Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5 */
6
7#include <linux/auxiliary_bus.h>
8#include <linux/bits.h>
9#include <linux/clk.h>
10#include <linux/debugfs.h>
11#include <linux/gpio/consumer.h>
12#include <linux/gpio/driver.h>
13#include <linux/i2c.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/of_graph.h>
17#include <linux/pm_runtime.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20
21#include <asm/unaligned.h>
22
23#include <drm/drm_atomic.h>
24#include <drm/drm_atomic_helper.h>
25#include <drm/drm_bridge.h>
26#include <drm/drm_dp_helper.h>
27#include <drm/drm_mipi_dsi.h>
28#include <drm/drm_of.h>
29#include <drm/drm_panel.h>
30#include <drm/drm_print.h>
31#include <drm/drm_probe_helper.h>
32
33#define SN_DEVICE_REV_REG 0x08
34#define SN_DPPLL_SRC_REG 0x0A
35#define DPPLL_CLK_SRC_DSICLK BIT(0)
36#define REFCLK_FREQ_MASK GENMASK(3, 1)
37#define REFCLK_FREQ(x) ((x) << 1)
38#define DPPLL_SRC_DP_PLL_LOCK BIT(7)
39#define SN_PLL_ENABLE_REG 0x0D
40#define SN_DSI_LANES_REG 0x10
41#define CHA_DSI_LANES_MASK GENMASK(4, 3)
42#define CHA_DSI_LANES(x) ((x) << 3)
43#define SN_DSIA_CLK_FREQ_REG 0x12
44#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
45#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
46#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
47#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
48#define CHA_HSYNC_POLARITY BIT(7)
49#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
50#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
51#define CHA_VSYNC_POLARITY BIT(7)
52#define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
53#define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
54#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
55#define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
56#define SN_LN_ASSIGN_REG 0x59
57#define LN_ASSIGN_WIDTH 2
58#define SN_ENH_FRAME_REG 0x5A
59#define VSTREAM_ENABLE BIT(3)
60#define LN_POLRS_OFFSET 4
61#define LN_POLRS_MASK 0xf0
62#define SN_DATA_FORMAT_REG 0x5B
63#define BPP_18_RGB BIT(0)
64#define SN_HPD_DISABLE_REG 0x5C
65#define HPD_DISABLE BIT(0)
66#define SN_GPIO_IO_REG 0x5E
67#define SN_GPIO_INPUT_SHIFT 4
68#define SN_GPIO_OUTPUT_SHIFT 0
69#define SN_GPIO_CTRL_REG 0x5F
70#define SN_GPIO_MUX_INPUT 0
71#define SN_GPIO_MUX_OUTPUT 1
72#define SN_GPIO_MUX_SPECIAL 2
73#define SN_GPIO_MUX_MASK 0x3
74#define SN_AUX_WDATA_REG(x) (0x64 + (x))
75#define SN_AUX_ADDR_19_16_REG 0x74
76#define SN_AUX_ADDR_15_8_REG 0x75
77#define SN_AUX_ADDR_7_0_REG 0x76
78#define SN_AUX_ADDR_MASK GENMASK(19, 0)
79#define SN_AUX_LENGTH_REG 0x77
80#define SN_AUX_CMD_REG 0x78
81#define AUX_CMD_SEND BIT(0)
82#define AUX_CMD_REQ(x) ((x) << 4)
83#define SN_AUX_RDATA_REG(x) (0x79 + (x))
84#define SN_SSC_CONFIG_REG 0x93
85#define DP_NUM_LANES_MASK GENMASK(5, 4)
86#define DP_NUM_LANES(x) ((x) << 4)
87#define SN_DATARATE_CONFIG_REG 0x94
88#define DP_DATARATE_MASK GENMASK(7, 5)
89#define DP_DATARATE(x) ((x) << 5)
90#define SN_ML_TX_MODE_REG 0x96
91#define ML_TX_MAIN_LINK_OFF 0
92#define ML_TX_NORMAL_MODE BIT(0)
93#define SN_AUX_CMD_STATUS_REG 0xF4
94#define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
95#define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
96#define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
97
98#define MIN_DSI_CLK_FREQ_MHZ 40
99
100/* fudge factor required to account for 8b/10b encoding */
101#define DP_CLK_FUDGE_NUM 10
102#define DP_CLK_FUDGE_DEN 8
103
104/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
105#define SN_AUX_MAX_PAYLOAD_BYTES 16
106
107#define SN_REGULATOR_SUPPLY_NUM 4
108
109#define SN_MAX_DP_LANES 4
110#define SN_NUM_GPIOS 4
111#define SN_GPIO_PHYSICAL_OFFSET 1
112
113#define SN_LINK_TRAINING_TRIES 10
114
115/**
116 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
117 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
118 * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
119 *
120 * @dev: Pointer to the top level (i2c) device.
121 * @regmap: Regmap for accessing i2c.
122 * @aux: Our aux channel.
123 * @bridge: Our bridge.
124 * @connector: Our connector.
125 * @host_node: Remote DSI node.
126 * @dsi: Our MIPI DSI source.
127 * @edid: Detected EDID of eDP panel.
128 * @refclk: Our reference clock.
129 * @panel: Our panel.
130 * @enable_gpio: The GPIO we toggle to enable the bridge.
131 * @supplies: Data for bulk enabling/disabling our regulators.
132 * @dp_lanes: Count of dp_lanes we're using.
133 * @ln_assign: Value to program to the LN_ASSIGN register.
134 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
135 * @comms_enabled: If true then communication over the aux channel is enabled.
136 * @comms_mutex: Protects modification of comms_enabled.
137 *
138 * @gchip: If we expose our GPIOs, this is used.
139 * @gchip_output: A cache of whether we've set GPIOs to output. This
140 * serves double-duty of keeping track of the direction and
141 * also keeping track of whether we've incremented the
142 * pm_runtime reference count for this pin, which we do
143 * whenever a pin is configured as an output. This is a
144 * bitmap so we can do atomic ops on it without an extra
145 * lock so concurrent users of our 4 GPIOs don't stomp on
146 * each other's read-modify-write.
147 */
148struct ti_sn65dsi86 {
149 struct auxiliary_device bridge_aux;
150 struct auxiliary_device gpio_aux;
151
152 struct device *dev;
153 struct regmap *regmap;
154 struct drm_dp_aux aux;
155 struct drm_bridge bridge;
156 struct drm_connector connector;
157 struct edid *edid;
158 struct device_node *host_node;
159 struct mipi_dsi_device *dsi;
160 struct clk *refclk;
161 struct drm_panel *panel;
162 struct gpio_desc *enable_gpio;
163 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
164 int dp_lanes;
165 u8 ln_assign;
166 u8 ln_polrs;
167 bool comms_enabled;
168 struct mutex comms_mutex;
169
170#if defined(CONFIG_OF_GPIO)
171 struct gpio_chip gchip;
172 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
173#endif
174};
175
176static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
177 { .range_min = 0, .range_max = 0xFF },
178};
179
180static const struct regmap_access_table ti_sn_bridge_volatile_table = {
181 .yes_ranges = ti_sn65dsi86_volatile_ranges,
182 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
183};
184
185static const struct regmap_config ti_sn65dsi86_regmap_config = {
186 .reg_bits = 8,
187 .val_bits = 8,
188 .volatile_table = &ti_sn_bridge_volatile_table,
189 .cache_type = REGCACHE_NONE,
190};
191
192static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
193 unsigned int reg, u16 val)
194{
195 regmap_write(pdata->regmap, reg, val & 0xFF);
196 regmap_write(pdata->regmap, reg + 1, val >> 8);
197}
198
199static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
200{
201 u32 bit_rate_khz, clk_freq_khz;
202 struct drm_display_mode *mode =
203 &pdata->bridge.encoder->crtc->state->adjusted_mode;
204
205 bit_rate_khz = mode->clock *
206 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
207 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
208
209 return clk_freq_khz;
210}
211
212/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
213static const u32 ti_sn_bridge_refclk_lut[] = {
214 12000000,
215 19200000,
216 26000000,
217 27000000,
218 38400000,
219};
220
221/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
222static const u32 ti_sn_bridge_dsiclk_lut[] = {
223 468000000,
224 384000000,
225 416000000,
226 486000000,
227 460800000,
228};
229
230static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
231{
232 int i;
233 u32 refclk_rate;
234 const u32 *refclk_lut;
235 size_t refclk_lut_size;
236
237 if (pdata->refclk) {
238 refclk_rate = clk_get_rate(pdata->refclk);
239 refclk_lut = ti_sn_bridge_refclk_lut;
240 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
241 clk_prepare_enable(pdata->refclk);
242 } else {
243 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
244 refclk_lut = ti_sn_bridge_dsiclk_lut;
245 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
246 }
247
248 /* for i equals to refclk_lut_size means default frequency */
249 for (i = 0; i < refclk_lut_size; i++)
250 if (refclk_lut[i] == refclk_rate)
251 break;
252
253 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
254 REFCLK_FREQ(i));
255}
256
257static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
258{
259 mutex_lock(&pdata->comms_mutex);
260
261 /* configure bridge ref_clk */
262 ti_sn_bridge_set_refclk_freq(pdata);
263
264 /*
265 * HPD on this bridge chip is a bit useless. This is an eDP bridge
266 * so the HPD is an internal signal that's only there to signal that
267 * the panel is done powering up. ...but the bridge chip debounces
268 * this signal by between 100 ms and 400 ms (depending on process,
269 * voltage, and temperate--I measured it at about 200 ms). One
270 * particular panel asserted HPD 84 ms after it was powered on meaning
271 * that we saw HPD 284 ms after power on. ...but the same panel said
272 * that instead of looking at HPD you could just hardcode a delay of
273 * 200 ms. We'll assume that the panel driver will have the hardcoded
274 * delay in its prepare and always disable HPD.
275 *
276 * If HPD somehow makes sense on some future panel we'll have to
277 * change this to be conditional on someone specifying that HPD should
278 * be used.
279 */
280 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
281 HPD_DISABLE);
282
283 pdata->comms_enabled = true;
284
285 mutex_unlock(&pdata->comms_mutex);
286}
287
288static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
289{
290 mutex_lock(&pdata->comms_mutex);
291
292 pdata->comms_enabled = false;
293 clk_disable_unprepare(pdata->refclk);
294
295 mutex_unlock(&pdata->comms_mutex);
296}
297
298static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
299{
300 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
301 int ret;
302
303 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
304 if (ret) {
305 DRM_ERROR("failed to enable supplies %d\n", ret);
306 return ret;
307 }
308
309 gpiod_set_value(pdata->enable_gpio, 1);
310
311 /*
312 * If we have a reference clock we can enable communication w/ the
313 * panel (including the aux channel) w/out any need for an input clock
314 * so we can do it in resume which lets us read the EDID before
315 * pre_enable(). Without a reference clock we need the MIPI reference
316 * clock so reading early doesn't work.
317 */
318 if (pdata->refclk)
319 ti_sn65dsi86_enable_comms(pdata);
320
321 return ret;
322}
323
324static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
325{
326 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
327 int ret;
328
329 if (pdata->refclk)
330 ti_sn65dsi86_disable_comms(pdata);
331
332 gpiod_set_value(pdata->enable_gpio, 0);
333
334 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
335 if (ret)
336 DRM_ERROR("failed to disable supplies %d\n", ret);
337
338 return ret;
339}
340
341static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
342 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
343 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
344 pm_runtime_force_resume)
345};
346
347static int status_show(struct seq_file *s, void *data)
348{
349 struct ti_sn65dsi86 *pdata = s->private;
350 unsigned int reg, val;
351
352 seq_puts(s, "STATUS REGISTERS:\n");
353
354 pm_runtime_get_sync(pdata->dev);
355
356 /* IRQ Status Registers, see Table 31 in datasheet */
357 for (reg = 0xf0; reg <= 0xf8; reg++) {
358 regmap_read(pdata->regmap, reg, &val);
359 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
360 }
361
362 pm_runtime_put_autosuspend(pdata->dev);
363
364 return 0;
365}
366
367DEFINE_SHOW_ATTRIBUTE(status);
368
369static void ti_sn65dsi86_debugfs_remove(void *data)
370{
371 debugfs_remove_recursive(data);
372}
373
374static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
375{
376 struct device *dev = pdata->dev;
377 struct dentry *debugfs;
378 int ret;
379
380 debugfs = debugfs_create_dir(dev_name(dev), NULL);
381
382 /*
383 * We might get an error back if debugfs wasn't enabled in the kernel
384 * so let's just silently return upon failure.
385 */
386 if (IS_ERR_OR_NULL(debugfs))
387 return;
388
389 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
390 if (ret)
391 return;
392
393 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
394}
395
396/* Connector funcs */
397static struct ti_sn65dsi86 *
398connector_to_ti_sn65dsi86(struct drm_connector *connector)
399{
400 return container_of(connector, struct ti_sn65dsi86, connector);
401}
402
403static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
404{
405 struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector);
406 struct edid *edid = pdata->edid;
407 int num, ret;
408
409 if (!edid) {
410 pm_runtime_get_sync(pdata->dev);
411 edid = pdata->edid = drm_get_edid(connector, &pdata->aux.ddc);
412 pm_runtime_put_autosuspend(pdata->dev);
413 }
414
415 if (edid && drm_edid_is_valid(edid)) {
416 ret = drm_connector_update_edid_property(connector, edid);
417 if (!ret) {
418 num = drm_add_edid_modes(connector, edid);
419 if (num)
420 return num;
421 }
422 }
423
424 return drm_panel_get_modes(pdata->panel, connector);
425}
426
427static enum drm_mode_status
428ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
429 struct drm_display_mode *mode)
430{
431 /* maximum supported resolution is 4K at 60 fps */
432 if (mode->clock > 594000)
433 return MODE_CLOCK_HIGH;
434
435 return MODE_OK;
436}
437
438static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
439 .get_modes = ti_sn_bridge_connector_get_modes,
440 .mode_valid = ti_sn_bridge_connector_mode_valid,
441};
442
443static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
444 .fill_modes = drm_helper_probe_single_connector_modes,
445 .destroy = drm_connector_cleanup,
446 .reset = drm_atomic_helper_connector_reset,
447 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
448 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
449};
450
451static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
452{
453 return container_of(bridge, struct ti_sn65dsi86, bridge);
454}
455
456static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
457{
458 unsigned int i;
459 const char * const ti_sn_bridge_supply_names[] = {
460 "vcca", "vcc", "vccio", "vpll",
461 };
462
463 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
464 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
465
466 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
467 pdata->supplies);
468}
469
470static int ti_sn_bridge_attach(struct drm_bridge *bridge,
471 enum drm_bridge_attach_flags flags)
472{
473 int ret, val;
474 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
475 struct mipi_dsi_host *host;
476 struct mipi_dsi_device *dsi;
477 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
478 .channel = 0,
479 .node = NULL,
480 };
481
482 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
483 DRM_ERROR("Fix bridge driver to make connector optional!");
484 return -EINVAL;
485 }
486
487 pdata->aux.drm_dev = bridge->dev;
488 ret = drm_dp_aux_register(&pdata->aux);
489 if (ret < 0) {
490 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
491 return ret;
492 }
493
494 ret = drm_connector_init(bridge->dev, &pdata->connector,
495 &ti_sn_bridge_connector_funcs,
496 DRM_MODE_CONNECTOR_eDP);
497 if (ret) {
498 DRM_ERROR("Failed to initialize connector with drm\n");
499 goto err_conn_init;
500 }
501
502 drm_connector_helper_add(&pdata->connector,
503 &ti_sn_bridge_connector_helper_funcs);
504 drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
505
506 /*
507 * TODO: ideally finding host resource and dsi dev registration needs
508 * to be done in bridge probe. But some existing DSI host drivers will
509 * wait for any of the drm_bridge/drm_panel to get added to the global
510 * bridge/panel list, before completing their probe. So if we do the
511 * dsi dev registration part in bridge probe, before populating in
512 * the global bridge list, then it will cause deadlock as dsi host probe
513 * will never complete, neither our bridge probe. So keeping it here
514 * will satisfy most of the existing host drivers. Once the host driver
515 * is fixed we can move the below code to bridge probe safely.
516 */
517 host = of_find_mipi_dsi_host_by_node(pdata->host_node);
518 if (!host) {
519 DRM_ERROR("failed to find dsi host\n");
520 ret = -ENODEV;
521 goto err_dsi_host;
522 }
523
524 dsi = mipi_dsi_device_register_full(host, &info);
525 if (IS_ERR(dsi)) {
526 DRM_ERROR("failed to create dsi device\n");
527 ret = PTR_ERR(dsi);
528 goto err_dsi_host;
529 }
530
531 /* TODO: setting to 4 MIPI lanes always for now */
532 dsi->lanes = 4;
533 dsi->format = MIPI_DSI_FMT_RGB888;
534 dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
535
536 /* check if continuous dsi clock is required or not */
537 pm_runtime_get_sync(pdata->dev);
538 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
539 pm_runtime_put_autosuspend(pdata->dev);
540 if (!(val & DPPLL_CLK_SRC_DSICLK))
541 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
542
543 ret = mipi_dsi_attach(dsi);
544 if (ret < 0) {
545 DRM_ERROR("failed to attach dsi to host\n");
546 goto err_dsi_attach;
547 }
548 pdata->dsi = dsi;
549
550 return 0;
551
552err_dsi_attach:
553 mipi_dsi_device_unregister(dsi);
554err_dsi_host:
555 drm_connector_cleanup(&pdata->connector);
556err_conn_init:
557 drm_dp_aux_unregister(&pdata->aux);
558 return ret;
559}
560
561static void ti_sn_bridge_detach(struct drm_bridge *bridge)
562{
563 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
564}
565
566static void ti_sn_bridge_disable(struct drm_bridge *bridge)
567{
568 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
569
570 drm_panel_disable(pdata->panel);
571
572 /* disable video stream */
573 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
574 /* semi auto link training mode OFF */
575 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
576 /* disable DP PLL */
577 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
578}
579
580static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
581{
582 unsigned int bit_rate_mhz, clk_freq_mhz;
583 unsigned int val;
584 struct drm_display_mode *mode =
585 &pdata->bridge.encoder->crtc->state->adjusted_mode;
586
587 /* set DSIA clk frequency */
588 bit_rate_mhz = (mode->clock / 1000) *
589 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
590 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
591
592 /* for each increment in val, frequency increases by 5MHz */
593 val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
594 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
595 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
596}
597
598static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
599{
600 if (pdata->connector.display_info.bpc <= 6)
601 return 18;
602 else
603 return 24;
604}
605
606/*
607 * LUT index corresponds to register value and
608 * LUT values corresponds to dp data rate supported
609 * by the bridge in Mbps unit.
610 */
611static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
612 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
613};
614
615static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
616{
617 unsigned int bit_rate_khz, dp_rate_mhz;
618 unsigned int i;
619 struct drm_display_mode *mode =
620 &pdata->bridge.encoder->crtc->state->adjusted_mode;
621
622 /* Calculate minimum bit rate based on our pixel clock. */
623 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
624
625 /* Calculate minimum DP data rate, taking 80% as per DP spec */
626 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
627 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
628
629 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
630 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
631 break;
632
633 return i;
634}
635
636static void ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata,
637 bool rate_valid[])
638{
639 unsigned int rate_per_200khz;
640 unsigned int rate_mhz;
641 u8 dpcd_val;
642 int ret;
643 int i, j;
644
645 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
646 if (ret != 1) {
647 DRM_DEV_ERROR(pdata->dev,
648 "Can't read eDP rev (%d), assuming 1.1\n", ret);
649 dpcd_val = DP_EDP_11;
650 }
651
652 if (dpcd_val >= DP_EDP_14) {
653 /* eDP 1.4 devices must provide a custom table */
654 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
655
656 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
657 sink_rates, sizeof(sink_rates));
658
659 if (ret != sizeof(sink_rates)) {
660 DRM_DEV_ERROR(pdata->dev,
661 "Can't read supported rate table (%d)\n", ret);
662
663 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
664 memset(sink_rates, 0, sizeof(sink_rates));
665 }
666
667 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
668 rate_per_200khz = le16_to_cpu(sink_rates[i]);
669
670 if (!rate_per_200khz)
671 break;
672
673 rate_mhz = rate_per_200khz * 200 / 1000;
674 for (j = 0;
675 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
676 j++) {
677 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
678 rate_valid[j] = true;
679 }
680 }
681
682 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
683 if (rate_valid[i])
684 return;
685 }
686 DRM_DEV_ERROR(pdata->dev,
687 "No matching eDP rates in table; falling back\n");
688 }
689
690 /* On older versions best we can do is use DP_MAX_LINK_RATE */
691 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
692 if (ret != 1) {
693 DRM_DEV_ERROR(pdata->dev,
694 "Can't read max rate (%d); assuming 5.4 GHz\n",
695 ret);
696 dpcd_val = DP_LINK_BW_5_4;
697 }
698
699 switch (dpcd_val) {
700 default:
701 DRM_DEV_ERROR(pdata->dev,
702 "Unexpected max rate (%#x); assuming 5.4 GHz\n",
703 (int)dpcd_val);
704 fallthrough;
705 case DP_LINK_BW_5_4:
706 rate_valid[7] = 1;
707 fallthrough;
708 case DP_LINK_BW_2_7:
709 rate_valid[4] = 1;
710 fallthrough;
711 case DP_LINK_BW_1_62:
712 rate_valid[1] = 1;
713 break;
714 }
715}
716
717static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
718{
719 struct drm_display_mode *mode =
720 &pdata->bridge.encoder->crtc->state->adjusted_mode;
721 u8 hsync_polarity = 0, vsync_polarity = 0;
722
723 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
724 hsync_polarity = CHA_HSYNC_POLARITY;
725 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
726 vsync_polarity = CHA_VSYNC_POLARITY;
727
728 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
729 mode->hdisplay);
730 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
731 mode->vdisplay);
732 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
733 (mode->hsync_end - mode->hsync_start) & 0xFF);
734 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
735 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
736 hsync_polarity);
737 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
738 (mode->vsync_end - mode->vsync_start) & 0xFF);
739 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
740 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
741 vsync_polarity);
742
743 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
744 (mode->htotal - mode->hsync_end) & 0xFF);
745 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
746 (mode->vtotal - mode->vsync_end) & 0xFF);
747
748 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
749 (mode->hsync_start - mode->hdisplay) & 0xFF);
750 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
751 (mode->vsync_start - mode->vdisplay) & 0xFF);
752
753 usleep_range(10000, 10500); /* 10ms delay recommended by spec */
754}
755
756static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
757{
758 u8 data;
759 int ret;
760
761 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
762 if (ret != 1) {
763 DRM_DEV_ERROR(pdata->dev,
764 "Can't read lane count (%d); assuming 4\n", ret);
765 return 4;
766 }
767
768 return data & DP_LANE_COUNT_MASK;
769}
770
771static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
772 const char **last_err_str)
773{
774 unsigned int val;
775 int ret;
776 int i;
777
778 /* set dp clk frequency value */
779 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
780 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
781
782 /* enable DP PLL */
783 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
784
785 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
786 val & DPPLL_SRC_DP_PLL_LOCK, 1000,
787 50 * 1000);
788 if (ret) {
789 *last_err_str = "DP_PLL_LOCK polling failed";
790 goto exit;
791 }
792
793 /*
794 * We'll try to link train several times. As part of link training
795 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
796 * the panel isn't ready quite it might respond NAK here which means
797 * we need to try again.
798 */
799 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
800 /* Semi auto link training mode */
801 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
802 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
803 val == ML_TX_MAIN_LINK_OFF ||
804 val == ML_TX_NORMAL_MODE, 1000,
805 500 * 1000);
806 if (ret) {
807 *last_err_str = "Training complete polling failed";
808 } else if (val == ML_TX_MAIN_LINK_OFF) {
809 *last_err_str = "Link training failed, link is off";
810 ret = -EIO;
811 continue;
812 }
813
814 break;
815 }
816
817 /* If we saw quite a few retries, add a note about it */
818 if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
819 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
820
821exit:
822 /* Disable the PLL if we failed */
823 if (ret)
824 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
825
826 return ret;
827}
828
829static void ti_sn_bridge_enable(struct drm_bridge *bridge)
830{
831 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
832 bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
833 const char *last_err_str = "No supported DP rate";
834 int dp_rate_idx;
835 unsigned int val;
836 int ret = -EINVAL;
837 int max_dp_lanes;
838
839 max_dp_lanes = ti_sn_get_max_lanes(pdata);
840 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
841
842 /* DSI_A lane config */
843 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
844 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
845 CHA_DSI_LANES_MASK, val);
846
847 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
848 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
849 pdata->ln_polrs << LN_POLRS_OFFSET);
850
851 /* set dsi clk frequency value */
852 ti_sn_bridge_set_dsi_rate(pdata);
853
854 /*
855 * The SN65DSI86 only supports ASSR Display Authentication method and
856 * this method is enabled by default. An eDP panel must support this
857 * authentication method. We need to enable this method in the eDP panel
858 * at DisplayPort address 0x0010A prior to link training.
859 */
860 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
861 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
862
863 /* Set the DP output format (18 bpp or 24 bpp) */
864 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
865 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
866
867 /* DP lane config */
868 val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
869 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
870 val);
871
872 ti_sn_bridge_read_valid_rates(pdata, rate_valid);
873
874 /* Train until we run out of rates */
875 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
876 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
877 dp_rate_idx++) {
878 if (!rate_valid[dp_rate_idx])
879 continue;
880
881 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
882 if (!ret)
883 break;
884 }
885 if (ret) {
886 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
887 return;
888 }
889
890 /* config video parameters */
891 ti_sn_bridge_set_video_timings(pdata);
892
893 /* enable video stream */
894 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
895 VSTREAM_ENABLE);
896
897 drm_panel_enable(pdata->panel);
898}
899
900static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
901{
902 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
903
904 pm_runtime_get_sync(pdata->dev);
905
906 if (!pdata->refclk)
907 ti_sn65dsi86_enable_comms(pdata);
908
909 drm_panel_prepare(pdata->panel);
910}
911
912static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
913{
914 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
915
916 drm_panel_unprepare(pdata->panel);
917
918 if (!pdata->refclk)
919 ti_sn65dsi86_disable_comms(pdata);
920
921 pm_runtime_put_sync(pdata->dev);
922}
923
924static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
925 .attach = ti_sn_bridge_attach,
926 .detach = ti_sn_bridge_detach,
927 .pre_enable = ti_sn_bridge_pre_enable,
928 .enable = ti_sn_bridge_enable,
929 .disable = ti_sn_bridge_disable,
930 .post_disable = ti_sn_bridge_post_disable,
931};
932
933static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
934{
935 return container_of(aux, struct ti_sn65dsi86, aux);
936}
937
938static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
939 struct drm_dp_aux_msg *msg)
940{
941 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
942 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
943 u32 request_val = AUX_CMD_REQ(msg->request);
944 u8 *buf = msg->buffer;
945 unsigned int len = msg->size;
946 unsigned int val;
947 int ret;
948 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
949
950 if (len > SN_AUX_MAX_PAYLOAD_BYTES)
951 return -EINVAL;
952
953 pm_runtime_get_sync(pdata->dev);
954 mutex_lock(&pdata->comms_mutex);
955
956 /*
957 * If someone tries to do a DDC over AUX transaction before pre_enable()
958 * on a device without a dedicated reference clock then we just can't
959 * do it. Fail right away. This prevents non-refclk users from reading
960 * the EDID before enabling the panel but such is life.
961 */
962 if (!pdata->comms_enabled) {
963 ret = -EIO;
964 goto exit;
965 }
966
967 switch (request) {
968 case DP_AUX_NATIVE_WRITE:
969 case DP_AUX_I2C_WRITE:
970 case DP_AUX_NATIVE_READ:
971 case DP_AUX_I2C_READ:
972 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
973 /* Assume it's good */
974 msg->reply = 0;
975 break;
976 default:
977 ret = -EINVAL;
978 goto exit;
979 }
980
981 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
982 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
983 addr_len);
984 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
985 ARRAY_SIZE(addr_len));
986
987 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
988 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
989
990 /* Clear old status bits before start so we don't get confused */
991 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
992 AUX_IRQ_STATUS_NAT_I2C_FAIL |
993 AUX_IRQ_STATUS_AUX_RPLY_TOUT |
994 AUX_IRQ_STATUS_AUX_SHORT);
995
996 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
997
998 /* Zero delay loop because i2c transactions are slow already */
999 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
1000 !(val & AUX_CMD_SEND), 0, 50 * 1000);
1001 if (ret)
1002 goto exit;
1003
1004 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
1005 if (ret)
1006 goto exit;
1007
1008 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
1009 /*
1010 * The hardware tried the message seven times per the DP spec
1011 * but it hit a timeout. We ignore defers here because they're
1012 * handled in hardware.
1013 */
1014 ret = -ETIMEDOUT;
1015 goto exit;
1016 }
1017
1018 if (val & AUX_IRQ_STATUS_AUX_SHORT) {
1019 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
1020 if (ret)
1021 goto exit;
1022 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
1023 switch (request) {
1024 case DP_AUX_I2C_WRITE:
1025 case DP_AUX_I2C_READ:
1026 msg->reply |= DP_AUX_I2C_REPLY_NACK;
1027 break;
1028 case DP_AUX_NATIVE_READ:
1029 case DP_AUX_NATIVE_WRITE:
1030 msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
1031 break;
1032 }
1033 len = 0;
1034 goto exit;
1035 }
1036
1037 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
1038 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
1039
1040exit:
1041 mutex_unlock(&pdata->comms_mutex);
1042 pm_runtime_mark_last_busy(pdata->dev);
1043 pm_runtime_put_autosuspend(pdata->dev);
1044
1045 if (ret)
1046 return ret;
1047 return len;
1048}
1049
1050static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1051{
1052 struct device_node *np = pdata->dev->of_node;
1053
1054 pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1055
1056 if (!pdata->host_node) {
1057 DRM_ERROR("remote dsi host node not found\n");
1058 return -ENODEV;
1059 }
1060
1061 return 0;
1062}
1063
1064#if defined(CONFIG_OF_GPIO)
1065
1066static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1067 const struct of_phandle_args *gpiospec,
1068 u32 *flags)
1069{
1070 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1071 return -EINVAL;
1072
1073 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1074 return -EINVAL;
1075
1076 if (flags)
1077 *flags = gpiospec->args[1];
1078
1079 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1080}
1081
1082static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1083 unsigned int offset)
1084{
1085 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1086
1087 /*
1088 * We already have to keep track of the direction because we use
1089 * that to figure out whether we've powered the device. We can
1090 * just return that rather than (maybe) powering up the device
1091 * to ask its direction.
1092 */
1093 return test_bit(offset, pdata->gchip_output) ?
1094 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1095}
1096
1097static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1098{
1099 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1100 unsigned int val;
1101 int ret;
1102
1103 /*
1104 * When the pin is an input we don't forcibly keep the bridge
1105 * powered--we just power it on to read the pin. NOTE: part of
1106 * the reason this works is that the bridge defaults (when
1107 * powered back on) to all 4 GPIOs being configured as GPIO input.
1108 * Also note that if something else is keeping the chip powered the
1109 * pm_runtime functions are lightweight increments of a refcount.
1110 */
1111 pm_runtime_get_sync(pdata->dev);
1112 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1113 pm_runtime_put_autosuspend(pdata->dev);
1114
1115 if (ret)
1116 return ret;
1117
1118 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1119}
1120
1121static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1122 int val)
1123{
1124 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1125 int ret;
1126
1127 if (!test_bit(offset, pdata->gchip_output)) {
1128 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1129 return;
1130 }
1131
1132 val &= 1;
1133 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1134 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1135 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1136 if (ret)
1137 dev_warn(pdata->dev,
1138 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1139}
1140
1141static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1142 unsigned int offset)
1143{
1144 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1145 int shift = offset * 2;
1146 int ret;
1147
1148 if (!test_and_clear_bit(offset, pdata->gchip_output))
1149 return 0;
1150
1151 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1152 SN_GPIO_MUX_MASK << shift,
1153 SN_GPIO_MUX_INPUT << shift);
1154 if (ret) {
1155 set_bit(offset, pdata->gchip_output);
1156 return ret;
1157 }
1158
1159 /*
1160 * NOTE: if nobody else is powering the device this may fully power
1161 * it off and when it comes back it will have lost all state, but
1162 * that's OK because the default is input and we're now an input.
1163 */
1164 pm_runtime_put_autosuspend(pdata->dev);
1165
1166 return 0;
1167}
1168
1169static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1170 unsigned int offset, int val)
1171{
1172 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1173 int shift = offset * 2;
1174 int ret;
1175
1176 if (test_and_set_bit(offset, pdata->gchip_output))
1177 return 0;
1178
1179 pm_runtime_get_sync(pdata->dev);
1180
1181 /* Set value first to avoid glitching */
1182 ti_sn_bridge_gpio_set(chip, offset, val);
1183
1184 /* Set direction */
1185 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1186 SN_GPIO_MUX_MASK << shift,
1187 SN_GPIO_MUX_OUTPUT << shift);
1188 if (ret) {
1189 clear_bit(offset, pdata->gchip_output);
1190 pm_runtime_put_autosuspend(pdata->dev);
1191 }
1192
1193 return ret;
1194}
1195
1196static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1197{
1198 /* We won't keep pm_runtime if we're input, so switch there on free */
1199 ti_sn_bridge_gpio_direction_input(chip, offset);
1200}
1201
1202static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1203 "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1204};
1205
1206static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1207 const struct auxiliary_device_id *id)
1208{
1209 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1210 int ret;
1211
1212 /* Only init if someone is going to use us as a GPIO controller */
1213 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1214 return 0;
1215
1216 pdata->gchip.label = dev_name(pdata->dev);
1217 pdata->gchip.parent = pdata->dev;
1218 pdata->gchip.owner = THIS_MODULE;
1219 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1220 pdata->gchip.of_gpio_n_cells = 2;
1221 pdata->gchip.free = ti_sn_bridge_gpio_free;
1222 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1223 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1224 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1225 pdata->gchip.get = ti_sn_bridge_gpio_get;
1226 pdata->gchip.set = ti_sn_bridge_gpio_set;
1227 pdata->gchip.can_sleep = true;
1228 pdata->gchip.names = ti_sn_bridge_gpio_names;
1229 pdata->gchip.ngpio = SN_NUM_GPIOS;
1230 pdata->gchip.base = -1;
1231 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1232 if (ret)
1233 dev_err(pdata->dev, "can't add gpio chip\n");
1234
1235 return ret;
1236}
1237
1238static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1239 { .name = "ti_sn65dsi86.gpio", },
1240 {},
1241};
1242
1243MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1244
1245static struct auxiliary_driver ti_sn_gpio_driver = {
1246 .name = "gpio",
1247 .probe = ti_sn_gpio_probe,
1248 .id_table = ti_sn_gpio_id_table,
1249};
1250
1251static int __init ti_sn_gpio_register(void)
1252{
1253 return auxiliary_driver_register(&ti_sn_gpio_driver);
1254}
1255
1256static void ti_sn_gpio_unregister(void)
1257{
1258 auxiliary_driver_unregister(&ti_sn_gpio_driver);
1259}
1260
1261#else
1262
1263static inline int ti_sn_gpio_register(void) { return 0; }
1264static inline void ti_sn_gpio_unregister(void) {}
1265
1266#endif
1267
1268static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1269 struct device_node *np)
1270{
1271 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1272 u32 lane_polarities[SN_MAX_DP_LANES] = { };
1273 struct device_node *endpoint;
1274 u8 ln_assign = 0;
1275 u8 ln_polrs = 0;
1276 int dp_lanes;
1277 int i;
1278
1279 /*
1280 * Read config from the device tree about lane remapping and lane
1281 * polarities. These are optional and we assume identity map and
1282 * normal polarity if nothing is specified. It's OK to specify just
1283 * data-lanes but not lane-polarities but not vice versa.
1284 *
1285 * Error checking is light (we just make sure we don't crash or
1286 * buffer overrun) and we assume dts is well formed and specifying
1287 * mappings that the hardware supports.
1288 */
1289 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1290 dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1291 if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1292 of_property_read_u32_array(endpoint, "data-lanes",
1293 lane_assignments, dp_lanes);
1294 of_property_read_u32_array(endpoint, "lane-polarities",
1295 lane_polarities, dp_lanes);
1296 } else {
1297 dp_lanes = SN_MAX_DP_LANES;
1298 }
1299 of_node_put(endpoint);
1300
1301 /*
1302 * Convert into register format. Loop over all lanes even if
1303 * data-lanes had fewer elements so that we nicely initialize
1304 * the LN_ASSIGN register.
1305 */
1306 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1307 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1308 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1309 }
1310
1311 /* Stash in our struct for when we power on */
1312 pdata->dp_lanes = dp_lanes;
1313 pdata->ln_assign = ln_assign;
1314 pdata->ln_polrs = ln_polrs;
1315}
1316
1317static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1318 const struct auxiliary_device_id *id)
1319{
1320 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1321 struct device_node *np = pdata->dev->of_node;
1322 int ret;
1323
1324 ret = drm_of_find_panel_or_bridge(np, 1, 0, &pdata->panel, NULL);
1325 if (ret) {
1326 DRM_ERROR("could not find any panel node\n");
1327 return ret;
1328 }
1329
1330 ti_sn_bridge_parse_lanes(pdata, np);
1331
1332 ret = ti_sn_bridge_parse_dsi_host(pdata);
1333 if (ret)
1334 return ret;
1335
1336 pdata->aux.name = "ti-sn65dsi86-aux";
1337 pdata->aux.dev = pdata->dev;
1338 pdata->aux.transfer = ti_sn_aux_transfer;
1339 drm_dp_aux_init(&pdata->aux);
1340
1341 pdata->bridge.funcs = &ti_sn_bridge_funcs;
1342 pdata->bridge.of_node = np;
1343
1344 drm_bridge_add(&pdata->bridge);
1345
1346 return 0;
1347}
1348
1349static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1350{
1351 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1352
1353 if (!pdata)
1354 return;
1355
1356 if (pdata->dsi) {
1357 mipi_dsi_detach(pdata->dsi);
1358 mipi_dsi_device_unregister(pdata->dsi);
1359 }
1360
1361 kfree(pdata->edid);
1362
1363 drm_bridge_remove(&pdata->bridge);
1364
1365 of_node_put(pdata->host_node);
1366}
1367
1368static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1369 { .name = "ti_sn65dsi86.bridge", },
1370 {},
1371};
1372
1373static struct auxiliary_driver ti_sn_bridge_driver = {
1374 .name = "bridge",
1375 .probe = ti_sn_bridge_probe,
1376 .remove = ti_sn_bridge_remove,
1377 .id_table = ti_sn_bridge_id_table,
1378};
1379
1380static void ti_sn65dsi86_runtime_disable(void *data)
1381{
1382 pm_runtime_disable(data);
1383}
1384
1385static void ti_sn65dsi86_uninit_aux(void *data)
1386{
1387 auxiliary_device_uninit(data);
1388}
1389
1390static void ti_sn65dsi86_delete_aux(void *data)
1391{
1392 auxiliary_device_delete(data);
1393}
1394
1395/*
1396 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
1397 * sense for the model used here where all of the aux devices are allocated
1398 * in the single shared structure. We'll use this noop as a workaround.
1399 */
1400static void ti_sn65dsi86_noop(struct device *dev) {}
1401
1402static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
1403 struct auxiliary_device *aux,
1404 const char *name)
1405{
1406 struct device *dev = pdata->dev;
1407 int ret;
1408
1409 /*
1410 * NOTE: It would be nice to set the "of_node" of our children to be
1411 * the same "of_node"" that the top-level component has. That doesn't
1412 * work, though, since pinctrl will try (and fail) to reserve the
1413 * pins again. Until that gets sorted out the children will just need
1414 * to look at the of_node of the main device.
1415 */
1416
1417 aux->name = name;
1418 aux->dev.parent = dev;
1419 aux->dev.release = ti_sn65dsi86_noop;
1420 ret = auxiliary_device_init(aux);
1421 if (ret)
1422 return ret;
1423 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
1424 if (ret)
1425 return ret;
1426
1427 ret = auxiliary_device_add(aux);
1428 if (ret)
1429 return ret;
1430 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
1431
1432 return ret;
1433}
1434
1435static int ti_sn65dsi86_probe(struct i2c_client *client,
1436 const struct i2c_device_id *id)
1437{
1438 struct device *dev = &client->dev;
1439 struct ti_sn65dsi86 *pdata;
1440 int ret;
1441
1442 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1443 DRM_ERROR("device doesn't support I2C\n");
1444 return -ENODEV;
1445 }
1446
1447 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1448 if (!pdata)
1449 return -ENOMEM;
1450 dev_set_drvdata(dev, pdata);
1451 pdata->dev = dev;
1452
1453 mutex_init(&pdata->comms_mutex);
1454
1455 pdata->regmap = devm_regmap_init_i2c(client,
1456 &ti_sn65dsi86_regmap_config);
1457 if (IS_ERR(pdata->regmap)) {
1458 DRM_ERROR("regmap i2c init failed\n");
1459 return PTR_ERR(pdata->regmap);
1460 }
1461
1462 pdata->enable_gpio = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
1463 if (IS_ERR(pdata->enable_gpio)) {
1464 DRM_ERROR("failed to get enable gpio from DT\n");
1465 ret = PTR_ERR(pdata->enable_gpio);
1466 return ret;
1467 }
1468
1469 ret = ti_sn65dsi86_parse_regulators(pdata);
1470 if (ret) {
1471 DRM_ERROR("failed to parse regulators\n");
1472 return ret;
1473 }
1474
1475 pdata->refclk = devm_clk_get_optional(dev, "refclk");
1476 if (IS_ERR(pdata->refclk))
1477 return PTR_ERR(pdata->refclk);
1478
1479 pm_runtime_enable(dev);
1480 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1481 if (ret)
1482 return ret;
1483 pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1484 pm_runtime_use_autosuspend(pdata->dev);
1485
1486 ti_sn65dsi86_debugfs_init(pdata);
1487
1488 /*
1489 * Break ourselves up into a collection of aux devices. The only real
1490 * motiviation here is to solve the chicken-and-egg problem of probe
1491 * ordering. The bridge wants the panel to be there when it probes.
1492 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1493 * when it probes. There will soon be other devices (DDC I2C bus, PWM)
1494 * that have the same problem. Having sub-devices allows the some sub
1495 * devices to finish probing even if others return -EPROBE_DEFER and
1496 * gets us around the problems.
1497 */
1498
1499 if (IS_ENABLED(CONFIG_OF_GPIO)) {
1500 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1501 if (ret)
1502 return ret;
1503 }
1504
1505 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
1506}
1507
1508static struct i2c_device_id ti_sn65dsi86_id[] = {
1509 { "ti,sn65dsi86", 0},
1510 {},
1511};
1512MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1513
1514static const struct of_device_id ti_sn65dsi86_match_table[] = {
1515 {.compatible = "ti,sn65dsi86"},
1516 {},
1517};
1518MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1519
1520static struct i2c_driver ti_sn65dsi86_driver = {
1521 .driver = {
1522 .name = "ti_sn65dsi86",
1523 .of_match_table = ti_sn65dsi86_match_table,
1524 .pm = &ti_sn65dsi86_pm_ops,
1525 },
1526 .probe = ti_sn65dsi86_probe,
1527 .id_table = ti_sn65dsi86_id,
1528};
1529
1530static int __init ti_sn65dsi86_init(void)
1531{
1532 int ret;
1533
1534 ret = i2c_add_driver(&ti_sn65dsi86_driver);
1535 if (ret)
1536 return ret;
1537
1538 ret = ti_sn_gpio_register();
1539 if (ret)
1540 goto err_main_was_registered;
1541
1542 ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1543 if (ret)
1544 goto err_gpio_was_registered;
1545
1546 return 0;
1547
1548err_gpio_was_registered:
1549 ti_sn_gpio_unregister();
1550err_main_was_registered:
1551 i2c_del_driver(&ti_sn65dsi86_driver);
1552
1553 return ret;
1554}
1555module_init(ti_sn65dsi86_init);
1556
1557static void __exit ti_sn65dsi86_exit(void)
1558{
1559 auxiliary_driver_unregister(&ti_sn_bridge_driver);
1560 ti_sn_gpio_unregister();
1561 i2c_del_driver(&ti_sn65dsi86_driver);
1562}
1563module_exit(ti_sn65dsi86_exit);
1564
1565MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1566MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1567MODULE_LICENSE("GPL v2");