Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2005, Intec Automation Inc.
   4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/slab.h>
   9#include <linux/sort.h>
  10#include <linux/mtd/spi-nor.h>
  11
  12#include "core.h"
  13
  14#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
  15#define SFDP_PARAM_HEADER_PTP(p) \
  16	(((p)->parameter_table_pointer[2] << 16) | \
  17	 ((p)->parameter_table_pointer[1] <<  8) | \
  18	 ((p)->parameter_table_pointer[0] <<  0))
  19#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
  20
  21#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
  22#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
  23#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
  24#define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
  25#define SFDP_SCCR_MAP_ID	0xff87	/*
  26					 * Status, Control and Configuration
  27					 * Register Map.
  28					 */
  29
  30#define SFDP_SIGNATURE		0x50444653U
  31
  32struct sfdp_header {
  33	u32		signature; /* Ox50444653U <=> "SFDP" */
  34	u8		minor;
  35	u8		major;
  36	u8		nph; /* 0-base number of parameter headers */
  37	u8		unused;
  38
  39	/* Basic Flash Parameter Table. */
  40	struct sfdp_parameter_header	bfpt_header;
  41};
  42
  43/* Fast Read settings. */
  44struct sfdp_bfpt_read {
  45	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
  46	u32			hwcaps;
  47
  48	/*
  49	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
  50	 * whether the Fast Read x-y-z command is supported.
  51	 */
  52	u32			supported_dword;
  53	u32			supported_bit;
  54
  55	/*
  56	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
  57	 * encodes the op code, the number of mode clocks and the number of wait
  58	 * states to be used by Fast Read x-y-z command.
  59	 */
  60	u32			settings_dword;
  61	u32			settings_shift;
  62
  63	/* The SPI protocol for this Fast Read x-y-z command. */
  64	enum spi_nor_protocol	proto;
  65};
  66
  67struct sfdp_bfpt_erase {
  68	/*
  69	 * The half-word at offset <shift> in DWORD <dword> encodes the
  70	 * op code and erase sector size to be used by Sector Erase commands.
  71	 */
  72	u32			dword;
  73	u32			shift;
  74};
  75
  76#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
  77#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
  78#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
  79#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
  80#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
  81
  82#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
  83#define SMPT_CMD_READ_DUMMY_SHIFT		16
  84#define SMPT_CMD_READ_DUMMY(_cmd) \
  85	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
  86#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
  87
  88#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
  89#define SMPT_CMD_READ_DATA_SHIFT		24
  90#define SMPT_CMD_READ_DATA(_cmd) \
  91	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
  92
  93#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
  94#define SMPT_CMD_OPCODE_SHIFT			8
  95#define SMPT_CMD_OPCODE(_cmd) \
  96	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
  97
  98#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
  99#define SMPT_MAP_REGION_COUNT_SHIFT		16
 100#define SMPT_MAP_REGION_COUNT(_header) \
 101	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
 102	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
 103
 104#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
 105#define SMPT_MAP_ID_SHIFT			8
 106#define SMPT_MAP_ID(_header) \
 107	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
 108
 109#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
 110#define SMPT_MAP_REGION_SIZE_SHIFT		8
 111#define SMPT_MAP_REGION_SIZE(_region) \
 112	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
 113	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
 114
 115#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
 116#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
 117	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
 118
 119#define SMPT_DESC_TYPE_MAP			BIT(1)
 120#define SMPT_DESC_END				BIT(0)
 121
 122#define SFDP_4BAIT_DWORD_MAX	2
 123
 124struct sfdp_4bait {
 125	/* The hardware capability. */
 126	u32		hwcaps;
 127
 128	/*
 129	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
 130	 * the associated 4-byte address op code is supported.
 131	 */
 132	u32		supported_bit;
 133};
 134
 135/**
 136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 137 *			addr_width and read_dummy members of the struct spi_nor
 138 *			should be previously
 139 * set.
 140 * @nor:	pointer to a 'struct spi_nor'
 141 * @addr:	offset in the serial flash memory
 142 * @len:	number of bytes to read
 143 * @buf:	buffer where the data is copied into (dma-safe memory)
 144 *
 145 * Return: 0 on success, -errno otherwise.
 146 */
 147static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
 148{
 149	ssize_t ret;
 150
 151	while (len) {
 152		ret = spi_nor_read_data(nor, addr, len, buf);
 153		if (ret < 0)
 154			return ret;
 155		if (!ret || ret > len)
 156			return -EIO;
 157
 158		buf += ret;
 159		addr += ret;
 160		len -= ret;
 161	}
 162	return 0;
 163}
 164
 165/**
 166 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 167 * @nor:	pointer to a 'struct spi_nor'
 168 * @addr:	offset in the SFDP area to start reading data from
 169 * @len:	number of bytes to read
 170 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
 171 *
 172 * Whatever the actual numbers of bytes for address and dummy cycles are
 173 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 174 * followed by a 3-byte address and 8 dummy clock cycles.
 175 *
 176 * Return: 0 on success, -errno otherwise.
 177 */
 178static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
 179			     size_t len, void *buf)
 180{
 181	u8 addr_width, read_opcode, read_dummy;
 182	int ret;
 183
 184	read_opcode = nor->read_opcode;
 185	addr_width = nor->addr_width;
 186	read_dummy = nor->read_dummy;
 187
 188	nor->read_opcode = SPINOR_OP_RDSFDP;
 189	nor->addr_width = 3;
 190	nor->read_dummy = 8;
 191
 192	ret = spi_nor_read_raw(nor, addr, len, buf);
 193
 194	nor->read_opcode = read_opcode;
 195	nor->addr_width = addr_width;
 196	nor->read_dummy = read_dummy;
 197
 198	return ret;
 199}
 200
 201/**
 202 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 203 * @nor:	pointer to a 'struct spi_nor'
 204 * @addr:	offset in the SFDP area to start reading data from
 205 * @len:	number of bytes to read
 206 * @buf:	buffer where the SFDP data are copied into
 207 *
 208 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 209 * guaranteed to be dma-safe.
 210 *
 211 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 212 *          otherwise.
 213 */
 214static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
 215					size_t len, void *buf)
 216{
 217	void *dma_safe_buf;
 218	int ret;
 219
 220	dma_safe_buf = kmalloc(len, GFP_KERNEL);
 221	if (!dma_safe_buf)
 222		return -ENOMEM;
 223
 224	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
 225	memcpy(buf, dma_safe_buf, len);
 226	kfree(dma_safe_buf);
 227
 228	return ret;
 229}
 230
 231static void
 232spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
 233				    u16 half,
 234				    enum spi_nor_protocol proto)
 235{
 236	read->num_mode_clocks = (half >> 5) & 0x07;
 237	read->num_wait_states = (half >> 0) & 0x1f;
 238	read->opcode = (half >> 8) & 0xff;
 239	read->proto = proto;
 240}
 241
 242static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
 243	/* Fast Read 1-1-2 */
 244	{
 245		SNOR_HWCAPS_READ_1_1_2,
 246		BFPT_DWORD(1), BIT(16),	/* Supported bit */
 247		BFPT_DWORD(4), 0,	/* Settings */
 248		SNOR_PROTO_1_1_2,
 249	},
 250
 251	/* Fast Read 1-2-2 */
 252	{
 253		SNOR_HWCAPS_READ_1_2_2,
 254		BFPT_DWORD(1), BIT(20),	/* Supported bit */
 255		BFPT_DWORD(4), 16,	/* Settings */
 256		SNOR_PROTO_1_2_2,
 257	},
 258
 259	/* Fast Read 2-2-2 */
 260	{
 261		SNOR_HWCAPS_READ_2_2_2,
 262		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
 263		BFPT_DWORD(6), 16,	/* Settings */
 264		SNOR_PROTO_2_2_2,
 265	},
 266
 267	/* Fast Read 1-1-4 */
 268	{
 269		SNOR_HWCAPS_READ_1_1_4,
 270		BFPT_DWORD(1), BIT(22),	/* Supported bit */
 271		BFPT_DWORD(3), 16,	/* Settings */
 272		SNOR_PROTO_1_1_4,
 273	},
 274
 275	/* Fast Read 1-4-4 */
 276	{
 277		SNOR_HWCAPS_READ_1_4_4,
 278		BFPT_DWORD(1), BIT(21),	/* Supported bit */
 279		BFPT_DWORD(3), 0,	/* Settings */
 280		SNOR_PROTO_1_4_4,
 281	},
 282
 283	/* Fast Read 4-4-4 */
 284	{
 285		SNOR_HWCAPS_READ_4_4_4,
 286		BFPT_DWORD(5), BIT(4),	/* Supported bit */
 287		BFPT_DWORD(7), 16,	/* Settings */
 288		SNOR_PROTO_4_4_4,
 289	},
 290};
 291
 292static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
 293	/* Erase Type 1 in DWORD8 bits[15:0] */
 294	{BFPT_DWORD(8), 0},
 295
 296	/* Erase Type 2 in DWORD8 bits[31:16] */
 297	{BFPT_DWORD(8), 16},
 298
 299	/* Erase Type 3 in DWORD9 bits[15:0] */
 300	{BFPT_DWORD(9), 0},
 301
 302	/* Erase Type 4 in DWORD9 bits[31:16] */
 303	{BFPT_DWORD(9), 16},
 304};
 305
 306/**
 307 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 308 * @erase:	pointer to a structure that describes a SPI NOR erase type
 309 * @size:	the size of the sector/block erased by the erase type
 310 * @opcode:	the SPI command op code to erase the sector/block
 311 * @i:		erase type index as sorted in the Basic Flash Parameter Table
 312 *
 313 * The supported Erase Types will be sorted at init in ascending order, with
 314 * the smallest Erase Type size being the first member in the erase_type array
 315 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 316 * the Basic Flash Parameter Table since it will be used later on to
 317 * synchronize with the supported Erase Types defined in SFDP optional tables.
 318 */
 319static void
 320spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
 321				     u32 size, u8 opcode, u8 i)
 322{
 323	erase->idx = i;
 324	spi_nor_set_erase_type(erase, size, opcode);
 325}
 326
 327/**
 328 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 329 * @l:	member in the left half of the map's erase_type array
 330 * @r:	member in the right half of the map's erase_type array
 331 *
 332 * Comparison function used in the sort() call to sort in ascending order the
 333 * map's erase types, the smallest erase type size being the first member in the
 334 * sorted erase_type array.
 335 *
 336 * Return: the result of @l->size - @r->size
 337 */
 338static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
 339{
 340	const struct spi_nor_erase_type *left = l, *right = r;
 341
 342	return left->size - right->size;
 343}
 344
 345/**
 346 * spi_nor_sort_erase_mask() - sort erase mask
 347 * @map:	the erase map of the SPI NOR
 348 * @erase_mask:	the erase type mask to be sorted
 349 *
 350 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 351 * mask in ascending order with the smallest erase type size starting from
 352 * BIT(0) in the sorted erase mask.
 353 *
 354 * Return: sorted erase mask.
 355 */
 356static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
 357{
 358	struct spi_nor_erase_type *erase_type = map->erase_type;
 359	int i;
 360	u8 sorted_erase_mask = 0;
 361
 362	if (!erase_mask)
 363		return 0;
 364
 365	/* Replicate the sort done for the map's erase types. */
 366	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 367		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
 368			sorted_erase_mask |= BIT(i);
 369
 370	return sorted_erase_mask;
 371}
 372
 373/**
 374 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 375 * @map:	the erase map of the SPI NOR
 376 *
 377 * Function assumes that the erase types defined in the erase map are already
 378 * sorted in ascending order, with the smallest erase type size being the first
 379 * member in the erase_type array. It replicates the sort done for the map's
 380 * erase types. Each region's erase bitmask will indicate which erase types are
 381 * supported from the sorted erase types defined in the erase map.
 382 * Sort the all region's erase type at init in order to speed up the process of
 383 * finding the best erase command at runtime.
 384 */
 385static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
 386{
 387	struct spi_nor_erase_region *region = map->regions;
 388	u8 region_erase_mask, sorted_erase_mask;
 389
 390	while (region) {
 391		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
 392
 393		sorted_erase_mask = spi_nor_sort_erase_mask(map,
 394							    region_erase_mask);
 395
 396		/* Overwrite erase mask. */
 397		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
 398				 sorted_erase_mask;
 399
 400		region = spi_nor_region_next(region);
 401	}
 402}
 403
 404/**
 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 406 * @nor:		pointer to a 'struct spi_nor'
 407 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 408 *			the Basic Flash Parameter Table length and version
 409 *
 410 * The Basic Flash Parameter Table is the main and only mandatory table as
 411 * defined by the SFDP (JESD216) specification.
 412 * It provides us with the total size (memory density) of the data array and
 413 * the number of address bytes for Fast Read, Page Program and Sector Erase
 414 * commands.
 415 * For Fast READ commands, it also gives the number of mode clock cycles and
 416 * wait states (regrouped in the number of dummy clock cycles) for each
 417 * supported instruction op code.
 418 * For Page Program, the page size is now available since JESD216 rev A, however
 419 * the supported instruction op codes are still not provided.
 420 * For Sector Erase commands, this table stores the supported instruction op
 421 * codes and the associated sector sizes.
 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 423 * rev A. The QER bits encode the manufacturer dependent procedure to be
 424 * executed to set the Quad Enable (QE) bit in some internal register of the
 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 428 * and IO3 hence enabling 4 (Quad) I/O lines.
 429 *
 430 * Return: 0 on success, -errno otherwise.
 431 */
 432static int spi_nor_parse_bfpt(struct spi_nor *nor,
 433			      const struct sfdp_parameter_header *bfpt_header)
 434{
 435	struct spi_nor_flash_parameter *params = nor->params;
 436	struct spi_nor_erase_map *map = &params->erase_map;
 437	struct spi_nor_erase_type *erase_type = map->erase_type;
 438	struct sfdp_bfpt bfpt;
 439	size_t len;
 440	int i, cmd, err;
 441	u32 addr, val;
 442	u16 half;
 443	u8 erase_mask;
 444
 445	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
 446	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
 447		return -EINVAL;
 448
 449	/* Read the Basic Flash Parameter Table. */
 450	len = min_t(size_t, sizeof(bfpt),
 451		    bfpt_header->length * sizeof(u32));
 452	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
 453	memset(&bfpt, 0, sizeof(bfpt));
 454	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
 455	if (err < 0)
 456		return err;
 457
 458	/* Fix endianness of the BFPT DWORDs. */
 459	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
 460
 461	/* Number of address bytes. */
 462	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
 463	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
 464	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
 465		nor->addr_width = 3;
 466		break;
 467
 468	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
 469		nor->addr_width = 4;
 470		break;
 471
 472	default:
 473		break;
 474	}
 475
 476	/* Flash Memory Density (in bits). */
 477	val = bfpt.dwords[BFPT_DWORD(2)];
 478	if (val & BIT(31)) {
 479		val &= ~BIT(31);
 480
 481		/*
 482		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
 483		 * bits is unlikely to exist so this error probably means
 484		 * the BFPT we are reading is corrupted/wrong.
 485		 */
 486		if (val > 63)
 487			return -EINVAL;
 488
 489		params->size = 1ULL << val;
 490	} else {
 491		params->size = val + 1;
 492	}
 493	params->size >>= 3; /* Convert to bytes. */
 494
 495	/* Fast Read settings. */
 496	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
 497		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
 498		struct spi_nor_read_command *read;
 499
 500		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
 501			params->hwcaps.mask &= ~rd->hwcaps;
 502			continue;
 503		}
 504
 505		params->hwcaps.mask |= rd->hwcaps;
 506		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
 507		read = &params->reads[cmd];
 508		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
 509		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
 510	}
 511
 512	/*
 513	 * Sector Erase settings. Reinitialize the uniform erase map using the
 514	 * Erase Types defined in the bfpt table.
 515	 */
 516	erase_mask = 0;
 517	memset(&params->erase_map, 0, sizeof(params->erase_map));
 518	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
 519		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
 520		u32 erasesize;
 521		u8 opcode;
 522
 523		half = bfpt.dwords[er->dword] >> er->shift;
 524		erasesize = half & 0xff;
 525
 526		/* erasesize == 0 means this Erase Type is not supported. */
 527		if (!erasesize)
 528			continue;
 529
 530		erasesize = 1U << erasesize;
 531		opcode = (half >> 8) & 0xff;
 532		erase_mask |= BIT(i);
 533		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
 534						     opcode, i);
 535	}
 536	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
 537	/*
 538	 * Sort all the map's Erase Types in ascending order with the smallest
 539	 * erase size being the first member in the erase_type array.
 540	 */
 541	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
 542	     spi_nor_map_cmp_erase_type, NULL);
 543	/*
 544	 * Sort the erase types in the uniform region in order to update the
 545	 * uniform_erase_type bitmask. The bitmask will be used later on when
 546	 * selecting the uniform erase.
 547	 */
 548	spi_nor_regions_sort_erase_types(map);
 549	map->uniform_erase_type = map->uniform_region.offset &
 550				  SNOR_ERASE_TYPE_MASK;
 551
 552	/* Stop here if not JESD216 rev A or later. */
 553	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
 554		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 555
 556	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
 557	val = bfpt.dwords[BFPT_DWORD(11)];
 558	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
 559	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
 560	params->page_size = 1U << val;
 561
 562	/* Quad Enable Requirements. */
 563	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
 564	case BFPT_DWORD15_QER_NONE:
 565		params->quad_enable = NULL;
 566		break;
 567
 568	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
 569		/*
 570		 * Writing only one byte to the Status Register has the
 571		 * side-effect of clearing Status Register 2.
 572		 */
 573	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
 574		/*
 575		 * Read Configuration Register (35h) instruction is not
 576		 * supported.
 577		 */
 578		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
 579		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 580		break;
 581
 582	case BFPT_DWORD15_QER_SR1_BIT6:
 583		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 584		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
 585		break;
 586
 587	case BFPT_DWORD15_QER_SR2_BIT7:
 588		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 589		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
 590		break;
 591
 592	case BFPT_DWORD15_QER_SR2_BIT1:
 593		/*
 594		 * JESD216 rev B or later does not specify if writing only one
 595		 * byte to the Status Register clears or not the Status
 596		 * Register 2, so let's be cautious and keep the default
 597		 * assumption of a 16-bit Write Status (01h) command.
 598		 */
 599		nor->flags |= SNOR_F_HAS_16BIT_SR;
 600
 601		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 602		break;
 603
 604	default:
 605		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
 606		break;
 607	}
 608
 609	/* Soft Reset support. */
 610	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
 611		nor->flags |= SNOR_F_SOFT_RESET;
 612
 613	/* Stop here if not JESD216 rev C or later. */
 614	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
 615		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 616
 617	/* 8D-8D-8D command extension. */
 618	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
 619	case BFPT_DWORD18_CMD_EXT_REP:
 620		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 621		break;
 622
 623	case BFPT_DWORD18_CMD_EXT_INV:
 624		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
 625		break;
 626
 627	case BFPT_DWORD18_CMD_EXT_RES:
 628		dev_dbg(nor->dev, "Reserved command extension used\n");
 629		break;
 630
 631	case BFPT_DWORD18_CMD_EXT_16B:
 632		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
 633		return -EOPNOTSUPP;
 634	}
 635
 636	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 637}
 638
 639/**
 640 * spi_nor_smpt_addr_width() - return the address width used in the
 641 *			       configuration detection command.
 642 * @nor:	pointer to a 'struct spi_nor'
 643 * @settings:	configuration detection command descriptor, dword1
 644 */
 645static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
 646{
 647	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
 648	case SMPT_CMD_ADDRESS_LEN_0:
 649		return 0;
 650	case SMPT_CMD_ADDRESS_LEN_3:
 651		return 3;
 652	case SMPT_CMD_ADDRESS_LEN_4:
 653		return 4;
 654	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
 655	default:
 656		return nor->addr_width;
 657	}
 658}
 659
 660/**
 661 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 662 *			       latency, in clock cycles.
 663 * @nor:	pointer to a 'struct spi_nor'
 664 * @settings:	configuration detection command descriptor, dword1
 665 *
 666 * Return: the number of dummy cycles for an SMPT read
 667 */
 668static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
 669{
 670	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
 671
 672	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
 673		return nor->read_dummy;
 674	return read_dummy;
 675}
 676
 677/**
 678 * spi_nor_get_map_in_use() - get the configuration map in use
 679 * @nor:	pointer to a 'struct spi_nor'
 680 * @smpt:	pointer to the sector map parameter table
 681 * @smpt_len:	sector map parameter table length
 682 *
 683 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
 684 */
 685static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
 686					 u8 smpt_len)
 687{
 688	const u32 *ret;
 689	u8 *buf;
 690	u32 addr;
 691	int err;
 692	u8 i;
 693	u8 addr_width, read_opcode, read_dummy;
 694	u8 read_data_mask, map_id;
 695
 696	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
 697	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
 698	if (!buf)
 699		return ERR_PTR(-ENOMEM);
 700
 701	addr_width = nor->addr_width;
 702	read_dummy = nor->read_dummy;
 703	read_opcode = nor->read_opcode;
 704
 705	map_id = 0;
 706	/* Determine if there are any optional Detection Command Descriptors */
 707	for (i = 0; i < smpt_len; i += 2) {
 708		if (smpt[i] & SMPT_DESC_TYPE_MAP)
 709			break;
 710
 711		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
 712		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
 713		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
 714		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
 715		addr = smpt[i + 1];
 716
 717		err = spi_nor_read_raw(nor, addr, 1, buf);
 718		if (err) {
 719			ret = ERR_PTR(err);
 720			goto out;
 721		}
 722
 723		/*
 724		 * Build an index value that is used to select the Sector Map
 725		 * Configuration that is currently in use.
 726		 */
 727		map_id = map_id << 1 | !!(*buf & read_data_mask);
 728	}
 729
 730	/*
 731	 * If command descriptors are provided, they always precede map
 732	 * descriptors in the table. There is no need to start the iteration
 733	 * over smpt array all over again.
 734	 *
 735	 * Find the matching configuration map.
 736	 */
 737	ret = ERR_PTR(-EINVAL);
 738	while (i < smpt_len) {
 739		if (SMPT_MAP_ID(smpt[i]) == map_id) {
 740			ret = smpt + i;
 741			break;
 742		}
 743
 744		/*
 745		 * If there are no more configuration map descriptors and no
 746		 * configuration ID matched the configuration identifier, the
 747		 * sector address map is unknown.
 748		 */
 749		if (smpt[i] & SMPT_DESC_END)
 750			break;
 751
 752		/* increment the table index to the next map */
 753		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
 754	}
 755
 756	/* fall through */
 757out:
 758	kfree(buf);
 759	nor->addr_width = addr_width;
 760	nor->read_dummy = read_dummy;
 761	nor->read_opcode = read_opcode;
 762	return ret;
 763}
 764
 765static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
 766{
 767	region->offset |= SNOR_LAST_REGION;
 768}
 769
 770static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
 771{
 772	region->offset |= SNOR_OVERLAID_REGION;
 773}
 774
 775/**
 776 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 777 * @region:	pointer to a structure that describes a SPI NOR erase region
 778 * @erase:	pointer to a structure that describes a SPI NOR erase type
 779 * @erase_type:	erase type bitmask
 780 */
 781static void
 782spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
 783			     const struct spi_nor_erase_type *erase,
 784			     const u8 erase_type)
 785{
 786	int i;
 787
 788	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
 789		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
 790			continue;
 791		if (region->size & erase[i].size_mask) {
 792			spi_nor_region_mark_overlay(region);
 793			return;
 794		}
 795	}
 796}
 797
 798/**
 799 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 800 * @nor:	pointer to a 'struct spi_nor'
 801 * @smpt:	pointer to the sector map parameter table
 802 *
 803 * Return: 0 on success, -errno otherwise.
 804 */
 805static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
 806					      const u32 *smpt)
 807{
 808	struct spi_nor_erase_map *map = &nor->params->erase_map;
 809	struct spi_nor_erase_type *erase = map->erase_type;
 810	struct spi_nor_erase_region *region;
 811	u64 offset;
 812	u32 region_count;
 813	int i, j;
 814	u8 uniform_erase_type, save_uniform_erase_type;
 815	u8 erase_type, regions_erase_type;
 816
 817	region_count = SMPT_MAP_REGION_COUNT(*smpt);
 818	/*
 819	 * The regions will be freed when the driver detaches from the
 820	 * device.
 821	 */
 822	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
 823			      GFP_KERNEL);
 824	if (!region)
 825		return -ENOMEM;
 826	map->regions = region;
 827
 828	uniform_erase_type = 0xff;
 829	regions_erase_type = 0;
 830	offset = 0;
 831	/* Populate regions. */
 832	for (i = 0; i < region_count; i++) {
 833		j = i + 1; /* index for the region dword */
 834		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
 835		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
 836		region[i].offset = offset | erase_type;
 837
 838		spi_nor_region_check_overlay(&region[i], erase, erase_type);
 839
 840		/*
 841		 * Save the erase types that are supported in all regions and
 842		 * can erase the entire flash memory.
 843		 */
 844		uniform_erase_type &= erase_type;
 845
 846		/*
 847		 * regions_erase_type mask will indicate all the erase types
 848		 * supported in this configuration map.
 849		 */
 850		regions_erase_type |= erase_type;
 851
 852		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
 853			 region[i].size;
 854	}
 855	spi_nor_region_mark_end(&region[i - 1]);
 856
 857	save_uniform_erase_type = map->uniform_erase_type;
 858	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
 859							  uniform_erase_type);
 860
 861	if (!regions_erase_type) {
 862		/*
 863		 * Roll back to the previous uniform_erase_type mask, SMPT is
 864		 * broken.
 865		 */
 866		map->uniform_erase_type = save_uniform_erase_type;
 867		return -EINVAL;
 868	}
 869
 870	/*
 871	 * BFPT advertises all the erase types supported by all the possible
 872	 * map configurations. Mask out the erase types that are not supported
 873	 * by the current map configuration.
 874	 */
 875	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 876		if (!(regions_erase_type & BIT(erase[i].idx)))
 877			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
 878
 879	return 0;
 880}
 881
 882/**
 883 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 884 * @nor:		pointer to a 'struct spi_nor'
 885 * @smpt_header:	sector map parameter table header
 886 *
 887 * This table is optional, but when available, we parse it to identify the
 888 * location and size of sectors within the main data array of the flash memory
 889 * device and to identify which Erase Types are supported by each sector.
 890 *
 891 * Return: 0 on success, -errno otherwise.
 892 */
 893static int spi_nor_parse_smpt(struct spi_nor *nor,
 894			      const struct sfdp_parameter_header *smpt_header)
 895{
 896	const u32 *sector_map;
 897	u32 *smpt;
 898	size_t len;
 899	u32 addr;
 900	int ret;
 901
 902	/* Read the Sector Map Parameter Table. */
 903	len = smpt_header->length * sizeof(*smpt);
 904	smpt = kmalloc(len, GFP_KERNEL);
 905	if (!smpt)
 906		return -ENOMEM;
 907
 908	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
 909	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
 910	if (ret)
 911		goto out;
 912
 913	/* Fix endianness of the SMPT DWORDs. */
 914	le32_to_cpu_array(smpt, smpt_header->length);
 915
 916	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
 917	if (IS_ERR(sector_map)) {
 918		ret = PTR_ERR(sector_map);
 919		goto out;
 920	}
 921
 922	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
 923	if (ret)
 924		goto out;
 925
 926	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
 927	/* fall through */
 928out:
 929	kfree(smpt);
 930	return ret;
 931}
 932
 933/**
 934 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
 935 * @nor:		pointer to a 'struct spi_nor'.
 936 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
 937 *			the 4-Byte Address Instruction Table length and version.
 938 *
 939 * Return: 0 on success, -errno otherwise.
 940 */
 941static int spi_nor_parse_4bait(struct spi_nor *nor,
 942			       const struct sfdp_parameter_header *param_header)
 943{
 944	static const struct sfdp_4bait reads[] = {
 945		{ SNOR_HWCAPS_READ,		BIT(0) },
 946		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
 947		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
 948		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
 949		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
 950		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
 951		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
 952		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
 953		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
 954	};
 955	static const struct sfdp_4bait programs[] = {
 956		{ SNOR_HWCAPS_PP,		BIT(6) },
 957		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
 958		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
 959	};
 960	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
 961		{ 0u /* not used */,		BIT(9) },
 962		{ 0u /* not used */,		BIT(10) },
 963		{ 0u /* not used */,		BIT(11) },
 964		{ 0u /* not used */,		BIT(12) },
 965	};
 966	struct spi_nor_flash_parameter *params = nor->params;
 967	struct spi_nor_pp_command *params_pp = params->page_programs;
 968	struct spi_nor_erase_map *map = &params->erase_map;
 969	struct spi_nor_erase_type *erase_type = map->erase_type;
 970	u32 *dwords;
 971	size_t len;
 972	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
 973	int i, ret;
 974
 975	if (param_header->major != SFDP_JESD216_MAJOR ||
 976	    param_header->length < SFDP_4BAIT_DWORD_MAX)
 977		return -EINVAL;
 978
 979	/* Read the 4-byte Address Instruction Table. */
 980	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
 981
 982	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
 983	dwords = kmalloc(len, GFP_KERNEL);
 984	if (!dwords)
 985		return -ENOMEM;
 986
 987	addr = SFDP_PARAM_HEADER_PTP(param_header);
 988	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
 989	if (ret)
 990		goto out;
 991
 992	/* Fix endianness of the 4BAIT DWORDs. */
 993	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
 994
 995	/*
 996	 * Compute the subset of (Fast) Read commands for which the 4-byte
 997	 * version is supported.
 998	 */
 999	discard_hwcaps = 0;
1000	read_hwcaps = 0;
1001	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1002		const struct sfdp_4bait *read = &reads[i];
1003
1004		discard_hwcaps |= read->hwcaps;
1005		if ((params->hwcaps.mask & read->hwcaps) &&
1006		    (dwords[0] & read->supported_bit))
1007			read_hwcaps |= read->hwcaps;
1008	}
1009
1010	/*
1011	 * Compute the subset of Page Program commands for which the 4-byte
1012	 * version is supported.
1013	 */
1014	pp_hwcaps = 0;
1015	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1016		const struct sfdp_4bait *program = &programs[i];
1017
1018		/*
1019		 * The 4 Byte Address Instruction (Optional) Table is the only
1020		 * SFDP table that indicates support for Page Program Commands.
1021		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1022		 * authority for specifying Page Program support.
1023		 */
1024		discard_hwcaps |= program->hwcaps;
1025		if (dwords[0] & program->supported_bit)
1026			pp_hwcaps |= program->hwcaps;
1027	}
1028
1029	/*
1030	 * Compute the subset of Sector Erase commands for which the 4-byte
1031	 * version is supported.
1032	 */
1033	erase_mask = 0;
1034	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1035		const struct sfdp_4bait *erase = &erases[i];
1036
1037		if (dwords[0] & erase->supported_bit)
1038			erase_mask |= BIT(i);
1039	}
1040
1041	/* Replicate the sort done for the map's erase types in BFPT. */
1042	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1043
1044	/*
1045	 * We need at least one 4-byte op code per read, program and erase
1046	 * operation; the .read(), .write() and .erase() hooks share the
1047	 * nor->addr_width value.
1048	 */
1049	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1050		goto out;
1051
1052	/*
1053	 * Discard all operations from the 4-byte instruction set which are
1054	 * not supported by this memory.
1055	 */
1056	params->hwcaps.mask &= ~discard_hwcaps;
1057	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1058
1059	/* Use the 4-byte address instruction set. */
1060	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1061		struct spi_nor_read_command *read_cmd = &params->reads[i];
1062
1063		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1064	}
1065
1066	/* 4BAIT is the only SFDP table that indicates page program support. */
1067	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1068		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1069					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1070		/*
1071		 * Since xSPI Page Program opcode is backward compatible with
1072		 * Legacy SPI, use Legacy SPI opcode there as well.
1073		 */
1074		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1075					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1076	}
1077	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1078		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1079					SPINOR_OP_PP_1_1_4_4B,
1080					SNOR_PROTO_1_1_4);
1081	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1082		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1083					SPINOR_OP_PP_1_4_4_4B,
1084					SNOR_PROTO_1_4_4);
1085
1086	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1087		if (erase_mask & BIT(i))
1088			erase_type[i].opcode = (dwords[1] >>
1089						erase_type[i].idx * 8) & 0xFF;
1090		else
1091			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1092	}
1093
1094	/*
1095	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1096	 * later because we already did the conversion to 4byte opcodes. Also,
1097	 * this latest function implements a legacy quirk for the erase size of
1098	 * Spansion memory. However this quirk is no longer needed with new
1099	 * SFDP compliant memories.
1100	 */
1101	nor->addr_width = 4;
1102	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1103
1104	/* fall through */
1105out:
1106	kfree(dwords);
1107	return ret;
1108}
1109
1110#define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1111#define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1112#define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1113#define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1114#define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1115#define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1116#define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1117
1118/**
1119 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1120 * @nor:		pointer to a 'struct spi_nor'
1121 * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1122 *			the Profile 1.0 Table length and version.
1123 *
1124 * Return: 0 on success, -errno otherwise.
1125 */
1126static int spi_nor_parse_profile1(struct spi_nor *nor,
1127				  const struct sfdp_parameter_header *profile1_header)
1128{
1129	u32 *dwords, addr;
1130	size_t len;
1131	int ret;
1132	u8 dummy, opcode;
1133
1134	len = profile1_header->length * sizeof(*dwords);
1135	dwords = kmalloc(len, GFP_KERNEL);
1136	if (!dwords)
1137		return -ENOMEM;
1138
1139	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1140	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1141	if (ret)
1142		goto out;
1143
1144	le32_to_cpu_array(dwords, profile1_header->length);
1145
1146	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1147	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1148
1149	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1150	if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1151		nor->params->rdsr_dummy = 8;
1152	else
1153		nor->params->rdsr_dummy = 4;
1154
1155	if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1156		nor->params->rdsr_addr_nbytes = 4;
1157	else
1158		nor->params->rdsr_addr_nbytes = 0;
1159
1160	/*
1161	 * We don't know what speed the controller is running at. Find the
1162	 * dummy cycles for the fastest frequency the flash can run at to be
1163	 * sure we are never short of dummy cycles. A value of 0 means the
1164	 * frequency is not supported.
1165	 *
1166	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1167	 * flashes set the correct value if needed in their fixup hooks.
1168	 */
1169	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1170	if (!dummy)
1171		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1172	if (!dummy)
1173		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1174	if (!dummy)
1175		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1176	if (!dummy)
1177		dev_dbg(nor->dev,
1178			"Can't find dummy cycles from Profile 1.0 table\n");
1179
1180	/* Round up to an even value to avoid tripping controllers up. */
1181	dummy = round_up(dummy, 2);
1182
1183	/* Update the fast read settings. */
1184	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1185				  0, dummy, opcode,
1186				  SNOR_PROTO_8_8_8_DTR);
1187
1188out:
1189	kfree(dwords);
1190	return ret;
1191}
1192
1193#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1194
1195/**
1196 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1197 *                        Map.
1198 * @nor:		pointer to a 'struct spi_nor'
1199 * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1200 *			the SCCR Map table length and version.
1201 *
1202 * Return: 0 on success, -errno otherwise.
1203 */
1204static int spi_nor_parse_sccr(struct spi_nor *nor,
1205			      const struct sfdp_parameter_header *sccr_header)
1206{
1207	u32 *dwords, addr;
1208	size_t len;
1209	int ret;
1210
1211	len = sccr_header->length * sizeof(*dwords);
1212	dwords = kmalloc(len, GFP_KERNEL);
1213	if (!dwords)
1214		return -ENOMEM;
1215
1216	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1217	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1218	if (ret)
1219		goto out;
1220
1221	le32_to_cpu_array(dwords, sccr_header->length);
1222
1223	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1224		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1225
1226out:
1227	kfree(dwords);
1228	return ret;
1229}
1230
1231/**
1232 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1233 * @nor:		pointer to a 'struct spi_nor'
1234 *
1235 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1236 * specification. This is a standard which tends to supported by almost all
1237 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1238 * runtime the main parameters needed to perform basic SPI flash operations such
1239 * as Fast Read, Page Program or Sector Erase commands.
1240 *
1241 * Return: 0 on success, -errno otherwise.
1242 */
1243int spi_nor_parse_sfdp(struct spi_nor *nor)
1244{
1245	const struct sfdp_parameter_header *param_header, *bfpt_header;
1246	struct sfdp_parameter_header *param_headers = NULL;
1247	struct sfdp_header header;
1248	struct device *dev = nor->dev;
1249	struct sfdp *sfdp;
1250	size_t sfdp_size;
1251	size_t psize;
1252	int i, err;
1253
1254	/* Get the SFDP header. */
1255	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1256	if (err < 0)
1257		return err;
1258
1259	/* Check the SFDP header version. */
1260	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1261	    header.major != SFDP_JESD216_MAJOR)
1262		return -EINVAL;
1263
1264	/*
1265	 * Verify that the first and only mandatory parameter header is a
1266	 * Basic Flash Parameter Table header as specified in JESD216.
1267	 */
1268	bfpt_header = &header.bfpt_header;
1269	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1270	    bfpt_header->major != SFDP_JESD216_MAJOR)
1271		return -EINVAL;
1272
1273	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1274		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1275
1276	/*
1277	 * Allocate memory then read all parameter headers with a single
1278	 * Read SFDP command. These parameter headers will actually be parsed
1279	 * twice: a first time to get the latest revision of the basic flash
1280	 * parameter table, then a second time to handle the supported optional
1281	 * tables.
1282	 * Hence we read the parameter headers once for all to reduce the
1283	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1284	 * because we don't need to keep these parameter headers: the allocated
1285	 * memory is always released with kfree() before exiting this function.
1286	 */
1287	if (header.nph) {
1288		psize = header.nph * sizeof(*param_headers);
1289
1290		param_headers = kmalloc(psize, GFP_KERNEL);
1291		if (!param_headers)
1292			return -ENOMEM;
1293
1294		err = spi_nor_read_sfdp(nor, sizeof(header),
1295					psize, param_headers);
1296		if (err < 0) {
1297			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1298			goto exit;
1299		}
1300	}
1301
1302	/*
1303	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1304	 * SFDP after probe time and we need it for the sysfs access.
1305	 */
1306	for (i = 0; i < header.nph; i++) {
1307		param_header = &param_headers[i];
1308		sfdp_size = max_t(size_t, sfdp_size,
1309				  SFDP_PARAM_HEADER_PTP(param_header) +
1310				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1311	}
1312
1313	/*
1314	 * Limit the total size to a reasonable value to avoid allocating too
1315	 * much memory just of because the flash returned some insane values.
1316	 */
1317	if (sfdp_size > PAGE_SIZE) {
1318		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1319			sfdp_size);
1320		sfdp_size = PAGE_SIZE;
1321	}
1322
1323	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1324	if (!sfdp) {
1325		err = -ENOMEM;
1326		goto exit;
1327	}
1328
1329	/*
1330	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1331	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1332	 * is not spec compliant, make sure that we have enough space to store
1333	 * the complete SFDP data.
1334	 */
1335	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1336	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1337				    sizeof(*sfdp->dwords), GFP_KERNEL);
1338	if (!sfdp->dwords) {
1339		err = -ENOMEM;
1340		devm_kfree(dev, sfdp);
1341		goto exit;
1342	}
1343
1344	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1345	if (err < 0) {
1346		dev_dbg(dev, "failed to read SFDP data\n");
1347		devm_kfree(dev, sfdp->dwords);
1348		devm_kfree(dev, sfdp);
1349		goto exit;
1350	}
1351
1352	nor->sfdp = sfdp;
1353
1354	/*
1355	 * Check other parameter headers to get the latest revision of
1356	 * the basic flash parameter table.
1357	 */
1358	for (i = 0; i < header.nph; i++) {
1359		param_header = &param_headers[i];
1360
1361		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1362		    param_header->major == SFDP_JESD216_MAJOR &&
1363		    (param_header->minor > bfpt_header->minor ||
1364		     (param_header->minor == bfpt_header->minor &&
1365		      param_header->length > bfpt_header->length)))
1366			bfpt_header = param_header;
1367	}
1368
1369	err = spi_nor_parse_bfpt(nor, bfpt_header);
1370	if (err)
1371		goto exit;
1372
1373	/* Parse optional parameter tables. */
1374	for (i = 0; i < header.nph; i++) {
1375		param_header = &param_headers[i];
1376
1377		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1378		case SFDP_SECTOR_MAP_ID:
1379			err = spi_nor_parse_smpt(nor, param_header);
1380			break;
1381
1382		case SFDP_4BAIT_ID:
1383			err = spi_nor_parse_4bait(nor, param_header);
1384			break;
1385
1386		case SFDP_PROFILE1_ID:
1387			err = spi_nor_parse_profile1(nor, param_header);
1388			break;
1389
1390		case SFDP_SCCR_MAP_ID:
1391			err = spi_nor_parse_sccr(nor, param_header);
1392			break;
1393
1394		default:
1395			break;
1396		}
1397
1398		if (err) {
1399			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1400				 SFDP_PARAM_HEADER_ID(param_header));
1401			/*
1402			 * Let's not drop all information we extracted so far
1403			 * if optional table parsers fail. In case of failing,
1404			 * each optional parser is responsible to roll back to
1405			 * the previously known spi_nor data.
1406			 */
1407			err = 0;
1408		}
1409	}
1410
1411exit:
1412	kfree(param_headers);
1413	return err;
1414}