Loading...
1/*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/mutex.h>
41#include <rdma/rdma_netlink.h>
42
43#include "core_priv.h"
44
45MODULE_AUTHOR("Roland Dreier");
46MODULE_DESCRIPTION("core kernel InfiniBand API");
47MODULE_LICENSE("Dual BSD/GPL");
48
49struct ib_client_data {
50 struct list_head list;
51 struct ib_client *client;
52 void * data;
53};
54
55struct workqueue_struct *ib_wq;
56EXPORT_SYMBOL_GPL(ib_wq);
57
58static LIST_HEAD(device_list);
59static LIST_HEAD(client_list);
60
61/*
62 * device_mutex protects access to both device_list and client_list.
63 * There's no real point to using multiple locks or something fancier
64 * like an rwsem: we always access both lists, and we're always
65 * modifying one list or the other list. In any case this is not a
66 * hot path so there's no point in trying to optimize.
67 */
68static DEFINE_MUTEX(device_mutex);
69
70static int ib_device_check_mandatory(struct ib_device *device)
71{
72#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x }
73 static const struct {
74 size_t offset;
75 char *name;
76 } mandatory_table[] = {
77 IB_MANDATORY_FUNC(query_device),
78 IB_MANDATORY_FUNC(query_port),
79 IB_MANDATORY_FUNC(query_pkey),
80 IB_MANDATORY_FUNC(query_gid),
81 IB_MANDATORY_FUNC(alloc_pd),
82 IB_MANDATORY_FUNC(dealloc_pd),
83 IB_MANDATORY_FUNC(create_ah),
84 IB_MANDATORY_FUNC(destroy_ah),
85 IB_MANDATORY_FUNC(create_qp),
86 IB_MANDATORY_FUNC(modify_qp),
87 IB_MANDATORY_FUNC(destroy_qp),
88 IB_MANDATORY_FUNC(post_send),
89 IB_MANDATORY_FUNC(post_recv),
90 IB_MANDATORY_FUNC(create_cq),
91 IB_MANDATORY_FUNC(destroy_cq),
92 IB_MANDATORY_FUNC(poll_cq),
93 IB_MANDATORY_FUNC(req_notify_cq),
94 IB_MANDATORY_FUNC(get_dma_mr),
95 IB_MANDATORY_FUNC(dereg_mr)
96 };
97 int i;
98
99 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
100 if (!*(void **) ((void *) device + mandatory_table[i].offset)) {
101 printk(KERN_WARNING "Device %s is missing mandatory function %s\n",
102 device->name, mandatory_table[i].name);
103 return -EINVAL;
104 }
105 }
106
107 return 0;
108}
109
110static struct ib_device *__ib_device_get_by_name(const char *name)
111{
112 struct ib_device *device;
113
114 list_for_each_entry(device, &device_list, core_list)
115 if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX))
116 return device;
117
118 return NULL;
119}
120
121
122static int alloc_name(char *name)
123{
124 unsigned long *inuse;
125 char buf[IB_DEVICE_NAME_MAX];
126 struct ib_device *device;
127 int i;
128
129 inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL);
130 if (!inuse)
131 return -ENOMEM;
132
133 list_for_each_entry(device, &device_list, core_list) {
134 if (!sscanf(device->name, name, &i))
135 continue;
136 if (i < 0 || i >= PAGE_SIZE * 8)
137 continue;
138 snprintf(buf, sizeof buf, name, i);
139 if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX))
140 set_bit(i, inuse);
141 }
142
143 i = find_first_zero_bit(inuse, PAGE_SIZE * 8);
144 free_page((unsigned long) inuse);
145 snprintf(buf, sizeof buf, name, i);
146
147 if (__ib_device_get_by_name(buf))
148 return -ENFILE;
149
150 strlcpy(name, buf, IB_DEVICE_NAME_MAX);
151 return 0;
152}
153
154static int start_port(struct ib_device *device)
155{
156 return (device->node_type == RDMA_NODE_IB_SWITCH) ? 0 : 1;
157}
158
159
160static int end_port(struct ib_device *device)
161{
162 return (device->node_type == RDMA_NODE_IB_SWITCH) ?
163 0 : device->phys_port_cnt;
164}
165
166/**
167 * ib_alloc_device - allocate an IB device struct
168 * @size:size of structure to allocate
169 *
170 * Low-level drivers should use ib_alloc_device() to allocate &struct
171 * ib_device. @size is the size of the structure to be allocated,
172 * including any private data used by the low-level driver.
173 * ib_dealloc_device() must be used to free structures allocated with
174 * ib_alloc_device().
175 */
176struct ib_device *ib_alloc_device(size_t size)
177{
178 BUG_ON(size < sizeof (struct ib_device));
179
180 return kzalloc(size, GFP_KERNEL);
181}
182EXPORT_SYMBOL(ib_alloc_device);
183
184/**
185 * ib_dealloc_device - free an IB device struct
186 * @device:structure to free
187 *
188 * Free a structure allocated with ib_alloc_device().
189 */
190void ib_dealloc_device(struct ib_device *device)
191{
192 if (device->reg_state == IB_DEV_UNINITIALIZED) {
193 kfree(device);
194 return;
195 }
196
197 BUG_ON(device->reg_state != IB_DEV_UNREGISTERED);
198
199 kobject_put(&device->dev.kobj);
200}
201EXPORT_SYMBOL(ib_dealloc_device);
202
203static int add_client_context(struct ib_device *device, struct ib_client *client)
204{
205 struct ib_client_data *context;
206 unsigned long flags;
207
208 context = kmalloc(sizeof *context, GFP_KERNEL);
209 if (!context) {
210 printk(KERN_WARNING "Couldn't allocate client context for %s/%s\n",
211 device->name, client->name);
212 return -ENOMEM;
213 }
214
215 context->client = client;
216 context->data = NULL;
217
218 spin_lock_irqsave(&device->client_data_lock, flags);
219 list_add(&context->list, &device->client_data_list);
220 spin_unlock_irqrestore(&device->client_data_lock, flags);
221
222 return 0;
223}
224
225static int read_port_table_lengths(struct ib_device *device)
226{
227 struct ib_port_attr *tprops = NULL;
228 int num_ports, ret = -ENOMEM;
229 u8 port_index;
230
231 tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
232 if (!tprops)
233 goto out;
234
235 num_ports = end_port(device) - start_port(device) + 1;
236
237 device->pkey_tbl_len = kmalloc(sizeof *device->pkey_tbl_len * num_ports,
238 GFP_KERNEL);
239 device->gid_tbl_len = kmalloc(sizeof *device->gid_tbl_len * num_ports,
240 GFP_KERNEL);
241 if (!device->pkey_tbl_len || !device->gid_tbl_len)
242 goto err;
243
244 for (port_index = 0; port_index < num_ports; ++port_index) {
245 ret = ib_query_port(device, port_index + start_port(device),
246 tprops);
247 if (ret)
248 goto err;
249 device->pkey_tbl_len[port_index] = tprops->pkey_tbl_len;
250 device->gid_tbl_len[port_index] = tprops->gid_tbl_len;
251 }
252
253 ret = 0;
254 goto out;
255
256err:
257 kfree(device->gid_tbl_len);
258 kfree(device->pkey_tbl_len);
259out:
260 kfree(tprops);
261 return ret;
262}
263
264/**
265 * ib_register_device - Register an IB device with IB core
266 * @device:Device to register
267 *
268 * Low-level drivers use ib_register_device() to register their
269 * devices with the IB core. All registered clients will receive a
270 * callback for each device that is added. @device must be allocated
271 * with ib_alloc_device().
272 */
273int ib_register_device(struct ib_device *device,
274 int (*port_callback)(struct ib_device *,
275 u8, struct kobject *))
276{
277 int ret;
278
279 mutex_lock(&device_mutex);
280
281 if (strchr(device->name, '%')) {
282 ret = alloc_name(device->name);
283 if (ret)
284 goto out;
285 }
286
287 if (ib_device_check_mandatory(device)) {
288 ret = -EINVAL;
289 goto out;
290 }
291
292 INIT_LIST_HEAD(&device->event_handler_list);
293 INIT_LIST_HEAD(&device->client_data_list);
294 spin_lock_init(&device->event_handler_lock);
295 spin_lock_init(&device->client_data_lock);
296
297 ret = read_port_table_lengths(device);
298 if (ret) {
299 printk(KERN_WARNING "Couldn't create table lengths cache for device %s\n",
300 device->name);
301 goto out;
302 }
303
304 ret = ib_device_register_sysfs(device, port_callback);
305 if (ret) {
306 printk(KERN_WARNING "Couldn't register device %s with driver model\n",
307 device->name);
308 kfree(device->gid_tbl_len);
309 kfree(device->pkey_tbl_len);
310 goto out;
311 }
312
313 list_add_tail(&device->core_list, &device_list);
314
315 device->reg_state = IB_DEV_REGISTERED;
316
317 {
318 struct ib_client *client;
319
320 list_for_each_entry(client, &client_list, list)
321 if (client->add && !add_client_context(device, client))
322 client->add(device);
323 }
324
325 out:
326 mutex_unlock(&device_mutex);
327 return ret;
328}
329EXPORT_SYMBOL(ib_register_device);
330
331/**
332 * ib_unregister_device - Unregister an IB device
333 * @device:Device to unregister
334 *
335 * Unregister an IB device. All clients will receive a remove callback.
336 */
337void ib_unregister_device(struct ib_device *device)
338{
339 struct ib_client *client;
340 struct ib_client_data *context, *tmp;
341 unsigned long flags;
342
343 mutex_lock(&device_mutex);
344
345 list_for_each_entry_reverse(client, &client_list, list)
346 if (client->remove)
347 client->remove(device);
348
349 list_del(&device->core_list);
350
351 kfree(device->gid_tbl_len);
352 kfree(device->pkey_tbl_len);
353
354 mutex_unlock(&device_mutex);
355
356 ib_device_unregister_sysfs(device);
357
358 spin_lock_irqsave(&device->client_data_lock, flags);
359 list_for_each_entry_safe(context, tmp, &device->client_data_list, list)
360 kfree(context);
361 spin_unlock_irqrestore(&device->client_data_lock, flags);
362
363 device->reg_state = IB_DEV_UNREGISTERED;
364}
365EXPORT_SYMBOL(ib_unregister_device);
366
367/**
368 * ib_register_client - Register an IB client
369 * @client:Client to register
370 *
371 * Upper level users of the IB drivers can use ib_register_client() to
372 * register callbacks for IB device addition and removal. When an IB
373 * device is added, each registered client's add method will be called
374 * (in the order the clients were registered), and when a device is
375 * removed, each client's remove method will be called (in the reverse
376 * order that clients were registered). In addition, when
377 * ib_register_client() is called, the client will receive an add
378 * callback for all devices already registered.
379 */
380int ib_register_client(struct ib_client *client)
381{
382 struct ib_device *device;
383
384 mutex_lock(&device_mutex);
385
386 list_add_tail(&client->list, &client_list);
387 list_for_each_entry(device, &device_list, core_list)
388 if (client->add && !add_client_context(device, client))
389 client->add(device);
390
391 mutex_unlock(&device_mutex);
392
393 return 0;
394}
395EXPORT_SYMBOL(ib_register_client);
396
397/**
398 * ib_unregister_client - Unregister an IB client
399 * @client:Client to unregister
400 *
401 * Upper level users use ib_unregister_client() to remove their client
402 * registration. When ib_unregister_client() is called, the client
403 * will receive a remove callback for each IB device still registered.
404 */
405void ib_unregister_client(struct ib_client *client)
406{
407 struct ib_client_data *context, *tmp;
408 struct ib_device *device;
409 unsigned long flags;
410
411 mutex_lock(&device_mutex);
412
413 list_for_each_entry(device, &device_list, core_list) {
414 if (client->remove)
415 client->remove(device);
416
417 spin_lock_irqsave(&device->client_data_lock, flags);
418 list_for_each_entry_safe(context, tmp, &device->client_data_list, list)
419 if (context->client == client) {
420 list_del(&context->list);
421 kfree(context);
422 }
423 spin_unlock_irqrestore(&device->client_data_lock, flags);
424 }
425 list_del(&client->list);
426
427 mutex_unlock(&device_mutex);
428}
429EXPORT_SYMBOL(ib_unregister_client);
430
431/**
432 * ib_get_client_data - Get IB client context
433 * @device:Device to get context for
434 * @client:Client to get context for
435 *
436 * ib_get_client_data() returns client context set with
437 * ib_set_client_data().
438 */
439void *ib_get_client_data(struct ib_device *device, struct ib_client *client)
440{
441 struct ib_client_data *context;
442 void *ret = NULL;
443 unsigned long flags;
444
445 spin_lock_irqsave(&device->client_data_lock, flags);
446 list_for_each_entry(context, &device->client_data_list, list)
447 if (context->client == client) {
448 ret = context->data;
449 break;
450 }
451 spin_unlock_irqrestore(&device->client_data_lock, flags);
452
453 return ret;
454}
455EXPORT_SYMBOL(ib_get_client_data);
456
457/**
458 * ib_set_client_data - Set IB client context
459 * @device:Device to set context for
460 * @client:Client to set context for
461 * @data:Context to set
462 *
463 * ib_set_client_data() sets client context that can be retrieved with
464 * ib_get_client_data().
465 */
466void ib_set_client_data(struct ib_device *device, struct ib_client *client,
467 void *data)
468{
469 struct ib_client_data *context;
470 unsigned long flags;
471
472 spin_lock_irqsave(&device->client_data_lock, flags);
473 list_for_each_entry(context, &device->client_data_list, list)
474 if (context->client == client) {
475 context->data = data;
476 goto out;
477 }
478
479 printk(KERN_WARNING "No client context found for %s/%s\n",
480 device->name, client->name);
481
482out:
483 spin_unlock_irqrestore(&device->client_data_lock, flags);
484}
485EXPORT_SYMBOL(ib_set_client_data);
486
487/**
488 * ib_register_event_handler - Register an IB event handler
489 * @event_handler:Handler to register
490 *
491 * ib_register_event_handler() registers an event handler that will be
492 * called back when asynchronous IB events occur (as defined in
493 * chapter 11 of the InfiniBand Architecture Specification). This
494 * callback may occur in interrupt context.
495 */
496int ib_register_event_handler (struct ib_event_handler *event_handler)
497{
498 unsigned long flags;
499
500 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
501 list_add_tail(&event_handler->list,
502 &event_handler->device->event_handler_list);
503 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
504
505 return 0;
506}
507EXPORT_SYMBOL(ib_register_event_handler);
508
509/**
510 * ib_unregister_event_handler - Unregister an event handler
511 * @event_handler:Handler to unregister
512 *
513 * Unregister an event handler registered with
514 * ib_register_event_handler().
515 */
516int ib_unregister_event_handler(struct ib_event_handler *event_handler)
517{
518 unsigned long flags;
519
520 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
521 list_del(&event_handler->list);
522 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
523
524 return 0;
525}
526EXPORT_SYMBOL(ib_unregister_event_handler);
527
528/**
529 * ib_dispatch_event - Dispatch an asynchronous event
530 * @event:Event to dispatch
531 *
532 * Low-level drivers must call ib_dispatch_event() to dispatch the
533 * event to all registered event handlers when an asynchronous event
534 * occurs.
535 */
536void ib_dispatch_event(struct ib_event *event)
537{
538 unsigned long flags;
539 struct ib_event_handler *handler;
540
541 spin_lock_irqsave(&event->device->event_handler_lock, flags);
542
543 list_for_each_entry(handler, &event->device->event_handler_list, list)
544 handler->handler(handler, event);
545
546 spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
547}
548EXPORT_SYMBOL(ib_dispatch_event);
549
550/**
551 * ib_query_device - Query IB device attributes
552 * @device:Device to query
553 * @device_attr:Device attributes
554 *
555 * ib_query_device() returns the attributes of a device through the
556 * @device_attr pointer.
557 */
558int ib_query_device(struct ib_device *device,
559 struct ib_device_attr *device_attr)
560{
561 return device->query_device(device, device_attr);
562}
563EXPORT_SYMBOL(ib_query_device);
564
565/**
566 * ib_query_port - Query IB port attributes
567 * @device:Device to query
568 * @port_num:Port number to query
569 * @port_attr:Port attributes
570 *
571 * ib_query_port() returns the attributes of a port through the
572 * @port_attr pointer.
573 */
574int ib_query_port(struct ib_device *device,
575 u8 port_num,
576 struct ib_port_attr *port_attr)
577{
578 if (port_num < start_port(device) || port_num > end_port(device))
579 return -EINVAL;
580
581 return device->query_port(device, port_num, port_attr);
582}
583EXPORT_SYMBOL(ib_query_port);
584
585/**
586 * ib_query_gid - Get GID table entry
587 * @device:Device to query
588 * @port_num:Port number to query
589 * @index:GID table index to query
590 * @gid:Returned GID
591 *
592 * ib_query_gid() fetches the specified GID table entry.
593 */
594int ib_query_gid(struct ib_device *device,
595 u8 port_num, int index, union ib_gid *gid)
596{
597 return device->query_gid(device, port_num, index, gid);
598}
599EXPORT_SYMBOL(ib_query_gid);
600
601/**
602 * ib_query_pkey - Get P_Key table entry
603 * @device:Device to query
604 * @port_num:Port number to query
605 * @index:P_Key table index to query
606 * @pkey:Returned P_Key
607 *
608 * ib_query_pkey() fetches the specified P_Key table entry.
609 */
610int ib_query_pkey(struct ib_device *device,
611 u8 port_num, u16 index, u16 *pkey)
612{
613 return device->query_pkey(device, port_num, index, pkey);
614}
615EXPORT_SYMBOL(ib_query_pkey);
616
617/**
618 * ib_modify_device - Change IB device attributes
619 * @device:Device to modify
620 * @device_modify_mask:Mask of attributes to change
621 * @device_modify:New attribute values
622 *
623 * ib_modify_device() changes a device's attributes as specified by
624 * the @device_modify_mask and @device_modify structure.
625 */
626int ib_modify_device(struct ib_device *device,
627 int device_modify_mask,
628 struct ib_device_modify *device_modify)
629{
630 if (!device->modify_device)
631 return -ENOSYS;
632
633 return device->modify_device(device, device_modify_mask,
634 device_modify);
635}
636EXPORT_SYMBOL(ib_modify_device);
637
638/**
639 * ib_modify_port - Modifies the attributes for the specified port.
640 * @device: The device to modify.
641 * @port_num: The number of the port to modify.
642 * @port_modify_mask: Mask used to specify which attributes of the port
643 * to change.
644 * @port_modify: New attribute values for the port.
645 *
646 * ib_modify_port() changes a port's attributes as specified by the
647 * @port_modify_mask and @port_modify structure.
648 */
649int ib_modify_port(struct ib_device *device,
650 u8 port_num, int port_modify_mask,
651 struct ib_port_modify *port_modify)
652{
653 if (!device->modify_port)
654 return -ENOSYS;
655
656 if (port_num < start_port(device) || port_num > end_port(device))
657 return -EINVAL;
658
659 return device->modify_port(device, port_num, port_modify_mask,
660 port_modify);
661}
662EXPORT_SYMBOL(ib_modify_port);
663
664/**
665 * ib_find_gid - Returns the port number and GID table index where
666 * a specified GID value occurs.
667 * @device: The device to query.
668 * @gid: The GID value to search for.
669 * @port_num: The port number of the device where the GID value was found.
670 * @index: The index into the GID table where the GID was found. This
671 * parameter may be NULL.
672 */
673int ib_find_gid(struct ib_device *device, union ib_gid *gid,
674 u8 *port_num, u16 *index)
675{
676 union ib_gid tmp_gid;
677 int ret, port, i;
678
679 for (port = start_port(device); port <= end_port(device); ++port) {
680 for (i = 0; i < device->gid_tbl_len[port - start_port(device)]; ++i) {
681 ret = ib_query_gid(device, port, i, &tmp_gid);
682 if (ret)
683 return ret;
684 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
685 *port_num = port;
686 if (index)
687 *index = i;
688 return 0;
689 }
690 }
691 }
692
693 return -ENOENT;
694}
695EXPORT_SYMBOL(ib_find_gid);
696
697/**
698 * ib_find_pkey - Returns the PKey table index where a specified
699 * PKey value occurs.
700 * @device: The device to query.
701 * @port_num: The port number of the device to search for the PKey.
702 * @pkey: The PKey value to search for.
703 * @index: The index into the PKey table where the PKey was found.
704 */
705int ib_find_pkey(struct ib_device *device,
706 u8 port_num, u16 pkey, u16 *index)
707{
708 int ret, i;
709 u16 tmp_pkey;
710
711 for (i = 0; i < device->pkey_tbl_len[port_num - start_port(device)]; ++i) {
712 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
713 if (ret)
714 return ret;
715
716 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
717 *index = i;
718 return 0;
719 }
720 }
721
722 return -ENOENT;
723}
724EXPORT_SYMBOL(ib_find_pkey);
725
726static int __init ib_core_init(void)
727{
728 int ret;
729
730 ib_wq = alloc_workqueue("infiniband", 0, 0);
731 if (!ib_wq)
732 return -ENOMEM;
733
734 ret = ib_sysfs_setup();
735 if (ret) {
736 printk(KERN_WARNING "Couldn't create InfiniBand device class\n");
737 goto err;
738 }
739
740 ret = ibnl_init();
741 if (ret) {
742 printk(KERN_WARNING "Couldn't init IB netlink interface\n");
743 goto err_sysfs;
744 }
745
746 ret = ib_cache_setup();
747 if (ret) {
748 printk(KERN_WARNING "Couldn't set up InfiniBand P_Key/GID cache\n");
749 goto err_nl;
750 }
751
752 return 0;
753
754err_nl:
755 ibnl_cleanup();
756
757err_sysfs:
758 ib_sysfs_cleanup();
759
760err:
761 destroy_workqueue(ib_wq);
762 return ret;
763}
764
765static void __exit ib_core_cleanup(void)
766{
767 ib_cache_cleanup();
768 ibnl_cleanup();
769 ib_sysfs_cleanup();
770 /* Make sure that any pending umem accounting work is done. */
771 destroy_workqueue(ib_wq);
772}
773
774module_init(ib_core_init);
775module_exit(ib_core_cleanup);
1/*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/netdevice.h>
41#include <net/net_namespace.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/hashtable.h>
45#include <rdma/rdma_netlink.h>
46#include <rdma/ib_addr.h>
47#include <rdma/ib_cache.h>
48#include <rdma/rdma_counter.h>
49
50#include "core_priv.h"
51#include "restrack.h"
52
53MODULE_AUTHOR("Roland Dreier");
54MODULE_DESCRIPTION("core kernel InfiniBand API");
55MODULE_LICENSE("Dual BSD/GPL");
56
57struct workqueue_struct *ib_comp_wq;
58struct workqueue_struct *ib_comp_unbound_wq;
59struct workqueue_struct *ib_wq;
60EXPORT_SYMBOL_GPL(ib_wq);
61
62/*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85/*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93static DECLARE_RWSEM(devices_rwsem);
94#define DEVICE_REGISTERED XA_MARK_1
95
96static u32 highest_client_id;
97#define CLIENT_REGISTERED XA_MARK_1
98static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99static DECLARE_RWSEM(clients_rwsem);
100
101static void ib_client_put(struct ib_client *client)
102{
103 if (refcount_dec_and_test(&client->uses))
104 complete(&client->uses_zero);
105}
106
107/*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111#define CLIENT_DATA_REGISTERED XA_MARK_1
112
113unsigned int rdma_dev_net_id;
114
115/*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121/*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124static DECLARE_RWSEM(rdma_nets_rwsem);
125
126bool ib_devices_shared_netns = true;
127module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128MODULE_PARM_DESC(netns_mode,
129 "Share device among net namespaces; default=1 (shared)");
130/**
131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132 * from a specified net namespace or not.
133 * @dev: Pointer to rdma device which needs to be checked
134 * @net: Pointer to net namesapce for which access to be checked
135 *
136 * When the rdma device is in shared mode, it ignores the net namespace.
137 * When the rdma device is exclusive to a net namespace, rdma device net
138 * namespace is checked against the specified one.
139 */
140bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141{
142 return (ib_devices_shared_netns ||
143 net_eq(read_pnet(&dev->coredev.rdma_net), net));
144}
145EXPORT_SYMBOL(rdma_dev_access_netns);
146
147/*
148 * xarray has this behavior where it won't iterate over NULL values stored in
149 * allocated arrays. So we need our own iterator to see all values stored in
150 * the array. This does the same thing as xa_for_each except that it also
151 * returns NULL valued entries if the array is allocating. Simplified to only
152 * work on simple xarrays.
153 */
154static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 xa_mark_t filter)
156{
157 XA_STATE(xas, xa, *indexp);
158 void *entry;
159
160 rcu_read_lock();
161 do {
162 entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 if (xa_is_zero(entry))
164 break;
165 } while (xas_retry(&xas, entry));
166 rcu_read_unlock();
167
168 if (entry) {
169 *indexp = xas.xa_index;
170 if (xa_is_zero(entry))
171 return NULL;
172 return entry;
173 }
174 return XA_ERROR(-ENOENT);
175}
176#define xan_for_each_marked(xa, index, entry, filter) \
177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
178 !xa_is_err(entry); \
179 (index)++, entry = xan_find_marked(xa, &(index), filter))
180
181/* RCU hash table mapping netdevice pointers to struct ib_port_data */
182static DEFINE_SPINLOCK(ndev_hash_lock);
183static DECLARE_HASHTABLE(ndev_hash, 5);
184
185static void free_netdevs(struct ib_device *ib_dev);
186static void ib_unregister_work(struct work_struct *work);
187static void __ib_unregister_device(struct ib_device *device);
188static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 void *lsm_data);
190static void ib_policy_change_task(struct work_struct *work);
191static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192
193static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 struct va_format *vaf)
195{
196 if (ibdev && ibdev->dev.parent)
197 dev_printk_emit(level[1] - '0',
198 ibdev->dev.parent,
199 "%s %s %s: %pV",
200 dev_driver_string(ibdev->dev.parent),
201 dev_name(ibdev->dev.parent),
202 dev_name(&ibdev->dev),
203 vaf);
204 else if (ibdev)
205 printk("%s%s: %pV",
206 level, dev_name(&ibdev->dev), vaf);
207 else
208 printk("%s(NULL ib_device): %pV", level, vaf);
209}
210
211void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 const char *format, ...)
213{
214 struct va_format vaf;
215 va_list args;
216
217 va_start(args, format);
218
219 vaf.fmt = format;
220 vaf.va = &args;
221
222 __ibdev_printk(level, ibdev, &vaf);
223
224 va_end(args);
225}
226EXPORT_SYMBOL(ibdev_printk);
227
228#define define_ibdev_printk_level(func, level) \
229void func(const struct ib_device *ibdev, const char *fmt, ...) \
230{ \
231 struct va_format vaf; \
232 va_list args; \
233 \
234 va_start(args, fmt); \
235 \
236 vaf.fmt = fmt; \
237 vaf.va = &args; \
238 \
239 __ibdev_printk(level, ibdev, &vaf); \
240 \
241 va_end(args); \
242} \
243EXPORT_SYMBOL(func);
244
245define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248define_ibdev_printk_level(ibdev_err, KERN_ERR);
249define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251define_ibdev_printk_level(ibdev_info, KERN_INFO);
252
253static struct notifier_block ibdev_lsm_nb = {
254 .notifier_call = ib_security_change,
255};
256
257static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 struct net *net);
259
260/* Pointer to the RCU head at the start of the ib_port_data array */
261struct ib_port_data_rcu {
262 struct rcu_head rcu_head;
263 struct ib_port_data pdata[];
264};
265
266static void ib_device_check_mandatory(struct ib_device *device)
267{
268#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 static const struct {
270 size_t offset;
271 char *name;
272 } mandatory_table[] = {
273 IB_MANDATORY_FUNC(query_device),
274 IB_MANDATORY_FUNC(query_port),
275 IB_MANDATORY_FUNC(alloc_pd),
276 IB_MANDATORY_FUNC(dealloc_pd),
277 IB_MANDATORY_FUNC(create_qp),
278 IB_MANDATORY_FUNC(modify_qp),
279 IB_MANDATORY_FUNC(destroy_qp),
280 IB_MANDATORY_FUNC(post_send),
281 IB_MANDATORY_FUNC(post_recv),
282 IB_MANDATORY_FUNC(create_cq),
283 IB_MANDATORY_FUNC(destroy_cq),
284 IB_MANDATORY_FUNC(poll_cq),
285 IB_MANDATORY_FUNC(req_notify_cq),
286 IB_MANDATORY_FUNC(get_dma_mr),
287 IB_MANDATORY_FUNC(reg_user_mr),
288 IB_MANDATORY_FUNC(dereg_mr),
289 IB_MANDATORY_FUNC(get_port_immutable)
290 };
291 int i;
292
293 device->kverbs_provider = true;
294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 if (!*(void **) ((void *) &device->ops +
296 mandatory_table[i].offset)) {
297 device->kverbs_provider = false;
298 break;
299 }
300 }
301}
302
303/*
304 * Caller must perform ib_device_put() to return the device reference count
305 * when ib_device_get_by_index() returns valid device pointer.
306 */
307struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308{
309 struct ib_device *device;
310
311 down_read(&devices_rwsem);
312 device = xa_load(&devices, index);
313 if (device) {
314 if (!rdma_dev_access_netns(device, net)) {
315 device = NULL;
316 goto out;
317 }
318
319 if (!ib_device_try_get(device))
320 device = NULL;
321 }
322out:
323 up_read(&devices_rwsem);
324 return device;
325}
326
327/**
328 * ib_device_put - Release IB device reference
329 * @device: device whose reference to be released
330 *
331 * ib_device_put() releases reference to the IB device to allow it to be
332 * unregistered and eventually free.
333 */
334void ib_device_put(struct ib_device *device)
335{
336 if (refcount_dec_and_test(&device->refcount))
337 complete(&device->unreg_completion);
338}
339EXPORT_SYMBOL(ib_device_put);
340
341static struct ib_device *__ib_device_get_by_name(const char *name)
342{
343 struct ib_device *device;
344 unsigned long index;
345
346 xa_for_each (&devices, index, device)
347 if (!strcmp(name, dev_name(&device->dev)))
348 return device;
349
350 return NULL;
351}
352
353/**
354 * ib_device_get_by_name - Find an IB device by name
355 * @name: The name to look for
356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357 *
358 * Find and hold an ib_device by its name. The caller must call
359 * ib_device_put() on the returned pointer.
360 */
361struct ib_device *ib_device_get_by_name(const char *name,
362 enum rdma_driver_id driver_id)
363{
364 struct ib_device *device;
365
366 down_read(&devices_rwsem);
367 device = __ib_device_get_by_name(name);
368 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 device->ops.driver_id != driver_id)
370 device = NULL;
371
372 if (device) {
373 if (!ib_device_try_get(device))
374 device = NULL;
375 }
376 up_read(&devices_rwsem);
377 return device;
378}
379EXPORT_SYMBOL(ib_device_get_by_name);
380
381static int rename_compat_devs(struct ib_device *device)
382{
383 struct ib_core_device *cdev;
384 unsigned long index;
385 int ret = 0;
386
387 mutex_lock(&device->compat_devs_mutex);
388 xa_for_each (&device->compat_devs, index, cdev) {
389 ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 if (ret) {
391 dev_warn(&cdev->dev,
392 "Fail to rename compatdev to new name %s\n",
393 dev_name(&device->dev));
394 break;
395 }
396 }
397 mutex_unlock(&device->compat_devs_mutex);
398 return ret;
399}
400
401int ib_device_rename(struct ib_device *ibdev, const char *name)
402{
403 unsigned long index;
404 void *client_data;
405 int ret;
406
407 down_write(&devices_rwsem);
408 if (!strcmp(name, dev_name(&ibdev->dev))) {
409 up_write(&devices_rwsem);
410 return 0;
411 }
412
413 if (__ib_device_get_by_name(name)) {
414 up_write(&devices_rwsem);
415 return -EEXIST;
416 }
417
418 ret = device_rename(&ibdev->dev, name);
419 if (ret) {
420 up_write(&devices_rwsem);
421 return ret;
422 }
423
424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 ret = rename_compat_devs(ibdev);
426
427 downgrade_write(&devices_rwsem);
428 down_read(&ibdev->client_data_rwsem);
429 xan_for_each_marked(&ibdev->client_data, index, client_data,
430 CLIENT_DATA_REGISTERED) {
431 struct ib_client *client = xa_load(&clients, index);
432
433 if (!client || !client->rename)
434 continue;
435
436 client->rename(ibdev, client_data);
437 }
438 up_read(&ibdev->client_data_rwsem);
439 up_read(&devices_rwsem);
440 return 0;
441}
442
443int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444{
445 if (use_dim > 1)
446 return -EINVAL;
447 ibdev->use_cq_dim = use_dim;
448
449 return 0;
450}
451
452static int alloc_name(struct ib_device *ibdev, const char *name)
453{
454 struct ib_device *device;
455 unsigned long index;
456 struct ida inuse;
457 int rc;
458 int i;
459
460 lockdep_assert_held_write(&devices_rwsem);
461 ida_init(&inuse);
462 xa_for_each (&devices, index, device) {
463 char buf[IB_DEVICE_NAME_MAX];
464
465 if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 continue;
467 if (i < 0 || i >= INT_MAX)
468 continue;
469 snprintf(buf, sizeof buf, name, i);
470 if (strcmp(buf, dev_name(&device->dev)) != 0)
471 continue;
472
473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 if (rc < 0)
475 goto out;
476 }
477
478 rc = ida_alloc(&inuse, GFP_KERNEL);
479 if (rc < 0)
480 goto out;
481
482 rc = dev_set_name(&ibdev->dev, name, rc);
483out:
484 ida_destroy(&inuse);
485 return rc;
486}
487
488static void ib_device_release(struct device *device)
489{
490 struct ib_device *dev = container_of(device, struct ib_device, dev);
491
492 free_netdevs(dev);
493 WARN_ON(refcount_read(&dev->refcount));
494 if (dev->hw_stats_data)
495 ib_device_release_hw_stats(dev->hw_stats_data);
496 if (dev->port_data) {
497 ib_cache_release_one(dev);
498 ib_security_release_port_pkey_list(dev);
499 rdma_counter_release(dev);
500 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
501 pdata[0]),
502 rcu_head);
503 }
504
505 mutex_destroy(&dev->unregistration_lock);
506 mutex_destroy(&dev->compat_devs_mutex);
507
508 xa_destroy(&dev->compat_devs);
509 xa_destroy(&dev->client_data);
510 kfree_rcu(dev, rcu_head);
511}
512
513static int ib_device_uevent(struct device *device,
514 struct kobj_uevent_env *env)
515{
516 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
517 return -ENOMEM;
518
519 /*
520 * It would be nice to pass the node GUID with the event...
521 */
522
523 return 0;
524}
525
526static const void *net_namespace(struct device *d)
527{
528 struct ib_core_device *coredev =
529 container_of(d, struct ib_core_device, dev);
530
531 return read_pnet(&coredev->rdma_net);
532}
533
534static struct class ib_class = {
535 .name = "infiniband",
536 .dev_release = ib_device_release,
537 .dev_uevent = ib_device_uevent,
538 .ns_type = &net_ns_type_operations,
539 .namespace = net_namespace,
540};
541
542static void rdma_init_coredev(struct ib_core_device *coredev,
543 struct ib_device *dev, struct net *net)
544{
545 /* This BUILD_BUG_ON is intended to catch layout change
546 * of union of ib_core_device and device.
547 * dev must be the first element as ib_core and providers
548 * driver uses it. Adding anything in ib_core_device before
549 * device will break this assumption.
550 */
551 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
552 offsetof(struct ib_device, dev));
553
554 coredev->dev.class = &ib_class;
555 coredev->dev.groups = dev->groups;
556 device_initialize(&coredev->dev);
557 coredev->owner = dev;
558 INIT_LIST_HEAD(&coredev->port_list);
559 write_pnet(&coredev->rdma_net, net);
560}
561
562/**
563 * _ib_alloc_device - allocate an IB device struct
564 * @size:size of structure to allocate
565 *
566 * Low-level drivers should use ib_alloc_device() to allocate &struct
567 * ib_device. @size is the size of the structure to be allocated,
568 * including any private data used by the low-level driver.
569 * ib_dealloc_device() must be used to free structures allocated with
570 * ib_alloc_device().
571 */
572struct ib_device *_ib_alloc_device(size_t size)
573{
574 struct ib_device *device;
575 unsigned int i;
576
577 if (WARN_ON(size < sizeof(struct ib_device)))
578 return NULL;
579
580 device = kzalloc(size, GFP_KERNEL);
581 if (!device)
582 return NULL;
583
584 if (rdma_restrack_init(device)) {
585 kfree(device);
586 return NULL;
587 }
588
589 rdma_init_coredev(&device->coredev, device, &init_net);
590
591 INIT_LIST_HEAD(&device->event_handler_list);
592 spin_lock_init(&device->qp_open_list_lock);
593 init_rwsem(&device->event_handler_rwsem);
594 mutex_init(&device->unregistration_lock);
595 /*
596 * client_data needs to be alloc because we don't want our mark to be
597 * destroyed if the user stores NULL in the client data.
598 */
599 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 init_rwsem(&device->client_data_rwsem);
601 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 mutex_init(&device->compat_devs_mutex);
603 init_completion(&device->unreg_completion);
604 INIT_WORK(&device->unregistration_work, ib_unregister_work);
605
606 spin_lock_init(&device->cq_pools_lock);
607 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
608 INIT_LIST_HEAD(&device->cq_pools[i]);
609
610 device->uverbs_cmd_mask =
611 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
612 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
613 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
614 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
621 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
622 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
623 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
625 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
626 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
627 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
628 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
629 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
630 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
631 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
632 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
633 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
635 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
636 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
637 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
638 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
639 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
640 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
641 return device;
642}
643EXPORT_SYMBOL(_ib_alloc_device);
644
645/**
646 * ib_dealloc_device - free an IB device struct
647 * @device:structure to free
648 *
649 * Free a structure allocated with ib_alloc_device().
650 */
651void ib_dealloc_device(struct ib_device *device)
652{
653 if (device->ops.dealloc_driver)
654 device->ops.dealloc_driver(device);
655
656 /*
657 * ib_unregister_driver() requires all devices to remain in the xarray
658 * while their ops are callable. The last op we call is dealloc_driver
659 * above. This is needed to create a fence on op callbacks prior to
660 * allowing the driver module to unload.
661 */
662 down_write(&devices_rwsem);
663 if (xa_load(&devices, device->index) == device)
664 xa_erase(&devices, device->index);
665 up_write(&devices_rwsem);
666
667 /* Expedite releasing netdev references */
668 free_netdevs(device);
669
670 WARN_ON(!xa_empty(&device->compat_devs));
671 WARN_ON(!xa_empty(&device->client_data));
672 WARN_ON(refcount_read(&device->refcount));
673 rdma_restrack_clean(device);
674 /* Balances with device_initialize */
675 put_device(&device->dev);
676}
677EXPORT_SYMBOL(ib_dealloc_device);
678
679/*
680 * add_client_context() and remove_client_context() must be safe against
681 * parallel calls on the same device - registration/unregistration of both the
682 * device and client can be occurring in parallel.
683 *
684 * The routines need to be a fence, any caller must not return until the add
685 * or remove is fully completed.
686 */
687static int add_client_context(struct ib_device *device,
688 struct ib_client *client)
689{
690 int ret = 0;
691
692 if (!device->kverbs_provider && !client->no_kverbs_req)
693 return 0;
694
695 down_write(&device->client_data_rwsem);
696 /*
697 * So long as the client is registered hold both the client and device
698 * unregistration locks.
699 */
700 if (!refcount_inc_not_zero(&client->uses))
701 goto out_unlock;
702 refcount_inc(&device->refcount);
703
704 /*
705 * Another caller to add_client_context got here first and has already
706 * completely initialized context.
707 */
708 if (xa_get_mark(&device->client_data, client->client_id,
709 CLIENT_DATA_REGISTERED))
710 goto out;
711
712 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
713 GFP_KERNEL));
714 if (ret)
715 goto out;
716 downgrade_write(&device->client_data_rwsem);
717 if (client->add) {
718 if (client->add(device)) {
719 /*
720 * If a client fails to add then the error code is
721 * ignored, but we won't call any more ops on this
722 * client.
723 */
724 xa_erase(&device->client_data, client->client_id);
725 up_read(&device->client_data_rwsem);
726 ib_device_put(device);
727 ib_client_put(client);
728 return 0;
729 }
730 }
731
732 /* Readers shall not see a client until add has been completed */
733 xa_set_mark(&device->client_data, client->client_id,
734 CLIENT_DATA_REGISTERED);
735 up_read(&device->client_data_rwsem);
736 return 0;
737
738out:
739 ib_device_put(device);
740 ib_client_put(client);
741out_unlock:
742 up_write(&device->client_data_rwsem);
743 return ret;
744}
745
746static void remove_client_context(struct ib_device *device,
747 unsigned int client_id)
748{
749 struct ib_client *client;
750 void *client_data;
751
752 down_write(&device->client_data_rwsem);
753 if (!xa_get_mark(&device->client_data, client_id,
754 CLIENT_DATA_REGISTERED)) {
755 up_write(&device->client_data_rwsem);
756 return;
757 }
758 client_data = xa_load(&device->client_data, client_id);
759 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
760 client = xa_load(&clients, client_id);
761 up_write(&device->client_data_rwsem);
762
763 /*
764 * Notice we cannot be holding any exclusive locks when calling the
765 * remove callback as the remove callback can recurse back into any
766 * public functions in this module and thus try for any locks those
767 * functions take.
768 *
769 * For this reason clients and drivers should not call the
770 * unregistration functions will holdling any locks.
771 */
772 if (client->remove)
773 client->remove(device, client_data);
774
775 xa_erase(&device->client_data, client_id);
776 ib_device_put(device);
777 ib_client_put(client);
778}
779
780static int alloc_port_data(struct ib_device *device)
781{
782 struct ib_port_data_rcu *pdata_rcu;
783 u32 port;
784
785 if (device->port_data)
786 return 0;
787
788 /* This can only be called once the physical port range is defined */
789 if (WARN_ON(!device->phys_port_cnt))
790 return -EINVAL;
791
792 /* Reserve U32_MAX so the logic to go over all the ports is sane */
793 if (WARN_ON(device->phys_port_cnt == U32_MAX))
794 return -EINVAL;
795
796 /*
797 * device->port_data is indexed directly by the port number to make
798 * access to this data as efficient as possible.
799 *
800 * Therefore port_data is declared as a 1 based array with potential
801 * empty slots at the beginning.
802 */
803 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
804 rdma_end_port(device) + 1),
805 GFP_KERNEL);
806 if (!pdata_rcu)
807 return -ENOMEM;
808 /*
809 * The rcu_head is put in front of the port data array and the stored
810 * pointer is adjusted since we never need to see that member until
811 * kfree_rcu.
812 */
813 device->port_data = pdata_rcu->pdata;
814
815 rdma_for_each_port (device, port) {
816 struct ib_port_data *pdata = &device->port_data[port];
817
818 pdata->ib_dev = device;
819 spin_lock_init(&pdata->pkey_list_lock);
820 INIT_LIST_HEAD(&pdata->pkey_list);
821 spin_lock_init(&pdata->netdev_lock);
822 INIT_HLIST_NODE(&pdata->ndev_hash_link);
823 }
824 return 0;
825}
826
827static int verify_immutable(const struct ib_device *dev, u32 port)
828{
829 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
830 rdma_max_mad_size(dev, port) != 0);
831}
832
833static int setup_port_data(struct ib_device *device)
834{
835 u32 port;
836 int ret;
837
838 ret = alloc_port_data(device);
839 if (ret)
840 return ret;
841
842 rdma_for_each_port (device, port) {
843 struct ib_port_data *pdata = &device->port_data[port];
844
845 ret = device->ops.get_port_immutable(device, port,
846 &pdata->immutable);
847 if (ret)
848 return ret;
849
850 if (verify_immutable(device, port))
851 return -EINVAL;
852 }
853 return 0;
854}
855
856/**
857 * ib_port_immutable_read() - Read rdma port's immutable data
858 * @dev: IB device
859 * @port: port number whose immutable data to read. It starts with index 1 and
860 * valid upto including rdma_end_port().
861 */
862const struct ib_port_immutable*
863ib_port_immutable_read(struct ib_device *dev, unsigned int port)
864{
865 WARN_ON(!rdma_is_port_valid(dev, port));
866 return &dev->port_data[port].immutable;
867}
868EXPORT_SYMBOL(ib_port_immutable_read);
869
870void ib_get_device_fw_str(struct ib_device *dev, char *str)
871{
872 if (dev->ops.get_dev_fw_str)
873 dev->ops.get_dev_fw_str(dev, str);
874 else
875 str[0] = '\0';
876}
877EXPORT_SYMBOL(ib_get_device_fw_str);
878
879static void ib_policy_change_task(struct work_struct *work)
880{
881 struct ib_device *dev;
882 unsigned long index;
883
884 down_read(&devices_rwsem);
885 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
886 unsigned int i;
887
888 rdma_for_each_port (dev, i) {
889 u64 sp;
890 ib_get_cached_subnet_prefix(dev, i, &sp);
891 ib_security_cache_change(dev, i, sp);
892 }
893 }
894 up_read(&devices_rwsem);
895}
896
897static int ib_security_change(struct notifier_block *nb, unsigned long event,
898 void *lsm_data)
899{
900 if (event != LSM_POLICY_CHANGE)
901 return NOTIFY_DONE;
902
903 schedule_work(&ib_policy_change_work);
904 ib_mad_agent_security_change();
905
906 return NOTIFY_OK;
907}
908
909static void compatdev_release(struct device *dev)
910{
911 struct ib_core_device *cdev =
912 container_of(dev, struct ib_core_device, dev);
913
914 kfree(cdev);
915}
916
917static int add_one_compat_dev(struct ib_device *device,
918 struct rdma_dev_net *rnet)
919{
920 struct ib_core_device *cdev;
921 int ret;
922
923 lockdep_assert_held(&rdma_nets_rwsem);
924 if (!ib_devices_shared_netns)
925 return 0;
926
927 /*
928 * Create and add compat device in all namespaces other than where it
929 * is currently bound to.
930 */
931 if (net_eq(read_pnet(&rnet->net),
932 read_pnet(&device->coredev.rdma_net)))
933 return 0;
934
935 /*
936 * The first of init_net() or ib_register_device() to take the
937 * compat_devs_mutex wins and gets to add the device. Others will wait
938 * for completion here.
939 */
940 mutex_lock(&device->compat_devs_mutex);
941 cdev = xa_load(&device->compat_devs, rnet->id);
942 if (cdev) {
943 ret = 0;
944 goto done;
945 }
946 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
947 if (ret)
948 goto done;
949
950 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
951 if (!cdev) {
952 ret = -ENOMEM;
953 goto cdev_err;
954 }
955
956 cdev->dev.parent = device->dev.parent;
957 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
958 cdev->dev.release = compatdev_release;
959 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
960 if (ret)
961 goto add_err;
962
963 ret = device_add(&cdev->dev);
964 if (ret)
965 goto add_err;
966 ret = ib_setup_port_attrs(cdev);
967 if (ret)
968 goto port_err;
969
970 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
971 cdev, GFP_KERNEL));
972 if (ret)
973 goto insert_err;
974
975 mutex_unlock(&device->compat_devs_mutex);
976 return 0;
977
978insert_err:
979 ib_free_port_attrs(cdev);
980port_err:
981 device_del(&cdev->dev);
982add_err:
983 put_device(&cdev->dev);
984cdev_err:
985 xa_release(&device->compat_devs, rnet->id);
986done:
987 mutex_unlock(&device->compat_devs_mutex);
988 return ret;
989}
990
991static void remove_one_compat_dev(struct ib_device *device, u32 id)
992{
993 struct ib_core_device *cdev;
994
995 mutex_lock(&device->compat_devs_mutex);
996 cdev = xa_erase(&device->compat_devs, id);
997 mutex_unlock(&device->compat_devs_mutex);
998 if (cdev) {
999 ib_free_port_attrs(cdev);
1000 device_del(&cdev->dev);
1001 put_device(&cdev->dev);
1002 }
1003}
1004
1005static void remove_compat_devs(struct ib_device *device)
1006{
1007 struct ib_core_device *cdev;
1008 unsigned long index;
1009
1010 xa_for_each (&device->compat_devs, index, cdev)
1011 remove_one_compat_dev(device, index);
1012}
1013
1014static int add_compat_devs(struct ib_device *device)
1015{
1016 struct rdma_dev_net *rnet;
1017 unsigned long index;
1018 int ret = 0;
1019
1020 lockdep_assert_held(&devices_rwsem);
1021
1022 down_read(&rdma_nets_rwsem);
1023 xa_for_each (&rdma_nets, index, rnet) {
1024 ret = add_one_compat_dev(device, rnet);
1025 if (ret)
1026 break;
1027 }
1028 up_read(&rdma_nets_rwsem);
1029 return ret;
1030}
1031
1032static void remove_all_compat_devs(void)
1033{
1034 struct ib_compat_device *cdev;
1035 struct ib_device *dev;
1036 unsigned long index;
1037
1038 down_read(&devices_rwsem);
1039 xa_for_each (&devices, index, dev) {
1040 unsigned long c_index = 0;
1041
1042 /* Hold nets_rwsem so that any other thread modifying this
1043 * system param can sync with this thread.
1044 */
1045 down_read(&rdma_nets_rwsem);
1046 xa_for_each (&dev->compat_devs, c_index, cdev)
1047 remove_one_compat_dev(dev, c_index);
1048 up_read(&rdma_nets_rwsem);
1049 }
1050 up_read(&devices_rwsem);
1051}
1052
1053static int add_all_compat_devs(void)
1054{
1055 struct rdma_dev_net *rnet;
1056 struct ib_device *dev;
1057 unsigned long index;
1058 int ret = 0;
1059
1060 down_read(&devices_rwsem);
1061 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1062 unsigned long net_index = 0;
1063
1064 /* Hold nets_rwsem so that any other thread modifying this
1065 * system param can sync with this thread.
1066 */
1067 down_read(&rdma_nets_rwsem);
1068 xa_for_each (&rdma_nets, net_index, rnet) {
1069 ret = add_one_compat_dev(dev, rnet);
1070 if (ret)
1071 break;
1072 }
1073 up_read(&rdma_nets_rwsem);
1074 }
1075 up_read(&devices_rwsem);
1076 if (ret)
1077 remove_all_compat_devs();
1078 return ret;
1079}
1080
1081int rdma_compatdev_set(u8 enable)
1082{
1083 struct rdma_dev_net *rnet;
1084 unsigned long index;
1085 int ret = 0;
1086
1087 down_write(&rdma_nets_rwsem);
1088 if (ib_devices_shared_netns == enable) {
1089 up_write(&rdma_nets_rwsem);
1090 return 0;
1091 }
1092
1093 /* enable/disable of compat devices is not supported
1094 * when more than default init_net exists.
1095 */
1096 xa_for_each (&rdma_nets, index, rnet) {
1097 ret++;
1098 break;
1099 }
1100 if (!ret)
1101 ib_devices_shared_netns = enable;
1102 up_write(&rdma_nets_rwsem);
1103 if (ret)
1104 return -EBUSY;
1105
1106 if (enable)
1107 ret = add_all_compat_devs();
1108 else
1109 remove_all_compat_devs();
1110 return ret;
1111}
1112
1113static void rdma_dev_exit_net(struct net *net)
1114{
1115 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1116 struct ib_device *dev;
1117 unsigned long index;
1118 int ret;
1119
1120 down_write(&rdma_nets_rwsem);
1121 /*
1122 * Prevent the ID from being re-used and hide the id from xa_for_each.
1123 */
1124 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1125 WARN_ON(ret);
1126 up_write(&rdma_nets_rwsem);
1127
1128 down_read(&devices_rwsem);
1129 xa_for_each (&devices, index, dev) {
1130 get_device(&dev->dev);
1131 /*
1132 * Release the devices_rwsem so that pontentially blocking
1133 * device_del, doesn't hold the devices_rwsem for too long.
1134 */
1135 up_read(&devices_rwsem);
1136
1137 remove_one_compat_dev(dev, rnet->id);
1138
1139 /*
1140 * If the real device is in the NS then move it back to init.
1141 */
1142 rdma_dev_change_netns(dev, net, &init_net);
1143
1144 put_device(&dev->dev);
1145 down_read(&devices_rwsem);
1146 }
1147 up_read(&devices_rwsem);
1148
1149 rdma_nl_net_exit(rnet);
1150 xa_erase(&rdma_nets, rnet->id);
1151}
1152
1153static __net_init int rdma_dev_init_net(struct net *net)
1154{
1155 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1156 unsigned long index;
1157 struct ib_device *dev;
1158 int ret;
1159
1160 write_pnet(&rnet->net, net);
1161
1162 ret = rdma_nl_net_init(rnet);
1163 if (ret)
1164 return ret;
1165
1166 /* No need to create any compat devices in default init_net. */
1167 if (net_eq(net, &init_net))
1168 return 0;
1169
1170 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1171 if (ret) {
1172 rdma_nl_net_exit(rnet);
1173 return ret;
1174 }
1175
1176 down_read(&devices_rwsem);
1177 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1178 /* Hold nets_rwsem so that netlink command cannot change
1179 * system configuration for device sharing mode.
1180 */
1181 down_read(&rdma_nets_rwsem);
1182 ret = add_one_compat_dev(dev, rnet);
1183 up_read(&rdma_nets_rwsem);
1184 if (ret)
1185 break;
1186 }
1187 up_read(&devices_rwsem);
1188
1189 if (ret)
1190 rdma_dev_exit_net(net);
1191
1192 return ret;
1193}
1194
1195/*
1196 * Assign the unique string device name and the unique device index. This is
1197 * undone by ib_dealloc_device.
1198 */
1199static int assign_name(struct ib_device *device, const char *name)
1200{
1201 static u32 last_id;
1202 int ret;
1203
1204 down_write(&devices_rwsem);
1205 /* Assign a unique name to the device */
1206 if (strchr(name, '%'))
1207 ret = alloc_name(device, name);
1208 else
1209 ret = dev_set_name(&device->dev, name);
1210 if (ret)
1211 goto out;
1212
1213 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1214 ret = -ENFILE;
1215 goto out;
1216 }
1217 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1218
1219 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1220 &last_id, GFP_KERNEL);
1221 if (ret > 0)
1222 ret = 0;
1223
1224out:
1225 up_write(&devices_rwsem);
1226 return ret;
1227}
1228
1229/*
1230 * setup_device() allocates memory and sets up data that requires calling the
1231 * device ops, this is the only reason these actions are not done during
1232 * ib_alloc_device. It is undone by ib_dealloc_device().
1233 */
1234static int setup_device(struct ib_device *device)
1235{
1236 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1237 int ret;
1238
1239 ib_device_check_mandatory(device);
1240
1241 ret = setup_port_data(device);
1242 if (ret) {
1243 dev_warn(&device->dev, "Couldn't create per-port data\n");
1244 return ret;
1245 }
1246
1247 memset(&device->attrs, 0, sizeof(device->attrs));
1248 ret = device->ops.query_device(device, &device->attrs, &uhw);
1249 if (ret) {
1250 dev_warn(&device->dev,
1251 "Couldn't query the device attributes\n");
1252 return ret;
1253 }
1254
1255 return 0;
1256}
1257
1258static void disable_device(struct ib_device *device)
1259{
1260 u32 cid;
1261
1262 WARN_ON(!refcount_read(&device->refcount));
1263
1264 down_write(&devices_rwsem);
1265 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1266 up_write(&devices_rwsem);
1267
1268 /*
1269 * Remove clients in LIFO order, see assign_client_id. This could be
1270 * more efficient if xarray learns to reverse iterate. Since no new
1271 * clients can be added to this ib_device past this point we only need
1272 * the maximum possible client_id value here.
1273 */
1274 down_read(&clients_rwsem);
1275 cid = highest_client_id;
1276 up_read(&clients_rwsem);
1277 while (cid) {
1278 cid--;
1279 remove_client_context(device, cid);
1280 }
1281
1282 ib_cq_pool_cleanup(device);
1283
1284 /* Pairs with refcount_set in enable_device */
1285 ib_device_put(device);
1286 wait_for_completion(&device->unreg_completion);
1287
1288 /*
1289 * compat devices must be removed after device refcount drops to zero.
1290 * Otherwise init_net() may add more compatdevs after removing compat
1291 * devices and before device is disabled.
1292 */
1293 remove_compat_devs(device);
1294}
1295
1296/*
1297 * An enabled device is visible to all clients and to all the public facing
1298 * APIs that return a device pointer. This always returns with a new get, even
1299 * if it fails.
1300 */
1301static int enable_device_and_get(struct ib_device *device)
1302{
1303 struct ib_client *client;
1304 unsigned long index;
1305 int ret = 0;
1306
1307 /*
1308 * One ref belongs to the xa and the other belongs to this
1309 * thread. This is needed to guard against parallel unregistration.
1310 */
1311 refcount_set(&device->refcount, 2);
1312 down_write(&devices_rwsem);
1313 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1314
1315 /*
1316 * By using downgrade_write() we ensure that no other thread can clear
1317 * DEVICE_REGISTERED while we are completing the client setup.
1318 */
1319 downgrade_write(&devices_rwsem);
1320
1321 if (device->ops.enable_driver) {
1322 ret = device->ops.enable_driver(device);
1323 if (ret)
1324 goto out;
1325 }
1326
1327 down_read(&clients_rwsem);
1328 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1329 ret = add_client_context(device, client);
1330 if (ret)
1331 break;
1332 }
1333 up_read(&clients_rwsem);
1334 if (!ret)
1335 ret = add_compat_devs(device);
1336out:
1337 up_read(&devices_rwsem);
1338 return ret;
1339}
1340
1341static void prevent_dealloc_device(struct ib_device *ib_dev)
1342{
1343}
1344
1345/**
1346 * ib_register_device - Register an IB device with IB core
1347 * @device: Device to register
1348 * @name: unique string device name. This may include a '%' which will
1349 * cause a unique index to be added to the passed device name.
1350 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1351 * device will be used. In this case the caller should fully
1352 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1353 *
1354 * Low-level drivers use ib_register_device() to register their
1355 * devices with the IB core. All registered clients will receive a
1356 * callback for each device that is added. @device must be allocated
1357 * with ib_alloc_device().
1358 *
1359 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1360 * asynchronously then the device pointer may become freed as soon as this
1361 * function returns.
1362 */
1363int ib_register_device(struct ib_device *device, const char *name,
1364 struct device *dma_device)
1365{
1366 int ret;
1367
1368 ret = assign_name(device, name);
1369 if (ret)
1370 return ret;
1371
1372 /*
1373 * If the caller does not provide a DMA capable device then the IB core
1374 * will set up ib_sge and scatterlist structures that stash the kernel
1375 * virtual address into the address field.
1376 */
1377 WARN_ON(dma_device && !dma_device->dma_parms);
1378 device->dma_device = dma_device;
1379
1380 ret = setup_device(device);
1381 if (ret)
1382 return ret;
1383
1384 ret = ib_cache_setup_one(device);
1385 if (ret) {
1386 dev_warn(&device->dev,
1387 "Couldn't set up InfiniBand P_Key/GID cache\n");
1388 return ret;
1389 }
1390
1391 device->groups[0] = &ib_dev_attr_group;
1392 device->groups[1] = device->ops.device_group;
1393 ret = ib_setup_device_attrs(device);
1394 if (ret)
1395 goto cache_cleanup;
1396
1397 ib_device_register_rdmacg(device);
1398
1399 rdma_counter_init(device);
1400
1401 /*
1402 * Ensure that ADD uevent is not fired because it
1403 * is too early amd device is not initialized yet.
1404 */
1405 dev_set_uevent_suppress(&device->dev, true);
1406 ret = device_add(&device->dev);
1407 if (ret)
1408 goto cg_cleanup;
1409
1410 ret = ib_setup_port_attrs(&device->coredev);
1411 if (ret) {
1412 dev_warn(&device->dev,
1413 "Couldn't register device with driver model\n");
1414 goto dev_cleanup;
1415 }
1416
1417 ret = enable_device_and_get(device);
1418 if (ret) {
1419 void (*dealloc_fn)(struct ib_device *);
1420
1421 /*
1422 * If we hit this error flow then we don't want to
1423 * automatically dealloc the device since the caller is
1424 * expected to call ib_dealloc_device() after
1425 * ib_register_device() fails. This is tricky due to the
1426 * possibility for a parallel unregistration along with this
1427 * error flow. Since we have a refcount here we know any
1428 * parallel flow is stopped in disable_device and will see the
1429 * special dealloc_driver pointer, causing the responsibility to
1430 * ib_dealloc_device() to revert back to this thread.
1431 */
1432 dealloc_fn = device->ops.dealloc_driver;
1433 device->ops.dealloc_driver = prevent_dealloc_device;
1434 ib_device_put(device);
1435 __ib_unregister_device(device);
1436 device->ops.dealloc_driver = dealloc_fn;
1437 dev_set_uevent_suppress(&device->dev, false);
1438 return ret;
1439 }
1440 dev_set_uevent_suppress(&device->dev, false);
1441 /* Mark for userspace that device is ready */
1442 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1443 ib_device_put(device);
1444
1445 return 0;
1446
1447dev_cleanup:
1448 device_del(&device->dev);
1449cg_cleanup:
1450 dev_set_uevent_suppress(&device->dev, false);
1451 ib_device_unregister_rdmacg(device);
1452cache_cleanup:
1453 ib_cache_cleanup_one(device);
1454 return ret;
1455}
1456EXPORT_SYMBOL(ib_register_device);
1457
1458/* Callers must hold a get on the device. */
1459static void __ib_unregister_device(struct ib_device *ib_dev)
1460{
1461 /*
1462 * We have a registration lock so that all the calls to unregister are
1463 * fully fenced, once any unregister returns the device is truely
1464 * unregistered even if multiple callers are unregistering it at the
1465 * same time. This also interacts with the registration flow and
1466 * provides sane semantics if register and unregister are racing.
1467 */
1468 mutex_lock(&ib_dev->unregistration_lock);
1469 if (!refcount_read(&ib_dev->refcount))
1470 goto out;
1471
1472 disable_device(ib_dev);
1473
1474 /* Expedite removing unregistered pointers from the hash table */
1475 free_netdevs(ib_dev);
1476
1477 ib_free_port_attrs(&ib_dev->coredev);
1478 device_del(&ib_dev->dev);
1479 ib_device_unregister_rdmacg(ib_dev);
1480 ib_cache_cleanup_one(ib_dev);
1481
1482 /*
1483 * Drivers using the new flow may not call ib_dealloc_device except
1484 * in error unwind prior to registration success.
1485 */
1486 if (ib_dev->ops.dealloc_driver &&
1487 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1488 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1489 ib_dealloc_device(ib_dev);
1490 }
1491out:
1492 mutex_unlock(&ib_dev->unregistration_lock);
1493}
1494
1495/**
1496 * ib_unregister_device - Unregister an IB device
1497 * @ib_dev: The device to unregister
1498 *
1499 * Unregister an IB device. All clients will receive a remove callback.
1500 *
1501 * Callers should call this routine only once, and protect against races with
1502 * registration. Typically it should only be called as part of a remove
1503 * callback in an implementation of driver core's struct device_driver and
1504 * related.
1505 *
1506 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1507 * this function.
1508 */
1509void ib_unregister_device(struct ib_device *ib_dev)
1510{
1511 get_device(&ib_dev->dev);
1512 __ib_unregister_device(ib_dev);
1513 put_device(&ib_dev->dev);
1514}
1515EXPORT_SYMBOL(ib_unregister_device);
1516
1517/**
1518 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1519 * @ib_dev: The device to unregister
1520 *
1521 * This is the same as ib_unregister_device(), except it includes an internal
1522 * ib_device_put() that should match a 'get' obtained by the caller.
1523 *
1524 * It is safe to call this routine concurrently from multiple threads while
1525 * holding the 'get'. When the function returns the device is fully
1526 * unregistered.
1527 *
1528 * Drivers using this flow MUST use the driver_unregister callback to clean up
1529 * their resources associated with the device and dealloc it.
1530 */
1531void ib_unregister_device_and_put(struct ib_device *ib_dev)
1532{
1533 WARN_ON(!ib_dev->ops.dealloc_driver);
1534 get_device(&ib_dev->dev);
1535 ib_device_put(ib_dev);
1536 __ib_unregister_device(ib_dev);
1537 put_device(&ib_dev->dev);
1538}
1539EXPORT_SYMBOL(ib_unregister_device_and_put);
1540
1541/**
1542 * ib_unregister_driver - Unregister all IB devices for a driver
1543 * @driver_id: The driver to unregister
1544 *
1545 * This implements a fence for device unregistration. It only returns once all
1546 * devices associated with the driver_id have fully completed their
1547 * unregistration and returned from ib_unregister_device*().
1548 *
1549 * If device's are not yet unregistered it goes ahead and starts unregistering
1550 * them.
1551 *
1552 * This does not block creation of new devices with the given driver_id, that
1553 * is the responsibility of the caller.
1554 */
1555void ib_unregister_driver(enum rdma_driver_id driver_id)
1556{
1557 struct ib_device *ib_dev;
1558 unsigned long index;
1559
1560 down_read(&devices_rwsem);
1561 xa_for_each (&devices, index, ib_dev) {
1562 if (ib_dev->ops.driver_id != driver_id)
1563 continue;
1564
1565 get_device(&ib_dev->dev);
1566 up_read(&devices_rwsem);
1567
1568 WARN_ON(!ib_dev->ops.dealloc_driver);
1569 __ib_unregister_device(ib_dev);
1570
1571 put_device(&ib_dev->dev);
1572 down_read(&devices_rwsem);
1573 }
1574 up_read(&devices_rwsem);
1575}
1576EXPORT_SYMBOL(ib_unregister_driver);
1577
1578static void ib_unregister_work(struct work_struct *work)
1579{
1580 struct ib_device *ib_dev =
1581 container_of(work, struct ib_device, unregistration_work);
1582
1583 __ib_unregister_device(ib_dev);
1584 put_device(&ib_dev->dev);
1585}
1586
1587/**
1588 * ib_unregister_device_queued - Unregister a device using a work queue
1589 * @ib_dev: The device to unregister
1590 *
1591 * This schedules an asynchronous unregistration using a WQ for the device. A
1592 * driver should use this to avoid holding locks while doing unregistration,
1593 * such as holding the RTNL lock.
1594 *
1595 * Drivers using this API must use ib_unregister_driver before module unload
1596 * to ensure that all scheduled unregistrations have completed.
1597 */
1598void ib_unregister_device_queued(struct ib_device *ib_dev)
1599{
1600 WARN_ON(!refcount_read(&ib_dev->refcount));
1601 WARN_ON(!ib_dev->ops.dealloc_driver);
1602 get_device(&ib_dev->dev);
1603 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1604 put_device(&ib_dev->dev);
1605}
1606EXPORT_SYMBOL(ib_unregister_device_queued);
1607
1608/*
1609 * The caller must pass in a device that has the kref held and the refcount
1610 * released. If the device is in cur_net and still registered then it is moved
1611 * into net.
1612 */
1613static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1614 struct net *net)
1615{
1616 int ret2 = -EINVAL;
1617 int ret;
1618
1619 mutex_lock(&device->unregistration_lock);
1620
1621 /*
1622 * If a device not under ib_device_get() or if the unregistration_lock
1623 * is not held, the namespace can be changed, or it can be unregistered.
1624 * Check again under the lock.
1625 */
1626 if (refcount_read(&device->refcount) == 0 ||
1627 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1628 ret = -ENODEV;
1629 goto out;
1630 }
1631
1632 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1633 disable_device(device);
1634
1635 /*
1636 * At this point no one can be using the device, so it is safe to
1637 * change the namespace.
1638 */
1639 write_pnet(&device->coredev.rdma_net, net);
1640
1641 down_read(&devices_rwsem);
1642 /*
1643 * Currently rdma devices are system wide unique. So the device name
1644 * is guaranteed free in the new namespace. Publish the new namespace
1645 * at the sysfs level.
1646 */
1647 ret = device_rename(&device->dev, dev_name(&device->dev));
1648 up_read(&devices_rwsem);
1649 if (ret) {
1650 dev_warn(&device->dev,
1651 "%s: Couldn't rename device after namespace change\n",
1652 __func__);
1653 /* Try and put things back and re-enable the device */
1654 write_pnet(&device->coredev.rdma_net, cur_net);
1655 }
1656
1657 ret2 = enable_device_and_get(device);
1658 if (ret2) {
1659 /*
1660 * This shouldn't really happen, but if it does, let the user
1661 * retry at later point. So don't disable the device.
1662 */
1663 dev_warn(&device->dev,
1664 "%s: Couldn't re-enable device after namespace change\n",
1665 __func__);
1666 }
1667 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1668
1669 ib_device_put(device);
1670out:
1671 mutex_unlock(&device->unregistration_lock);
1672 if (ret)
1673 return ret;
1674 return ret2;
1675}
1676
1677int ib_device_set_netns_put(struct sk_buff *skb,
1678 struct ib_device *dev, u32 ns_fd)
1679{
1680 struct net *net;
1681 int ret;
1682
1683 net = get_net_ns_by_fd(ns_fd);
1684 if (IS_ERR(net)) {
1685 ret = PTR_ERR(net);
1686 goto net_err;
1687 }
1688
1689 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1690 ret = -EPERM;
1691 goto ns_err;
1692 }
1693
1694 /*
1695 * All the ib_clients, including uverbs, are reset when the namespace is
1696 * changed and this cannot be blocked waiting for userspace to do
1697 * something, so disassociation is mandatory.
1698 */
1699 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1700 ret = -EOPNOTSUPP;
1701 goto ns_err;
1702 }
1703
1704 get_device(&dev->dev);
1705 ib_device_put(dev);
1706 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1707 put_device(&dev->dev);
1708
1709 put_net(net);
1710 return ret;
1711
1712ns_err:
1713 put_net(net);
1714net_err:
1715 ib_device_put(dev);
1716 return ret;
1717}
1718
1719static struct pernet_operations rdma_dev_net_ops = {
1720 .init = rdma_dev_init_net,
1721 .exit = rdma_dev_exit_net,
1722 .id = &rdma_dev_net_id,
1723 .size = sizeof(struct rdma_dev_net),
1724};
1725
1726static int assign_client_id(struct ib_client *client)
1727{
1728 int ret;
1729
1730 down_write(&clients_rwsem);
1731 /*
1732 * The add/remove callbacks must be called in FIFO/LIFO order. To
1733 * achieve this we assign client_ids so they are sorted in
1734 * registration order.
1735 */
1736 client->client_id = highest_client_id;
1737 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1738 if (ret)
1739 goto out;
1740
1741 highest_client_id++;
1742 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1743
1744out:
1745 up_write(&clients_rwsem);
1746 return ret;
1747}
1748
1749static void remove_client_id(struct ib_client *client)
1750{
1751 down_write(&clients_rwsem);
1752 xa_erase(&clients, client->client_id);
1753 for (; highest_client_id; highest_client_id--)
1754 if (xa_load(&clients, highest_client_id - 1))
1755 break;
1756 up_write(&clients_rwsem);
1757}
1758
1759/**
1760 * ib_register_client - Register an IB client
1761 * @client:Client to register
1762 *
1763 * Upper level users of the IB drivers can use ib_register_client() to
1764 * register callbacks for IB device addition and removal. When an IB
1765 * device is added, each registered client's add method will be called
1766 * (in the order the clients were registered), and when a device is
1767 * removed, each client's remove method will be called (in the reverse
1768 * order that clients were registered). In addition, when
1769 * ib_register_client() is called, the client will receive an add
1770 * callback for all devices already registered.
1771 */
1772int ib_register_client(struct ib_client *client)
1773{
1774 struct ib_device *device;
1775 unsigned long index;
1776 int ret;
1777
1778 refcount_set(&client->uses, 1);
1779 init_completion(&client->uses_zero);
1780 ret = assign_client_id(client);
1781 if (ret)
1782 return ret;
1783
1784 down_read(&devices_rwsem);
1785 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1786 ret = add_client_context(device, client);
1787 if (ret) {
1788 up_read(&devices_rwsem);
1789 ib_unregister_client(client);
1790 return ret;
1791 }
1792 }
1793 up_read(&devices_rwsem);
1794 return 0;
1795}
1796EXPORT_SYMBOL(ib_register_client);
1797
1798/**
1799 * ib_unregister_client - Unregister an IB client
1800 * @client:Client to unregister
1801 *
1802 * Upper level users use ib_unregister_client() to remove their client
1803 * registration. When ib_unregister_client() is called, the client
1804 * will receive a remove callback for each IB device still registered.
1805 *
1806 * This is a full fence, once it returns no client callbacks will be called,
1807 * or are running in another thread.
1808 */
1809void ib_unregister_client(struct ib_client *client)
1810{
1811 struct ib_device *device;
1812 unsigned long index;
1813
1814 down_write(&clients_rwsem);
1815 ib_client_put(client);
1816 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1817 up_write(&clients_rwsem);
1818
1819 /* We do not want to have locks while calling client->remove() */
1820 rcu_read_lock();
1821 xa_for_each (&devices, index, device) {
1822 if (!ib_device_try_get(device))
1823 continue;
1824 rcu_read_unlock();
1825
1826 remove_client_context(device, client->client_id);
1827
1828 ib_device_put(device);
1829 rcu_read_lock();
1830 }
1831 rcu_read_unlock();
1832
1833 /*
1834 * remove_client_context() is not a fence, it can return even though a
1835 * removal is ongoing. Wait until all removals are completed.
1836 */
1837 wait_for_completion(&client->uses_zero);
1838 remove_client_id(client);
1839}
1840EXPORT_SYMBOL(ib_unregister_client);
1841
1842static int __ib_get_global_client_nl_info(const char *client_name,
1843 struct ib_client_nl_info *res)
1844{
1845 struct ib_client *client;
1846 unsigned long index;
1847 int ret = -ENOENT;
1848
1849 down_read(&clients_rwsem);
1850 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1851 if (strcmp(client->name, client_name) != 0)
1852 continue;
1853 if (!client->get_global_nl_info) {
1854 ret = -EOPNOTSUPP;
1855 break;
1856 }
1857 ret = client->get_global_nl_info(res);
1858 if (WARN_ON(ret == -ENOENT))
1859 ret = -EINVAL;
1860 if (!ret && res->cdev)
1861 get_device(res->cdev);
1862 break;
1863 }
1864 up_read(&clients_rwsem);
1865 return ret;
1866}
1867
1868static int __ib_get_client_nl_info(struct ib_device *ibdev,
1869 const char *client_name,
1870 struct ib_client_nl_info *res)
1871{
1872 unsigned long index;
1873 void *client_data;
1874 int ret = -ENOENT;
1875
1876 down_read(&ibdev->client_data_rwsem);
1877 xan_for_each_marked (&ibdev->client_data, index, client_data,
1878 CLIENT_DATA_REGISTERED) {
1879 struct ib_client *client = xa_load(&clients, index);
1880
1881 if (!client || strcmp(client->name, client_name) != 0)
1882 continue;
1883 if (!client->get_nl_info) {
1884 ret = -EOPNOTSUPP;
1885 break;
1886 }
1887 ret = client->get_nl_info(ibdev, client_data, res);
1888 if (WARN_ON(ret == -ENOENT))
1889 ret = -EINVAL;
1890
1891 /*
1892 * The cdev is guaranteed valid as long as we are inside the
1893 * client_data_rwsem as remove_one can't be called. Keep it
1894 * valid for the caller.
1895 */
1896 if (!ret && res->cdev)
1897 get_device(res->cdev);
1898 break;
1899 }
1900 up_read(&ibdev->client_data_rwsem);
1901
1902 return ret;
1903}
1904
1905/**
1906 * ib_get_client_nl_info - Fetch the nl_info from a client
1907 * @ibdev: IB device
1908 * @client_name: Name of the client
1909 * @res: Result of the query
1910 */
1911int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1912 struct ib_client_nl_info *res)
1913{
1914 int ret;
1915
1916 if (ibdev)
1917 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1918 else
1919 ret = __ib_get_global_client_nl_info(client_name, res);
1920#ifdef CONFIG_MODULES
1921 if (ret == -ENOENT) {
1922 request_module("rdma-client-%s", client_name);
1923 if (ibdev)
1924 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1925 else
1926 ret = __ib_get_global_client_nl_info(client_name, res);
1927 }
1928#endif
1929 if (ret) {
1930 if (ret == -ENOENT)
1931 return -EOPNOTSUPP;
1932 return ret;
1933 }
1934
1935 if (WARN_ON(!res->cdev))
1936 return -EINVAL;
1937 return 0;
1938}
1939
1940/**
1941 * ib_set_client_data - Set IB client context
1942 * @device:Device to set context for
1943 * @client:Client to set context for
1944 * @data:Context to set
1945 *
1946 * ib_set_client_data() sets client context data that can be retrieved with
1947 * ib_get_client_data(). This can only be called while the client is
1948 * registered to the device, once the ib_client remove() callback returns this
1949 * cannot be called.
1950 */
1951void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1952 void *data)
1953{
1954 void *rc;
1955
1956 if (WARN_ON(IS_ERR(data)))
1957 data = NULL;
1958
1959 rc = xa_store(&device->client_data, client->client_id, data,
1960 GFP_KERNEL);
1961 WARN_ON(xa_is_err(rc));
1962}
1963EXPORT_SYMBOL(ib_set_client_data);
1964
1965/**
1966 * ib_register_event_handler - Register an IB event handler
1967 * @event_handler:Handler to register
1968 *
1969 * ib_register_event_handler() registers an event handler that will be
1970 * called back when asynchronous IB events occur (as defined in
1971 * chapter 11 of the InfiniBand Architecture Specification). This
1972 * callback occurs in workqueue context.
1973 */
1974void ib_register_event_handler(struct ib_event_handler *event_handler)
1975{
1976 down_write(&event_handler->device->event_handler_rwsem);
1977 list_add_tail(&event_handler->list,
1978 &event_handler->device->event_handler_list);
1979 up_write(&event_handler->device->event_handler_rwsem);
1980}
1981EXPORT_SYMBOL(ib_register_event_handler);
1982
1983/**
1984 * ib_unregister_event_handler - Unregister an event handler
1985 * @event_handler:Handler to unregister
1986 *
1987 * Unregister an event handler registered with
1988 * ib_register_event_handler().
1989 */
1990void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1991{
1992 down_write(&event_handler->device->event_handler_rwsem);
1993 list_del(&event_handler->list);
1994 up_write(&event_handler->device->event_handler_rwsem);
1995}
1996EXPORT_SYMBOL(ib_unregister_event_handler);
1997
1998void ib_dispatch_event_clients(struct ib_event *event)
1999{
2000 struct ib_event_handler *handler;
2001
2002 down_read(&event->device->event_handler_rwsem);
2003
2004 list_for_each_entry(handler, &event->device->event_handler_list, list)
2005 handler->handler(handler, event);
2006
2007 up_read(&event->device->event_handler_rwsem);
2008}
2009
2010static int iw_query_port(struct ib_device *device,
2011 u32 port_num,
2012 struct ib_port_attr *port_attr)
2013{
2014 struct in_device *inetdev;
2015 struct net_device *netdev;
2016
2017 memset(port_attr, 0, sizeof(*port_attr));
2018
2019 netdev = ib_device_get_netdev(device, port_num);
2020 if (!netdev)
2021 return -ENODEV;
2022
2023 port_attr->max_mtu = IB_MTU_4096;
2024 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2025
2026 if (!netif_carrier_ok(netdev)) {
2027 port_attr->state = IB_PORT_DOWN;
2028 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2029 } else {
2030 rcu_read_lock();
2031 inetdev = __in_dev_get_rcu(netdev);
2032
2033 if (inetdev && inetdev->ifa_list) {
2034 port_attr->state = IB_PORT_ACTIVE;
2035 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2036 } else {
2037 port_attr->state = IB_PORT_INIT;
2038 port_attr->phys_state =
2039 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2040 }
2041
2042 rcu_read_unlock();
2043 }
2044
2045 dev_put(netdev);
2046 return device->ops.query_port(device, port_num, port_attr);
2047}
2048
2049static int __ib_query_port(struct ib_device *device,
2050 u32 port_num,
2051 struct ib_port_attr *port_attr)
2052{
2053 union ib_gid gid = {};
2054 int err;
2055
2056 memset(port_attr, 0, sizeof(*port_attr));
2057
2058 err = device->ops.query_port(device, port_num, port_attr);
2059 if (err || port_attr->subnet_prefix)
2060 return err;
2061
2062 if (rdma_port_get_link_layer(device, port_num) !=
2063 IB_LINK_LAYER_INFINIBAND)
2064 return 0;
2065
2066 err = device->ops.query_gid(device, port_num, 0, &gid);
2067 if (err)
2068 return err;
2069
2070 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2071 return 0;
2072}
2073
2074/**
2075 * ib_query_port - Query IB port attributes
2076 * @device:Device to query
2077 * @port_num:Port number to query
2078 * @port_attr:Port attributes
2079 *
2080 * ib_query_port() returns the attributes of a port through the
2081 * @port_attr pointer.
2082 */
2083int ib_query_port(struct ib_device *device,
2084 u32 port_num,
2085 struct ib_port_attr *port_attr)
2086{
2087 if (!rdma_is_port_valid(device, port_num))
2088 return -EINVAL;
2089
2090 if (rdma_protocol_iwarp(device, port_num))
2091 return iw_query_port(device, port_num, port_attr);
2092 else
2093 return __ib_query_port(device, port_num, port_attr);
2094}
2095EXPORT_SYMBOL(ib_query_port);
2096
2097static void add_ndev_hash(struct ib_port_data *pdata)
2098{
2099 unsigned long flags;
2100
2101 might_sleep();
2102
2103 spin_lock_irqsave(&ndev_hash_lock, flags);
2104 if (hash_hashed(&pdata->ndev_hash_link)) {
2105 hash_del_rcu(&pdata->ndev_hash_link);
2106 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2107 /*
2108 * We cannot do hash_add_rcu after a hash_del_rcu until the
2109 * grace period
2110 */
2111 synchronize_rcu();
2112 spin_lock_irqsave(&ndev_hash_lock, flags);
2113 }
2114 if (pdata->netdev)
2115 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2116 (uintptr_t)pdata->netdev);
2117 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2118}
2119
2120/**
2121 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2122 * @ib_dev: Device to modify
2123 * @ndev: net_device to affiliate, may be NULL
2124 * @port: IB port the net_device is connected to
2125 *
2126 * Drivers should use this to link the ib_device to a netdev so the netdev
2127 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2128 * affiliated with any port.
2129 *
2130 * The caller must ensure that the given ndev is not unregistered or
2131 * unregistering, and that either the ib_device is unregistered or
2132 * ib_device_set_netdev() is called with NULL when the ndev sends a
2133 * NETDEV_UNREGISTER event.
2134 */
2135int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2136 u32 port)
2137{
2138 struct net_device *old_ndev;
2139 struct ib_port_data *pdata;
2140 unsigned long flags;
2141 int ret;
2142
2143 /*
2144 * Drivers wish to call this before ib_register_driver, so we have to
2145 * setup the port data early.
2146 */
2147 ret = alloc_port_data(ib_dev);
2148 if (ret)
2149 return ret;
2150
2151 if (!rdma_is_port_valid(ib_dev, port))
2152 return -EINVAL;
2153
2154 pdata = &ib_dev->port_data[port];
2155 spin_lock_irqsave(&pdata->netdev_lock, flags);
2156 old_ndev = rcu_dereference_protected(
2157 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2158 if (old_ndev == ndev) {
2159 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2160 return 0;
2161 }
2162
2163 if (ndev)
2164 dev_hold(ndev);
2165 rcu_assign_pointer(pdata->netdev, ndev);
2166 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2167
2168 add_ndev_hash(pdata);
2169 if (old_ndev)
2170 dev_put(old_ndev);
2171
2172 return 0;
2173}
2174EXPORT_SYMBOL(ib_device_set_netdev);
2175
2176static void free_netdevs(struct ib_device *ib_dev)
2177{
2178 unsigned long flags;
2179 u32 port;
2180
2181 if (!ib_dev->port_data)
2182 return;
2183
2184 rdma_for_each_port (ib_dev, port) {
2185 struct ib_port_data *pdata = &ib_dev->port_data[port];
2186 struct net_device *ndev;
2187
2188 spin_lock_irqsave(&pdata->netdev_lock, flags);
2189 ndev = rcu_dereference_protected(
2190 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2191 if (ndev) {
2192 spin_lock(&ndev_hash_lock);
2193 hash_del_rcu(&pdata->ndev_hash_link);
2194 spin_unlock(&ndev_hash_lock);
2195
2196 /*
2197 * If this is the last dev_put there is still a
2198 * synchronize_rcu before the netdev is kfreed, so we
2199 * can continue to rely on unlocked pointer
2200 * comparisons after the put
2201 */
2202 rcu_assign_pointer(pdata->netdev, NULL);
2203 dev_put(ndev);
2204 }
2205 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2206 }
2207}
2208
2209struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2210 u32 port)
2211{
2212 struct ib_port_data *pdata;
2213 struct net_device *res;
2214
2215 if (!rdma_is_port_valid(ib_dev, port))
2216 return NULL;
2217
2218 pdata = &ib_dev->port_data[port];
2219
2220 /*
2221 * New drivers should use ib_device_set_netdev() not the legacy
2222 * get_netdev().
2223 */
2224 if (ib_dev->ops.get_netdev)
2225 res = ib_dev->ops.get_netdev(ib_dev, port);
2226 else {
2227 spin_lock(&pdata->netdev_lock);
2228 res = rcu_dereference_protected(
2229 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2230 if (res)
2231 dev_hold(res);
2232 spin_unlock(&pdata->netdev_lock);
2233 }
2234
2235 /*
2236 * If we are starting to unregister expedite things by preventing
2237 * propagation of an unregistering netdev.
2238 */
2239 if (res && res->reg_state != NETREG_REGISTERED) {
2240 dev_put(res);
2241 return NULL;
2242 }
2243
2244 return res;
2245}
2246
2247/**
2248 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2249 * @ndev: netdev to locate
2250 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2251 *
2252 * Find and hold an ib_device that is associated with a netdev via
2253 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2254 * returned pointer.
2255 */
2256struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2257 enum rdma_driver_id driver_id)
2258{
2259 struct ib_device *res = NULL;
2260 struct ib_port_data *cur;
2261
2262 rcu_read_lock();
2263 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2264 (uintptr_t)ndev) {
2265 if (rcu_access_pointer(cur->netdev) == ndev &&
2266 (driver_id == RDMA_DRIVER_UNKNOWN ||
2267 cur->ib_dev->ops.driver_id == driver_id) &&
2268 ib_device_try_get(cur->ib_dev)) {
2269 res = cur->ib_dev;
2270 break;
2271 }
2272 }
2273 rcu_read_unlock();
2274
2275 return res;
2276}
2277EXPORT_SYMBOL(ib_device_get_by_netdev);
2278
2279/**
2280 * ib_enum_roce_netdev - enumerate all RoCE ports
2281 * @ib_dev : IB device we want to query
2282 * @filter: Should we call the callback?
2283 * @filter_cookie: Cookie passed to filter
2284 * @cb: Callback to call for each found RoCE ports
2285 * @cookie: Cookie passed back to the callback
2286 *
2287 * Enumerates all of the physical RoCE ports of ib_dev
2288 * which are related to netdevice and calls callback() on each
2289 * device for which filter() function returns non zero.
2290 */
2291void ib_enum_roce_netdev(struct ib_device *ib_dev,
2292 roce_netdev_filter filter,
2293 void *filter_cookie,
2294 roce_netdev_callback cb,
2295 void *cookie)
2296{
2297 u32 port;
2298
2299 rdma_for_each_port (ib_dev, port)
2300 if (rdma_protocol_roce(ib_dev, port)) {
2301 struct net_device *idev =
2302 ib_device_get_netdev(ib_dev, port);
2303
2304 if (filter(ib_dev, port, idev, filter_cookie))
2305 cb(ib_dev, port, idev, cookie);
2306
2307 if (idev)
2308 dev_put(idev);
2309 }
2310}
2311
2312/**
2313 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2314 * @filter: Should we call the callback?
2315 * @filter_cookie: Cookie passed to filter
2316 * @cb: Callback to call for each found RoCE ports
2317 * @cookie: Cookie passed back to the callback
2318 *
2319 * Enumerates all RoCE devices' physical ports which are related
2320 * to netdevices and calls callback() on each device for which
2321 * filter() function returns non zero.
2322 */
2323void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2324 void *filter_cookie,
2325 roce_netdev_callback cb,
2326 void *cookie)
2327{
2328 struct ib_device *dev;
2329 unsigned long index;
2330
2331 down_read(&devices_rwsem);
2332 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2333 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2334 up_read(&devices_rwsem);
2335}
2336
2337/*
2338 * ib_enum_all_devs - enumerate all ib_devices
2339 * @cb: Callback to call for each found ib_device
2340 *
2341 * Enumerates all ib_devices and calls callback() on each device.
2342 */
2343int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2344 struct netlink_callback *cb)
2345{
2346 unsigned long index;
2347 struct ib_device *dev;
2348 unsigned int idx = 0;
2349 int ret = 0;
2350
2351 down_read(&devices_rwsem);
2352 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2353 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2354 continue;
2355
2356 ret = nldev_cb(dev, skb, cb, idx);
2357 if (ret)
2358 break;
2359 idx++;
2360 }
2361 up_read(&devices_rwsem);
2362 return ret;
2363}
2364
2365/**
2366 * ib_query_pkey - Get P_Key table entry
2367 * @device:Device to query
2368 * @port_num:Port number to query
2369 * @index:P_Key table index to query
2370 * @pkey:Returned P_Key
2371 *
2372 * ib_query_pkey() fetches the specified P_Key table entry.
2373 */
2374int ib_query_pkey(struct ib_device *device,
2375 u32 port_num, u16 index, u16 *pkey)
2376{
2377 if (!rdma_is_port_valid(device, port_num))
2378 return -EINVAL;
2379
2380 if (!device->ops.query_pkey)
2381 return -EOPNOTSUPP;
2382
2383 return device->ops.query_pkey(device, port_num, index, pkey);
2384}
2385EXPORT_SYMBOL(ib_query_pkey);
2386
2387/**
2388 * ib_modify_device - Change IB device attributes
2389 * @device:Device to modify
2390 * @device_modify_mask:Mask of attributes to change
2391 * @device_modify:New attribute values
2392 *
2393 * ib_modify_device() changes a device's attributes as specified by
2394 * the @device_modify_mask and @device_modify structure.
2395 */
2396int ib_modify_device(struct ib_device *device,
2397 int device_modify_mask,
2398 struct ib_device_modify *device_modify)
2399{
2400 if (!device->ops.modify_device)
2401 return -EOPNOTSUPP;
2402
2403 return device->ops.modify_device(device, device_modify_mask,
2404 device_modify);
2405}
2406EXPORT_SYMBOL(ib_modify_device);
2407
2408/**
2409 * ib_modify_port - Modifies the attributes for the specified port.
2410 * @device: The device to modify.
2411 * @port_num: The number of the port to modify.
2412 * @port_modify_mask: Mask used to specify which attributes of the port
2413 * to change.
2414 * @port_modify: New attribute values for the port.
2415 *
2416 * ib_modify_port() changes a port's attributes as specified by the
2417 * @port_modify_mask and @port_modify structure.
2418 */
2419int ib_modify_port(struct ib_device *device,
2420 u32 port_num, int port_modify_mask,
2421 struct ib_port_modify *port_modify)
2422{
2423 int rc;
2424
2425 if (!rdma_is_port_valid(device, port_num))
2426 return -EINVAL;
2427
2428 if (device->ops.modify_port)
2429 rc = device->ops.modify_port(device, port_num,
2430 port_modify_mask,
2431 port_modify);
2432 else if (rdma_protocol_roce(device, port_num) &&
2433 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2434 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2435 rc = 0;
2436 else
2437 rc = -EOPNOTSUPP;
2438 return rc;
2439}
2440EXPORT_SYMBOL(ib_modify_port);
2441
2442/**
2443 * ib_find_gid - Returns the port number and GID table index where
2444 * a specified GID value occurs. Its searches only for IB link layer.
2445 * @device: The device to query.
2446 * @gid: The GID value to search for.
2447 * @port_num: The port number of the device where the GID value was found.
2448 * @index: The index into the GID table where the GID was found. This
2449 * parameter may be NULL.
2450 */
2451int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2452 u32 *port_num, u16 *index)
2453{
2454 union ib_gid tmp_gid;
2455 u32 port;
2456 int ret, i;
2457
2458 rdma_for_each_port (device, port) {
2459 if (!rdma_protocol_ib(device, port))
2460 continue;
2461
2462 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2463 ++i) {
2464 ret = rdma_query_gid(device, port, i, &tmp_gid);
2465 if (ret)
2466 return ret;
2467 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2468 *port_num = port;
2469 if (index)
2470 *index = i;
2471 return 0;
2472 }
2473 }
2474 }
2475
2476 return -ENOENT;
2477}
2478EXPORT_SYMBOL(ib_find_gid);
2479
2480/**
2481 * ib_find_pkey - Returns the PKey table index where a specified
2482 * PKey value occurs.
2483 * @device: The device to query.
2484 * @port_num: The port number of the device to search for the PKey.
2485 * @pkey: The PKey value to search for.
2486 * @index: The index into the PKey table where the PKey was found.
2487 */
2488int ib_find_pkey(struct ib_device *device,
2489 u32 port_num, u16 pkey, u16 *index)
2490{
2491 int ret, i;
2492 u16 tmp_pkey;
2493 int partial_ix = -1;
2494
2495 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2496 ++i) {
2497 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2498 if (ret)
2499 return ret;
2500 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2501 /* if there is full-member pkey take it.*/
2502 if (tmp_pkey & 0x8000) {
2503 *index = i;
2504 return 0;
2505 }
2506 if (partial_ix < 0)
2507 partial_ix = i;
2508 }
2509 }
2510
2511 /*no full-member, if exists take the limited*/
2512 if (partial_ix >= 0) {
2513 *index = partial_ix;
2514 return 0;
2515 }
2516 return -ENOENT;
2517}
2518EXPORT_SYMBOL(ib_find_pkey);
2519
2520/**
2521 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2522 * for a received CM request
2523 * @dev: An RDMA device on which the request has been received.
2524 * @port: Port number on the RDMA device.
2525 * @pkey: The Pkey the request came on.
2526 * @gid: A GID that the net_dev uses to communicate.
2527 * @addr: Contains the IP address that the request specified as its
2528 * destination.
2529 *
2530 */
2531struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2532 u32 port,
2533 u16 pkey,
2534 const union ib_gid *gid,
2535 const struct sockaddr *addr)
2536{
2537 struct net_device *net_dev = NULL;
2538 unsigned long index;
2539 void *client_data;
2540
2541 if (!rdma_protocol_ib(dev, port))
2542 return NULL;
2543
2544 /*
2545 * Holding the read side guarantees that the client will not become
2546 * unregistered while we are calling get_net_dev_by_params()
2547 */
2548 down_read(&dev->client_data_rwsem);
2549 xan_for_each_marked (&dev->client_data, index, client_data,
2550 CLIENT_DATA_REGISTERED) {
2551 struct ib_client *client = xa_load(&clients, index);
2552
2553 if (!client || !client->get_net_dev_by_params)
2554 continue;
2555
2556 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2557 addr, client_data);
2558 if (net_dev)
2559 break;
2560 }
2561 up_read(&dev->client_data_rwsem);
2562
2563 return net_dev;
2564}
2565EXPORT_SYMBOL(ib_get_net_dev_by_params);
2566
2567void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2568{
2569 struct ib_device_ops *dev_ops = &dev->ops;
2570#define SET_DEVICE_OP(ptr, name) \
2571 do { \
2572 if (ops->name) \
2573 if (!((ptr)->name)) \
2574 (ptr)->name = ops->name; \
2575 } while (0)
2576
2577#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2578
2579 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2580 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2581 dev_ops->driver_id != ops->driver_id);
2582 dev_ops->driver_id = ops->driver_id;
2583 }
2584 if (ops->owner) {
2585 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2586 dev_ops->owner = ops->owner;
2587 }
2588 if (ops->uverbs_abi_ver)
2589 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2590
2591 dev_ops->uverbs_no_driver_id_binding |=
2592 ops->uverbs_no_driver_id_binding;
2593
2594 SET_DEVICE_OP(dev_ops, add_gid);
2595 SET_DEVICE_OP(dev_ops, advise_mr);
2596 SET_DEVICE_OP(dev_ops, alloc_dm);
2597 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2598 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2599 SET_DEVICE_OP(dev_ops, alloc_mr);
2600 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2601 SET_DEVICE_OP(dev_ops, alloc_mw);
2602 SET_DEVICE_OP(dev_ops, alloc_pd);
2603 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2604 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2605 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2606 SET_DEVICE_OP(dev_ops, attach_mcast);
2607 SET_DEVICE_OP(dev_ops, check_mr_status);
2608 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2609 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2610 SET_DEVICE_OP(dev_ops, counter_dealloc);
2611 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2612 SET_DEVICE_OP(dev_ops, counter_update_stats);
2613 SET_DEVICE_OP(dev_ops, create_ah);
2614 SET_DEVICE_OP(dev_ops, create_counters);
2615 SET_DEVICE_OP(dev_ops, create_cq);
2616 SET_DEVICE_OP(dev_ops, create_flow);
2617 SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2618 SET_DEVICE_OP(dev_ops, create_qp);
2619 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2620 SET_DEVICE_OP(dev_ops, create_srq);
2621 SET_DEVICE_OP(dev_ops, create_user_ah);
2622 SET_DEVICE_OP(dev_ops, create_wq);
2623 SET_DEVICE_OP(dev_ops, dealloc_dm);
2624 SET_DEVICE_OP(dev_ops, dealloc_driver);
2625 SET_DEVICE_OP(dev_ops, dealloc_mw);
2626 SET_DEVICE_OP(dev_ops, dealloc_pd);
2627 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2628 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2629 SET_DEVICE_OP(dev_ops, del_gid);
2630 SET_DEVICE_OP(dev_ops, dereg_mr);
2631 SET_DEVICE_OP(dev_ops, destroy_ah);
2632 SET_DEVICE_OP(dev_ops, destroy_counters);
2633 SET_DEVICE_OP(dev_ops, destroy_cq);
2634 SET_DEVICE_OP(dev_ops, destroy_flow);
2635 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2636 SET_DEVICE_OP(dev_ops, destroy_qp);
2637 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2638 SET_DEVICE_OP(dev_ops, destroy_srq);
2639 SET_DEVICE_OP(dev_ops, destroy_wq);
2640 SET_DEVICE_OP(dev_ops, device_group);
2641 SET_DEVICE_OP(dev_ops, detach_mcast);
2642 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2643 SET_DEVICE_OP(dev_ops, drain_rq);
2644 SET_DEVICE_OP(dev_ops, drain_sq);
2645 SET_DEVICE_OP(dev_ops, enable_driver);
2646 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2647 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2648 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2649 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2650 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2651 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2652 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2653 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2654 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2655 SET_DEVICE_OP(dev_ops, get_dma_mr);
2656 SET_DEVICE_OP(dev_ops, get_hw_stats);
2657 SET_DEVICE_OP(dev_ops, get_link_layer);
2658 SET_DEVICE_OP(dev_ops, get_netdev);
2659 SET_DEVICE_OP(dev_ops, get_port_immutable);
2660 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2661 SET_DEVICE_OP(dev_ops, get_vf_config);
2662 SET_DEVICE_OP(dev_ops, get_vf_guid);
2663 SET_DEVICE_OP(dev_ops, get_vf_stats);
2664 SET_DEVICE_OP(dev_ops, iw_accept);
2665 SET_DEVICE_OP(dev_ops, iw_add_ref);
2666 SET_DEVICE_OP(dev_ops, iw_connect);
2667 SET_DEVICE_OP(dev_ops, iw_create_listen);
2668 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2669 SET_DEVICE_OP(dev_ops, iw_get_qp);
2670 SET_DEVICE_OP(dev_ops, iw_reject);
2671 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2672 SET_DEVICE_OP(dev_ops, map_mr_sg);
2673 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2674 SET_DEVICE_OP(dev_ops, mmap);
2675 SET_DEVICE_OP(dev_ops, mmap_free);
2676 SET_DEVICE_OP(dev_ops, modify_ah);
2677 SET_DEVICE_OP(dev_ops, modify_cq);
2678 SET_DEVICE_OP(dev_ops, modify_device);
2679 SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2680 SET_DEVICE_OP(dev_ops, modify_port);
2681 SET_DEVICE_OP(dev_ops, modify_qp);
2682 SET_DEVICE_OP(dev_ops, modify_srq);
2683 SET_DEVICE_OP(dev_ops, modify_wq);
2684 SET_DEVICE_OP(dev_ops, peek_cq);
2685 SET_DEVICE_OP(dev_ops, poll_cq);
2686 SET_DEVICE_OP(dev_ops, port_groups);
2687 SET_DEVICE_OP(dev_ops, post_recv);
2688 SET_DEVICE_OP(dev_ops, post_send);
2689 SET_DEVICE_OP(dev_ops, post_srq_recv);
2690 SET_DEVICE_OP(dev_ops, process_mad);
2691 SET_DEVICE_OP(dev_ops, query_ah);
2692 SET_DEVICE_OP(dev_ops, query_device);
2693 SET_DEVICE_OP(dev_ops, query_gid);
2694 SET_DEVICE_OP(dev_ops, query_pkey);
2695 SET_DEVICE_OP(dev_ops, query_port);
2696 SET_DEVICE_OP(dev_ops, query_qp);
2697 SET_DEVICE_OP(dev_ops, query_srq);
2698 SET_DEVICE_OP(dev_ops, query_ucontext);
2699 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2700 SET_DEVICE_OP(dev_ops, read_counters);
2701 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2702 SET_DEVICE_OP(dev_ops, reg_user_mr);
2703 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2704 SET_DEVICE_OP(dev_ops, req_notify_cq);
2705 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2706 SET_DEVICE_OP(dev_ops, resize_cq);
2707 SET_DEVICE_OP(dev_ops, set_vf_guid);
2708 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2709
2710 SET_OBJ_SIZE(dev_ops, ib_ah);
2711 SET_OBJ_SIZE(dev_ops, ib_counters);
2712 SET_OBJ_SIZE(dev_ops, ib_cq);
2713 SET_OBJ_SIZE(dev_ops, ib_mw);
2714 SET_OBJ_SIZE(dev_ops, ib_pd);
2715 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2716 SET_OBJ_SIZE(dev_ops, ib_srq);
2717 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2718 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2719}
2720EXPORT_SYMBOL(ib_set_device_ops);
2721
2722#ifdef CONFIG_INFINIBAND_VIRT_DMA
2723int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2724{
2725 struct scatterlist *s;
2726 int i;
2727
2728 for_each_sg(sg, s, nents, i) {
2729 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2730 sg_dma_len(s) = s->length;
2731 }
2732 return nents;
2733}
2734EXPORT_SYMBOL(ib_dma_virt_map_sg);
2735#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2736
2737static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2738 [RDMA_NL_LS_OP_RESOLVE] = {
2739 .doit = ib_nl_handle_resolve_resp,
2740 .flags = RDMA_NL_ADMIN_PERM,
2741 },
2742 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2743 .doit = ib_nl_handle_set_timeout,
2744 .flags = RDMA_NL_ADMIN_PERM,
2745 },
2746 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2747 .doit = ib_nl_handle_ip_res_resp,
2748 .flags = RDMA_NL_ADMIN_PERM,
2749 },
2750};
2751
2752static int __init ib_core_init(void)
2753{
2754 int ret;
2755
2756 ib_wq = alloc_workqueue("infiniband", 0, 0);
2757 if (!ib_wq)
2758 return -ENOMEM;
2759
2760 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2761 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2762 if (!ib_comp_wq) {
2763 ret = -ENOMEM;
2764 goto err;
2765 }
2766
2767 ib_comp_unbound_wq =
2768 alloc_workqueue("ib-comp-unb-wq",
2769 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2770 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2771 if (!ib_comp_unbound_wq) {
2772 ret = -ENOMEM;
2773 goto err_comp;
2774 }
2775
2776 ret = class_register(&ib_class);
2777 if (ret) {
2778 pr_warn("Couldn't create InfiniBand device class\n");
2779 goto err_comp_unbound;
2780 }
2781
2782 rdma_nl_init();
2783
2784 ret = addr_init();
2785 if (ret) {
2786 pr_warn("Couldn't init IB address resolution\n");
2787 goto err_ibnl;
2788 }
2789
2790 ret = ib_mad_init();
2791 if (ret) {
2792 pr_warn("Couldn't init IB MAD\n");
2793 goto err_addr;
2794 }
2795
2796 ret = ib_sa_init();
2797 if (ret) {
2798 pr_warn("Couldn't init SA\n");
2799 goto err_mad;
2800 }
2801
2802 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2803 if (ret) {
2804 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2805 goto err_sa;
2806 }
2807
2808 ret = register_pernet_device(&rdma_dev_net_ops);
2809 if (ret) {
2810 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2811 goto err_compat;
2812 }
2813
2814 nldev_init();
2815 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2816 roce_gid_mgmt_init();
2817
2818 return 0;
2819
2820err_compat:
2821 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2822err_sa:
2823 ib_sa_cleanup();
2824err_mad:
2825 ib_mad_cleanup();
2826err_addr:
2827 addr_cleanup();
2828err_ibnl:
2829 class_unregister(&ib_class);
2830err_comp_unbound:
2831 destroy_workqueue(ib_comp_unbound_wq);
2832err_comp:
2833 destroy_workqueue(ib_comp_wq);
2834err:
2835 destroy_workqueue(ib_wq);
2836 return ret;
2837}
2838
2839static void __exit ib_core_cleanup(void)
2840{
2841 roce_gid_mgmt_cleanup();
2842 nldev_exit();
2843 rdma_nl_unregister(RDMA_NL_LS);
2844 unregister_pernet_device(&rdma_dev_net_ops);
2845 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2846 ib_sa_cleanup();
2847 ib_mad_cleanup();
2848 addr_cleanup();
2849 rdma_nl_exit();
2850 class_unregister(&ib_class);
2851 destroy_workqueue(ib_comp_unbound_wq);
2852 destroy_workqueue(ib_comp_wq);
2853 /* Make sure that any pending umem accounting work is done. */
2854 destroy_workqueue(ib_wq);
2855 flush_workqueue(system_unbound_wq);
2856 WARN_ON(!xa_empty(&clients));
2857 WARN_ON(!xa_empty(&devices));
2858}
2859
2860MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2861
2862/* ib core relies on netdev stack to first register net_ns_type_operations
2863 * ns kobject type before ib_core initialization.
2864 */
2865fs_initcall(ib_core_init);
2866module_exit(ib_core_cleanup);