Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
  3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
  4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
  5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
  6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
  7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
  9 *
 10 * This software is available to you under a choice of one of two
 11 * licenses.  You may choose to be licensed under the terms of the GNU
 12 * General Public License (GPL) Version 2, available from the file
 13 * COPYING in the main directory of this source tree, or the
 14 * OpenIB.org BSD license below:
 15 *
 16 *     Redistribution and use in source and binary forms, with or
 17 *     without modification, are permitted provided that the following
 18 *     conditions are met:
 19 *
 20 *      - Redistributions of source code must retain the above
 21 *        copyright notice, this list of conditions and the following
 22 *        disclaimer.
 23 *
 24 *      - Redistributions in binary form must reproduce the above
 25 *        copyright notice, this list of conditions and the following
 26 *        disclaimer in the documentation and/or other materials
 27 *        provided with the distribution.
 28 *
 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 36 * SOFTWARE.
 37 */
 38
 39#include <linux/errno.h>
 40#include <linux/err.h>
 
 41#include <linux/string.h>
 
 
 
 
 
 42
 43#include <rdma/ib_verbs.h>
 44#include <rdma/ib_cache.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 46int ib_rate_to_mult(enum ib_rate rate)
 47{
 48	switch (rate) {
 49	case IB_RATE_2_5_GBPS: return  1;
 50	case IB_RATE_5_GBPS:   return  2;
 51	case IB_RATE_10_GBPS:  return  4;
 52	case IB_RATE_20_GBPS:  return  8;
 53	case IB_RATE_30_GBPS:  return 12;
 54	case IB_RATE_40_GBPS:  return 16;
 55	case IB_RATE_60_GBPS:  return 24;
 56	case IB_RATE_80_GBPS:  return 32;
 57	case IB_RATE_120_GBPS: return 48;
 58	default:	       return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 59	}
 60}
 61EXPORT_SYMBOL(ib_rate_to_mult);
 62
 63enum ib_rate mult_to_ib_rate(int mult)
 64{
 65	switch (mult) {
 66	case 1:  return IB_RATE_2_5_GBPS;
 67	case 2:  return IB_RATE_5_GBPS;
 68	case 4:  return IB_RATE_10_GBPS;
 69	case 8:  return IB_RATE_20_GBPS;
 70	case 12: return IB_RATE_30_GBPS;
 71	case 16: return IB_RATE_40_GBPS;
 72	case 24: return IB_RATE_60_GBPS;
 73	case 32: return IB_RATE_80_GBPS;
 74	case 48: return IB_RATE_120_GBPS;
 75	default: return IB_RATE_PORT_CURRENT;
 
 
 
 
 
 
 
 
 
 
 
 
 76	}
 77}
 78EXPORT_SYMBOL(mult_to_ib_rate);
 79
 80enum rdma_transport_type
 81rdma_node_get_transport(enum rdma_node_type node_type)
 82{
 83	switch (node_type) {
 84	case RDMA_NODE_IB_CA:
 85	case RDMA_NODE_IB_SWITCH:
 86	case RDMA_NODE_IB_ROUTER:
 87		return RDMA_TRANSPORT_IB;
 88	case RDMA_NODE_RNIC:
 89		return RDMA_TRANSPORT_IWARP;
 90	default:
 91		BUG();
 92		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 93	}
 94}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95EXPORT_SYMBOL(rdma_node_get_transport);
 96
 97enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 
 98{
 99	if (device->get_link_layer)
100		return device->get_link_layer(device, port_num);
 
101
102	switch (rdma_node_get_transport(device->node_type)) {
103	case RDMA_TRANSPORT_IB:
104		return IB_LINK_LAYER_INFINIBAND;
105	case RDMA_TRANSPORT_IWARP:
106		return IB_LINK_LAYER_ETHERNET;
107	default:
108		return IB_LINK_LAYER_UNSPECIFIED;
109	}
110}
111EXPORT_SYMBOL(rdma_port_get_link_layer);
112
113/* Protection domains */
114
115struct ib_pd *ib_alloc_pd(struct ib_device *device)
 
 
 
 
 
 
 
 
 
 
 
 
 
116{
117	struct ib_pd *pd;
 
 
118
119	pd = device->alloc_pd(device, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121	if (!IS_ERR(pd)) {
122		pd->device  = device;
123		pd->uobject = NULL;
124		atomic_set(&pd->usecnt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125	}
126
127	return pd;
128}
129EXPORT_SYMBOL(ib_alloc_pd);
130
131int ib_dealloc_pd(struct ib_pd *pd)
 
 
 
 
 
 
 
 
 
132{
133	if (atomic_read(&pd->usecnt))
134		return -EBUSY;
 
 
 
 
 
135
136	return pd->device->dealloc_pd(pd);
 
 
 
 
 
 
 
 
 
 
 
137}
138EXPORT_SYMBOL(ib_dealloc_pd);
139
140/* Address handles */
141
142struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143{
 
 
144	struct ib_ah *ah;
 
145
146	ah = pd->device->create_ah(pd, ah_attr);
147
148	if (!IS_ERR(ah)) {
149		ah->device  = pd->device;
150		ah->pd      = pd;
151		ah->uobject = NULL;
152		atomic_inc(&pd->usecnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153	}
154
 
155	return ah;
156}
157EXPORT_SYMBOL(ib_create_ah);
158
159int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
160		       struct ib_grh *grh, struct ib_ah_attr *ah_attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161{
162	u32 flow_class;
163	u16 gid_index;
164	int ret;
 
 
 
 
 
 
 
 
165
166	memset(ah_attr, 0, sizeof *ah_attr);
167	ah_attr->dlid = wc->slid;
168	ah_attr->sl = wc->sl;
169	ah_attr->src_path_bits = wc->dlid_path_bits;
170	ah_attr->port_num = port_num;
171
172	if (wc->wc_flags & IB_WC_GRH) {
173		ah_attr->ah_flags = IB_AH_GRH;
174		ah_attr->grh.dgid = grh->sgid;
 
 
 
 
 
 
 
175
176		ret = ib_find_cached_gid(device, &grh->dgid, &port_num,
177					 &gid_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178		if (ret)
179			return ret;
180
181		ah_attr->grh.sgid_index = (u8) gid_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182		flow_class = be32_to_cpu(grh->version_tclass_flow);
183		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
184		ah_attr->grh.hop_limit = 0xFF;
185		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186	}
187	return 0;
188}
189EXPORT_SYMBOL(ib_init_ah_from_wc);
190
191struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
192				   struct ib_grh *grh, u8 port_num)
193{
194	struct ib_ah_attr ah_attr;
 
195	int ret;
196
197	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
198	if (ret)
199		return ERR_PTR(ret);
200
201	return ib_create_ah(pd, &ah_attr);
 
 
 
202}
203EXPORT_SYMBOL(ib_create_ah_from_wc);
204
205int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
206{
207	return ah->device->modify_ah ?
208		ah->device->modify_ah(ah, ah_attr) :
209		-ENOSYS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210}
211EXPORT_SYMBOL(ib_modify_ah);
212
213int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
214{
215	return ah->device->query_ah ?
216		ah->device->query_ah(ah, ah_attr) :
217		-ENOSYS;
 
 
218}
219EXPORT_SYMBOL(ib_query_ah);
220
221int ib_destroy_ah(struct ib_ah *ah)
222{
 
223	struct ib_pd *pd;
224	int ret;
225
 
 
226	pd = ah->pd;
227	ret = ah->device->destroy_ah(ah);
228	if (!ret)
229		atomic_dec(&pd->usecnt);
230
 
 
 
 
 
 
 
 
 
231	return ret;
232}
233EXPORT_SYMBOL(ib_destroy_ah);
234
235/* Shared receive queues */
236
237struct ib_srq *ib_create_srq(struct ib_pd *pd,
238			     struct ib_srq_init_attr *srq_init_attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239{
240	struct ib_srq *srq;
 
241
242	if (!pd->device->create_srq)
243		return ERR_PTR(-ENOSYS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
245	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
 
246
247	if (!IS_ERR(srq)) {
248		srq->device    	   = pd->device;
249		srq->pd        	   = pd;
250		srq->uobject       = NULL;
251		srq->event_handler = srq_init_attr->event_handler;
252		srq->srq_context   = srq_init_attr->srq_context;
253		atomic_inc(&pd->usecnt);
254		atomic_set(&srq->usecnt, 0);
 
 
255	}
256
 
 
257	return srq;
258}
259EXPORT_SYMBOL(ib_create_srq);
260
261int ib_modify_srq(struct ib_srq *srq,
262		  struct ib_srq_attr *srq_attr,
263		  enum ib_srq_attr_mask srq_attr_mask)
264{
265	return srq->device->modify_srq ?
266		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
267		-ENOSYS;
268}
269EXPORT_SYMBOL(ib_modify_srq);
270
271int ib_query_srq(struct ib_srq *srq,
272		 struct ib_srq_attr *srq_attr)
273{
274	return srq->device->query_srq ?
275		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
276}
277EXPORT_SYMBOL(ib_query_srq);
278
279int ib_destroy_srq(struct ib_srq *srq)
280{
281	struct ib_pd *pd;
282	int ret;
283
284	if (atomic_read(&srq->usecnt))
285		return -EBUSY;
286
287	pd = srq->pd;
 
 
288
289	ret = srq->device->destroy_srq(srq);
290	if (!ret)
291		atomic_dec(&pd->usecnt);
 
 
 
 
292
293	return ret;
294}
295EXPORT_SYMBOL(ib_destroy_srq);
296
297/* Queue pairs */
298
299struct ib_qp *ib_create_qp(struct ib_pd *pd,
300			   struct ib_qp_init_attr *qp_init_attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
301{
302	struct ib_qp *qp;
 
 
303
304	qp = pd->device->create_qp(pd, qp_init_attr, NULL);
 
 
 
 
 
 
 
 
 
305
306	if (!IS_ERR(qp)) {
307		qp->device     	  = pd->device;
308		qp->pd         	  = pd;
309		qp->send_cq    	  = qp_init_attr->send_cq;
310		qp->recv_cq    	  = qp_init_attr->recv_cq;
311		qp->srq	       	  = qp_init_attr->srq;
312		qp->uobject       = NULL;
313		qp->event_handler = qp_init_attr->event_handler;
314		qp->qp_context    = qp_init_attr->qp_context;
315		qp->qp_type	  = qp_init_attr->qp_type;
316		atomic_inc(&pd->usecnt);
317		atomic_inc(&qp_init_attr->send_cq->usecnt);
318		atomic_inc(&qp_init_attr->recv_cq->usecnt);
319		if (qp_init_attr->srq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320			atomic_inc(&qp_init_attr->srq->usecnt);
321	}
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323	return qp;
 
 
 
 
 
324}
325EXPORT_SYMBOL(ib_create_qp);
326
327static const struct {
328	int			valid;
329	enum ib_qp_attr_mask	req_param[IB_QPT_RAW_ETHERTYPE + 1];
330	enum ib_qp_attr_mask	opt_param[IB_QPT_RAW_ETHERTYPE + 1];
331} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
332	[IB_QPS_RESET] = {
333		[IB_QPS_RESET] = { .valid = 1 },
334		[IB_QPS_INIT]  = {
335			.valid = 1,
336			.req_param = {
337				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
338						IB_QP_PORT			|
339						IB_QP_QKEY),
 
340				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
341						IB_QP_PORT			|
342						IB_QP_ACCESS_FLAGS),
343				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
344						IB_QP_PORT			|
345						IB_QP_ACCESS_FLAGS),
 
 
 
 
 
 
346				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
347						IB_QP_QKEY),
348				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
349						IB_QP_QKEY),
350			}
351		},
352	},
353	[IB_QPS_INIT]  = {
354		[IB_QPS_RESET] = { .valid = 1 },
355		[IB_QPS_ERR] =   { .valid = 1 },
356		[IB_QPS_INIT]  = {
357			.valid = 1,
358			.opt_param = {
359				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
360						IB_QP_PORT			|
361						IB_QP_QKEY),
362				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
363						IB_QP_PORT			|
364						IB_QP_ACCESS_FLAGS),
365				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
366						IB_QP_PORT			|
367						IB_QP_ACCESS_FLAGS),
 
 
 
 
 
 
368				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
369						IB_QP_QKEY),
370				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
371						IB_QP_QKEY),
372			}
373		},
374		[IB_QPS_RTR]   = {
375			.valid = 1,
376			.req_param = {
377				[IB_QPT_UC]  = (IB_QP_AV			|
378						IB_QP_PATH_MTU			|
379						IB_QP_DEST_QPN			|
380						IB_QP_RQ_PSN),
381				[IB_QPT_RC]  = (IB_QP_AV			|
382						IB_QP_PATH_MTU			|
383						IB_QP_DEST_QPN			|
384						IB_QP_RQ_PSN			|
385						IB_QP_MAX_DEST_RD_ATOMIC	|
386						IB_QP_MIN_RNR_TIMER),
 
 
 
 
 
 
 
 
 
 
387			},
388			.opt_param = {
389				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
390						 IB_QP_QKEY),
391				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
392						 IB_QP_ACCESS_FLAGS		|
393						 IB_QP_PKEY_INDEX),
394				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
395						 IB_QP_ACCESS_FLAGS		|
396						 IB_QP_PKEY_INDEX),
 
 
 
 
 
 
397				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
398						 IB_QP_QKEY),
399				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
400						 IB_QP_QKEY),
401			 }
402		}
403	},
404	[IB_QPS_RTR]   = {
405		[IB_QPS_RESET] = { .valid = 1 },
406		[IB_QPS_ERR] =   { .valid = 1 },
407		[IB_QPS_RTS]   = {
408			.valid = 1,
409			.req_param = {
410				[IB_QPT_UD]  = IB_QP_SQ_PSN,
411				[IB_QPT_UC]  = IB_QP_SQ_PSN,
412				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
413						IB_QP_RETRY_CNT			|
414						IB_QP_RNR_RETRY			|
415						IB_QP_SQ_PSN			|
416						IB_QP_MAX_QP_RD_ATOMIC),
 
 
 
 
 
 
 
417				[IB_QPT_SMI] = IB_QP_SQ_PSN,
418				[IB_QPT_GSI] = IB_QP_SQ_PSN,
419			},
420			.opt_param = {
421				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
422						 IB_QP_QKEY),
423				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
424						 IB_QP_ALT_PATH			|
425						 IB_QP_ACCESS_FLAGS		|
426						 IB_QP_PATH_MIG_STATE),
427				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
428						 IB_QP_ALT_PATH			|
429						 IB_QP_ACCESS_FLAGS		|
430						 IB_QP_MIN_RNR_TIMER		|
431						 IB_QP_PATH_MIG_STATE),
 
 
 
 
 
 
 
 
 
432				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
433						 IB_QP_QKEY),
434				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
435						 IB_QP_QKEY),
 
436			 }
437		}
438	},
439	[IB_QPS_RTS]   = {
440		[IB_QPS_RESET] = { .valid = 1 },
441		[IB_QPS_ERR] =   { .valid = 1 },
442		[IB_QPS_RTS]   = {
443			.valid = 1,
444			.opt_param = {
445				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
446						IB_QP_QKEY),
447				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
448						IB_QP_ACCESS_FLAGS		|
449						IB_QP_ALT_PATH			|
450						IB_QP_PATH_MIG_STATE),
451				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
452						IB_QP_ACCESS_FLAGS		|
453						IB_QP_ALT_PATH			|
454						IB_QP_PATH_MIG_STATE		|
455						IB_QP_MIN_RNR_TIMER),
 
 
 
 
 
 
 
 
 
456				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
457						IB_QP_QKEY),
458				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
459						IB_QP_QKEY),
 
460			}
461		},
462		[IB_QPS_SQD]   = {
463			.valid = 1,
464			.opt_param = {
465				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
466				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
467				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
 
 
468				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
469				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
470			}
471		},
472	},
473	[IB_QPS_SQD]   = {
474		[IB_QPS_RESET] = { .valid = 1 },
475		[IB_QPS_ERR] =   { .valid = 1 },
476		[IB_QPS_RTS]   = {
477			.valid = 1,
478			.opt_param = {
479				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
480						IB_QP_QKEY),
481				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
482						IB_QP_ALT_PATH			|
483						IB_QP_ACCESS_FLAGS		|
484						IB_QP_PATH_MIG_STATE),
485				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
486						IB_QP_ALT_PATH			|
487						IB_QP_ACCESS_FLAGS		|
488						IB_QP_MIN_RNR_TIMER		|
489						IB_QP_PATH_MIG_STATE),
 
 
 
 
 
 
 
 
 
490				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
491						IB_QP_QKEY),
492				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
493						IB_QP_QKEY),
494			}
495		},
496		[IB_QPS_SQD]   = {
497			.valid = 1,
498			.opt_param = {
499				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
500						IB_QP_QKEY),
501				[IB_QPT_UC]  = (IB_QP_AV			|
502						IB_QP_ALT_PATH			|
503						IB_QP_ACCESS_FLAGS		|
504						IB_QP_PKEY_INDEX		|
505						IB_QP_PATH_MIG_STATE),
506				[IB_QPT_RC]  = (IB_QP_PORT			|
507						IB_QP_AV			|
508						IB_QP_TIMEOUT			|
509						IB_QP_RETRY_CNT			|
510						IB_QP_RNR_RETRY			|
511						IB_QP_MAX_QP_RD_ATOMIC		|
512						IB_QP_MAX_DEST_RD_ATOMIC	|
513						IB_QP_ALT_PATH			|
514						IB_QP_ACCESS_FLAGS		|
515						IB_QP_PKEY_INDEX		|
516						IB_QP_MIN_RNR_TIMER		|
517						IB_QP_PATH_MIG_STATE),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
519						IB_QP_QKEY),
520				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
521						IB_QP_QKEY),
522			}
523		}
524	},
525	[IB_QPS_SQE]   = {
526		[IB_QPS_RESET] = { .valid = 1 },
527		[IB_QPS_ERR] =   { .valid = 1 },
528		[IB_QPS_RTS]   = {
529			.valid = 1,
530			.opt_param = {
531				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
532						IB_QP_QKEY),
533				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
534						IB_QP_ACCESS_FLAGS),
535				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
536						IB_QP_QKEY),
537				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
538						IB_QP_QKEY),
539			}
540		}
541	},
542	[IB_QPS_ERR] = {
543		[IB_QPS_RESET] = { .valid = 1 },
544		[IB_QPS_ERR] =   { .valid = 1 }
545	}
546};
547
548int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
549		       enum ib_qp_type type, enum ib_qp_attr_mask mask)
550{
551	enum ib_qp_attr_mask req_param, opt_param;
552
553	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
554	    next_state < 0 || next_state > IB_QPS_ERR)
555		return 0;
556
557	if (mask & IB_QP_CUR_STATE  &&
558	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
559	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
560		return 0;
561
562	if (!qp_state_table[cur_state][next_state].valid)
563		return 0;
564
565	req_param = qp_state_table[cur_state][next_state].req_param[type];
566	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
567
568	if ((mask & req_param) != req_param)
569		return 0;
570
571	if (mask & ~(req_param | opt_param | IB_QP_STATE))
572		return 0;
573
574	return 1;
575}
576EXPORT_SYMBOL(ib_modify_qp_is_ok);
577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578int ib_modify_qp(struct ib_qp *qp,
579		 struct ib_qp_attr *qp_attr,
580		 int qp_attr_mask)
581{
582	return qp->device->modify_qp(qp, qp_attr, qp_attr_mask, NULL);
583}
584EXPORT_SYMBOL(ib_modify_qp);
585
586int ib_query_qp(struct ib_qp *qp,
587		struct ib_qp_attr *qp_attr,
588		int qp_attr_mask,
589		struct ib_qp_init_attr *qp_init_attr)
590{
591	return qp->device->query_qp ?
592		qp->device->query_qp(qp, qp_attr, qp_attr_mask, qp_init_attr) :
593		-ENOSYS;
 
 
 
594}
595EXPORT_SYMBOL(ib_query_qp);
596
597int ib_destroy_qp(struct ib_qp *qp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598{
 
 
599	struct ib_pd *pd;
600	struct ib_cq *scq, *rcq;
601	struct ib_srq *srq;
 
 
602	int ret;
603
604	pd  = qp->pd;
605	scq = qp->send_cq;
606	rcq = qp->recv_cq;
607	srq = qp->srq;
608
609	ret = qp->device->destroy_qp(qp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610	if (!ret) {
611		atomic_dec(&pd->usecnt);
612		atomic_dec(&scq->usecnt);
613		atomic_dec(&rcq->usecnt);
 
 
 
 
 
 
 
614		if (srq)
615			atomic_dec(&srq->usecnt);
 
 
 
 
 
 
 
616	}
617
618	return ret;
619}
620EXPORT_SYMBOL(ib_destroy_qp);
621
622/* Completion queues */
623
624struct ib_cq *ib_create_cq(struct ib_device *device,
625			   ib_comp_handler comp_handler,
626			   void (*event_handler)(struct ib_event *, void *),
627			   void *cq_context, int cqe, int comp_vector)
 
 
628{
629	struct ib_cq *cq;
 
630
631	cq = device->create_cq(device, cqe, comp_vector, NULL, NULL);
632
633	if (!IS_ERR(cq)) {
634		cq->device        = device;
635		cq->uobject       = NULL;
636		cq->comp_handler  = comp_handler;
637		cq->event_handler = event_handler;
638		cq->cq_context    = cq_context;
639		atomic_set(&cq->usecnt, 0);
 
 
 
 
 
 
 
 
 
 
640	}
641
 
642	return cq;
643}
644EXPORT_SYMBOL(ib_create_cq);
645
646int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
647{
648	return cq->device->modify_cq ?
649		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
 
 
 
 
650}
651EXPORT_SYMBOL(ib_modify_cq);
652
653int ib_destroy_cq(struct ib_cq *cq)
654{
 
 
 
 
 
655	if (atomic_read(&cq->usecnt))
656		return -EBUSY;
657
658	return cq->device->destroy_cq(cq);
 
 
 
 
 
 
659}
660EXPORT_SYMBOL(ib_destroy_cq);
661
662int ib_resize_cq(struct ib_cq *cq, int cqe)
663{
664	return cq->device->resize_cq ?
665		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
 
 
 
666}
667EXPORT_SYMBOL(ib_resize_cq);
668
669/* Memory regions */
670
671struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
 
672{
673	struct ib_mr *mr;
674
675	mr = pd->device->get_dma_mr(pd, mr_access_flags);
676
677	if (!IS_ERR(mr)) {
678		mr->device  = pd->device;
679		mr->pd      = pd;
680		mr->uobject = NULL;
681		atomic_inc(&pd->usecnt);
682		atomic_set(&mr->usecnt, 0);
683	}
684
685	return mr;
686}
687EXPORT_SYMBOL(ib_get_dma_mr);
688
689struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
690			     struct ib_phys_buf *phys_buf_array,
691			     int num_phys_buf,
692			     int mr_access_flags,
693			     u64 *iova_start)
694{
695	struct ib_mr *mr;
696
697	if (!pd->device->reg_phys_mr)
698		return ERR_PTR(-ENOSYS);
699
700	mr = pd->device->reg_phys_mr(pd, phys_buf_array, num_phys_buf,
701				     mr_access_flags, iova_start);
702
703	if (!IS_ERR(mr)) {
704		mr->device  = pd->device;
705		mr->pd      = pd;
706		mr->uobject = NULL;
707		atomic_inc(&pd->usecnt);
708		atomic_set(&mr->usecnt, 0);
709	}
 
710
711	return mr;
712}
713EXPORT_SYMBOL(ib_reg_phys_mr);
714
715int ib_rereg_phys_mr(struct ib_mr *mr,
716		     int mr_rereg_mask,
717		     struct ib_pd *pd,
718		     struct ib_phys_buf *phys_buf_array,
719		     int num_phys_buf,
720		     int mr_access_flags,
721		     u64 *iova_start)
722{
723	struct ib_pd *old_pd;
724	int ret;
725
726	if (!mr->device->rereg_phys_mr)
727		return -ENOSYS;
728
729	if (atomic_read(&mr->usecnt))
730		return -EBUSY;
731
732	old_pd = mr->pd;
733
734	ret = mr->device->rereg_phys_mr(mr, mr_rereg_mask, pd,
735					phys_buf_array, num_phys_buf,
736					mr_access_flags, iova_start);
737
738	if (!ret && (mr_rereg_mask & IB_MR_REREG_PD)) {
739		atomic_dec(&old_pd->usecnt);
740		atomic_inc(&pd->usecnt);
741	}
742
743	return ret;
744}
745EXPORT_SYMBOL(ib_rereg_phys_mr);
746
747int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr)
748{
749	return mr->device->query_mr ?
750		mr->device->query_mr(mr, mr_attr) : -ENOSYS;
751}
752EXPORT_SYMBOL(ib_query_mr);
753
754int ib_dereg_mr(struct ib_mr *mr)
755{
756	struct ib_pd *pd;
 
 
757	int ret;
758
759	if (atomic_read(&mr->usecnt))
760		return -EBUSY;
761
762	pd = mr->pd;
763	ret = mr->device->dereg_mr(mr);
764	if (!ret)
765		atomic_dec(&pd->usecnt);
 
 
 
 
766
767	return ret;
768}
769EXPORT_SYMBOL(ib_dereg_mr);
770
771struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
772{
773	struct ib_mr *mr;
774
775	if (!pd->device->alloc_fast_reg_mr)
776		return ERR_PTR(-ENOSYS);
777
778	mr = pd->device->alloc_fast_reg_mr(pd, max_page_list_len);
779
780	if (!IS_ERR(mr)) {
781		mr->device  = pd->device;
782		mr->pd      = pd;
783		mr->uobject = NULL;
784		atomic_inc(&pd->usecnt);
785		atomic_set(&mr->usecnt, 0);
786	}
787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788	return mr;
789}
790EXPORT_SYMBOL(ib_alloc_fast_reg_mr);
791
792struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(struct ib_device *device,
793							  int max_page_list_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
794{
795	struct ib_fast_reg_page_list *page_list;
 
796
797	if (!device->alloc_fast_reg_page_list)
798		return ERR_PTR(-ENOSYS);
 
 
 
799
800	page_list = device->alloc_fast_reg_page_list(device, max_page_list_len);
 
 
 
801
802	if (!IS_ERR(page_list)) {
803		page_list->device = device;
804		page_list->max_page_list_len = max_page_list_len;
 
805	}
806
807	return page_list;
808}
809EXPORT_SYMBOL(ib_alloc_fast_reg_page_list);
 
 
 
810
811void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list)
812{
813	page_list->device->free_fast_reg_page_list(page_list);
 
 
 
 
 
 
 
 
 
 
 
 
814}
815EXPORT_SYMBOL(ib_free_fast_reg_page_list);
816
817/* Memory windows */
818
819struct ib_mw *ib_alloc_mw(struct ib_pd *pd)
820{
821	struct ib_mw *mw;
822
823	if (!pd->device->alloc_mw)
824		return ERR_PTR(-ENOSYS);
825
826	mw = pd->device->alloc_mw(pd);
827	if (!IS_ERR(mw)) {
828		mw->device  = pd->device;
829		mw->pd      = pd;
830		mw->uobject = NULL;
831		atomic_inc(&pd->usecnt);
 
 
 
 
832	}
833
834	return mw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835}
836EXPORT_SYMBOL(ib_alloc_mw);
837
838int ib_dealloc_mw(struct ib_mw *mw)
839{
840	struct ib_pd *pd;
841	int ret;
842
843	pd = mw->pd;
844	ret = mw->device->dealloc_mw(mw);
845	if (!ret)
846		atomic_dec(&pd->usecnt);
847
 
 
 
 
 
 
 
848	return ret;
849}
850EXPORT_SYMBOL(ib_dealloc_mw);
851
852/* "Fast" memory regions */
853
854struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
855			    int mr_access_flags,
856			    struct ib_fmr_attr *fmr_attr)
857{
858	struct ib_fmr *fmr;
859
860	if (!pd->device->alloc_fmr)
861		return ERR_PTR(-ENOSYS);
862
863	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
864	if (!IS_ERR(fmr)) {
865		fmr->device = pd->device;
866		fmr->pd     = pd;
867		atomic_inc(&pd->usecnt);
868	}
869
870	return fmr;
 
 
 
871}
872EXPORT_SYMBOL(ib_alloc_fmr);
873
874int ib_unmap_fmr(struct list_head *fmr_list)
 
 
 
 
 
 
 
875{
876	struct ib_fmr *fmr;
 
877
878	if (list_empty(fmr_list))
879		return 0;
880
881	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
882	return fmr->device->unmap_fmr(fmr_list);
883}
884EXPORT_SYMBOL(ib_unmap_fmr);
 
 
 
 
 
885
886int ib_dealloc_fmr(struct ib_fmr *fmr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887{
888	struct ib_pd *pd;
889	int ret;
890
891	pd = fmr->pd;
892	ret = fmr->device->dealloc_fmr(fmr);
893	if (!ret)
894		atomic_dec(&pd->usecnt);
895
 
 
 
 
 
896	return ret;
897}
898EXPORT_SYMBOL(ib_dealloc_fmr);
899
900/* Multicast groups */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901
902int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
 
 
 
 
 
903{
904	if (!qp->device->attach_mcast)
905		return -ENOSYS;
906	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
907		return -EINVAL;
 
 
908
909	return qp->device->attach_mcast(qp, gid, lid);
 
 
 
 
 
 
910}
911EXPORT_SYMBOL(ib_attach_mcast);
912
913int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
 
914{
915	if (!qp->device->detach_mcast)
916		return -ENOSYS;
917	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918		return -EINVAL;
919
920	return qp->device->detach_mcast(qp, gid, lid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921}
922EXPORT_SYMBOL(ib_detach_mcast);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53#include <rdma/lag.h>
  54
  55#include "core_priv.h"
  56#include <trace/events/rdma_core.h>
  57
  58static int ib_resolve_eth_dmac(struct ib_device *device,
  59			       struct rdma_ah_attr *ah_attr);
  60
  61static const char * const ib_events[] = {
  62	[IB_EVENT_CQ_ERR]		= "CQ error",
  63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
  64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
  65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
  66	[IB_EVENT_COMM_EST]		= "communication established",
  67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
  68	[IB_EVENT_PATH_MIG]		= "path migration successful",
  69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
  70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
  71	[IB_EVENT_PORT_ACTIVE]		= "port active",
  72	[IB_EVENT_PORT_ERR]		= "port error",
  73	[IB_EVENT_LID_CHANGE]		= "LID change",
  74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
  75	[IB_EVENT_SM_CHANGE]		= "SM change",
  76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
  77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
  78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
  79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
  80	[IB_EVENT_GID_CHANGE]		= "GID changed",
  81};
  82
  83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  84{
  85	size_t index = event;
  86
  87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  88			ib_events[index] : "unrecognized event";
  89}
  90EXPORT_SYMBOL(ib_event_msg);
  91
  92static const char * const wc_statuses[] = {
  93	[IB_WC_SUCCESS]			= "success",
  94	[IB_WC_LOC_LEN_ERR]		= "local length error",
  95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
  96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
  97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
  98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
  99	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
 100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
 101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
 102	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
 103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
 104	[IB_WC_REM_OP_ERR]		= "remote operation error",
 105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
 106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
 107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
 108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
 109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
 110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
 111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
 112	[IB_WC_FATAL_ERR]		= "fatal error",
 113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
 114	[IB_WC_GENERAL_ERR]		= "general error",
 115};
 116
 117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 118{
 119	size_t index = status;
 120
 121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 122			wc_statuses[index] : "unrecognized status";
 123}
 124EXPORT_SYMBOL(ib_wc_status_msg);
 125
 126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 127{
 128	switch (rate) {
 129	case IB_RATE_2_5_GBPS: return   1;
 130	case IB_RATE_5_GBPS:   return   2;
 131	case IB_RATE_10_GBPS:  return   4;
 132	case IB_RATE_20_GBPS:  return   8;
 133	case IB_RATE_30_GBPS:  return  12;
 134	case IB_RATE_40_GBPS:  return  16;
 135	case IB_RATE_60_GBPS:  return  24;
 136	case IB_RATE_80_GBPS:  return  32;
 137	case IB_RATE_120_GBPS: return  48;
 138	case IB_RATE_14_GBPS:  return   6;
 139	case IB_RATE_56_GBPS:  return  22;
 140	case IB_RATE_112_GBPS: return  45;
 141	case IB_RATE_168_GBPS: return  67;
 142	case IB_RATE_25_GBPS:  return  10;
 143	case IB_RATE_100_GBPS: return  40;
 144	case IB_RATE_200_GBPS: return  80;
 145	case IB_RATE_300_GBPS: return 120;
 146	case IB_RATE_28_GBPS:  return  11;
 147	case IB_RATE_50_GBPS:  return  20;
 148	case IB_RATE_400_GBPS: return 160;
 149	case IB_RATE_600_GBPS: return 240;
 150	default:	       return  -1;
 151	}
 152}
 153EXPORT_SYMBOL(ib_rate_to_mult);
 154
 155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 156{
 157	switch (mult) {
 158	case 1:   return IB_RATE_2_5_GBPS;
 159	case 2:   return IB_RATE_5_GBPS;
 160	case 4:   return IB_RATE_10_GBPS;
 161	case 8:   return IB_RATE_20_GBPS;
 162	case 12:  return IB_RATE_30_GBPS;
 163	case 16:  return IB_RATE_40_GBPS;
 164	case 24:  return IB_RATE_60_GBPS;
 165	case 32:  return IB_RATE_80_GBPS;
 166	case 48:  return IB_RATE_120_GBPS;
 167	case 6:   return IB_RATE_14_GBPS;
 168	case 22:  return IB_RATE_56_GBPS;
 169	case 45:  return IB_RATE_112_GBPS;
 170	case 67:  return IB_RATE_168_GBPS;
 171	case 10:  return IB_RATE_25_GBPS;
 172	case 40:  return IB_RATE_100_GBPS;
 173	case 80:  return IB_RATE_200_GBPS;
 174	case 120: return IB_RATE_300_GBPS;
 175	case 11:  return IB_RATE_28_GBPS;
 176	case 20:  return IB_RATE_50_GBPS;
 177	case 160: return IB_RATE_400_GBPS;
 178	case 240: return IB_RATE_600_GBPS;
 179	default:  return IB_RATE_PORT_CURRENT;
 180	}
 181}
 182EXPORT_SYMBOL(mult_to_ib_rate);
 183
 184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 
 185{
 186	switch (rate) {
 187	case IB_RATE_2_5_GBPS: return 2500;
 188	case IB_RATE_5_GBPS:   return 5000;
 189	case IB_RATE_10_GBPS:  return 10000;
 190	case IB_RATE_20_GBPS:  return 20000;
 191	case IB_RATE_30_GBPS:  return 30000;
 192	case IB_RATE_40_GBPS:  return 40000;
 193	case IB_RATE_60_GBPS:  return 60000;
 194	case IB_RATE_80_GBPS:  return 80000;
 195	case IB_RATE_120_GBPS: return 120000;
 196	case IB_RATE_14_GBPS:  return 14062;
 197	case IB_RATE_56_GBPS:  return 56250;
 198	case IB_RATE_112_GBPS: return 112500;
 199	case IB_RATE_168_GBPS: return 168750;
 200	case IB_RATE_25_GBPS:  return 25781;
 201	case IB_RATE_100_GBPS: return 103125;
 202	case IB_RATE_200_GBPS: return 206250;
 203	case IB_RATE_300_GBPS: return 309375;
 204	case IB_RATE_28_GBPS:  return 28125;
 205	case IB_RATE_50_GBPS:  return 53125;
 206	case IB_RATE_400_GBPS: return 425000;
 207	case IB_RATE_600_GBPS: return 637500;
 208	default:	       return -1;
 209	}
 210}
 211EXPORT_SYMBOL(ib_rate_to_mbps);
 212
 213__attribute_const__ enum rdma_transport_type
 214rdma_node_get_transport(unsigned int node_type)
 215{
 216
 217	if (node_type == RDMA_NODE_USNIC)
 218		return RDMA_TRANSPORT_USNIC;
 219	if (node_type == RDMA_NODE_USNIC_UDP)
 220		return RDMA_TRANSPORT_USNIC_UDP;
 221	if (node_type == RDMA_NODE_RNIC)
 222		return RDMA_TRANSPORT_IWARP;
 223	if (node_type == RDMA_NODE_UNSPECIFIED)
 224		return RDMA_TRANSPORT_UNSPECIFIED;
 225
 226	return RDMA_TRANSPORT_IB;
 227}
 228EXPORT_SYMBOL(rdma_node_get_transport);
 229
 230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
 231					      u32 port_num)
 232{
 233	enum rdma_transport_type lt;
 234	if (device->ops.get_link_layer)
 235		return device->ops.get_link_layer(device, port_num);
 236
 237	lt = rdma_node_get_transport(device->node_type);
 238	if (lt == RDMA_TRANSPORT_IB)
 239		return IB_LINK_LAYER_INFINIBAND;
 240
 241	return IB_LINK_LAYER_ETHERNET;
 
 
 
 242}
 243EXPORT_SYMBOL(rdma_port_get_link_layer);
 244
 245/* Protection domains */
 246
 247/**
 248 * __ib_alloc_pd - Allocates an unused protection domain.
 249 * @device: The device on which to allocate the protection domain.
 250 * @flags: protection domain flags
 251 * @caller: caller's build-time module name
 252 *
 253 * A protection domain object provides an association between QPs, shared
 254 * receive queues, address handles, memory regions, and memory windows.
 255 *
 256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 257 * memory operations.
 258 */
 259struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 260		const char *caller)
 261{
 262	struct ib_pd *pd;
 263	int mr_access_flags = 0;
 264	int ret;
 265
 266	pd = rdma_zalloc_drv_obj(device, ib_pd);
 267	if (!pd)
 268		return ERR_PTR(-ENOMEM);
 269
 270	pd->device = device;
 271	pd->uobject = NULL;
 272	pd->__internal_mr = NULL;
 273	atomic_set(&pd->usecnt, 0);
 274	pd->flags = flags;
 275
 276	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
 277	rdma_restrack_set_name(&pd->res, caller);
 278
 279	ret = device->ops.alloc_pd(pd, NULL);
 280	if (ret) {
 281		rdma_restrack_put(&pd->res);
 282		kfree(pd);
 283		return ERR_PTR(ret);
 284	}
 285	rdma_restrack_add(&pd->res);
 286
 287	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 288		pd->local_dma_lkey = device->local_dma_lkey;
 289	else
 290		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 291
 292	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 293		pr_warn("%s: enabling unsafe global rkey\n", caller);
 294		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 295	}
 296
 297	if (mr_access_flags) {
 298		struct ib_mr *mr;
 299
 300		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 301		if (IS_ERR(mr)) {
 302			ib_dealloc_pd(pd);
 303			return ERR_CAST(mr);
 304		}
 305
 306		mr->device	= pd->device;
 307		mr->pd		= pd;
 308		mr->type        = IB_MR_TYPE_DMA;
 309		mr->uobject	= NULL;
 310		mr->need_inval	= false;
 311
 312		pd->__internal_mr = mr;
 313
 314		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 315			pd->local_dma_lkey = pd->__internal_mr->lkey;
 316
 317		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 318			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 319	}
 320
 321	return pd;
 322}
 323EXPORT_SYMBOL(__ib_alloc_pd);
 324
 325/**
 326 * ib_dealloc_pd_user - Deallocates a protection domain.
 327 * @pd: The protection domain to deallocate.
 328 * @udata: Valid user data or NULL for kernel object
 329 *
 330 * It is an error to call this function while any resources in the pd still
 331 * exist.  The caller is responsible to synchronously destroy them and
 332 * guarantee no new allocations will happen.
 333 */
 334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 335{
 336	int ret;
 337
 338	if (pd->__internal_mr) {
 339		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 340		WARN_ON(ret);
 341		pd->__internal_mr = NULL;
 342	}
 343
 344	/* uverbs manipulates usecnt with proper locking, while the kabi
 345	 * requires the caller to guarantee we can't race here.
 346	 */
 347	WARN_ON(atomic_read(&pd->usecnt));
 348
 349	ret = pd->device->ops.dealloc_pd(pd, udata);
 350	if (ret)
 351		return ret;
 352
 353	rdma_restrack_del(&pd->res);
 354	kfree(pd);
 355	return ret;
 356}
 357EXPORT_SYMBOL(ib_dealloc_pd_user);
 358
 359/* Address handles */
 360
 361/**
 362 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 363 * @dest:       Pointer to destination ah_attr. Contents of the destination
 364 *              pointer is assumed to be invalid and attribute are overwritten.
 365 * @src:        Pointer to source ah_attr.
 366 */
 367void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 368		       const struct rdma_ah_attr *src)
 369{
 370	*dest = *src;
 371	if (dest->grh.sgid_attr)
 372		rdma_hold_gid_attr(dest->grh.sgid_attr);
 373}
 374EXPORT_SYMBOL(rdma_copy_ah_attr);
 375
 376/**
 377 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 378 * @old:        Pointer to existing ah_attr which needs to be replaced.
 379 *              old is assumed to be valid or zero'd
 380 * @new:        Pointer to the new ah_attr.
 381 *
 382 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 383 * old the ah_attr is valid; after that it copies the new attribute and holds
 384 * the reference to the replaced ah_attr.
 385 */
 386void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 387			  const struct rdma_ah_attr *new)
 388{
 389	rdma_destroy_ah_attr(old);
 390	*old = *new;
 391	if (old->grh.sgid_attr)
 392		rdma_hold_gid_attr(old->grh.sgid_attr);
 393}
 394EXPORT_SYMBOL(rdma_replace_ah_attr);
 395
 396/**
 397 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 398 * @dest:       Pointer to destination ah_attr to copy to.
 399 *              dest is assumed to be valid or zero'd
 400 * @src:        Pointer to the new ah_attr.
 401 *
 402 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 403 * if it is valid. This also transfers ownership of internal references from
 404 * src to dest, making src invalid in the process. No new reference of the src
 405 * ah_attr is taken.
 406 */
 407void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 408{
 409	rdma_destroy_ah_attr(dest);
 410	*dest = *src;
 411	src->grh.sgid_attr = NULL;
 412}
 413EXPORT_SYMBOL(rdma_move_ah_attr);
 414
 415/*
 416 * Validate that the rdma_ah_attr is valid for the device before passing it
 417 * off to the driver.
 418 */
 419static int rdma_check_ah_attr(struct ib_device *device,
 420			      struct rdma_ah_attr *ah_attr)
 421{
 422	if (!rdma_is_port_valid(device, ah_attr->port_num))
 423		return -EINVAL;
 424
 425	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 426	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 427	    !(ah_attr->ah_flags & IB_AH_GRH))
 428		return -EINVAL;
 429
 430	if (ah_attr->grh.sgid_attr) {
 431		/*
 432		 * Make sure the passed sgid_attr is consistent with the
 433		 * parameters
 434		 */
 435		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 436		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 437			return -EINVAL;
 438	}
 439	return 0;
 440}
 441
 442/*
 443 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 444 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 445 */
 446static int rdma_fill_sgid_attr(struct ib_device *device,
 447			       struct rdma_ah_attr *ah_attr,
 448			       const struct ib_gid_attr **old_sgid_attr)
 449{
 450	const struct ib_gid_attr *sgid_attr;
 451	struct ib_global_route *grh;
 452	int ret;
 453
 454	*old_sgid_attr = ah_attr->grh.sgid_attr;
 455
 456	ret = rdma_check_ah_attr(device, ah_attr);
 457	if (ret)
 458		return ret;
 459
 460	if (!(ah_attr->ah_flags & IB_AH_GRH))
 461		return 0;
 462
 463	grh = rdma_ah_retrieve_grh(ah_attr);
 464	if (grh->sgid_attr)
 465		return 0;
 466
 467	sgid_attr =
 468		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 469	if (IS_ERR(sgid_attr))
 470		return PTR_ERR(sgid_attr);
 471
 472	/* Move ownerhip of the kref into the ah_attr */
 473	grh->sgid_attr = sgid_attr;
 474	return 0;
 475}
 476
 477static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 478				  const struct ib_gid_attr *old_sgid_attr)
 479{
 480	/*
 481	 * Fill didn't change anything, the caller retains ownership of
 482	 * whatever it passed
 483	 */
 484	if (ah_attr->grh.sgid_attr == old_sgid_attr)
 485		return;
 486
 487	/*
 488	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 489	 * doesn't see any change in the rdma_ah_attr. If we get here
 490	 * old_sgid_attr is NULL.
 491	 */
 492	rdma_destroy_ah_attr(ah_attr);
 493}
 494
 495static const struct ib_gid_attr *
 496rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 497		      const struct ib_gid_attr *old_attr)
 498{
 499	if (old_attr)
 500		rdma_put_gid_attr(old_attr);
 501	if (ah_attr->ah_flags & IB_AH_GRH) {
 502		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 503		return ah_attr->grh.sgid_attr;
 504	}
 505	return NULL;
 506}
 507
 508static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 509				     struct rdma_ah_attr *ah_attr,
 510				     u32 flags,
 511				     struct ib_udata *udata,
 512				     struct net_device *xmit_slave)
 513{
 514	struct rdma_ah_init_attr init_attr = {};
 515	struct ib_device *device = pd->device;
 516	struct ib_ah *ah;
 517	int ret;
 518
 519	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 520
 521	if (!udata && !device->ops.create_ah)
 522		return ERR_PTR(-EOPNOTSUPP);
 523
 524	ah = rdma_zalloc_drv_obj_gfp(
 525		device, ib_ah,
 526		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 527	if (!ah)
 528		return ERR_PTR(-ENOMEM);
 529
 530	ah->device = device;
 531	ah->pd = pd;
 532	ah->type = ah_attr->type;
 533	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 534	init_attr.ah_attr = ah_attr;
 535	init_attr.flags = flags;
 536	init_attr.xmit_slave = xmit_slave;
 537
 538	if (udata)
 539		ret = device->ops.create_user_ah(ah, &init_attr, udata);
 540	else
 541		ret = device->ops.create_ah(ah, &init_attr, NULL);
 542	if (ret) {
 543		kfree(ah);
 544		return ERR_PTR(ret);
 545	}
 546
 547	atomic_inc(&pd->usecnt);
 548	return ah;
 549}
 
 550
 551/**
 552 * rdma_create_ah - Creates an address handle for the
 553 * given address vector.
 554 * @pd: The protection domain associated with the address handle.
 555 * @ah_attr: The attributes of the address vector.
 556 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 557 *
 558 * It returns 0 on success and returns appropriate error code on error.
 559 * The address handle is used to reference a local or global destination
 560 * in all UD QP post sends.
 561 */
 562struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 563			     u32 flags)
 564{
 565	const struct ib_gid_attr *old_sgid_attr;
 566	struct net_device *slave;
 567	struct ib_ah *ah;
 568	int ret;
 569
 570	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 571	if (ret)
 572		return ERR_PTR(ret);
 573	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
 574					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
 575					   GFP_KERNEL : GFP_ATOMIC);
 576	if (IS_ERR(slave)) {
 577		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 578		return (void *)slave;
 579	}
 580	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
 581	rdma_lag_put_ah_roce_slave(slave);
 582	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 583	return ah;
 584}
 585EXPORT_SYMBOL(rdma_create_ah);
 586
 587/**
 588 * rdma_create_user_ah - Creates an address handle for the
 589 * given address vector.
 590 * It resolves destination mac address for ah attribute of RoCE type.
 591 * @pd: The protection domain associated with the address handle.
 592 * @ah_attr: The attributes of the address vector.
 593 * @udata: pointer to user's input output buffer information need by
 594 *         provider driver.
 595 *
 596 * It returns 0 on success and returns appropriate error code on error.
 597 * The address handle is used to reference a local or global destination
 598 * in all UD QP post sends.
 599 */
 600struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 601				  struct rdma_ah_attr *ah_attr,
 602				  struct ib_udata *udata)
 603{
 604	const struct ib_gid_attr *old_sgid_attr;
 605	struct ib_ah *ah;
 606	int err;
 607
 608	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 609	if (err)
 610		return ERR_PTR(err);
 611
 612	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 613		err = ib_resolve_eth_dmac(pd->device, ah_attr);
 614		if (err) {
 615			ah = ERR_PTR(err);
 616			goto out;
 617		}
 618	}
 619
 620	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
 621			     udata, NULL);
 622
 623out:
 624	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 625	return ah;
 626}
 627EXPORT_SYMBOL(rdma_create_user_ah);
 628
 629int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 630{
 631	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 632	struct iphdr ip4h_checked;
 633	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 634
 635	/* If it's IPv6, the version must be 6, otherwise, the first
 636	 * 20 bytes (before the IPv4 header) are garbled.
 637	 */
 638	if (ip6h->version != 6)
 639		return (ip4h->version == 4) ? 4 : 0;
 640	/* version may be 6 or 4 because the first 20 bytes could be garbled */
 641
 642	/* RoCE v2 requires no options, thus header length
 643	 * must be 5 words
 644	 */
 645	if (ip4h->ihl != 5)
 646		return 6;
 647
 648	/* Verify checksum.
 649	 * We can't write on scattered buffers so we need to copy to
 650	 * temp buffer.
 651	 */
 652	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 653	ip4h_checked.check = 0;
 654	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 655	/* if IPv4 header checksum is OK, believe it */
 656	if (ip4h->check == ip4h_checked.check)
 657		return 4;
 658	return 6;
 659}
 660EXPORT_SYMBOL(ib_get_rdma_header_version);
 661
 662static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 663						     u32 port_num,
 664						     const struct ib_grh *grh)
 665{
 666	int grh_version;
 667
 668	if (rdma_protocol_ib(device, port_num))
 669		return RDMA_NETWORK_IB;
 670
 671	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 672
 673	if (grh_version == 4)
 674		return RDMA_NETWORK_IPV4;
 675
 676	if (grh->next_hdr == IPPROTO_UDP)
 677		return RDMA_NETWORK_IPV6;
 678
 679	return RDMA_NETWORK_ROCE_V1;
 680}
 681
 682struct find_gid_index_context {
 683	u16 vlan_id;
 684	enum ib_gid_type gid_type;
 685};
 686
 687static bool find_gid_index(const union ib_gid *gid,
 688			   const struct ib_gid_attr *gid_attr,
 689			   void *context)
 690{
 691	struct find_gid_index_context *ctx = context;
 692	u16 vlan_id = 0xffff;
 693	int ret;
 694
 695	if (ctx->gid_type != gid_attr->gid_type)
 696		return false;
 697
 698	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
 699	if (ret)
 700		return false;
 701
 702	return ctx->vlan_id == vlan_id;
 703}
 704
 705static const struct ib_gid_attr *
 706get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
 707		       u16 vlan_id, const union ib_gid *sgid,
 708		       enum ib_gid_type gid_type)
 709{
 710	struct find_gid_index_context context = {.vlan_id = vlan_id,
 711						 .gid_type = gid_type};
 712
 713	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 714				       &context);
 715}
 716
 717int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 718			      enum rdma_network_type net_type,
 719			      union ib_gid *sgid, union ib_gid *dgid)
 720{
 721	struct sockaddr_in  src_in;
 722	struct sockaddr_in  dst_in;
 723	__be32 src_saddr, dst_saddr;
 724
 725	if (!sgid || !dgid)
 726		return -EINVAL;
 727
 728	if (net_type == RDMA_NETWORK_IPV4) {
 729		memcpy(&src_in.sin_addr.s_addr,
 730		       &hdr->roce4grh.saddr, 4);
 731		memcpy(&dst_in.sin_addr.s_addr,
 732		       &hdr->roce4grh.daddr, 4);
 733		src_saddr = src_in.sin_addr.s_addr;
 734		dst_saddr = dst_in.sin_addr.s_addr;
 735		ipv6_addr_set_v4mapped(src_saddr,
 736				       (struct in6_addr *)sgid);
 737		ipv6_addr_set_v4mapped(dst_saddr,
 738				       (struct in6_addr *)dgid);
 739		return 0;
 740	} else if (net_type == RDMA_NETWORK_IPV6 ||
 741		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
 742		*dgid = hdr->ibgrh.dgid;
 743		*sgid = hdr->ibgrh.sgid;
 744		return 0;
 745	} else {
 746		return -EINVAL;
 747	}
 748}
 749EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 750
 751/* Resolve destination mac address and hop limit for unicast destination
 752 * GID entry, considering the source GID entry as well.
 753 * ah_attribute must have have valid port_num, sgid_index.
 754 */
 755static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 756				       struct rdma_ah_attr *ah_attr)
 757{
 758	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 759	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 760	int hop_limit = 0xff;
 761	int ret = 0;
 762
 763	/* If destination is link local and source GID is RoCEv1,
 764	 * IP stack is not used.
 765	 */
 766	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 767	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 768		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 769				ah_attr->roce.dmac);
 770		return ret;
 771	}
 772
 773	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 774					   ah_attr->roce.dmac,
 775					   sgid_attr, &hop_limit);
 776
 777	grh->hop_limit = hop_limit;
 778	return ret;
 779}
 780
 781/*
 782 * This function initializes address handle attributes from the incoming packet.
 783 * Incoming packet has dgid of the receiver node on which this code is
 784 * getting executed and, sgid contains the GID of the sender.
 785 *
 786 * When resolving mac address of destination, the arrived dgid is used
 787 * as sgid and, sgid is used as dgid because sgid contains destinations
 788 * GID whom to respond to.
 789 *
 790 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 791 * attr.
 792 */
 793int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
 794			    const struct ib_wc *wc, const struct ib_grh *grh,
 795			    struct rdma_ah_attr *ah_attr)
 796{
 797	u32 flow_class;
 
 798	int ret;
 799	enum rdma_network_type net_type = RDMA_NETWORK_IB;
 800	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 801	const struct ib_gid_attr *sgid_attr;
 802	int hoplimit = 0xff;
 803	union ib_gid dgid;
 804	union ib_gid sgid;
 805
 806	might_sleep();
 807
 808	memset(ah_attr, 0, sizeof *ah_attr);
 809	ah_attr->type = rdma_ah_find_type(device, port_num);
 810	if (rdma_cap_eth_ah(device, port_num)) {
 811		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 812			net_type = wc->network_hdr_type;
 813		else
 814			net_type = ib_get_net_type_by_grh(device, port_num, grh);
 815		gid_type = ib_network_to_gid_type(net_type);
 816	}
 817	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 818					&sgid, &dgid);
 819	if (ret)
 820		return ret;
 821
 822	rdma_ah_set_sl(ah_attr, wc->sl);
 823	rdma_ah_set_port_num(ah_attr, port_num);
 824
 825	if (rdma_protocol_roce(device, port_num)) {
 826		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 827				wc->vlan_id : 0xffff;
 828
 829		if (!(wc->wc_flags & IB_WC_GRH))
 830			return -EPROTOTYPE;
 831
 832		sgid_attr = get_sgid_attr_from_eth(device, port_num,
 833						   vlan_id, &dgid,
 834						   gid_type);
 835		if (IS_ERR(sgid_attr))
 836			return PTR_ERR(sgid_attr);
 837
 838		flow_class = be32_to_cpu(grh->version_tclass_flow);
 839		rdma_move_grh_sgid_attr(ah_attr,
 840					&sgid,
 841					flow_class & 0xFFFFF,
 842					hoplimit,
 843					(flow_class >> 20) & 0xFF,
 844					sgid_attr);
 845
 846		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 847		if (ret)
 848			rdma_destroy_ah_attr(ah_attr);
 849
 850		return ret;
 851	} else {
 852		rdma_ah_set_dlid(ah_attr, wc->slid);
 853		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 854
 855		if ((wc->wc_flags & IB_WC_GRH) == 0)
 856			return 0;
 857
 858		if (dgid.global.interface_id !=
 859					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 860			sgid_attr = rdma_find_gid_by_port(
 861				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 862		} else
 863			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 864
 865		if (IS_ERR(sgid_attr))
 866			return PTR_ERR(sgid_attr);
 867		flow_class = be32_to_cpu(grh->version_tclass_flow);
 868		rdma_move_grh_sgid_attr(ah_attr,
 869					&sgid,
 870					flow_class & 0xFFFFF,
 871					hoplimit,
 872					(flow_class >> 20) & 0xFF,
 873					sgid_attr);
 874
 875		return 0;
 876	}
 877}
 878EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 879
 880/**
 881 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 882 * of the reference
 883 *
 884 * @attr:	Pointer to AH attribute structure
 885 * @dgid:	Destination GID
 886 * @flow_label:	Flow label
 887 * @hop_limit:	Hop limit
 888 * @traffic_class: traffic class
 889 * @sgid_attr:	Pointer to SGID attribute
 890 *
 891 * This takes ownership of the sgid_attr reference. The caller must ensure
 892 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 893 * calling this function.
 894 */
 895void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 896			     u32 flow_label, u8 hop_limit, u8 traffic_class,
 897			     const struct ib_gid_attr *sgid_attr)
 898{
 899	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 900			traffic_class);
 901	attr->grh.sgid_attr = sgid_attr;
 902}
 903EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 904
 905/**
 906 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 907 * ah attribute.
 908 * @ah_attr: Pointer to ah attribute
 909 *
 910 * Release reference to the SGID attribute of the ah attribute if it is
 911 * non NULL. It is safe to call this multiple times, and safe to call it on
 912 * a zero initialized ah_attr.
 913 */
 914void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 915{
 916	if (ah_attr->grh.sgid_attr) {
 917		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 918		ah_attr->grh.sgid_attr = NULL;
 919	}
 
 920}
 921EXPORT_SYMBOL(rdma_destroy_ah_attr);
 922
 923struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 924				   const struct ib_grh *grh, u32 port_num)
 925{
 926	struct rdma_ah_attr ah_attr;
 927	struct ib_ah *ah;
 928	int ret;
 929
 930	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 931	if (ret)
 932		return ERR_PTR(ret);
 933
 934	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 935
 936	rdma_destroy_ah_attr(&ah_attr);
 937	return ah;
 938}
 939EXPORT_SYMBOL(ib_create_ah_from_wc);
 940
 941int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 942{
 943	const struct ib_gid_attr *old_sgid_attr;
 944	int ret;
 945
 946	if (ah->type != ah_attr->type)
 947		return -EINVAL;
 948
 949	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 950	if (ret)
 951		return ret;
 952
 953	ret = ah->device->ops.modify_ah ?
 954		ah->device->ops.modify_ah(ah, ah_attr) :
 955		-EOPNOTSUPP;
 956
 957	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 958	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 959	return ret;
 960}
 961EXPORT_SYMBOL(rdma_modify_ah);
 962
 963int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 964{
 965	ah_attr->grh.sgid_attr = NULL;
 966
 967	return ah->device->ops.query_ah ?
 968		ah->device->ops.query_ah(ah, ah_attr) :
 969		-EOPNOTSUPP;
 970}
 971EXPORT_SYMBOL(rdma_query_ah);
 972
 973int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 974{
 975	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 976	struct ib_pd *pd;
 977	int ret;
 978
 979	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 980
 981	pd = ah->pd;
 
 
 
 982
 983	ret = ah->device->ops.destroy_ah(ah, flags);
 984	if (ret)
 985		return ret;
 986
 987	atomic_dec(&pd->usecnt);
 988	if (sgid_attr)
 989		rdma_put_gid_attr(sgid_attr);
 990
 991	kfree(ah);
 992	return ret;
 993}
 994EXPORT_SYMBOL(rdma_destroy_ah_user);
 995
 996/* Shared receive queues */
 997
 998/**
 999 * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000 *   domain.
1001 * @pd: The protection domain associated with the SRQ.
1002 * @srq_init_attr: A list of initial attributes required to create the
1003 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1004 *   the actual capabilities of the created SRQ.
1005 * @uobject: uobject pointer if this is not a kernel SRQ
1006 * @udata: udata pointer if this is not a kernel SRQ
1007 *
1008 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009 * requested size of the SRQ, and set to the actual values allocated
1010 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1011 * will always be at least as large as the requested values.
1012 */
1013struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014				  struct ib_srq_init_attr *srq_init_attr,
1015				  struct ib_usrq_object *uobject,
1016				  struct ib_udata *udata)
1017{
1018	struct ib_srq *srq;
1019	int ret;
1020
1021	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022	if (!srq)
1023		return ERR_PTR(-ENOMEM);
1024
1025	srq->device = pd->device;
1026	srq->pd = pd;
1027	srq->event_handler = srq_init_attr->event_handler;
1028	srq->srq_context = srq_init_attr->srq_context;
1029	srq->srq_type = srq_init_attr->srq_type;
1030	srq->uobject = uobject;
1031
1032	if (ib_srq_has_cq(srq->srq_type)) {
1033		srq->ext.cq = srq_init_attr->ext.cq;
1034		atomic_inc(&srq->ext.cq->usecnt);
1035	}
1036	if (srq->srq_type == IB_SRQT_XRC) {
1037		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1039	}
1040	atomic_inc(&pd->usecnt);
1041
1042	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1043	rdma_restrack_parent_name(&srq->res, &pd->res);
1044
1045	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1046	if (ret) {
1047		rdma_restrack_put(&srq->res);
1048		atomic_dec(&srq->pd->usecnt);
1049		if (srq->srq_type == IB_SRQT_XRC)
1050			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1051		if (ib_srq_has_cq(srq->srq_type))
1052			atomic_dec(&srq->ext.cq->usecnt);
1053		kfree(srq);
1054		return ERR_PTR(ret);
1055	}
1056
1057	rdma_restrack_add(&srq->res);
1058
1059	return srq;
1060}
1061EXPORT_SYMBOL(ib_create_srq_user);
1062
1063int ib_modify_srq(struct ib_srq *srq,
1064		  struct ib_srq_attr *srq_attr,
1065		  enum ib_srq_attr_mask srq_attr_mask)
1066{
1067	return srq->device->ops.modify_srq ?
1068		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1069					    NULL) : -EOPNOTSUPP;
1070}
1071EXPORT_SYMBOL(ib_modify_srq);
1072
1073int ib_query_srq(struct ib_srq *srq,
1074		 struct ib_srq_attr *srq_attr)
1075{
1076	return srq->device->ops.query_srq ?
1077		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1078}
1079EXPORT_SYMBOL(ib_query_srq);
1080
1081int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1082{
 
1083	int ret;
1084
1085	if (atomic_read(&srq->usecnt))
1086		return -EBUSY;
1087
1088	ret = srq->device->ops.destroy_srq(srq, udata);
1089	if (ret)
1090		return ret;
1091
1092	atomic_dec(&srq->pd->usecnt);
1093	if (srq->srq_type == IB_SRQT_XRC)
1094		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1095	if (ib_srq_has_cq(srq->srq_type))
1096		atomic_dec(&srq->ext.cq->usecnt);
1097	rdma_restrack_del(&srq->res);
1098	kfree(srq);
1099
1100	return ret;
1101}
1102EXPORT_SYMBOL(ib_destroy_srq_user);
1103
1104/* Queue pairs */
1105
1106static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1107{
1108	struct ib_qp *qp = context;
1109	unsigned long flags;
1110
1111	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1112	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1113		if (event->element.qp->event_handler)
1114			event->element.qp->event_handler(event, event->element.qp->qp_context);
1115	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1116}
1117
1118static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1119				  void (*event_handler)(struct ib_event *, void *),
1120				  void *qp_context)
1121{
1122	struct ib_qp *qp;
1123	unsigned long flags;
1124	int err;
1125
1126	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1127	if (!qp)
1128		return ERR_PTR(-ENOMEM);
1129
1130	qp->real_qp = real_qp;
1131	err = ib_open_shared_qp_security(qp, real_qp->device);
1132	if (err) {
1133		kfree(qp);
1134		return ERR_PTR(err);
1135	}
1136
1137	qp->real_qp = real_qp;
1138	atomic_inc(&real_qp->usecnt);
1139	qp->device = real_qp->device;
1140	qp->event_handler = event_handler;
1141	qp->qp_context = qp_context;
1142	qp->qp_num = real_qp->qp_num;
1143	qp->qp_type = real_qp->qp_type;
1144
1145	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1146	list_add(&qp->open_list, &real_qp->open_list);
1147	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1148
1149	return qp;
1150}
1151
1152struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1153			 struct ib_qp_open_attr *qp_open_attr)
1154{
1155	struct ib_qp *qp, *real_qp;
1156
1157	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1158		return ERR_PTR(-EINVAL);
1159
1160	down_read(&xrcd->tgt_qps_rwsem);
1161	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1162	if (!real_qp) {
1163		up_read(&xrcd->tgt_qps_rwsem);
1164		return ERR_PTR(-EINVAL);
1165	}
1166	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1167			  qp_open_attr->qp_context);
1168	up_read(&xrcd->tgt_qps_rwsem);
1169	return qp;
1170}
1171EXPORT_SYMBOL(ib_open_qp);
1172
1173static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1174					struct ib_qp_init_attr *qp_init_attr)
1175{
1176	struct ib_qp *real_qp = qp;
1177	int err;
1178
1179	qp->event_handler = __ib_shared_qp_event_handler;
1180	qp->qp_context = qp;
1181	qp->pd = NULL;
1182	qp->send_cq = qp->recv_cq = NULL;
1183	qp->srq = NULL;
1184	qp->xrcd = qp_init_attr->xrcd;
1185	atomic_inc(&qp_init_attr->xrcd->usecnt);
1186	INIT_LIST_HEAD(&qp->open_list);
1187
1188	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1189			  qp_init_attr->qp_context);
1190	if (IS_ERR(qp))
1191		return qp;
1192
1193	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1194			      real_qp, GFP_KERNEL));
1195	if (err) {
1196		ib_close_qp(qp);
1197		return ERR_PTR(err);
1198	}
1199	return qp;
1200}
1201
1202/**
1203 * ib_create_named_qp - Creates a kernel QP associated with the specified protection
1204 *   domain.
1205 * @pd: The protection domain associated with the QP.
1206 * @qp_init_attr: A list of initial attributes required to create the
1207 *   QP.  If QP creation succeeds, then the attributes are updated to
1208 *   the actual capabilities of the created QP.
1209 * @caller: caller's build-time module name
1210 *
1211 * NOTE: for user qp use ib_create_qp_user with valid udata!
1212 */
1213struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
1214				 struct ib_qp_init_attr *qp_init_attr,
1215				 const char *caller)
1216{
1217	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1218	struct ib_qp *qp;
1219	int ret;
1220
1221	if (qp_init_attr->rwq_ind_tbl &&
1222	    (qp_init_attr->recv_cq ||
1223	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1224	    qp_init_attr->cap.max_recv_sge))
1225		return ERR_PTR(-EINVAL);
1226
1227	if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1228	    !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1229		return ERR_PTR(-EINVAL);
1230
1231	/*
1232	 * If the callers is using the RDMA API calculate the resources
1233	 * needed for the RDMA READ/WRITE operations.
1234	 *
1235	 * Note that these callers need to pass in a port number.
1236	 */
1237	if (qp_init_attr->cap.max_rdma_ctxs)
1238		rdma_rw_init_qp(device, qp_init_attr);
1239
1240	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1241	if (IS_ERR(qp))
1242		return qp;
1243
1244	ret = ib_create_qp_security(qp, device);
1245	if (ret)
1246		goto err;
1247
1248	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1249		struct ib_qp *xrc_qp =
1250			create_xrc_qp_user(qp, qp_init_attr);
1251
1252		if (IS_ERR(xrc_qp)) {
1253			ret = PTR_ERR(xrc_qp);
1254			goto err;
1255		}
1256		return xrc_qp;
1257	}
1258
1259	qp->event_handler = qp_init_attr->event_handler;
1260	qp->qp_context = qp_init_attr->qp_context;
1261	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1262		qp->recv_cq = NULL;
1263		qp->srq = NULL;
1264	} else {
1265		qp->recv_cq = qp_init_attr->recv_cq;
1266		if (qp_init_attr->recv_cq)
1267			atomic_inc(&qp_init_attr->recv_cq->usecnt);
1268		qp->srq = qp_init_attr->srq;
1269		if (qp->srq)
1270			atomic_inc(&qp_init_attr->srq->usecnt);
1271	}
1272
1273	qp->send_cq = qp_init_attr->send_cq;
1274	qp->xrcd    = NULL;
1275
1276	atomic_inc(&pd->usecnt);
1277	if (qp_init_attr->send_cq)
1278		atomic_inc(&qp_init_attr->send_cq->usecnt);
1279	if (qp_init_attr->rwq_ind_tbl)
1280		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1281
1282	if (qp_init_attr->cap.max_rdma_ctxs) {
1283		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1284		if (ret)
1285			goto err;
1286	}
1287
1288	/*
1289	 * Note: all hw drivers guarantee that max_send_sge is lower than
1290	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1291	 * max_send_sge <= max_sge_rd.
1292	 */
1293	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1294	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1295				 device->attrs.max_sge_rd);
1296	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1297		qp->integrity_en = true;
1298
1299	return qp;
1300
1301err:
1302	ib_destroy_qp(qp);
1303	return ERR_PTR(ret);
1304
1305}
1306EXPORT_SYMBOL(ib_create_named_qp);
1307
1308static const struct {
1309	int			valid;
1310	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1311	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1312} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1313	[IB_QPS_RESET] = {
1314		[IB_QPS_RESET] = { .valid = 1 },
1315		[IB_QPS_INIT]  = {
1316			.valid = 1,
1317			.req_param = {
1318				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1319						IB_QP_PORT			|
1320						IB_QP_QKEY),
1321				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1322				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1323						IB_QP_PORT			|
1324						IB_QP_ACCESS_FLAGS),
1325				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1326						IB_QP_PORT			|
1327						IB_QP_ACCESS_FLAGS),
1328				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1329						IB_QP_PORT			|
1330						IB_QP_ACCESS_FLAGS),
1331				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1332						IB_QP_PORT			|
1333						IB_QP_ACCESS_FLAGS),
1334				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1335						IB_QP_QKEY),
1336				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1337						IB_QP_QKEY),
1338			}
1339		},
1340	},
1341	[IB_QPS_INIT]  = {
1342		[IB_QPS_RESET] = { .valid = 1 },
1343		[IB_QPS_ERR] =   { .valid = 1 },
1344		[IB_QPS_INIT]  = {
1345			.valid = 1,
1346			.opt_param = {
1347				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1348						IB_QP_PORT			|
1349						IB_QP_QKEY),
1350				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1351						IB_QP_PORT			|
1352						IB_QP_ACCESS_FLAGS),
1353				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1354						IB_QP_PORT			|
1355						IB_QP_ACCESS_FLAGS),
1356				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1357						IB_QP_PORT			|
1358						IB_QP_ACCESS_FLAGS),
1359				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1360						IB_QP_PORT			|
1361						IB_QP_ACCESS_FLAGS),
1362				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1363						IB_QP_QKEY),
1364				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1365						IB_QP_QKEY),
1366			}
1367		},
1368		[IB_QPS_RTR]   = {
1369			.valid = 1,
1370			.req_param = {
1371				[IB_QPT_UC]  = (IB_QP_AV			|
1372						IB_QP_PATH_MTU			|
1373						IB_QP_DEST_QPN			|
1374						IB_QP_RQ_PSN),
1375				[IB_QPT_RC]  = (IB_QP_AV			|
1376						IB_QP_PATH_MTU			|
1377						IB_QP_DEST_QPN			|
1378						IB_QP_RQ_PSN			|
1379						IB_QP_MAX_DEST_RD_ATOMIC	|
1380						IB_QP_MIN_RNR_TIMER),
1381				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1382						IB_QP_PATH_MTU			|
1383						IB_QP_DEST_QPN			|
1384						IB_QP_RQ_PSN),
1385				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1386						IB_QP_PATH_MTU			|
1387						IB_QP_DEST_QPN			|
1388						IB_QP_RQ_PSN			|
1389						IB_QP_MAX_DEST_RD_ATOMIC	|
1390						IB_QP_MIN_RNR_TIMER),
1391			},
1392			.opt_param = {
1393				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1394						 IB_QP_QKEY),
1395				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1396						 IB_QP_ACCESS_FLAGS		|
1397						 IB_QP_PKEY_INDEX),
1398				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1399						 IB_QP_ACCESS_FLAGS		|
1400						 IB_QP_PKEY_INDEX),
1401				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1402						 IB_QP_ACCESS_FLAGS		|
1403						 IB_QP_PKEY_INDEX),
1404				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1405						 IB_QP_ACCESS_FLAGS		|
1406						 IB_QP_PKEY_INDEX),
1407				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1408						 IB_QP_QKEY),
1409				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1410						 IB_QP_QKEY),
1411			 },
1412		},
1413	},
1414	[IB_QPS_RTR]   = {
1415		[IB_QPS_RESET] = { .valid = 1 },
1416		[IB_QPS_ERR] =   { .valid = 1 },
1417		[IB_QPS_RTS]   = {
1418			.valid = 1,
1419			.req_param = {
1420				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1421				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1422				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1423						IB_QP_RETRY_CNT			|
1424						IB_QP_RNR_RETRY			|
1425						IB_QP_SQ_PSN			|
1426						IB_QP_MAX_QP_RD_ATOMIC),
1427				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1428						IB_QP_RETRY_CNT			|
1429						IB_QP_RNR_RETRY			|
1430						IB_QP_SQ_PSN			|
1431						IB_QP_MAX_QP_RD_ATOMIC),
1432				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1433						IB_QP_SQ_PSN),
1434				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1435				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1436			},
1437			.opt_param = {
1438				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1439						 IB_QP_QKEY),
1440				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1441						 IB_QP_ALT_PATH			|
1442						 IB_QP_ACCESS_FLAGS		|
1443						 IB_QP_PATH_MIG_STATE),
1444				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1445						 IB_QP_ALT_PATH			|
1446						 IB_QP_ACCESS_FLAGS		|
1447						 IB_QP_MIN_RNR_TIMER		|
1448						 IB_QP_PATH_MIG_STATE),
1449				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1450						 IB_QP_ALT_PATH			|
1451						 IB_QP_ACCESS_FLAGS		|
1452						 IB_QP_PATH_MIG_STATE),
1453				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1454						 IB_QP_ALT_PATH			|
1455						 IB_QP_ACCESS_FLAGS		|
1456						 IB_QP_MIN_RNR_TIMER		|
1457						 IB_QP_PATH_MIG_STATE),
1458				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1459						 IB_QP_QKEY),
1460				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1461						 IB_QP_QKEY),
1462				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1463			 }
1464		}
1465	},
1466	[IB_QPS_RTS]   = {
1467		[IB_QPS_RESET] = { .valid = 1 },
1468		[IB_QPS_ERR] =   { .valid = 1 },
1469		[IB_QPS_RTS]   = {
1470			.valid = 1,
1471			.opt_param = {
1472				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1473						IB_QP_QKEY),
1474				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1475						IB_QP_ACCESS_FLAGS		|
1476						IB_QP_ALT_PATH			|
1477						IB_QP_PATH_MIG_STATE),
1478				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1479						IB_QP_ACCESS_FLAGS		|
1480						IB_QP_ALT_PATH			|
1481						IB_QP_PATH_MIG_STATE		|
1482						IB_QP_MIN_RNR_TIMER),
1483				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1484						IB_QP_ACCESS_FLAGS		|
1485						IB_QP_ALT_PATH			|
1486						IB_QP_PATH_MIG_STATE),
1487				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1488						IB_QP_ACCESS_FLAGS		|
1489						IB_QP_ALT_PATH			|
1490						IB_QP_PATH_MIG_STATE		|
1491						IB_QP_MIN_RNR_TIMER),
1492				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1493						IB_QP_QKEY),
1494				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1495						IB_QP_QKEY),
1496				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1497			}
1498		},
1499		[IB_QPS_SQD]   = {
1500			.valid = 1,
1501			.opt_param = {
1502				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1503				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1504				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1505				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1506				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1507				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1508				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1509			}
1510		},
1511	},
1512	[IB_QPS_SQD]   = {
1513		[IB_QPS_RESET] = { .valid = 1 },
1514		[IB_QPS_ERR] =   { .valid = 1 },
1515		[IB_QPS_RTS]   = {
1516			.valid = 1,
1517			.opt_param = {
1518				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1519						IB_QP_QKEY),
1520				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1521						IB_QP_ALT_PATH			|
1522						IB_QP_ACCESS_FLAGS		|
1523						IB_QP_PATH_MIG_STATE),
1524				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1525						IB_QP_ALT_PATH			|
1526						IB_QP_ACCESS_FLAGS		|
1527						IB_QP_MIN_RNR_TIMER		|
1528						IB_QP_PATH_MIG_STATE),
1529				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1530						IB_QP_ALT_PATH			|
1531						IB_QP_ACCESS_FLAGS		|
1532						IB_QP_PATH_MIG_STATE),
1533				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1534						IB_QP_ALT_PATH			|
1535						IB_QP_ACCESS_FLAGS		|
1536						IB_QP_MIN_RNR_TIMER		|
1537						IB_QP_PATH_MIG_STATE),
1538				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1539						IB_QP_QKEY),
1540				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1541						IB_QP_QKEY),
1542			}
1543		},
1544		[IB_QPS_SQD]   = {
1545			.valid = 1,
1546			.opt_param = {
1547				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1548						IB_QP_QKEY),
1549				[IB_QPT_UC]  = (IB_QP_AV			|
1550						IB_QP_ALT_PATH			|
1551						IB_QP_ACCESS_FLAGS		|
1552						IB_QP_PKEY_INDEX		|
1553						IB_QP_PATH_MIG_STATE),
1554				[IB_QPT_RC]  = (IB_QP_PORT			|
1555						IB_QP_AV			|
1556						IB_QP_TIMEOUT			|
1557						IB_QP_RETRY_CNT			|
1558						IB_QP_RNR_RETRY			|
1559						IB_QP_MAX_QP_RD_ATOMIC		|
1560						IB_QP_MAX_DEST_RD_ATOMIC	|
1561						IB_QP_ALT_PATH			|
1562						IB_QP_ACCESS_FLAGS		|
1563						IB_QP_PKEY_INDEX		|
1564						IB_QP_MIN_RNR_TIMER		|
1565						IB_QP_PATH_MIG_STATE),
1566				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1567						IB_QP_AV			|
1568						IB_QP_TIMEOUT			|
1569						IB_QP_RETRY_CNT			|
1570						IB_QP_RNR_RETRY			|
1571						IB_QP_MAX_QP_RD_ATOMIC		|
1572						IB_QP_ALT_PATH			|
1573						IB_QP_ACCESS_FLAGS		|
1574						IB_QP_PKEY_INDEX		|
1575						IB_QP_PATH_MIG_STATE),
1576				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1577						IB_QP_AV			|
1578						IB_QP_TIMEOUT			|
1579						IB_QP_MAX_DEST_RD_ATOMIC	|
1580						IB_QP_ALT_PATH			|
1581						IB_QP_ACCESS_FLAGS		|
1582						IB_QP_PKEY_INDEX		|
1583						IB_QP_MIN_RNR_TIMER		|
1584						IB_QP_PATH_MIG_STATE),
1585				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1586						IB_QP_QKEY),
1587				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1588						IB_QP_QKEY),
1589			}
1590		}
1591	},
1592	[IB_QPS_SQE]   = {
1593		[IB_QPS_RESET] = { .valid = 1 },
1594		[IB_QPS_ERR] =   { .valid = 1 },
1595		[IB_QPS_RTS]   = {
1596			.valid = 1,
1597			.opt_param = {
1598				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1599						IB_QP_QKEY),
1600				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1601						IB_QP_ACCESS_FLAGS),
1602				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1603						IB_QP_QKEY),
1604				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1605						IB_QP_QKEY),
1606			}
1607		}
1608	},
1609	[IB_QPS_ERR] = {
1610		[IB_QPS_RESET] = { .valid = 1 },
1611		[IB_QPS_ERR] =   { .valid = 1 }
1612	}
1613};
1614
1615bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1616			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1617{
1618	enum ib_qp_attr_mask req_param, opt_param;
1619
 
 
 
 
1620	if (mask & IB_QP_CUR_STATE  &&
1621	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1622	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1623		return false;
1624
1625	if (!qp_state_table[cur_state][next_state].valid)
1626		return false;
1627
1628	req_param = qp_state_table[cur_state][next_state].req_param[type];
1629	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1630
1631	if ((mask & req_param) != req_param)
1632		return false;
1633
1634	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1635		return false;
1636
1637	return true;
1638}
1639EXPORT_SYMBOL(ib_modify_qp_is_ok);
1640
1641/**
1642 * ib_resolve_eth_dmac - Resolve destination mac address
1643 * @device:		Device to consider
1644 * @ah_attr:		address handle attribute which describes the
1645 *			source and destination parameters
1646 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1647 * returns 0 on success or appropriate error code. It initializes the
1648 * necessary ah_attr fields when call is successful.
1649 */
1650static int ib_resolve_eth_dmac(struct ib_device *device,
1651			       struct rdma_ah_attr *ah_attr)
1652{
1653	int ret = 0;
1654
1655	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1656		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1657			__be32 addr = 0;
1658
1659			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1660			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1661		} else {
1662			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1663					(char *)ah_attr->roce.dmac);
1664		}
1665	} else {
1666		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1667	}
1668	return ret;
1669}
1670
1671static bool is_qp_type_connected(const struct ib_qp *qp)
1672{
1673	return (qp->qp_type == IB_QPT_UC ||
1674		qp->qp_type == IB_QPT_RC ||
1675		qp->qp_type == IB_QPT_XRC_INI ||
1676		qp->qp_type == IB_QPT_XRC_TGT);
1677}
1678
1679/*
1680 * IB core internal function to perform QP attributes modification.
1681 */
1682static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1683			 int attr_mask, struct ib_udata *udata)
1684{
1685	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1686	const struct ib_gid_attr *old_sgid_attr_av;
1687	const struct ib_gid_attr *old_sgid_attr_alt_av;
1688	int ret;
1689
1690	attr->xmit_slave = NULL;
1691	if (attr_mask & IB_QP_AV) {
1692		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1693					  &old_sgid_attr_av);
1694		if (ret)
1695			return ret;
1696
1697		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1698		    is_qp_type_connected(qp)) {
1699			struct net_device *slave;
1700
1701			/*
1702			 * If the user provided the qp_attr then we have to
1703			 * resolve it. Kerne users have to provide already
1704			 * resolved rdma_ah_attr's.
1705			 */
1706			if (udata) {
1707				ret = ib_resolve_eth_dmac(qp->device,
1708							  &attr->ah_attr);
1709				if (ret)
1710					goto out_av;
1711			}
1712			slave = rdma_lag_get_ah_roce_slave(qp->device,
1713							   &attr->ah_attr,
1714							   GFP_KERNEL);
1715			if (IS_ERR(slave)) {
1716				ret = PTR_ERR(slave);
1717				goto out_av;
1718			}
1719			attr->xmit_slave = slave;
1720		}
1721	}
1722	if (attr_mask & IB_QP_ALT_PATH) {
1723		/*
1724		 * FIXME: This does not track the migration state, so if the
1725		 * user loads a new alternate path after the HW has migrated
1726		 * from primary->alternate we will keep the wrong
1727		 * references. This is OK for IB because the reference
1728		 * counting does not serve any functional purpose.
1729		 */
1730		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1731					  &old_sgid_attr_alt_av);
1732		if (ret)
1733			goto out_av;
1734
1735		/*
1736		 * Today the core code can only handle alternate paths and APM
1737		 * for IB. Ban them in roce mode.
1738		 */
1739		if (!(rdma_protocol_ib(qp->device,
1740				       attr->alt_ah_attr.port_num) &&
1741		      rdma_protocol_ib(qp->device, port))) {
1742			ret = -EINVAL;
1743			goto out;
1744		}
1745	}
1746
1747	if (rdma_ib_or_roce(qp->device, port)) {
1748		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1749			dev_warn(&qp->device->dev,
1750				 "%s rq_psn overflow, masking to 24 bits\n",
1751				 __func__);
1752			attr->rq_psn &= 0xffffff;
1753		}
1754
1755		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1756			dev_warn(&qp->device->dev,
1757				 " %s sq_psn overflow, masking to 24 bits\n",
1758				 __func__);
1759			attr->sq_psn &= 0xffffff;
1760		}
1761	}
1762
1763	/*
1764	 * Bind this qp to a counter automatically based on the rdma counter
1765	 * rules. This only set in RST2INIT with port specified
1766	 */
1767	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1768	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1769		rdma_counter_bind_qp_auto(qp, attr->port_num);
1770
1771	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1772	if (ret)
1773		goto out;
1774
1775	if (attr_mask & IB_QP_PORT)
1776		qp->port = attr->port_num;
1777	if (attr_mask & IB_QP_AV)
1778		qp->av_sgid_attr =
1779			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1780	if (attr_mask & IB_QP_ALT_PATH)
1781		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1782			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1783
1784out:
1785	if (attr_mask & IB_QP_ALT_PATH)
1786		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1787out_av:
1788	if (attr_mask & IB_QP_AV) {
1789		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1790		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1791	}
1792	return ret;
1793}
1794
1795/**
1796 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1797 * @ib_qp: The QP to modify.
1798 * @attr: On input, specifies the QP attributes to modify.  On output,
1799 *   the current values of selected QP attributes are returned.
1800 * @attr_mask: A bit-mask used to specify which attributes of the QP
1801 *   are being modified.
1802 * @udata: pointer to user's input output buffer information
1803 *   are being modified.
1804 * It returns 0 on success and returns appropriate error code on error.
1805 */
1806int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1807			    int attr_mask, struct ib_udata *udata)
1808{
1809	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1810}
1811EXPORT_SYMBOL(ib_modify_qp_with_udata);
1812
1813int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1814{
1815	int rc;
1816	u32 netdev_speed;
1817	struct net_device *netdev;
1818	struct ethtool_link_ksettings lksettings;
1819
1820	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1821		return -EINVAL;
1822
1823	netdev = ib_device_get_netdev(dev, port_num);
1824	if (!netdev)
1825		return -ENODEV;
1826
1827	rtnl_lock();
1828	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1829	rtnl_unlock();
1830
1831	dev_put(netdev);
1832
1833	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1834		netdev_speed = lksettings.base.speed;
1835	} else {
1836		netdev_speed = SPEED_1000;
1837		pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1838			netdev_speed);
1839	}
1840
1841	if (netdev_speed <= SPEED_1000) {
1842		*width = IB_WIDTH_1X;
1843		*speed = IB_SPEED_SDR;
1844	} else if (netdev_speed <= SPEED_10000) {
1845		*width = IB_WIDTH_1X;
1846		*speed = IB_SPEED_FDR10;
1847	} else if (netdev_speed <= SPEED_20000) {
1848		*width = IB_WIDTH_4X;
1849		*speed = IB_SPEED_DDR;
1850	} else if (netdev_speed <= SPEED_25000) {
1851		*width = IB_WIDTH_1X;
1852		*speed = IB_SPEED_EDR;
1853	} else if (netdev_speed <= SPEED_40000) {
1854		*width = IB_WIDTH_4X;
1855		*speed = IB_SPEED_FDR10;
1856	} else {
1857		*width = IB_WIDTH_4X;
1858		*speed = IB_SPEED_EDR;
1859	}
1860
1861	return 0;
1862}
1863EXPORT_SYMBOL(ib_get_eth_speed);
1864
1865int ib_modify_qp(struct ib_qp *qp,
1866		 struct ib_qp_attr *qp_attr,
1867		 int qp_attr_mask)
1868{
1869	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1870}
1871EXPORT_SYMBOL(ib_modify_qp);
1872
1873int ib_query_qp(struct ib_qp *qp,
1874		struct ib_qp_attr *qp_attr,
1875		int qp_attr_mask,
1876		struct ib_qp_init_attr *qp_init_attr)
1877{
1878	qp_attr->ah_attr.grh.sgid_attr = NULL;
1879	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1880
1881	return qp->device->ops.query_qp ?
1882		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1883					 qp_init_attr) : -EOPNOTSUPP;
1884}
1885EXPORT_SYMBOL(ib_query_qp);
1886
1887int ib_close_qp(struct ib_qp *qp)
1888{
1889	struct ib_qp *real_qp;
1890	unsigned long flags;
1891
1892	real_qp = qp->real_qp;
1893	if (real_qp == qp)
1894		return -EINVAL;
1895
1896	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1897	list_del(&qp->open_list);
1898	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1899
1900	atomic_dec(&real_qp->usecnt);
1901	if (qp->qp_sec)
1902		ib_close_shared_qp_security(qp->qp_sec);
1903	kfree(qp);
1904
1905	return 0;
1906}
1907EXPORT_SYMBOL(ib_close_qp);
1908
1909static int __ib_destroy_shared_qp(struct ib_qp *qp)
1910{
1911	struct ib_xrcd *xrcd;
1912	struct ib_qp *real_qp;
1913	int ret;
1914
1915	real_qp = qp->real_qp;
1916	xrcd = real_qp->xrcd;
1917	down_write(&xrcd->tgt_qps_rwsem);
1918	ib_close_qp(qp);
1919	if (atomic_read(&real_qp->usecnt) == 0)
1920		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1921	else
1922		real_qp = NULL;
1923	up_write(&xrcd->tgt_qps_rwsem);
1924
1925	if (real_qp) {
1926		ret = ib_destroy_qp(real_qp);
1927		if (!ret)
1928			atomic_dec(&xrcd->usecnt);
1929	}
1930
1931	return 0;
1932}
1933
1934int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1935{
1936	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1937	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1938	struct ib_pd *pd;
1939	struct ib_cq *scq, *rcq;
1940	struct ib_srq *srq;
1941	struct ib_rwq_ind_table *ind_tbl;
1942	struct ib_qp_security *sec;
1943	int ret;
1944
1945	WARN_ON_ONCE(qp->mrs_used > 0);
 
 
 
1946
1947	if (atomic_read(&qp->usecnt))
1948		return -EBUSY;
1949
1950	if (qp->real_qp != qp)
1951		return __ib_destroy_shared_qp(qp);
1952
1953	pd   = qp->pd;
1954	scq  = qp->send_cq;
1955	rcq  = qp->recv_cq;
1956	srq  = qp->srq;
1957	ind_tbl = qp->rwq_ind_tbl;
1958	sec  = qp->qp_sec;
1959	if (sec)
1960		ib_destroy_qp_security_begin(sec);
1961
1962	if (!qp->uobject)
1963		rdma_rw_cleanup_mrs(qp);
1964
1965	rdma_counter_unbind_qp(qp, true);
1966	rdma_restrack_del(&qp->res);
1967	ret = qp->device->ops.destroy_qp(qp, udata);
1968	if (!ret) {
1969		if (alt_path_sgid_attr)
1970			rdma_put_gid_attr(alt_path_sgid_attr);
1971		if (av_sgid_attr)
1972			rdma_put_gid_attr(av_sgid_attr);
1973		if (pd)
1974			atomic_dec(&pd->usecnt);
1975		if (scq)
1976			atomic_dec(&scq->usecnt);
1977		if (rcq)
1978			atomic_dec(&rcq->usecnt);
1979		if (srq)
1980			atomic_dec(&srq->usecnt);
1981		if (ind_tbl)
1982			atomic_dec(&ind_tbl->usecnt);
1983		if (sec)
1984			ib_destroy_qp_security_end(sec);
1985	} else {
1986		if (sec)
1987			ib_destroy_qp_security_abort(sec);
1988	}
1989
1990	return ret;
1991}
1992EXPORT_SYMBOL(ib_destroy_qp_user);
1993
1994/* Completion queues */
1995
1996struct ib_cq *__ib_create_cq(struct ib_device *device,
1997			     ib_comp_handler comp_handler,
1998			     void (*event_handler)(struct ib_event *, void *),
1999			     void *cq_context,
2000			     const struct ib_cq_init_attr *cq_attr,
2001			     const char *caller)
2002{
2003	struct ib_cq *cq;
2004	int ret;
2005
2006	cq = rdma_zalloc_drv_obj(device, ib_cq);
2007	if (!cq)
2008		return ERR_PTR(-ENOMEM);
2009
2010	cq->device = device;
2011	cq->uobject = NULL;
2012	cq->comp_handler = comp_handler;
2013	cq->event_handler = event_handler;
2014	cq->cq_context = cq_context;
2015	atomic_set(&cq->usecnt, 0);
2016
2017	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2018	rdma_restrack_set_name(&cq->res, caller);
2019
2020	ret = device->ops.create_cq(cq, cq_attr, NULL);
2021	if (ret) {
2022		rdma_restrack_put(&cq->res);
2023		kfree(cq);
2024		return ERR_PTR(ret);
2025	}
2026
2027	rdma_restrack_add(&cq->res);
2028	return cq;
2029}
2030EXPORT_SYMBOL(__ib_create_cq);
2031
2032int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2033{
2034	if (cq->shared)
2035		return -EOPNOTSUPP;
2036
2037	return cq->device->ops.modify_cq ?
2038		cq->device->ops.modify_cq(cq, cq_count,
2039					  cq_period) : -EOPNOTSUPP;
2040}
2041EXPORT_SYMBOL(rdma_set_cq_moderation);
2042
2043int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2044{
2045	int ret;
2046
2047	if (WARN_ON_ONCE(cq->shared))
2048		return -EOPNOTSUPP;
2049
2050	if (atomic_read(&cq->usecnt))
2051		return -EBUSY;
2052
2053	ret = cq->device->ops.destroy_cq(cq, udata);
2054	if (ret)
2055		return ret;
2056
2057	rdma_restrack_del(&cq->res);
2058	kfree(cq);
2059	return ret;
2060}
2061EXPORT_SYMBOL(ib_destroy_cq_user);
2062
2063int ib_resize_cq(struct ib_cq *cq, int cqe)
2064{
2065	if (cq->shared)
2066		return -EOPNOTSUPP;
2067
2068	return cq->device->ops.resize_cq ?
2069		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2070}
2071EXPORT_SYMBOL(ib_resize_cq);
2072
2073/* Memory regions */
2074
2075struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2076			     u64 virt_addr, int access_flags)
2077{
2078	struct ib_mr *mr;
2079
2080	if (access_flags & IB_ACCESS_ON_DEMAND) {
2081		if (!(pd->device->attrs.device_cap_flags &
2082		      IB_DEVICE_ON_DEMAND_PAGING)) {
2083			pr_debug("ODP support not available\n");
2084			return ERR_PTR(-EINVAL);
2085		}
 
 
2086	}
2087
2088	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2089					 access_flags, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2090
2091	if (IS_ERR(mr))
2092		return mr;
2093
2094	mr->device = pd->device;
2095	mr->pd = pd;
2096	mr->dm = NULL;
2097	atomic_inc(&pd->usecnt);
2098
2099	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2100	rdma_restrack_parent_name(&mr->res, &pd->res);
2101	rdma_restrack_add(&mr->res);
2102
2103	return mr;
2104}
2105EXPORT_SYMBOL(ib_reg_user_mr);
2106
2107int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2108		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
 
 
 
 
 
2109{
2110	if (!pd->device->ops.advise_mr)
2111		return -EOPNOTSUPP;
2112
2113	if (!num_sge)
2114		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115
2116	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2117					 NULL);
 
 
2118}
2119EXPORT_SYMBOL(ib_advise_mr);
2120
2121int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2122{
2123	struct ib_pd *pd = mr->pd;
2124	struct ib_dm *dm = mr->dm;
2125	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2126	int ret;
2127
2128	trace_mr_dereg(mr);
2129	rdma_restrack_del(&mr->res);
2130	ret = mr->device->ops.dereg_mr(mr, udata);
2131	if (!ret) {
 
 
2132		atomic_dec(&pd->usecnt);
2133		if (dm)
2134			atomic_dec(&dm->usecnt);
2135		kfree(sig_attrs);
2136	}
2137
2138	return ret;
2139}
2140EXPORT_SYMBOL(ib_dereg_mr_user);
2141
2142/**
2143 * ib_alloc_mr() - Allocates a memory region
2144 * @pd:            protection domain associated with the region
2145 * @mr_type:       memory region type
2146 * @max_num_sg:    maximum sg entries available for registration.
2147 *
2148 * Notes:
2149 * Memory registeration page/sg lists must not exceed max_num_sg.
2150 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2151 * max_num_sg * used_page_size.
2152 *
2153 */
2154struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2155			  u32 max_num_sg)
2156{
2157	struct ib_mr *mr;
2158
2159	if (!pd->device->ops.alloc_mr) {
2160		mr = ERR_PTR(-EOPNOTSUPP);
2161		goto out;
2162	}
2163
2164	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2165		WARN_ON_ONCE(1);
2166		mr = ERR_PTR(-EINVAL);
2167		goto out;
 
 
2168	}
2169
2170	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2171	if (IS_ERR(mr))
2172		goto out;
2173
2174	mr->device = pd->device;
2175	mr->pd = pd;
2176	mr->dm = NULL;
2177	mr->uobject = NULL;
2178	atomic_inc(&pd->usecnt);
2179	mr->need_inval = false;
2180	mr->type = mr_type;
2181	mr->sig_attrs = NULL;
2182
2183	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2184	rdma_restrack_parent_name(&mr->res, &pd->res);
2185	rdma_restrack_add(&mr->res);
2186out:
2187	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2188	return mr;
2189}
2190EXPORT_SYMBOL(ib_alloc_mr);
2191
2192/**
2193 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2194 * @pd:                      protection domain associated with the region
2195 * @max_num_data_sg:         maximum data sg entries available for registration
2196 * @max_num_meta_sg:         maximum metadata sg entries available for
2197 *                           registration
2198 *
2199 * Notes:
2200 * Memory registration page/sg lists must not exceed max_num_sg,
2201 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2202 *
2203 */
2204struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2205				    u32 max_num_data_sg,
2206				    u32 max_num_meta_sg)
2207{
2208	struct ib_mr *mr;
2209	struct ib_sig_attrs *sig_attrs;
2210
2211	if (!pd->device->ops.alloc_mr_integrity ||
2212	    !pd->device->ops.map_mr_sg_pi) {
2213		mr = ERR_PTR(-EOPNOTSUPP);
2214		goto out;
2215	}
2216
2217	if (!max_num_meta_sg) {
2218		mr = ERR_PTR(-EINVAL);
2219		goto out;
2220	}
2221
2222	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2223	if (!sig_attrs) {
2224		mr = ERR_PTR(-ENOMEM);
2225		goto out;
2226	}
2227
2228	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2229						max_num_meta_sg);
2230	if (IS_ERR(mr)) {
2231		kfree(sig_attrs);
2232		goto out;
2233	}
2234
2235	mr->device = pd->device;
2236	mr->pd = pd;
2237	mr->dm = NULL;
2238	mr->uobject = NULL;
2239	atomic_inc(&pd->usecnt);
2240	mr->need_inval = false;
2241	mr->type = IB_MR_TYPE_INTEGRITY;
2242	mr->sig_attrs = sig_attrs;
2243
2244	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2245	rdma_restrack_parent_name(&mr->res, &pd->res);
2246	rdma_restrack_add(&mr->res);
2247out:
2248	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2249	return mr;
2250}
2251EXPORT_SYMBOL(ib_alloc_mr_integrity);
2252
2253/* Multicast groups */
2254
2255static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2256{
2257	struct ib_qp_init_attr init_attr = {};
2258	struct ib_qp_attr attr = {};
2259	int num_eth_ports = 0;
2260	unsigned int port;
2261
2262	/* If QP state >= init, it is assigned to a port and we can check this
2263	 * port only.
2264	 */
2265	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2266		if (attr.qp_state >= IB_QPS_INIT) {
2267			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2268			    IB_LINK_LAYER_INFINIBAND)
2269				return true;
2270			goto lid_check;
2271		}
2272	}
2273
2274	/* Can't get a quick answer, iterate over all ports */
2275	rdma_for_each_port(qp->device, port)
2276		if (rdma_port_get_link_layer(qp->device, port) !=
2277		    IB_LINK_LAYER_INFINIBAND)
2278			num_eth_ports++;
2279
2280	/* If we have at lease one Ethernet port, RoCE annex declares that
2281	 * multicast LID should be ignored. We can't tell at this step if the
2282	 * QP belongs to an IB or Ethernet port.
2283	 */
2284	if (num_eth_ports)
2285		return true;
2286
2287	/* If all the ports are IB, we can check according to IB spec. */
2288lid_check:
2289	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2290		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2291}
 
2292
2293int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2294{
 
2295	int ret;
2296
2297	if (!qp->device->ops.attach_mcast)
2298		return -EOPNOTSUPP;
 
 
2299
2300	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2301	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2302		return -EINVAL;
2303
2304	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2305	if (!ret)
2306		atomic_inc(&qp->usecnt);
2307	return ret;
2308}
2309EXPORT_SYMBOL(ib_attach_mcast);
 
 
2310
2311int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
 
 
2312{
2313	int ret;
2314
2315	if (!qp->device->ops.detach_mcast)
2316		return -EOPNOTSUPP;
2317
2318	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2319	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2320		return -EINVAL;
 
 
 
2321
2322	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2323	if (!ret)
2324		atomic_dec(&qp->usecnt);
2325	return ret;
2326}
2327EXPORT_SYMBOL(ib_detach_mcast);
2328
2329/**
2330 * ib_alloc_xrcd_user - Allocates an XRC domain.
2331 * @device: The device on which to allocate the XRC domain.
2332 * @inode: inode to connect XRCD
2333 * @udata: Valid user data or NULL for kernel object
2334 */
2335struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2336				   struct inode *inode, struct ib_udata *udata)
2337{
2338	struct ib_xrcd *xrcd;
2339	int ret;
2340
2341	if (!device->ops.alloc_xrcd)
2342		return ERR_PTR(-EOPNOTSUPP);
2343
2344	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2345	if (!xrcd)
2346		return ERR_PTR(-ENOMEM);
2347
2348	xrcd->device = device;
2349	xrcd->inode = inode;
2350	atomic_set(&xrcd->usecnt, 0);
2351	init_rwsem(&xrcd->tgt_qps_rwsem);
2352	xa_init(&xrcd->tgt_qps);
2353
2354	ret = device->ops.alloc_xrcd(xrcd, udata);
2355	if (ret)
2356		goto err;
2357	return xrcd;
2358err:
2359	kfree(xrcd);
2360	return ERR_PTR(ret);
2361}
2362EXPORT_SYMBOL(ib_alloc_xrcd_user);
2363
2364/**
2365 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2366 * @xrcd: The XRC domain to deallocate.
2367 * @udata: Valid user data or NULL for kernel object
2368 */
2369int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2370{
 
2371	int ret;
2372
2373	if (atomic_read(&xrcd->usecnt))
2374		return -EBUSY;
 
 
2375
2376	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2377	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2378	if (ret)
2379		return ret;
2380	kfree(xrcd);
2381	return ret;
2382}
2383EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2384
2385/**
2386 * ib_create_wq - Creates a WQ associated with the specified protection
2387 * domain.
2388 * @pd: The protection domain associated with the WQ.
2389 * @wq_attr: A list of initial attributes required to create the
2390 * WQ. If WQ creation succeeds, then the attributes are updated to
2391 * the actual capabilities of the created WQ.
2392 *
2393 * wq_attr->max_wr and wq_attr->max_sge determine
2394 * the requested size of the WQ, and set to the actual values allocated
2395 * on return.
2396 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2397 * at least as large as the requested values.
2398 */
2399struct ib_wq *ib_create_wq(struct ib_pd *pd,
2400			   struct ib_wq_init_attr *wq_attr)
2401{
2402	struct ib_wq *wq;
2403
2404	if (!pd->device->ops.create_wq)
2405		return ERR_PTR(-EOPNOTSUPP);
2406
2407	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2408	if (!IS_ERR(wq)) {
2409		wq->event_handler = wq_attr->event_handler;
2410		wq->wq_context = wq_attr->wq_context;
2411		wq->wq_type = wq_attr->wq_type;
2412		wq->cq = wq_attr->cq;
2413		wq->device = pd->device;
2414		wq->pd = pd;
2415		wq->uobject = NULL;
2416		atomic_inc(&pd->usecnt);
2417		atomic_inc(&wq_attr->cq->usecnt);
2418		atomic_set(&wq->usecnt, 0);
2419	}
2420	return wq;
2421}
2422EXPORT_SYMBOL(ib_create_wq);
2423
2424/**
2425 * ib_destroy_wq_user - Destroys the specified user WQ.
2426 * @wq: The WQ to destroy.
2427 * @udata: Valid user data
2428 */
2429int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2430{
2431	struct ib_cq *cq = wq->cq;
2432	struct ib_pd *pd = wq->pd;
2433	int ret;
2434
2435	if (atomic_read(&wq->usecnt))
2436		return -EBUSY;
2437
2438	ret = wq->device->ops.destroy_wq(wq, udata);
2439	if (ret)
2440		return ret;
2441
2442	atomic_dec(&pd->usecnt);
2443	atomic_dec(&cq->usecnt);
2444	return ret;
2445}
2446EXPORT_SYMBOL(ib_destroy_wq_user);
2447
2448int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2449		       struct ib_mr_status *mr_status)
2450{
2451	if (!mr->device->ops.check_mr_status)
2452		return -EOPNOTSUPP;
2453
2454	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2455}
2456EXPORT_SYMBOL(ib_check_mr_status);
2457
2458int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2459			 int state)
2460{
2461	if (!device->ops.set_vf_link_state)
2462		return -EOPNOTSUPP;
2463
2464	return device->ops.set_vf_link_state(device, vf, port, state);
2465}
2466EXPORT_SYMBOL(ib_set_vf_link_state);
2467
2468int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2469		     struct ifla_vf_info *info)
2470{
2471	if (!device->ops.get_vf_config)
2472		return -EOPNOTSUPP;
2473
2474	return device->ops.get_vf_config(device, vf, port, info);
2475}
2476EXPORT_SYMBOL(ib_get_vf_config);
2477
2478int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2479		    struct ifla_vf_stats *stats)
2480{
2481	if (!device->ops.get_vf_stats)
2482		return -EOPNOTSUPP;
2483
2484	return device->ops.get_vf_stats(device, vf, port, stats);
2485}
2486EXPORT_SYMBOL(ib_get_vf_stats);
2487
2488int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2489		   int type)
2490{
2491	if (!device->ops.set_vf_guid)
2492		return -EOPNOTSUPP;
2493
2494	return device->ops.set_vf_guid(device, vf, port, guid, type);
2495}
2496EXPORT_SYMBOL(ib_set_vf_guid);
2497
2498int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2499		   struct ifla_vf_guid *node_guid,
2500		   struct ifla_vf_guid *port_guid)
2501{
2502	if (!device->ops.get_vf_guid)
2503		return -EOPNOTSUPP;
2504
2505	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2506}
2507EXPORT_SYMBOL(ib_get_vf_guid);
2508/**
2509 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2510 *     information) and set an appropriate memory region for registration.
2511 * @mr:             memory region
2512 * @data_sg:        dma mapped scatterlist for data
2513 * @data_sg_nents:  number of entries in data_sg
2514 * @data_sg_offset: offset in bytes into data_sg
2515 * @meta_sg:        dma mapped scatterlist for metadata
2516 * @meta_sg_nents:  number of entries in meta_sg
2517 * @meta_sg_offset: offset in bytes into meta_sg
2518 * @page_size:      page vector desired page size
2519 *
2520 * Constraints:
2521 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2522 *
2523 * Return: 0 on success.
2524 *
2525 * After this completes successfully, the  memory region
2526 * is ready for registration.
2527 */
2528int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2529		    int data_sg_nents, unsigned int *data_sg_offset,
2530		    struct scatterlist *meta_sg, int meta_sg_nents,
2531		    unsigned int *meta_sg_offset, unsigned int page_size)
2532{
2533	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2534		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2535		return -EOPNOTSUPP;
2536
2537	mr->page_size = page_size;
2538
2539	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2540					    data_sg_offset, meta_sg,
2541					    meta_sg_nents, meta_sg_offset);
2542}
2543EXPORT_SYMBOL(ib_map_mr_sg_pi);
2544
2545/**
2546 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2547 *     and set it the memory region.
2548 * @mr:            memory region
2549 * @sg:            dma mapped scatterlist
2550 * @sg_nents:      number of entries in sg
2551 * @sg_offset:     offset in bytes into sg
2552 * @page_size:     page vector desired page size
2553 *
2554 * Constraints:
2555 *
2556 * - The first sg element is allowed to have an offset.
2557 * - Each sg element must either be aligned to page_size or virtually
2558 *   contiguous to the previous element. In case an sg element has a
2559 *   non-contiguous offset, the mapping prefix will not include it.
2560 * - The last sg element is allowed to have length less than page_size.
2561 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2562 *   then only max_num_sg entries will be mapped.
2563 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2564 *   constraints holds and the page_size argument is ignored.
2565 *
2566 * Returns the number of sg elements that were mapped to the memory region.
2567 *
2568 * After this completes successfully, the  memory region
2569 * is ready for registration.
2570 */
2571int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2572		 unsigned int *sg_offset, unsigned int page_size)
2573{
2574	if (unlikely(!mr->device->ops.map_mr_sg))
2575		return -EOPNOTSUPP;
2576
2577	mr->page_size = page_size;
2578
2579	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2580}
2581EXPORT_SYMBOL(ib_map_mr_sg);
2582
2583/**
2584 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2585 *     to a page vector
2586 * @mr:            memory region
2587 * @sgl:           dma mapped scatterlist
2588 * @sg_nents:      number of entries in sg
2589 * @sg_offset_p:   ==== =======================================================
2590 *                 IN   start offset in bytes into sg
2591 *                 OUT  offset in bytes for element n of the sg of the first
2592 *                      byte that has not been processed where n is the return
2593 *                      value of this function.
2594 *                 ==== =======================================================
2595 * @set_page:      driver page assignment function pointer
2596 *
2597 * Core service helper for drivers to convert the largest
2598 * prefix of given sg list to a page vector. The sg list
2599 * prefix converted is the prefix that meet the requirements
2600 * of ib_map_mr_sg.
2601 *
2602 * Returns the number of sg elements that were assigned to
2603 * a page vector.
2604 */
2605int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2606		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2607{
2608	struct scatterlist *sg;
2609	u64 last_end_dma_addr = 0;
2610	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2611	unsigned int last_page_off = 0;
2612	u64 page_mask = ~((u64)mr->page_size - 1);
2613	int i, ret;
2614
2615	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2616		return -EINVAL;
2617
2618	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2619	mr->length = 0;
2620
2621	for_each_sg(sgl, sg, sg_nents, i) {
2622		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2623		u64 prev_addr = dma_addr;
2624		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2625		u64 end_dma_addr = dma_addr + dma_len;
2626		u64 page_addr = dma_addr & page_mask;
2627
2628		/*
2629		 * For the second and later elements, check whether either the
2630		 * end of element i-1 or the start of element i is not aligned
2631		 * on a page boundary.
2632		 */
2633		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2634			/* Stop mapping if there is a gap. */
2635			if (last_end_dma_addr != dma_addr)
2636				break;
2637
2638			/*
2639			 * Coalesce this element with the last. If it is small
2640			 * enough just update mr->length. Otherwise start
2641			 * mapping from the next page.
2642			 */
2643			goto next_page;
2644		}
2645
2646		do {
2647			ret = set_page(mr, page_addr);
2648			if (unlikely(ret < 0)) {
2649				sg_offset = prev_addr - sg_dma_address(sg);
2650				mr->length += prev_addr - dma_addr;
2651				if (sg_offset_p)
2652					*sg_offset_p = sg_offset;
2653				return i || sg_offset ? i : ret;
2654			}
2655			prev_addr = page_addr;
2656next_page:
2657			page_addr += mr->page_size;
2658		} while (page_addr < end_dma_addr);
2659
2660		mr->length += dma_len;
2661		last_end_dma_addr = end_dma_addr;
2662		last_page_off = end_dma_addr & ~page_mask;
2663
2664		sg_offset = 0;
2665	}
2666
2667	if (sg_offset_p)
2668		*sg_offset_p = 0;
2669	return i;
2670}
2671EXPORT_SYMBOL(ib_sg_to_pages);
2672
2673struct ib_drain_cqe {
2674	struct ib_cqe cqe;
2675	struct completion done;
2676};
2677
2678static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2679{
2680	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2681						cqe);
2682
2683	complete(&cqe->done);
2684}
2685
2686/*
2687 * Post a WR and block until its completion is reaped for the SQ.
2688 */
2689static void __ib_drain_sq(struct ib_qp *qp)
2690{
2691	struct ib_cq *cq = qp->send_cq;
2692	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2693	struct ib_drain_cqe sdrain;
2694	struct ib_rdma_wr swr = {
2695		.wr = {
2696			.next = NULL,
2697			{ .wr_cqe	= &sdrain.cqe, },
2698			.opcode	= IB_WR_RDMA_WRITE,
2699		},
2700	};
2701	int ret;
2702
2703	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2704	if (ret) {
2705		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2706		return;
2707	}
2708
2709	sdrain.cqe.done = ib_drain_qp_done;
2710	init_completion(&sdrain.done);
2711
2712	ret = ib_post_send(qp, &swr.wr, NULL);
2713	if (ret) {
2714		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2715		return;
2716	}
2717
2718	if (cq->poll_ctx == IB_POLL_DIRECT)
2719		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2720			ib_process_cq_direct(cq, -1);
2721	else
2722		wait_for_completion(&sdrain.done);
2723}
2724
2725/*
2726 * Post a WR and block until its completion is reaped for the RQ.
2727 */
2728static void __ib_drain_rq(struct ib_qp *qp)
2729{
2730	struct ib_cq *cq = qp->recv_cq;
2731	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2732	struct ib_drain_cqe rdrain;
2733	struct ib_recv_wr rwr = {};
2734	int ret;
2735
2736	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2737	if (ret) {
2738		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2739		return;
2740	}
2741
2742	rwr.wr_cqe = &rdrain.cqe;
2743	rdrain.cqe.done = ib_drain_qp_done;
2744	init_completion(&rdrain.done);
2745
2746	ret = ib_post_recv(qp, &rwr, NULL);
2747	if (ret) {
2748		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2749		return;
2750	}
2751
2752	if (cq->poll_ctx == IB_POLL_DIRECT)
2753		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2754			ib_process_cq_direct(cq, -1);
2755	else
2756		wait_for_completion(&rdrain.done);
2757}
2758
2759/**
2760 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2761 *		   application.
2762 * @qp:            queue pair to drain
2763 *
2764 * If the device has a provider-specific drain function, then
2765 * call that.  Otherwise call the generic drain function
2766 * __ib_drain_sq().
2767 *
2768 * The caller must:
2769 *
2770 * ensure there is room in the CQ and SQ for the drain work request and
2771 * completion.
2772 *
2773 * allocate the CQ using ib_alloc_cq().
2774 *
2775 * ensure that there are no other contexts that are posting WRs concurrently.
2776 * Otherwise the drain is not guaranteed.
2777 */
2778void ib_drain_sq(struct ib_qp *qp)
2779{
2780	if (qp->device->ops.drain_sq)
2781		qp->device->ops.drain_sq(qp);
2782	else
2783		__ib_drain_sq(qp);
2784	trace_cq_drain_complete(qp->send_cq);
2785}
2786EXPORT_SYMBOL(ib_drain_sq);
2787
2788/**
2789 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2790 *		   application.
2791 * @qp:            queue pair to drain
2792 *
2793 * If the device has a provider-specific drain function, then
2794 * call that.  Otherwise call the generic drain function
2795 * __ib_drain_rq().
2796 *
2797 * The caller must:
2798 *
2799 * ensure there is room in the CQ and RQ for the drain work request and
2800 * completion.
2801 *
2802 * allocate the CQ using ib_alloc_cq().
2803 *
2804 * ensure that there are no other contexts that are posting WRs concurrently.
2805 * Otherwise the drain is not guaranteed.
2806 */
2807void ib_drain_rq(struct ib_qp *qp)
2808{
2809	if (qp->device->ops.drain_rq)
2810		qp->device->ops.drain_rq(qp);
2811	else
2812		__ib_drain_rq(qp);
2813	trace_cq_drain_complete(qp->recv_cq);
2814}
2815EXPORT_SYMBOL(ib_drain_rq);
2816
2817/**
2818 * ib_drain_qp() - Block until all CQEs have been consumed by the
2819 *		   application on both the RQ and SQ.
2820 * @qp:            queue pair to drain
2821 *
2822 * The caller must:
2823 *
2824 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2825 * and completions.
2826 *
2827 * allocate the CQs using ib_alloc_cq().
2828 *
2829 * ensure that there are no other contexts that are posting WRs concurrently.
2830 * Otherwise the drain is not guaranteed.
2831 */
2832void ib_drain_qp(struct ib_qp *qp)
2833{
2834	ib_drain_sq(qp);
2835	if (!qp->srq)
2836		ib_drain_rq(qp);
2837}
2838EXPORT_SYMBOL(ib_drain_qp);
2839
2840struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2841				     enum rdma_netdev_t type, const char *name,
2842				     unsigned char name_assign_type,
2843				     void (*setup)(struct net_device *))
2844{
2845	struct rdma_netdev_alloc_params params;
2846	struct net_device *netdev;
2847	int rc;
2848
2849	if (!device->ops.rdma_netdev_get_params)
2850		return ERR_PTR(-EOPNOTSUPP);
2851
2852	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2853						&params);
2854	if (rc)
2855		return ERR_PTR(rc);
2856
2857	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2858				  setup, params.txqs, params.rxqs);
2859	if (!netdev)
2860		return ERR_PTR(-ENOMEM);
2861
2862	return netdev;
2863}
2864EXPORT_SYMBOL(rdma_alloc_netdev);
2865
2866int rdma_init_netdev(struct ib_device *device, u32 port_num,
2867		     enum rdma_netdev_t type, const char *name,
2868		     unsigned char name_assign_type,
2869		     void (*setup)(struct net_device *),
2870		     struct net_device *netdev)
2871{
2872	struct rdma_netdev_alloc_params params;
2873	int rc;
2874
2875	if (!device->ops.rdma_netdev_get_params)
2876		return -EOPNOTSUPP;
2877
2878	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2879						&params);
2880	if (rc)
2881		return rc;
2882
2883	return params.initialize_rdma_netdev(device, port_num,
2884					     netdev, params.param);
2885}
2886EXPORT_SYMBOL(rdma_init_netdev);
2887
2888void __rdma_block_iter_start(struct ib_block_iter *biter,
2889			     struct scatterlist *sglist, unsigned int nents,
2890			     unsigned long pgsz)
2891{
2892	memset(biter, 0, sizeof(struct ib_block_iter));
2893	biter->__sg = sglist;
2894	biter->__sg_nents = nents;
2895
2896	/* Driver provides best block size to use */
2897	biter->__pg_bit = __fls(pgsz);
2898}
2899EXPORT_SYMBOL(__rdma_block_iter_start);
2900
2901bool __rdma_block_iter_next(struct ib_block_iter *biter)
2902{
2903	unsigned int block_offset;
2904
2905	if (!biter->__sg_nents || !biter->__sg)
2906		return false;
2907
2908	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2909	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2910	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2911
2912	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2913		biter->__sg_advance = 0;
2914		biter->__sg = sg_next(biter->__sg);
2915		biter->__sg_nents--;
2916	}
2917
2918	return true;
2919}
2920EXPORT_SYMBOL(__rdma_block_iter_next);