi->vlan4k_enabled)
1356		max = RTL8366RB_NUM_VIDS - 1;
1357
1358	if (vlan == 0 || vlan > max)
1359		return false;
1360
1361	return true;
1362}
1363
1364static int rtl8366rb_enable_vlan(struct realtek_smi *smi, bool enable)
1365{
1366	dev_dbg(smi->dev, "%s VLAN\n", enable ? "enable" : "disable");
1367	return regmap_update_bits(smi->map,
1368				  RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN,
1369				  enable ? RTL8366RB_SGCR_EN_VLAN : 0);
1370}
1371
1372static int rtl8366rb_enable_vlan4k(struct realtek_smi *smi, bool enable)
1373{
1374	dev_dbg(smi->dev, "%s VLAN 4k\n", enable ? "enable" : "disable");
1375	return regmap_update_bits(smi->map, RTL8366RB_SGCR,
1376				  RTL8366RB_SGCR_EN_VLAN_4KTB,
1377				  enable ? RTL8366RB_SGCR_EN_VLAN_4KTB : 0);
1378}
1379
1380static int rtl8366rb_phy_read(struct realtek_smi *smi, int phy, int regnum)
1381{
1382	u32 val;
1383	u32 reg;
1384	int ret;
1385
1386	if (phy > RTL8366RB_PHY_NO_MAX)
1387		return -EINVAL;
1388
1389	ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG,
1390			   RTL8366RB_PHY_CTRL_READ);
1391	if (ret)
1392		return ret;
1393
1394	reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
1395
1396	ret = regmap_write(smi->map, reg, 0);
1397	if (ret) {
1398		dev_err(smi->dev,
1399			"failed to write PHY%d reg %04x @ %04x, ret %d\n",
1400			phy, regnum, reg, ret);
1401		return ret;
1402	}
1403
1404	ret = regmap_read(smi->map, RTL8366RB_PHY_ACCESS_DATA_REG, &val);
1405	if (ret)
1406		return ret;
1407
1408	dev_dbg(smi->dev, "read PHY%d register 0x%04x @ %08x, val <- %04x\n",
1409		phy, regnum, reg, val);
1410
1411	return val;
1412}
1413
1414static int rtl8366rb_phy_write(struct realtek_smi *smi, int phy, int regnum,
1415			       u16 val)
1416{
1417	u32 reg;
1418	int ret;
1419
1420	if (phy > RTL8366RB_PHY_NO_MAX)
1421		return -EINVAL;
1422
1423	ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG,
1424			   RTL8366RB_PHY_CTRL_WRITE);
1425	if (ret)
1426		return ret;
1427
1428	reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
1429
1430	dev_dbg(smi->dev, "write PHY%d register 0x%04x @ %04x, val -> %04x\n",
1431		phy, regnum, reg, val);
1432
1433	ret = regmap_write(smi->map, reg, val);
1434	if (ret)
1435		return ret;
1436
1437	return 0;
1438}
1439
1440static int rtl8366rb_reset_chip(struct realtek_smi *smi)
1441{
1442	int timeout = 10;
1443	u32 val;
1444	int ret;
1445
1446	realtek_smi_write_reg_noack(smi, RTL8366RB_RESET_CTRL_REG,
1447				    RTL8366RB_CHIP_CTRL_RESET_HW);
1448	do {
1449		usleep_range(20000, 25000);
1450		ret = regmap_read(smi->map, RTL8366RB_RESET_CTRL_REG, &val);
1451		if (ret)
1452			return ret;
1453
1454		if (!(val & RTL8366RB_CHIP_CTRL_RESET_HW))
1455			break;
1456	} while (--timeout);
1457
1458	if (!timeout) {
1459		dev_err(smi->dev, "timeout waiting for the switch to reset\n");
1460		return -EIO;
1461	}
1462
1463	return 0;
1464}
1465
1466static int rtl8366rb_detect(struct realtek_smi *smi)
1467{
1468	struct device *dev = smi->dev;
1469	int ret;
1470	u32 val;
1471
1472	/* Detect device */
1473	ret = regmap_read(smi->map, 0x5c, &val);
1474	if (ret) {
1475		dev_err(dev, "can't get chip ID (%d)\n", ret);
1476		return ret;
1477	}
1478
1479	switch (val) {
1480	case 0x6027:
1481		dev_info(dev, "found an RTL8366S switch\n");
1482		dev_err(dev, "this switch is not yet supported, submit patches!\n");
1483		return -ENODEV;
1484	case 0x5937:
1485		dev_info(dev, "found an RTL8366RB switch\n");
1486		smi->cpu_port = RTL8366RB_PORT_NUM_CPU;
1487		smi->num_ports = RTL8366RB_NUM_PORTS;
1488		smi->num_vlan_mc = RTL8366RB_NUM_VLANS;
1489		smi->mib_counters = rtl8366rb_mib_counters;
1490		smi->num_mib_counters = ARRAY_SIZE(rtl8366rb_mib_counters);
1491		break;
1492	default:
1493		dev_info(dev, "found an Unknown Realtek switch (id=0x%04x)\n",
1494			 val);
1495		break;
1496	}
1497
1498	ret = rtl8366rb_reset_chip(smi);
1499	if (ret)
1500		return ret;
1501
1502	return 0;
1503}
1504
1505static const struct dsa_switch_ops rtl8366rb_switch_ops = {
1506	.get_tag_protocol = rtl8366_get_tag_protocol,
1507	.setup = rtl8366rb_setup,
1508	.phylink_mac_link_up = rtl8366rb_mac_link_up,
1509	.phylink_mac_link_down = rtl8366rb_mac_link_down,
1510	.get_strings = rtl8366_get_strings,
1511	.get_ethtool_stats = rtl8366_get_ethtool_stats,
1512	.get_sset_count = rtl8366_get_sset_count,
1513	.port_vlan_filtering = rtl8366_vlan_filtering,
1514	.port_vlan_add = rtl8366_vlan_add,
1515	.port_vlan_del = rtl8366_vlan_del,
1516	.port_enable = rtl8366rb_port_enable,
1517	.port_disable = rtl8366rb_port_disable,
1518	.port_change_mtu = rtl8366rb_change_mtu,
1519	.port_max_mtu = rtl8366rb_max_mtu,
1520};
1521
1522static const struct realtek_smi_ops rtl8366rb_smi_ops = {
1523	.detect		= rtl8366rb_detect,
1524	.get_vlan_mc	= rtl8366rb_get_vlan_mc,
1525	.set_vlan_mc	= rtl8366rb_set_vlan_mc,
1526	.get_vlan_4k	= rtl8366rb_get_vlan_4k,
1527	.set_vlan_4k	= rtl8366rb_set_vlan_4k,
1528	.get_mc_index	= rtl8366rb_get_mc_index,
1529	.set_mc_index	= rtl8366rb_set_mc_index,
1530	.get_mib_counter = rtl8366rb_get_mib_counter,
1531	.is_vlan_valid	= rtl8366rb_is_vlan_valid,
1532	.enable_vlan	= rtl8366rb_enable_vlan,
1533	.enable_vlan4k	= rtl8366rb_enable_vlan4k,
1534	.phy_read	= rtl8366rb_phy_read,
1535	.phy_write	= rtl8366rb_phy_write,
1536};
1537
1538const struct realtek_smi_variant rtl8366rb_variant = {
1539	.ds_ops = &rtl8366rb_switch_ops,
1540	.ops = &rtl8366rb_smi_ops,
1541	.clk_delay = 10,
1542	.cmd_read = 0xa9,
1543	.cmd_write = 0xa8,
1544	.chip_data_sz = sizeof(struct rtl8366rb),
1545};
1546EXPORT_SYMBOL_GPL(rtl8366rb_variant);