Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2020 MaxLinear, Inc.
  4 *
  5 * This driver is a hardware monitoring driver for PVT controller
  6 * (MR75203) which is used to configure & control Moortec embedded
  7 * analog IP to enable multiple embedded temperature sensor(TS),
  8 * voltage monitor(VM) & process detector(PD) modules.
  9 */
 10#include <linux/bits.h>
 11#include <linux/clk.h>
 12#include <linux/hwmon.h>
 13#include <linux/module.h>
 14#include <linux/mod_devicetable.h>
 15#include <linux/mutex.h>
 16#include <linux/platform_device.h>
 17#include <linux/property.h>
 18#include <linux/regmap.h>
 19#include <linux/reset.h>
 20
 21/* PVT Common register */
 22#define PVT_IP_CONFIG	0x04
 23#define TS_NUM_MSK	GENMASK(4, 0)
 24#define TS_NUM_SFT	0
 25#define PD_NUM_MSK	GENMASK(12, 8)
 26#define PD_NUM_SFT	8
 27#define VM_NUM_MSK	GENMASK(20, 16)
 28#define VM_NUM_SFT	16
 29#define CH_NUM_MSK	GENMASK(31, 24)
 30#define CH_NUM_SFT	24
 31
 32/* Macro Common Register */
 33#define CLK_SYNTH		0x00
 34#define CLK_SYNTH_LO_SFT	0
 35#define CLK_SYNTH_HI_SFT	8
 36#define CLK_SYNTH_HOLD_SFT	16
 37#define CLK_SYNTH_EN		BIT(24)
 38#define CLK_SYS_CYCLES_MAX	514
 39#define CLK_SYS_CYCLES_MIN	2
 40#define HZ_PER_MHZ		1000000L
 41
 42#define SDIF_DISABLE	0x04
 43
 44#define SDIF_STAT	0x08
 45#define SDIF_BUSY	BIT(0)
 46#define SDIF_LOCK	BIT(1)
 47
 48#define SDIF_W		0x0c
 49#define SDIF_PROG	BIT(31)
 50#define SDIF_WRN_W	BIT(27)
 51#define SDIF_WRN_R	0x00
 52#define SDIF_ADDR_SFT	24
 53
 54#define SDIF_HALT	0x10
 55#define SDIF_CTRL	0x14
 56#define SDIF_SMPL_CTRL	0x20
 57
 58/* TS & PD Individual Macro Register */
 59#define COM_REG_SIZE	0x40
 60
 61#define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
 62#define SDIF_SMPL_DONE	BIT(0)
 63
 64#define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
 65#define SAMPLE_DATA_MSK	GENMASK(15, 0)
 66
 67#define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
 68
 69/* VM Individual Macro Register */
 70#define VM_COM_REG_SIZE	0x200
 71#define VM_SDIF_DONE(n)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (n))
 72#define VM_SDIF_DATA(n)	(VM_COM_REG_SIZE + 0x40 + 0x200 * (n))
 73
 74/* SDA Slave Register */
 75#define IP_CTRL			0x00
 76#define IP_RST_REL		BIT(1)
 77#define IP_RUN_CONT		BIT(3)
 78#define IP_AUTO			BIT(8)
 79#define IP_VM_MODE		BIT(10)
 80
 81#define IP_CFG			0x01
 82#define CFG0_MODE_2		BIT(0)
 83#define CFG0_PARALLEL_OUT	0
 84#define CFG0_12_BIT		0
 85#define CFG1_VOL_MEAS_MODE	0
 86#define CFG1_PARALLEL_OUT	0
 87#define CFG1_14_BIT		0
 88
 89#define IP_DATA		0x03
 90
 91#define IP_POLL		0x04
 92#define VM_CH_INIT	BIT(20)
 93#define VM_CH_REQ	BIT(21)
 94
 95#define IP_TMR			0x05
 96#define POWER_DELAY_CYCLE_256	0x80
 97#define POWER_DELAY_CYCLE_64	0x40
 98
 99#define PVT_POLL_DELAY_US	20
100#define PVT_POLL_TIMEOUT_US	20000
101#define PVT_H_CONST		100000
102#define PVT_CAL5_CONST		2047
103#define PVT_G_CONST		40000
104#define PVT_CONV_BITS		10
105#define PVT_N_CONST		90
106#define PVT_R_CONST		245805
107
108struct pvt_device {
109	struct regmap		*c_map;
110	struct regmap		*t_map;
111	struct regmap		*p_map;
112	struct regmap		*v_map;
113	struct clk		*clk;
114	struct reset_control	*rst;
115	u32			t_num;
116	u32			p_num;
117	u32			v_num;
118	u32			ip_freq;
119	u8			*vm_idx;
120};
121
122static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
123			      u32 attr, int channel)
124{
125	switch (type) {
126	case hwmon_temp:
127		if (attr == hwmon_temp_input)
128			return 0444;
129		break;
130	case hwmon_in:
131		if (attr == hwmon_in_input)
132			return 0444;
133		break;
134	default:
135		break;
136	}
137	return 0;
138}
139
140static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
141{
142	struct pvt_device *pvt = dev_get_drvdata(dev);
143	struct regmap *t_map = pvt->t_map;
144	u32 stat, nbs;
145	int ret;
146	u64 tmp;
147
148	switch (attr) {
149	case hwmon_temp_input:
150		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
151					       stat, stat & SDIF_SMPL_DONE,
152					       PVT_POLL_DELAY_US,
153					       PVT_POLL_TIMEOUT_US);
154		if (ret)
155			return ret;
156
157		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
158		if(ret < 0)
159			return ret;
160
161		nbs &= SAMPLE_DATA_MSK;
162
163		/*
164		 * Convert the register value to
165		 * degrees centigrade temperature
166		 */
167		tmp = nbs * PVT_H_CONST;
168		do_div(tmp, PVT_CAL5_CONST);
169		*val = tmp - PVT_G_CONST - pvt->ip_freq;
170
171		return 0;
172	default:
173		return -EOPNOTSUPP;
174	}
175}
176
177static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
178{
179	struct pvt_device *pvt = dev_get_drvdata(dev);
180	struct regmap *v_map = pvt->v_map;
181	u32 n, stat;
182	u8 vm_idx;
183	int ret;
184
185	if (channel >= pvt->v_num)
186		return -EINVAL;
187
188	vm_idx = pvt->vm_idx[channel];
189
190	switch (attr) {
191	case hwmon_in_input:
192		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
193					       stat, stat & SDIF_SMPL_DONE,
194					       PVT_POLL_DELAY_US,
195					       PVT_POLL_TIMEOUT_US);
196		if (ret)
197			return ret;
198
199		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx), &n);
200		if(ret < 0)
201			return ret;
202
203		n &= SAMPLE_DATA_MSK;
204		/* Convert the N bitstream count into voltage */
205		*val = (PVT_N_CONST * n - PVT_R_CONST) >> PVT_CONV_BITS;
206
207		return 0;
208	default:
209		return -EOPNOTSUPP;
210	}
211}
212
213static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
214		    u32 attr, int channel, long *val)
215{
216	switch (type) {
217	case hwmon_temp:
218		return pvt_read_temp(dev, attr, channel, val);
219	case hwmon_in:
220		return pvt_read_in(dev, attr, channel, val);
221	default:
222		return -EOPNOTSUPP;
223	}
224}
225
226static const u32 pvt_chip_config[] = {
227	HWMON_C_REGISTER_TZ,
228	0
229};
230
231static const struct hwmon_channel_info pvt_chip = {
232	.type = hwmon_chip,
233	.config = pvt_chip_config,
234};
235
236static struct hwmon_channel_info pvt_temp = {
237	.type = hwmon_temp,
238};
239
240static struct hwmon_channel_info pvt_in = {
241	.type = hwmon_in,
242};
243
244static const struct hwmon_ops pvt_hwmon_ops = {
245	.is_visible = pvt_is_visible,
246	.read = pvt_read,
247};
248
249static struct hwmon_chip_info pvt_chip_info = {
250	.ops = &pvt_hwmon_ops,
251};
252
253static int pvt_init(struct pvt_device *pvt)
254{
255	u16 sys_freq, key, middle, low = 4, high = 8;
256	struct regmap *t_map = pvt->t_map;
257	struct regmap *p_map = pvt->p_map;
258	struct regmap *v_map = pvt->v_map;
259	u32 t_num = pvt->t_num;
260	u32 p_num = pvt->p_num;
261	u32 v_num = pvt->v_num;
262	u32 clk_synth, val;
263	int ret;
264
265	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
266	while (high >= low) {
267		middle = (low + high + 1) / 2;
268		key = DIV_ROUND_CLOSEST(sys_freq, middle);
269		if (key > CLK_SYS_CYCLES_MAX) {
270			low = middle + 1;
271			continue;
272		} else if (key < CLK_SYS_CYCLES_MIN) {
273			high = middle - 1;
274			continue;
275		} else {
276			break;
277		}
278	}
279
280	/*
281	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
282	 * from 2:1 to 512:1
283	 */
284	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
285
286	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
287		    (key >> 1) << CLK_SYNTH_HI_SFT |
288		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
289
290	pvt->ip_freq = sys_freq * 100 / (key + 2);
291
292	if (t_num) {
293		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
294		if(ret < 0)
295			return ret;
296
297		ret = regmap_write(t_map, SDIF_HALT, 0x0);
298		if(ret < 0)
299			return ret;
300
301		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
302		if(ret < 0)
303			return ret;
304
305		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
306		if(ret < 0)
307			return ret;
308
309		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
310					       val, !(val & SDIF_BUSY),
311					       PVT_POLL_DELAY_US,
312					       PVT_POLL_TIMEOUT_US);
313		if (ret)
314			return ret;
315
316		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
317		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
318		ret = regmap_write(t_map, SDIF_W, val);
319		if(ret < 0)
320			return ret;
321
322		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
323					       val, !(val & SDIF_BUSY),
324					       PVT_POLL_DELAY_US,
325					       PVT_POLL_TIMEOUT_US);
326		if (ret)
327			return ret;
328
329		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
330			      SDIF_WRN_W | SDIF_PROG;
331		ret = regmap_write(t_map, SDIF_W, val);
332		if(ret < 0)
333			return ret;
334
335		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
336					       val, !(val & SDIF_BUSY),
337					       PVT_POLL_DELAY_US,
338					       PVT_POLL_TIMEOUT_US);
339		if (ret)
340			return ret;
341
342		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
343		      IP_CTRL << SDIF_ADDR_SFT |
344		      SDIF_WRN_W | SDIF_PROG;
345		ret = regmap_write(t_map, SDIF_W, val);
346		if(ret < 0)
347			return ret;
348	}
349
350	if (p_num) {
351		ret = regmap_write(p_map, SDIF_HALT, 0x0);
352		if(ret < 0)
353			return ret;
354
355		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
356		if(ret < 0)
357			return ret;
358
359		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
360		if(ret < 0)
361			return ret;
362	}
363
364	if (v_num) {
365		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
366		if(ret < 0)
367			return ret;
368
369		ret = regmap_write(v_map, SDIF_HALT, 0x0);
370		if(ret < 0)
371			return ret;
372
373		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
374		if(ret < 0)
375			return ret;
376
377		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
378		if(ret < 0)
379			return ret;
380
381		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
382					       val, !(val & SDIF_BUSY),
383					       PVT_POLL_DELAY_US,
384					       PVT_POLL_TIMEOUT_US);
385		if (ret)
386			return ret;
387
388		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
389		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
390		      SDIF_WRN_W | SDIF_PROG;
391		ret = regmap_write(v_map, SDIF_W, val);
392		if(ret < 0)
393			return ret;
394
395		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
396					       val, !(val & SDIF_BUSY),
397					       PVT_POLL_DELAY_US,
398					       PVT_POLL_TIMEOUT_US);
399		if (ret)
400			return ret;
401
402		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
403		      SDIF_WRN_W | SDIF_PROG;
404		ret = regmap_write(v_map, SDIF_W, val);
405		if(ret < 0)
406			return ret;
407
408		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
409					       val, !(val & SDIF_BUSY),
410					       PVT_POLL_DELAY_US,
411					       PVT_POLL_TIMEOUT_US);
412		if (ret)
413			return ret;
414
415		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
416		      IP_CTRL << SDIF_ADDR_SFT |
417		      SDIF_WRN_W | SDIF_PROG;
418		ret = regmap_write(v_map, SDIF_W, val);
419		if(ret < 0)
420			return ret;
421	}
422
423	return 0;
424}
425
426static struct regmap_config pvt_regmap_config = {
427	.reg_bits = 32,
428	.reg_stride = 4,
429	.val_bits = 32,
430};
431
432static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
433			  struct pvt_device *pvt)
434{
435	struct device *dev = &pdev->dev;
436	struct regmap **reg_map;
437	void __iomem *io_base;
438
439	if (!strcmp(reg_name, "common"))
440		reg_map = &pvt->c_map;
441	else if (!strcmp(reg_name, "ts"))
442		reg_map = &pvt->t_map;
443	else if (!strcmp(reg_name, "pd"))
444		reg_map = &pvt->p_map;
445	else if (!strcmp(reg_name, "vm"))
446		reg_map = &pvt->v_map;
447	else
448		return -EINVAL;
449
450	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
451	if (IS_ERR(io_base))
452		return PTR_ERR(io_base);
453
454	pvt_regmap_config.name = reg_name;
455	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
456	if (IS_ERR(*reg_map)) {
457		dev_err(dev, "failed to init register map\n");
458		return PTR_ERR(*reg_map);
459	}
460
461	return 0;
462}
463
464static void pvt_clk_disable(void *data)
465{
466	struct pvt_device *pvt = data;
467
468	clk_disable_unprepare(pvt->clk);
469}
470
471static int pvt_clk_enable(struct device *dev, struct pvt_device *pvt)
472{
473	int ret;
474
475	ret = clk_prepare_enable(pvt->clk);
476	if (ret)
477		return ret;
478
479	return devm_add_action_or_reset(dev, pvt_clk_disable, pvt);
480}
481
482static void pvt_reset_control_assert(void *data)
483{
484	struct pvt_device *pvt = data;
485
486	reset_control_assert(pvt->rst);
487}
488
489static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
490{
491	int ret;
492
493	ret = reset_control_deassert(pvt->rst);
494	if (ret)
495		return ret;
496
497	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
498}
499
500static int mr75203_probe(struct platform_device *pdev)
501{
502	const struct hwmon_channel_info **pvt_info;
503	u32 ts_num, vm_num, pd_num, val, index, i;
504	struct device *dev = &pdev->dev;
505	u32 *temp_config, *in_config;
506	struct device *hwmon_dev;
507	struct pvt_device *pvt;
508	int ret;
509
510	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
511	if (!pvt)
512		return -ENOMEM;
513
514	ret = pvt_get_regmap(pdev, "common", pvt);
515	if (ret)
516		return ret;
517
518	pvt->clk = devm_clk_get(dev, NULL);
519	if (IS_ERR(pvt->clk))
520		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
521
522	ret = pvt_clk_enable(dev, pvt);
523	if (ret) {
524		dev_err(dev, "failed to enable clock\n");
525		return ret;
526	}
527
528	pvt->rst = devm_reset_control_get_exclusive(dev, NULL);
529	if (IS_ERR(pvt->rst))
530		return dev_err_probe(dev, PTR_ERR(pvt->rst),
531				     "failed to get reset control\n");
532
533	ret = pvt_reset_control_deassert(dev, pvt);
534	if (ret)
535		return dev_err_probe(dev, ret, "cannot deassert reset control\n");
536
537	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
538	if(ret < 0)
539		return ret;
540
541	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
542	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
543	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
544	pvt->t_num = ts_num;
545	pvt->p_num = pd_num;
546	pvt->v_num = vm_num;
547	val = 0;
548	if (ts_num)
549		val++;
550	if (vm_num)
551		val++;
552	if (!val)
553		return -ENODEV;
554
555	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
556	if (!pvt_info)
557		return -ENOMEM;
558	pvt_info[0] = &pvt_chip;
559	index = 1;
560
561	if (ts_num) {
562		ret = pvt_get_regmap(pdev, "ts", pvt);
563		if (ret)
564			return ret;
565
566		temp_config = devm_kcalloc(dev, ts_num + 1,
567					   sizeof(*temp_config), GFP_KERNEL);
568		if (!temp_config)
569			return -ENOMEM;
570
571		memset32(temp_config, HWMON_T_INPUT, ts_num);
572		pvt_temp.config = temp_config;
573		pvt_info[index++] = &pvt_temp;
574	}
575
576	if (pd_num) {
577		ret = pvt_get_regmap(pdev, "pd", pvt);
578		if (ret)
579			return ret;
580	}
581
582	if (vm_num) {
583		u32 num = vm_num;
584
585		ret = pvt_get_regmap(pdev, "vm", pvt);
586		if (ret)
587			return ret;
588
589		pvt->vm_idx = devm_kcalloc(dev, vm_num, sizeof(*pvt->vm_idx),
590					   GFP_KERNEL);
591		if (!pvt->vm_idx)
592			return -ENOMEM;
593
594		ret = device_property_read_u8_array(dev, "intel,vm-map",
595						    pvt->vm_idx, vm_num);
596		if (ret) {
597			num = 0;
598		} else {
599			for (i = 0; i < vm_num; i++)
600				if (pvt->vm_idx[i] >= vm_num ||
601				    pvt->vm_idx[i] == 0xff) {
602					num = i;
603					break;
604				}
605		}
606
607		/*
608		 * Incase intel,vm-map property is not defined, we assume
609		 * incremental channel numbers.
610		 */
611		for (i = num; i < vm_num; i++)
612			pvt->vm_idx[i] = i;
613
614		in_config = devm_kcalloc(dev, num + 1,
615					 sizeof(*in_config), GFP_KERNEL);
616		if (!in_config)
617			return -ENOMEM;
618
619		memset32(in_config, HWMON_I_INPUT, num);
620		in_config[num] = 0;
621		pvt_in.config = in_config;
622
623		pvt_info[index++] = &pvt_in;
624	}
625
626	ret = pvt_init(pvt);
627	if (ret) {
628		dev_err(dev, "failed to init pvt: %d\n", ret);
629		return ret;
630	}
631
632	pvt_chip_info.info = pvt_info;
633	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
634							 pvt,
635							 &pvt_chip_info,
636							 NULL);
637
638	return PTR_ERR_OR_ZERO(hwmon_dev);
639}
640
641static const struct of_device_id moortec_pvt_of_match[] = {
642	{ .compatible = "moortec,mr75203" },
643	{ }
644};
645MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
646
647static struct platform_driver moortec_pvt_driver = {
648	.driver = {
649		.name = "moortec-pvt",
650		.of_match_table = moortec_pvt_of_match,
651	},
652	.probe = mr75203_probe,
653};
654module_platform_driver(moortec_pvt_driver);
655
656MODULE_LICENSE("GPL v2");