Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v5.14.15.
  1/*
  2 * Copyright 2003 NVIDIA, Corporation
  3 * Copyright 2006 Dave Airlie
  4 * Copyright 2007 Maarten Maathuis
  5 * Copyright 2007-2009 Stuart Bennett
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the "Software"),
  9 * to deal in the Software without restriction, including without limitation
 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 11 * and/or sell copies of the Software, and to permit persons to whom the
 12 * Software is furnished to do so, subject to the following conditions:
 13 *
 14 * The above copyright notice and this permission notice (including the next
 15 * paragraph) shall be included in all copies or substantial portions of the
 16 * Software.
 17 *
 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 24 * DEALINGS IN THE SOFTWARE.
 25 */
 26
 27#include "drmP.h"
 28#include "drm_crtc_helper.h"
 29
 30#include "nouveau_drv.h"
 31#include "nouveau_encoder.h"
 32#include "nouveau_connector.h"
 33#include "nouveau_crtc.h"
 34#include "nouveau_hw.h"
 35#include "nvreg.h"
 36
 37#include "i2c/sil164.h"
 38
 39#define FP_TG_CONTROL_ON  (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |	\
 40			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS |		\
 41			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
 42#define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE |	\
 43			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE |	\
 44			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
 45
 46static inline bool is_fpc_off(uint32_t fpc)
 47{
 48	return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
 49			FP_TG_CONTROL_OFF);
 50}
 51
 52int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_entry *dcbent)
 53{
 54	/* special case of nv_read_tmds to find crtc associated with an output.
 55	 * this does not give a correct answer for off-chip dvi, but there's no
 56	 * use for such an answer anyway
 57	 */
 58	int ramdac = (dcbent->or & OUTPUT_C) >> 2;
 59
 60	NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
 61	NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
 62	return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
 63}
 64
 65void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_entry *dcbent,
 66			int head, bool dl)
 67{
 68	/* The BIOS scripts don't do this for us, sadly
 69	 * Luckily we do know the values ;-)
 70	 *
 71	 * head < 0 indicates we wish to force a setting with the overrideval
 72	 * (for VT restore etc.)
 73	 */
 74
 75	int ramdac = (dcbent->or & OUTPUT_C) >> 2;
 76	uint8_t tmds04 = 0x80;
 77
 78	if (head != ramdac)
 79		tmds04 = 0x88;
 80
 81	if (dcbent->type == OUTPUT_LVDS)
 82		tmds04 |= 0x01;
 83
 84	nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
 85
 86	if (dl)	/* dual link */
 87		nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
 88}
 89
 90void nv04_dfp_disable(struct drm_device *dev, int head)
 91{
 92	struct drm_nouveau_private *dev_priv = dev->dev_private;
 93	struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
 94
 95	if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
 96	    FP_TG_CONTROL_ON) {
 97		/* digital remnants must be cleaned before new crtc
 98		 * values programmed.  delay is time for the vga stuff
 99		 * to realise it's in control again
100		 */
101		NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
102			      FP_TG_CONTROL_OFF);
103		msleep(50);
104	}
105	/* don't inadvertently turn it on when state written later */
106	crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
107	crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
108		~NV_CIO_CRE_LCD_ROUTE_MASK;
109}
110
111void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
112{
113	struct drm_device *dev = encoder->dev;
114	struct drm_nouveau_private *dev_priv = dev->dev_private;
115	struct drm_crtc *crtc;
116	struct nouveau_crtc *nv_crtc;
117	uint32_t *fpc;
118
119	if (mode == DRM_MODE_DPMS_ON) {
120		nv_crtc = nouveau_crtc(encoder->crtc);
121		fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
122
123		if (is_fpc_off(*fpc)) {
124			/* using saved value is ok, as (is_digital && dpms_on &&
125			 * fp_control==OFF) is (at present) *only* true when
126			 * fpc's most recent change was by below "off" code
127			 */
128			*fpc = nv_crtc->dpms_saved_fp_control;
129		}
130
131		nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
132		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
133	} else {
134		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135			nv_crtc = nouveau_crtc(crtc);
136			fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
137
138			nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
139			if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
140				nv_crtc->dpms_saved_fp_control = *fpc;
141				/* cut the FP output */
142				*fpc &= ~FP_TG_CONTROL_ON;
143				*fpc |= FP_TG_CONTROL_OFF;
144				NVWriteRAMDAC(dev, nv_crtc->index,
145					      NV_PRAMDAC_FP_TG_CONTROL, *fpc);
146			}
147		}
148	}
149}
150
151static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
152{
153	struct drm_device *dev = encoder->dev;
154	struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
155	struct drm_encoder *slave;
156
157	if (dcb->type != OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
158		return NULL;
159
160	/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
161	 * TMDS transmitters at the same I2C address, in the same I2C
162	 * bus. This can still work because in that case one of them is
163	 * always hard-wired to a reasonable configuration using straps,
164	 * and the other one needs to be programmed.
165	 *
166	 * I don't think there's a way to know which is which, even the
167	 * blob programs the one exposed via I2C for *both* heads, so
168	 * let's do the same.
169	 */
170	list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
171		struct dcb_entry *slave_dcb = nouveau_encoder(slave)->dcb;
172
173		if (slave_dcb->type == OUTPUT_TMDS && get_slave_funcs(slave) &&
174		    slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
175			return slave;
176	}
177
178	return NULL;
179}
180
181static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
182				struct drm_display_mode *mode,
183				struct drm_display_mode *adjusted_mode)
184{
185	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
186	struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
187
188	if (!nv_connector->native_mode ||
189	    nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
190	    mode->hdisplay > nv_connector->native_mode->hdisplay ||
191	    mode->vdisplay > nv_connector->native_mode->vdisplay) {
192		nv_encoder->mode = *adjusted_mode;
193
194	} else {
195		nv_encoder->mode = *nv_connector->native_mode;
196		adjusted_mode->clock = nv_connector->native_mode->clock;
197	}
198
199	return true;
200}
201
202static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
203				     struct nouveau_encoder *nv_encoder, int head)
204{
205	struct drm_nouveau_private *dev_priv = dev->dev_private;
206	struct nv04_mode_state *state = &dev_priv->mode_reg;
207	uint32_t bits1618 = nv_encoder->dcb->or & OUTPUT_A ? 0x10000 : 0x40000;
208
209	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210		return;
211
212	/* SEL_CLK is only used on the primary ramdac
213	 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214	 * to heads on digital outputs
215	 */
216	if (head)
217		state->sel_clk |= bits1618;
218	else
219		state->sel_clk &= ~bits1618;
220
221	/* nv30:
222	 *	bit 0		NVClk spread spectrum on/off
223	 *	bit 2		MemClk spread spectrum on/off
224	 * 	bit 4		PixClk1 spread spectrum on/off toggle
225	 * 	bit 6		PixClk2 spread spectrum on/off toggle
226	 *
227	 * nv40 (observations from bios behaviour and mmio traces):
228	 * 	bits 4&6	as for nv30
229	 * 	bits 5&7	head dependent as for bits 4&6, but do not appear with 4&6;
230	 * 			maybe a different spread mode
231	 * 	bits 8&10	seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232	 * 	The logic behind turning spread spectrum on/off in the first place,
233	 * 	and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234	 * 	entry has the necessary info)
235	 */
236	if (nv_encoder->dcb->type == OUTPUT_LVDS && dev_priv->saved_reg.sel_clk & 0xf0) {
237		int shift = (dev_priv->saved_reg.sel_clk & 0x50) ? 0 : 1;
238
239		state->sel_clk &= ~0xf0;
240		state->sel_clk |= (head ? 0x40 : 0x10) << shift;
241	}
242}
243
244static void nv04_dfp_prepare(struct drm_encoder *encoder)
245{
246	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247	struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248	struct drm_device *dev = encoder->dev;
249	struct drm_nouveau_private *dev_priv = dev->dev_private;
250	int head = nouveau_crtc(encoder->crtc)->index;
251	struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
252	uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
253	uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
254
255	helper->dpms(encoder, DRM_MODE_DPMS_OFF);
256
257	nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
258
259	*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
260
261	if (nv_two_heads(dev)) {
262		if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
263			*cr_lcd |= head ? 0x0 : 0x8;
264		else {
265			*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
266			if (nv_encoder->dcb->type == OUTPUT_LVDS)
267				*cr_lcd |= 0x30;
268			if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
269				/* avoid being connected to both crtcs */
270				*cr_lcd_oth &= ~0x30;
271				NVWriteVgaCrtc(dev, head ^ 1,
272					       NV_CIO_CRE_LCD__INDEX,
273					       *cr_lcd_oth);
274			}
275		}
276	}
277}
278
279
280static void nv04_dfp_mode_set(struct drm_encoder *encoder,
281			      struct drm_display_mode *mode,
282			      struct drm_display_mode *adjusted_mode)
283{
284	struct drm_device *dev = encoder->dev;
285	struct drm_nouveau_private *dev_priv = dev->dev_private;
286	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287	struct nv04_crtc_reg *regp = &dev_priv->mode_reg.crtc_reg[nv_crtc->index];
288	struct nv04_crtc_reg *savep = &dev_priv->saved_reg.crtc_reg[nv_crtc->index];
289	struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291	struct drm_display_mode *output_mode = &nv_encoder->mode;
292	uint32_t mode_ratio, panel_ratio;
293
294	NV_DEBUG_KMS(dev, "Output mode on CRTC %d:\n", nv_crtc->index);
295	drm_mode_debug_printmodeline(output_mode);
296
297	/* Initialize the FP registers in this CRTC. */
298	regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
299	regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
300	if (!nv_gf4_disp_arch(dev) ||
301	    (output_mode->hsync_start - output_mode->hdisplay) >=
302					dev_priv->vbios.digital_min_front_porch)
303		regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
304	else
305		regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - dev_priv->vbios.digital_min_front_porch - 1;
306	regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
307	regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
308	regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
309	regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
310
311	regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
312	regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
313	regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
314	regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
315	regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
316	regp->fp_vert_regs[FP_VALID_START] = 0;
317	regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
318
319	/* bit26: a bit seen on some g7x, no as yet discernable purpose */
320	regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
321			   (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
322	/* Deal with vsync/hsync polarity */
323	/* LVDS screens do set this, but modes with +ve syncs are very rare */
324	if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
325		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
326	if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
327		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
328	/* panel scaling first, as native would get set otherwise */
329	if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
330	    nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER)	/* panel handles it */
331		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
332	else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
333		 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
334		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
335	else /* gpu needs to scale */
336		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
337	if (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
338		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
339	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
340	    output_mode->clock > 165000)
341		regp->fp_control |= (2 << 24);
342	if (nv_encoder->dcb->type == OUTPUT_LVDS) {
343		bool duallink, dummy;
344
345		nouveau_bios_parse_lvds_table(dev, output_mode->clock,
346					      &duallink, &dummy);
347		if (duallink)
348			regp->fp_control |= (8 << 28);
349	} else
350	if (output_mode->clock > 165000)
351		regp->fp_control |= (8 << 28);
352
353	regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
354			   NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
355			   NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
356			   NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
357			   NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
358			   NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
359			   NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
360
361	/* We want automatic scaling */
362	regp->fp_debug_1 = 0;
363	/* This can override HTOTAL and VTOTAL */
364	regp->fp_debug_2 = 0;
365
366	/* Use 20.12 fixed point format to avoid floats */
367	mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
368	panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
369	/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
370	 * get treated the same as SCALE_FULLSCREEN */
371	if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
372	    mode_ratio != panel_ratio) {
373		uint32_t diff, scale;
374		bool divide_by_2 = nv_gf4_disp_arch(dev);
375
376		if (mode_ratio < panel_ratio) {
377			/* vertical needs to expand to glass size (automatic)
378			 * horizontal needs to be scaled at vertical scale factor
379			 * to maintain aspect */
380
381			scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
382			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
383					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
384
385			/* restrict area of screen used, horizontally */
386			diff = output_mode->hdisplay -
387			       output_mode->vdisplay * mode_ratio / (1 << 12);
388			regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
389			regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
390		}
391
392		if (mode_ratio > panel_ratio) {
393			/* horizontal needs to expand to glass size (automatic)
394			 * vertical needs to be scaled at horizontal scale factor
395			 * to maintain aspect */
396
397			scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
398			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
399					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
400
401			/* restrict area of screen used, vertically */
402			diff = output_mode->vdisplay -
403			       (1 << 12) * output_mode->hdisplay / mode_ratio;
404			regp->fp_vert_regs[FP_VALID_START] += diff / 2;
405			regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
406		}
407	}
408
409	/* Output property. */
410	if (nv_connector->use_dithering) {
411		if (dev_priv->chipset == 0x11)
412			regp->dither = savep->dither | 0x00010000;
413		else {
414			int i;
415			regp->dither = savep->dither | 0x00000001;
416			for (i = 0; i < 3; i++) {
417				regp->dither_regs[i] = 0xe4e4e4e4;
418				regp->dither_regs[i + 3] = 0x44444444;
419			}
420		}
421	} else {
422		if (dev_priv->chipset != 0x11) {
423			/* reset them */
424			int i;
425			for (i = 0; i < 3; i++) {
426				regp->dither_regs[i] = savep->dither_regs[i];
427				regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
428			}
429		}
430		regp->dither = savep->dither;
431	}
432
433	regp->fp_margin_color = 0;
434}
435
436static void nv04_dfp_commit(struct drm_encoder *encoder)
437{
438	struct drm_device *dev = encoder->dev;
439	struct drm_nouveau_private *dev_priv = dev->dev_private;
440	struct drm_encoder_helper_funcs *helper = encoder->helper_private;
441	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
442	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
443	struct dcb_entry *dcbe = nv_encoder->dcb;
444	int head = nouveau_crtc(encoder->crtc)->index;
445	struct drm_encoder *slave_encoder;
446
447	if (dcbe->type == OUTPUT_TMDS)
448		run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
449	else if (dcbe->type == OUTPUT_LVDS)
450		call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
451
452	/* update fp_control state for any changes made by scripts,
453	 * so correct value is written at DPMS on */
454	dev_priv->mode_reg.crtc_reg[head].fp_control =
455		NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
456
457	/* This could use refinement for flatpanels, but it should work this way */
458	if (dev_priv->chipset < 0x44)
459		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
460	else
461		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
462
463	/* Init external transmitters */
464	slave_encoder = get_tmds_slave(encoder);
465	if (slave_encoder)
466		get_slave_funcs(slave_encoder)->mode_set(
467			slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
468
469	helper->dpms(encoder, DRM_MODE_DPMS_ON);
470
471	NV_INFO(dev, "Output %s is running on CRTC %d using output %c\n",
472		drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base),
473		nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
474}
475
476static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
477{
478#ifdef __powerpc__
479	struct drm_device *dev = encoder->dev;
480
481	/* BIOS scripts usually take care of the backlight, thanks
482	 * Apple for your consistency.
483	 */
484	if (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
485	    dev->pci_device == 0x0329) {
486		if (mode == DRM_MODE_DPMS_ON) {
487			nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 0, 1 << 31);
488			nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 1);
489		} else {
490			nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
491			nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 0);
492		}
493	}
494#endif
495}
496
497static inline bool is_powersaving_dpms(int mode)
498{
499	return (mode != DRM_MODE_DPMS_ON);
500}
501
502static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
503{
504	struct drm_device *dev = encoder->dev;
505	struct drm_crtc *crtc = encoder->crtc;
506	struct drm_nouveau_private *dev_priv = dev->dev_private;
507	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
508	bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
509
510	if (nv_encoder->last_dpms == mode)
511		return;
512	nv_encoder->last_dpms = mode;
513
514	NV_INFO(dev, "Setting dpms mode %d on lvds encoder (output %d)\n",
515		     mode, nv_encoder->dcb->index);
516
517	if (was_powersaving && is_powersaving_dpms(mode))
518		return;
519
520	if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
521		/* when removing an output, crtc may not be set, but PANEL_OFF
522		 * must still be run
523		 */
524		int head = crtc ? nouveau_crtc(crtc)->index :
525			   nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
526
527		if (mode == DRM_MODE_DPMS_ON) {
528			call_lvds_script(dev, nv_encoder->dcb, head,
529					 LVDS_PANEL_ON, nv_encoder->mode.clock);
530		} else
531			/* pxclk of 0 is fine for PANEL_OFF, and for a
532			 * disconnected LVDS encoder there is no native_mode
533			 */
534			call_lvds_script(dev, nv_encoder->dcb, head,
535					 LVDS_PANEL_OFF, 0);
536	}
537
538	nv04_dfp_update_backlight(encoder, mode);
539	nv04_dfp_update_fp_control(encoder, mode);
540
541	if (mode == DRM_MODE_DPMS_ON)
542		nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
543	else {
544		dev_priv->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
545		dev_priv->mode_reg.sel_clk &= ~0xf0;
546	}
547	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, dev_priv->mode_reg.sel_clk);
548}
549
550static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
551{
552	struct drm_device *dev = encoder->dev;
553	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
554
555	if (nv_encoder->last_dpms == mode)
556		return;
557	nv_encoder->last_dpms = mode;
558
559	NV_INFO(dev, "Setting dpms mode %d on tmds encoder (output %d)\n",
560		     mode, nv_encoder->dcb->index);
561
562	nv04_dfp_update_backlight(encoder, mode);
563	nv04_dfp_update_fp_control(encoder, mode);
564}
565
566static void nv04_dfp_save(struct drm_encoder *encoder)
567{
568	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
569	struct drm_device *dev = encoder->dev;
570
571	if (nv_two_heads(dev))
572		nv_encoder->restore.head =
573			nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
574}
575
576static void nv04_dfp_restore(struct drm_encoder *encoder)
577{
578	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
579	struct drm_device *dev = encoder->dev;
580	struct drm_nouveau_private *dev_priv = dev->dev_private;
581	int head = nv_encoder->restore.head;
582
583	if (nv_encoder->dcb->type == OUTPUT_LVDS) {
584		struct nouveau_connector *connector =
585			nouveau_encoder_connector_get(nv_encoder);
586
587		if (connector && connector->native_mode)
588			call_lvds_script(dev, nv_encoder->dcb, head,
589					 LVDS_PANEL_ON,
590					 connector->native_mode->clock);
591
592	} else if (nv_encoder->dcb->type == OUTPUT_TMDS) {
593		int clock = nouveau_hw_pllvals_to_clk
594					(&dev_priv->saved_reg.crtc_reg[head].pllvals);
595
596		run_tmds_table(dev, nv_encoder->dcb, head, clock);
597	}
598
599	nv_encoder->last_dpms = NV_DPMS_CLEARED;
600}
601
602static void nv04_dfp_destroy(struct drm_encoder *encoder)
603{
604	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
605
606	NV_DEBUG_KMS(encoder->dev, "\n");
607
608	if (get_slave_funcs(encoder))
609		get_slave_funcs(encoder)->destroy(encoder);
610
611	drm_encoder_cleanup(encoder);
612	kfree(nv_encoder);
613}
614
615static void nv04_tmds_slave_init(struct drm_encoder *encoder)
616{
617	struct drm_device *dev = encoder->dev;
618	struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
619	struct nouveau_i2c_chan *i2c = nouveau_i2c_find(dev, 2);
620	struct i2c_board_info info[] = {
621		{
622			.type = "sil164",
623			.addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
624			.platform_data = &(struct sil164_encoder_params) {
625				SIL164_INPUT_EDGE_RISING
626			}
627		},
628		{ }
629	};
630	int type;
631
632	if (!nv_gf4_disp_arch(dev) || !i2c ||
633	    get_tmds_slave(encoder))
634		return;
635
636	type = nouveau_i2c_identify(dev, "TMDS transmitter", info, NULL, 2);
637	if (type < 0)
638		return;
639
640	drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
641			     &i2c->adapter, &info[type]);
642}
643
644static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
645	.dpms = nv04_lvds_dpms,
646	.save = nv04_dfp_save,
647	.restore = nv04_dfp_restore,
648	.mode_fixup = nv04_dfp_mode_fixup,
649	.prepare = nv04_dfp_prepare,
650	.commit = nv04_dfp_commit,
651	.mode_set = nv04_dfp_mode_set,
652	.detect = NULL,
653};
654
655static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
656	.dpms = nv04_tmds_dpms,
657	.save = nv04_dfp_save,
658	.restore = nv04_dfp_restore,
659	.mode_fixup = nv04_dfp_mode_fixup,
660	.prepare = nv04_dfp_prepare,
661	.commit = nv04_dfp_commit,
662	.mode_set = nv04_dfp_mode_set,
663	.detect = NULL,
664};
665
666static const struct drm_encoder_funcs nv04_dfp_funcs = {
667	.destroy = nv04_dfp_destroy,
668};
669
670int
671nv04_dfp_create(struct drm_connector *connector, struct dcb_entry *entry)
672{
673	const struct drm_encoder_helper_funcs *helper;
674	struct nouveau_encoder *nv_encoder = NULL;
675	struct drm_encoder *encoder;
676	int type;
677
678	switch (entry->type) {
679	case OUTPUT_TMDS:
680		type = DRM_MODE_ENCODER_TMDS;
681		helper = &nv04_tmds_helper_funcs;
682		break;
683	case OUTPUT_LVDS:
684		type = DRM_MODE_ENCODER_LVDS;
685		helper = &nv04_lvds_helper_funcs;
686		break;
687	default:
688		return -EINVAL;
689	}
690
691	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
692	if (!nv_encoder)
693		return -ENOMEM;
694
695	encoder = to_drm_encoder(nv_encoder);
696
697	nv_encoder->dcb = entry;
698	nv_encoder->or = ffs(entry->or) - 1;
699
700	drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
701	drm_encoder_helper_add(encoder, helper);
702
703	encoder->possible_crtcs = entry->heads;
704	encoder->possible_clones = 0;
705
706	if (entry->type == OUTPUT_TMDS &&
707	    entry->location != DCB_LOC_ON_CHIP)
708		nv04_tmds_slave_init(encoder);
709
710	drm_mode_connector_attach_encoder(connector, encoder);
711	return 0;
712}