Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/device.h>
  24#include <linux/export.h>
  25#include <linux/err.h>
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30#include <linux/uaccess.h>
  31#include <linux/compat.h>
  32#include <uapi/linux/kfd_ioctl.h>
  33#include <linux/time.h>
  34#include <linux/mm.h>
  35#include <linux/mman.h>
  36#include <linux/dma-buf.h>
  37#include <asm/processor.h>
  38#include "kfd_priv.h"
  39#include "kfd_device_queue_manager.h"
  40#include "kfd_dbgmgr.h"
  41#include "kfd_svm.h"
  42#include "amdgpu_amdkfd.h"
  43#include "kfd_smi_events.h"
  44
  45static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  46static int kfd_open(struct inode *, struct file *);
  47static int kfd_release(struct inode *, struct file *);
  48static int kfd_mmap(struct file *, struct vm_area_struct *);
  49
  50static const char kfd_dev_name[] = "kfd";
  51
  52static const struct file_operations kfd_fops = {
  53	.owner = THIS_MODULE,
  54	.unlocked_ioctl = kfd_ioctl,
  55	.compat_ioctl = compat_ptr_ioctl,
  56	.open = kfd_open,
  57	.release = kfd_release,
  58	.mmap = kfd_mmap,
  59};
  60
  61static int kfd_char_dev_major = -1;
  62static struct class *kfd_class;
  63struct device *kfd_device;
  64
  65int kfd_chardev_init(void)
  66{
  67	int err = 0;
  68
  69	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  70	err = kfd_char_dev_major;
  71	if (err < 0)
  72		goto err_register_chrdev;
  73
  74	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  75	err = PTR_ERR(kfd_class);
  76	if (IS_ERR(kfd_class))
  77		goto err_class_create;
  78
  79	kfd_device = device_create(kfd_class, NULL,
  80					MKDEV(kfd_char_dev_major, 0),
  81					NULL, kfd_dev_name);
  82	err = PTR_ERR(kfd_device);
  83	if (IS_ERR(kfd_device))
  84		goto err_device_create;
  85
  86	return 0;
  87
  88err_device_create:
  89	class_destroy(kfd_class);
  90err_class_create:
  91	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  92err_register_chrdev:
  93	return err;
  94}
  95
  96void kfd_chardev_exit(void)
  97{
  98	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
  99	class_destroy(kfd_class);
 100	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 101	kfd_device = NULL;
 102}
 103
 104struct device *kfd_chardev(void)
 105{
 106	return kfd_device;
 107}
 108
 109
 110static int kfd_open(struct inode *inode, struct file *filep)
 111{
 112	struct kfd_process *process;
 113	bool is_32bit_user_mode;
 114
 115	if (iminor(inode) != 0)
 116		return -ENODEV;
 117
 118	is_32bit_user_mode = in_compat_syscall();
 119
 120	if (is_32bit_user_mode) {
 121		dev_warn(kfd_device,
 122			"Process %d (32-bit) failed to open /dev/kfd\n"
 123			"32-bit processes are not supported by amdkfd\n",
 124			current->pid);
 125		return -EPERM;
 126	}
 127
 128	process = kfd_create_process(filep);
 129	if (IS_ERR(process))
 130		return PTR_ERR(process);
 131
 132	if (kfd_is_locked()) {
 133		dev_dbg(kfd_device, "kfd is locked!\n"
 134				"process %d unreferenced", process->pasid);
 135		kfd_unref_process(process);
 136		return -EAGAIN;
 137	}
 138
 139	/* filep now owns the reference returned by kfd_create_process */
 140	filep->private_data = process;
 141
 142	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 143		process->pasid, process->is_32bit_user_mode);
 144
 145	return 0;
 146}
 147
 148static int kfd_release(struct inode *inode, struct file *filep)
 149{
 150	struct kfd_process *process = filep->private_data;
 151
 152	if (process)
 153		kfd_unref_process(process);
 154
 155	return 0;
 156}
 157
 158static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 159					void *data)
 160{
 161	struct kfd_ioctl_get_version_args *args = data;
 162
 163	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 164	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 165
 166	return 0;
 167}
 168
 169static int set_queue_properties_from_user(struct queue_properties *q_properties,
 170				struct kfd_ioctl_create_queue_args *args)
 171{
 172	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 173		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 174		return -EINVAL;
 175	}
 176
 177	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 178		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 179		return -EINVAL;
 180	}
 181
 182	if ((args->ring_base_address) &&
 183		(!access_ok((const void __user *) args->ring_base_address,
 184			sizeof(uint64_t)))) {
 185		pr_err("Can't access ring base address\n");
 186		return -EFAULT;
 187	}
 188
 189	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 190		pr_err("Ring size must be a power of 2 or 0\n");
 191		return -EINVAL;
 192	}
 193
 194	if (!access_ok((const void __user *) args->read_pointer_address,
 195			sizeof(uint32_t))) {
 196		pr_err("Can't access read pointer\n");
 197		return -EFAULT;
 198	}
 199
 200	if (!access_ok((const void __user *) args->write_pointer_address,
 201			sizeof(uint32_t))) {
 202		pr_err("Can't access write pointer\n");
 203		return -EFAULT;
 204	}
 205
 206	if (args->eop_buffer_address &&
 207		!access_ok((const void __user *) args->eop_buffer_address,
 208			sizeof(uint32_t))) {
 209		pr_debug("Can't access eop buffer");
 210		return -EFAULT;
 211	}
 212
 213	if (args->ctx_save_restore_address &&
 214		!access_ok((const void __user *) args->ctx_save_restore_address,
 215			sizeof(uint32_t))) {
 216		pr_debug("Can't access ctx save restore buffer");
 217		return -EFAULT;
 218	}
 219
 220	q_properties->is_interop = false;
 221	q_properties->is_gws = false;
 222	q_properties->queue_percent = args->queue_percentage;
 223	q_properties->priority = args->queue_priority;
 224	q_properties->queue_address = args->ring_base_address;
 225	q_properties->queue_size = args->ring_size;
 226	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 227	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 228	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 229	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 230	q_properties->ctx_save_restore_area_address =
 231			args->ctx_save_restore_address;
 232	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 233	q_properties->ctl_stack_size = args->ctl_stack_size;
 234	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 235		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 236		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 237	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 238		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 239	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 240		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 241	else
 242		return -ENOTSUPP;
 243
 244	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 245		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 246	else
 247		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 248
 249	pr_debug("Queue Percentage: %d, %d\n",
 250			q_properties->queue_percent, args->queue_percentage);
 251
 252	pr_debug("Queue Priority: %d, %d\n",
 253			q_properties->priority, args->queue_priority);
 254
 255	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 256			q_properties->queue_address, args->ring_base_address);
 257
 258	pr_debug("Queue Size: 0x%llX, %u\n",
 259			q_properties->queue_size, args->ring_size);
 260
 261	pr_debug("Queue r/w Pointers: %px, %px\n",
 262			q_properties->read_ptr,
 263			q_properties->write_ptr);
 264
 265	pr_debug("Queue Format: %d\n", q_properties->format);
 266
 267	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 268
 269	pr_debug("Queue CTX save area: 0x%llX\n",
 270			q_properties->ctx_save_restore_area_address);
 271
 272	return 0;
 273}
 274
 275static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 276					void *data)
 277{
 278	struct kfd_ioctl_create_queue_args *args = data;
 279	struct kfd_dev *dev;
 280	int err = 0;
 281	unsigned int queue_id;
 282	struct kfd_process_device *pdd;
 283	struct queue_properties q_properties;
 284	uint32_t doorbell_offset_in_process = 0;
 285
 286	memset(&q_properties, 0, sizeof(struct queue_properties));
 287
 288	pr_debug("Creating queue ioctl\n");
 289
 290	err = set_queue_properties_from_user(&q_properties, args);
 291	if (err)
 292		return err;
 293
 294	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 295	dev = kfd_device_by_id(args->gpu_id);
 296	if (!dev) {
 297		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 298		return -EINVAL;
 299	}
 300
 301	mutex_lock(&p->mutex);
 302
 303	pdd = kfd_bind_process_to_device(dev, p);
 304	if (IS_ERR(pdd)) {
 305		err = -ESRCH;
 306		goto err_bind_process;
 307	}
 308
 309	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 310			p->pasid,
 311			dev->id);
 312
 313	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
 314			&doorbell_offset_in_process);
 315	if (err != 0)
 316		goto err_create_queue;
 317
 318	args->queue_id = queue_id;
 319
 320
 321	/* Return gpu_id as doorbell offset for mmap usage */
 322	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 323	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 324	if (KFD_IS_SOC15(dev->device_info->asic_family))
 325		/* On SOC15 ASICs, include the doorbell offset within the
 326		 * process doorbell frame, which is 2 pages.
 327		 */
 328		args->doorbell_offset |= doorbell_offset_in_process;
 329
 330	mutex_unlock(&p->mutex);
 331
 332	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 333
 334	pr_debug("Ring buffer address == 0x%016llX\n",
 335			args->ring_base_address);
 336
 337	pr_debug("Read ptr address    == 0x%016llX\n",
 338			args->read_pointer_address);
 339
 340	pr_debug("Write ptr address   == 0x%016llX\n",
 341			args->write_pointer_address);
 342
 343	return 0;
 344
 345err_create_queue:
 346err_bind_process:
 347	mutex_unlock(&p->mutex);
 348	return err;
 349}
 350
 351static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 352					void *data)
 353{
 354	int retval;
 355	struct kfd_ioctl_destroy_queue_args *args = data;
 356
 357	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 358				args->queue_id,
 359				p->pasid);
 360
 361	mutex_lock(&p->mutex);
 362
 363	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 364
 365	mutex_unlock(&p->mutex);
 366	return retval;
 367}
 368
 369static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 370					void *data)
 371{
 372	int retval;
 373	struct kfd_ioctl_update_queue_args *args = data;
 374	struct queue_properties properties;
 375
 376	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 377		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 378		return -EINVAL;
 379	}
 380
 381	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 382		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 383		return -EINVAL;
 384	}
 385
 386	if ((args->ring_base_address) &&
 387		(!access_ok((const void __user *) args->ring_base_address,
 388			sizeof(uint64_t)))) {
 389		pr_err("Can't access ring base address\n");
 390		return -EFAULT;
 391	}
 392
 393	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 394		pr_err("Ring size must be a power of 2 or 0\n");
 395		return -EINVAL;
 396	}
 397
 398	properties.queue_address = args->ring_base_address;
 399	properties.queue_size = args->ring_size;
 400	properties.queue_percent = args->queue_percentage;
 401	properties.priority = args->queue_priority;
 402
 403	pr_debug("Updating queue id %d for pasid 0x%x\n",
 404			args->queue_id, p->pasid);
 405
 406	mutex_lock(&p->mutex);
 407
 408	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
 409
 410	mutex_unlock(&p->mutex);
 411
 412	return retval;
 413}
 414
 415static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 416					void *data)
 417{
 418	int retval;
 419	const int max_num_cus = 1024;
 420	struct kfd_ioctl_set_cu_mask_args *args = data;
 421	struct queue_properties properties;
 422	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 423	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 424
 425	if ((args->num_cu_mask % 32) != 0) {
 426		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 427				args->num_cu_mask);
 428		return -EINVAL;
 429	}
 430
 431	properties.cu_mask_count = args->num_cu_mask;
 432	if (properties.cu_mask_count == 0) {
 433		pr_debug("CU mask cannot be 0");
 434		return -EINVAL;
 435	}
 436
 437	/* To prevent an unreasonably large CU mask size, set an arbitrary
 438	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 439	 * past max_num_cus bits and just use the first max_num_cus bits.
 440	 */
 441	if (properties.cu_mask_count > max_num_cus) {
 442		pr_debug("CU mask cannot be greater than 1024 bits");
 443		properties.cu_mask_count = max_num_cus;
 444		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 445	}
 446
 447	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
 448	if (!properties.cu_mask)
 449		return -ENOMEM;
 450
 451	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
 452	if (retval) {
 453		pr_debug("Could not copy CU mask from userspace");
 454		kfree(properties.cu_mask);
 455		return -EFAULT;
 456	}
 457
 458	mutex_lock(&p->mutex);
 459
 460	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
 461
 462	mutex_unlock(&p->mutex);
 463
 464	if (retval)
 465		kfree(properties.cu_mask);
 466
 467	return retval;
 468}
 469
 470static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 471					  struct kfd_process *p, void *data)
 472{
 473	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 474	int r;
 475
 476	mutex_lock(&p->mutex);
 477
 478	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 479			       (void __user *)args->ctl_stack_address,
 480			       &args->ctl_stack_used_size,
 481			       &args->save_area_used_size);
 482
 483	mutex_unlock(&p->mutex);
 484
 485	return r;
 486}
 487
 488static int kfd_ioctl_set_memory_policy(struct file *filep,
 489					struct kfd_process *p, void *data)
 490{
 491	struct kfd_ioctl_set_memory_policy_args *args = data;
 492	struct kfd_dev *dev;
 493	int err = 0;
 494	struct kfd_process_device *pdd;
 495	enum cache_policy default_policy, alternate_policy;
 496
 497	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 498	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 499		return -EINVAL;
 500	}
 501
 502	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 503	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 504		return -EINVAL;
 505	}
 506
 507	dev = kfd_device_by_id(args->gpu_id);
 508	if (!dev)
 509		return -EINVAL;
 510
 511	mutex_lock(&p->mutex);
 512
 513	pdd = kfd_bind_process_to_device(dev, p);
 514	if (IS_ERR(pdd)) {
 515		err = -ESRCH;
 516		goto out;
 517	}
 518
 519	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 520			 ? cache_policy_coherent : cache_policy_noncoherent;
 521
 522	alternate_policy =
 523		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 524		   ? cache_policy_coherent : cache_policy_noncoherent;
 525
 526	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
 527				&pdd->qpd,
 528				default_policy,
 529				alternate_policy,
 530				(void __user *)args->alternate_aperture_base,
 531				args->alternate_aperture_size))
 532		err = -EINVAL;
 533
 534out:
 535	mutex_unlock(&p->mutex);
 536
 537	return err;
 538}
 539
 540static int kfd_ioctl_set_trap_handler(struct file *filep,
 541					struct kfd_process *p, void *data)
 542{
 543	struct kfd_ioctl_set_trap_handler_args *args = data;
 544	struct kfd_dev *dev;
 545	int err = 0;
 546	struct kfd_process_device *pdd;
 547
 548	dev = kfd_device_by_id(args->gpu_id);
 549	if (!dev)
 550		return -EINVAL;
 551
 552	mutex_lock(&p->mutex);
 553
 554	pdd = kfd_bind_process_to_device(dev, p);
 555	if (IS_ERR(pdd)) {
 556		err = -ESRCH;
 557		goto out;
 558	}
 559
 560	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 561
 562out:
 563	mutex_unlock(&p->mutex);
 564
 565	return err;
 566}
 567
 568static int kfd_ioctl_dbg_register(struct file *filep,
 569				struct kfd_process *p, void *data)
 570{
 571	struct kfd_ioctl_dbg_register_args *args = data;
 572	struct kfd_dev *dev;
 573	struct kfd_dbgmgr *dbgmgr_ptr;
 574	struct kfd_process_device *pdd;
 575	bool create_ok;
 576	long status = 0;
 577
 578	dev = kfd_device_by_id(args->gpu_id);
 579	if (!dev)
 580		return -EINVAL;
 581
 582	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 583		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
 584		return -EINVAL;
 585	}
 586
 587	mutex_lock(&p->mutex);
 588	mutex_lock(kfd_get_dbgmgr_mutex());
 589
 590	/*
 591	 * make sure that we have pdd, if this the first queue created for
 592	 * this process
 593	 */
 594	pdd = kfd_bind_process_to_device(dev, p);
 595	if (IS_ERR(pdd)) {
 596		status = PTR_ERR(pdd);
 597		goto out;
 598	}
 599
 600	if (!dev->dbgmgr) {
 601		/* In case of a legal call, we have no dbgmgr yet */
 602		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
 603		if (create_ok) {
 604			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
 605			if (status != 0)
 606				kfd_dbgmgr_destroy(dbgmgr_ptr);
 607			else
 608				dev->dbgmgr = dbgmgr_ptr;
 609		}
 610	} else {
 611		pr_debug("debugger already registered\n");
 612		status = -EINVAL;
 613	}
 614
 615out:
 616	mutex_unlock(kfd_get_dbgmgr_mutex());
 617	mutex_unlock(&p->mutex);
 618
 619	return status;
 620}
 621
 622static int kfd_ioctl_dbg_unregister(struct file *filep,
 623				struct kfd_process *p, void *data)
 624{
 625	struct kfd_ioctl_dbg_unregister_args *args = data;
 626	struct kfd_dev *dev;
 627	long status;
 628
 629	dev = kfd_device_by_id(args->gpu_id);
 630	if (!dev || !dev->dbgmgr)
 631		return -EINVAL;
 632
 633	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 634		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
 635		return -EINVAL;
 636	}
 637
 638	mutex_lock(kfd_get_dbgmgr_mutex());
 639
 640	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
 641	if (!status) {
 642		kfd_dbgmgr_destroy(dev->dbgmgr);
 643		dev->dbgmgr = NULL;
 644	}
 645
 646	mutex_unlock(kfd_get_dbgmgr_mutex());
 647
 648	return status;
 649}
 650
 651/*
 652 * Parse and generate variable size data structure for address watch.
 653 * Total size of the buffer and # watch points is limited in order
 654 * to prevent kernel abuse. (no bearing to the much smaller HW limitation
 655 * which is enforced by dbgdev module)
 656 * please also note that the watch address itself are not "copied from user",
 657 * since it be set into the HW in user mode values.
 658 *
 659 */
 660static int kfd_ioctl_dbg_address_watch(struct file *filep,
 661					struct kfd_process *p, void *data)
 662{
 663	struct kfd_ioctl_dbg_address_watch_args *args = data;
 664	struct kfd_dev *dev;
 665	struct dbg_address_watch_info aw_info;
 666	unsigned char *args_buff;
 667	long status;
 668	void __user *cmd_from_user;
 669	uint64_t watch_mask_value = 0;
 670	unsigned int args_idx = 0;
 671
 672	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
 673
 674	dev = kfd_device_by_id(args->gpu_id);
 675	if (!dev)
 676		return -EINVAL;
 677
 678	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 679		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 680		return -EINVAL;
 681	}
 682
 683	cmd_from_user = (void __user *) args->content_ptr;
 684
 685	/* Validate arguments */
 686
 687	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
 688		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
 689		(cmd_from_user == NULL))
 690		return -EINVAL;
 691
 692	/* this is the actual buffer to work with */
 693	args_buff = memdup_user(cmd_from_user,
 694				args->buf_size_in_bytes - sizeof(*args));
 695	if (IS_ERR(args_buff))
 696		return PTR_ERR(args_buff);
 697
 698	aw_info.process = p;
 699
 700	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
 701	args_idx += sizeof(aw_info.num_watch_points);
 702
 703	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
 704	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
 705
 706	/*
 707	 * set watch address base pointer to point on the array base
 708	 * within args_buff
 709	 */
 710	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
 711
 712	/* skip over the addresses buffer */
 713	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
 714
 715	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
 716		status = -EINVAL;
 717		goto out;
 718	}
 719
 720	watch_mask_value = (uint64_t) args_buff[args_idx];
 721
 722	if (watch_mask_value > 0) {
 723		/*
 724		 * There is an array of masks.
 725		 * set watch mask base pointer to point on the array base
 726		 * within args_buff
 727		 */
 728		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
 729
 730		/* skip over the masks buffer */
 731		args_idx += sizeof(aw_info.watch_mask) *
 732				aw_info.num_watch_points;
 733	} else {
 734		/* just the NULL mask, set to NULL and skip over it */
 735		aw_info.watch_mask = NULL;
 736		args_idx += sizeof(aw_info.watch_mask);
 737	}
 738
 739	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
 740		status = -EINVAL;
 741		goto out;
 742	}
 743
 744	/* Currently HSA Event is not supported for DBG */
 745	aw_info.watch_event = NULL;
 746
 747	mutex_lock(kfd_get_dbgmgr_mutex());
 748
 749	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
 750
 751	mutex_unlock(kfd_get_dbgmgr_mutex());
 752
 753out:
 754	kfree(args_buff);
 755
 756	return status;
 757}
 758
 759/* Parse and generate fixed size data structure for wave control */
 760static int kfd_ioctl_dbg_wave_control(struct file *filep,
 761					struct kfd_process *p, void *data)
 762{
 763	struct kfd_ioctl_dbg_wave_control_args *args = data;
 764	struct kfd_dev *dev;
 765	struct dbg_wave_control_info wac_info;
 766	unsigned char *args_buff;
 767	uint32_t computed_buff_size;
 768	long status;
 769	void __user *cmd_from_user;
 770	unsigned int args_idx = 0;
 771
 772	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
 773
 774	/* we use compact form, independent of the packing attribute value */
 775	computed_buff_size = sizeof(*args) +
 776				sizeof(wac_info.mode) +
 777				sizeof(wac_info.operand) +
 778				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
 779				sizeof(wac_info.dbgWave_msg.MemoryVA) +
 780				sizeof(wac_info.trapId);
 781
 782	dev = kfd_device_by_id(args->gpu_id);
 783	if (!dev)
 784		return -EINVAL;
 785
 786	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 787		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 788		return -EINVAL;
 789	}
 790
 791	/* input size must match the computed "compact" size */
 792	if (args->buf_size_in_bytes != computed_buff_size) {
 793		pr_debug("size mismatch, computed : actual %u : %u\n",
 794				args->buf_size_in_bytes, computed_buff_size);
 795		return -EINVAL;
 796	}
 797
 798	cmd_from_user = (void __user *) args->content_ptr;
 799
 800	if (cmd_from_user == NULL)
 801		return -EINVAL;
 802
 803	/* copy the entire buffer from user */
 804
 805	args_buff = memdup_user(cmd_from_user,
 806				args->buf_size_in_bytes - sizeof(*args));
 807	if (IS_ERR(args_buff))
 808		return PTR_ERR(args_buff);
 809
 810	/* move ptr to the start of the "pay-load" area */
 811	wac_info.process = p;
 812
 813	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
 814	args_idx += sizeof(wac_info.operand);
 815
 816	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
 817	args_idx += sizeof(wac_info.mode);
 818
 819	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
 820	args_idx += sizeof(wac_info.trapId);
 821
 822	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
 823					*((uint32_t *)(&args_buff[args_idx]));
 824	wac_info.dbgWave_msg.MemoryVA = NULL;
 825
 826	mutex_lock(kfd_get_dbgmgr_mutex());
 827
 828	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
 829			wac_info.process, wac_info.operand,
 830			wac_info.mode, wac_info.trapId,
 831			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
 832
 833	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
 834
 835	pr_debug("Returned status of dbg manager is %ld\n", status);
 836
 837	mutex_unlock(kfd_get_dbgmgr_mutex());
 838
 839	kfree(args_buff);
 840
 841	return status;
 842}
 843
 844static int kfd_ioctl_get_clock_counters(struct file *filep,
 845				struct kfd_process *p, void *data)
 846{
 847	struct kfd_ioctl_get_clock_counters_args *args = data;
 848	struct kfd_dev *dev;
 849
 850	dev = kfd_device_by_id(args->gpu_id);
 851	if (dev)
 852		/* Reading GPU clock counter from KGD */
 853		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
 854	else
 855		/* Node without GPU resource */
 856		args->gpu_clock_counter = 0;
 857
 858	/* No access to rdtsc. Using raw monotonic time */
 859	args->cpu_clock_counter = ktime_get_raw_ns();
 860	args->system_clock_counter = ktime_get_boottime_ns();
 861
 862	/* Since the counter is in nano-seconds we use 1GHz frequency */
 863	args->system_clock_freq = 1000000000;
 864
 865	return 0;
 866}
 867
 868
 869static int kfd_ioctl_get_process_apertures(struct file *filp,
 870				struct kfd_process *p, void *data)
 871{
 872	struct kfd_ioctl_get_process_apertures_args *args = data;
 873	struct kfd_process_device_apertures *pAperture;
 874	int i;
 875
 876	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 877
 878	args->num_of_nodes = 0;
 879
 880	mutex_lock(&p->mutex);
 881	/* Run over all pdd of the process */
 882	for (i = 0; i < p->n_pdds; i++) {
 883		struct kfd_process_device *pdd = p->pdds[i];
 884
 885		pAperture =
 886			&args->process_apertures[args->num_of_nodes];
 887		pAperture->gpu_id = pdd->dev->id;
 888		pAperture->lds_base = pdd->lds_base;
 889		pAperture->lds_limit = pdd->lds_limit;
 890		pAperture->gpuvm_base = pdd->gpuvm_base;
 891		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 892		pAperture->scratch_base = pdd->scratch_base;
 893		pAperture->scratch_limit = pdd->scratch_limit;
 894
 895		dev_dbg(kfd_device,
 896			"node id %u\n", args->num_of_nodes);
 897		dev_dbg(kfd_device,
 898			"gpu id %u\n", pdd->dev->id);
 899		dev_dbg(kfd_device,
 900			"lds_base %llX\n", pdd->lds_base);
 901		dev_dbg(kfd_device,
 902			"lds_limit %llX\n", pdd->lds_limit);
 903		dev_dbg(kfd_device,
 904			"gpuvm_base %llX\n", pdd->gpuvm_base);
 905		dev_dbg(kfd_device,
 906			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 907		dev_dbg(kfd_device,
 908			"scratch_base %llX\n", pdd->scratch_base);
 909		dev_dbg(kfd_device,
 910			"scratch_limit %llX\n", pdd->scratch_limit);
 911
 912		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 913			break;
 914	}
 915	mutex_unlock(&p->mutex);
 916
 917	return 0;
 918}
 919
 920static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 921				struct kfd_process *p, void *data)
 922{
 923	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 924	struct kfd_process_device_apertures *pa;
 925	int ret;
 926	int i;
 927
 928	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 929
 930	if (args->num_of_nodes == 0) {
 931		/* Return number of nodes, so that user space can alloacate
 932		 * sufficient memory
 933		 */
 934		mutex_lock(&p->mutex);
 935		args->num_of_nodes = p->n_pdds;
 936		goto out_unlock;
 937	}
 938
 939	/* Fill in process-aperture information for all available
 940	 * nodes, but not more than args->num_of_nodes as that is
 941	 * the amount of memory allocated by user
 942	 */
 943	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 944				args->num_of_nodes), GFP_KERNEL);
 945	if (!pa)
 946		return -ENOMEM;
 947
 948	mutex_lock(&p->mutex);
 949
 950	if (!p->n_pdds) {
 951		args->num_of_nodes = 0;
 952		kfree(pa);
 953		goto out_unlock;
 954	}
 955
 956	/* Run over all pdd of the process */
 957	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 958		struct kfd_process_device *pdd = p->pdds[i];
 959
 960		pa[i].gpu_id = pdd->dev->id;
 961		pa[i].lds_base = pdd->lds_base;
 962		pa[i].lds_limit = pdd->lds_limit;
 963		pa[i].gpuvm_base = pdd->gpuvm_base;
 964		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 965		pa[i].scratch_base = pdd->scratch_base;
 966		pa[i].scratch_limit = pdd->scratch_limit;
 967
 968		dev_dbg(kfd_device,
 969			"gpu id %u\n", pdd->dev->id);
 970		dev_dbg(kfd_device,
 971			"lds_base %llX\n", pdd->lds_base);
 972		dev_dbg(kfd_device,
 973			"lds_limit %llX\n", pdd->lds_limit);
 974		dev_dbg(kfd_device,
 975			"gpuvm_base %llX\n", pdd->gpuvm_base);
 976		dev_dbg(kfd_device,
 977			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 978		dev_dbg(kfd_device,
 979			"scratch_base %llX\n", pdd->scratch_base);
 980		dev_dbg(kfd_device,
 981			"scratch_limit %llX\n", pdd->scratch_limit);
 982	}
 983	mutex_unlock(&p->mutex);
 984
 985	args->num_of_nodes = i;
 986	ret = copy_to_user(
 987			(void __user *)args->kfd_process_device_apertures_ptr,
 988			pa,
 989			(i * sizeof(struct kfd_process_device_apertures)));
 990	kfree(pa);
 991	return ret ? -EFAULT : 0;
 992
 993out_unlock:
 994	mutex_unlock(&p->mutex);
 995	return 0;
 996}
 997
 998static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 999					void *data)
1000{
1001	struct kfd_ioctl_create_event_args *args = data;
1002	int err;
1003
1004	/* For dGPUs the event page is allocated in user mode. The
1005	 * handle is passed to KFD with the first call to this IOCTL
1006	 * through the event_page_offset field.
1007	 */
1008	if (args->event_page_offset) {
1009		struct kfd_dev *kfd;
1010		struct kfd_process_device *pdd;
1011		void *mem, *kern_addr;
1012		uint64_t size;
1013
1014		if (p->signal_page) {
1015			pr_err("Event page is already set\n");
1016			return -EINVAL;
1017		}
1018
1019		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020		if (!kfd) {
1021			pr_err("Getting device by id failed in %s\n", __func__);
1022			return -EINVAL;
1023		}
1024
1025		mutex_lock(&p->mutex);
1026		pdd = kfd_bind_process_to_device(kfd, p);
1027		if (IS_ERR(pdd)) {
1028			err = PTR_ERR(pdd);
1029			goto out_unlock;
1030		}
1031
1032		mem = kfd_process_device_translate_handle(pdd,
1033				GET_IDR_HANDLE(args->event_page_offset));
1034		if (!mem) {
1035			pr_err("Can't find BO, offset is 0x%llx\n",
1036			       args->event_page_offset);
1037			err = -EINVAL;
1038			goto out_unlock;
1039		}
1040		mutex_unlock(&p->mutex);
1041
1042		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043						mem, &kern_addr, &size);
1044		if (err) {
1045			pr_err("Failed to map event page to kernel\n");
1046			return err;
1047		}
1048
1049		err = kfd_event_page_set(p, kern_addr, size);
1050		if (err) {
1051			pr_err("Failed to set event page\n");
1052			return err;
1053		}
1054	}
1055
1056	err = kfd_event_create(filp, p, args->event_type,
1057				args->auto_reset != 0, args->node_id,
1058				&args->event_id, &args->event_trigger_data,
1059				&args->event_page_offset,
1060				&args->event_slot_index);
1061
1062	return err;
1063
1064out_unlock:
1065	mutex_unlock(&p->mutex);
1066	return err;
1067}
1068
1069static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070					void *data)
1071{
1072	struct kfd_ioctl_destroy_event_args *args = data;
1073
1074	return kfd_event_destroy(p, args->event_id);
1075}
1076
1077static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078				void *data)
1079{
1080	struct kfd_ioctl_set_event_args *args = data;
1081
1082	return kfd_set_event(p, args->event_id);
1083}
1084
1085static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086				void *data)
1087{
1088	struct kfd_ioctl_reset_event_args *args = data;
1089
1090	return kfd_reset_event(p, args->event_id);
1091}
1092
1093static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094				void *data)
1095{
1096	struct kfd_ioctl_wait_events_args *args = data;
1097	int err;
1098
1099	err = kfd_wait_on_events(p, args->num_events,
1100			(void __user *)args->events_ptr,
1101			(args->wait_for_all != 0),
1102			args->timeout, &args->wait_result);
1103
1104	return err;
1105}
1106static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107					struct kfd_process *p, void *data)
1108{
1109	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110	struct kfd_process_device *pdd;
1111	struct kfd_dev *dev;
1112	long err;
1113
1114	dev = kfd_device_by_id(args->gpu_id);
1115	if (!dev)
1116		return -EINVAL;
1117
1118	mutex_lock(&p->mutex);
1119
1120	pdd = kfd_bind_process_to_device(dev, p);
1121	if (IS_ERR(pdd)) {
1122		err = PTR_ERR(pdd);
1123		goto bind_process_to_device_fail;
1124	}
1125
1126	pdd->qpd.sh_hidden_private_base = args->va_addr;
1127
1128	mutex_unlock(&p->mutex);
1129
1130	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1132		dev->kfd2kgd->set_scratch_backing_va(
1133			dev->kgd, args->va_addr, pdd->qpd.vmid);
1134
1135	return 0;
1136
1137bind_process_to_device_fail:
1138	mutex_unlock(&p->mutex);
1139	return err;
1140}
1141
1142static int kfd_ioctl_get_tile_config(struct file *filep,
1143		struct kfd_process *p, void *data)
1144{
1145	struct kfd_ioctl_get_tile_config_args *args = data;
1146	struct kfd_dev *dev;
1147	struct tile_config config;
1148	int err = 0;
1149
1150	dev = kfd_device_by_id(args->gpu_id);
1151	if (!dev)
1152		return -EINVAL;
1153
1154	amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1155
1156	args->gb_addr_config = config.gb_addr_config;
1157	args->num_banks = config.num_banks;
1158	args->num_ranks = config.num_ranks;
1159
1160	if (args->num_tile_configs > config.num_tile_configs)
1161		args->num_tile_configs = config.num_tile_configs;
1162	err = copy_to_user((void __user *)args->tile_config_ptr,
1163			config.tile_config_ptr,
1164			args->num_tile_configs * sizeof(uint32_t));
1165	if (err) {
1166		args->num_tile_configs = 0;
1167		return -EFAULT;
1168	}
1169
1170	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171		args->num_macro_tile_configs =
1172				config.num_macro_tile_configs;
1173	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174			config.macro_tile_config_ptr,
1175			args->num_macro_tile_configs * sizeof(uint32_t));
1176	if (err) {
1177		args->num_macro_tile_configs = 0;
1178		return -EFAULT;
1179	}
1180
1181	return 0;
1182}
1183
1184static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185				void *data)
1186{
1187	struct kfd_ioctl_acquire_vm_args *args = data;
1188	struct kfd_process_device *pdd;
1189	struct kfd_dev *dev;
1190	struct file *drm_file;
1191	int ret;
1192
1193	dev = kfd_device_by_id(args->gpu_id);
1194	if (!dev)
1195		return -EINVAL;
1196
1197	drm_file = fget(args->drm_fd);
1198	if (!drm_file)
1199		return -EINVAL;
1200
1201	mutex_lock(&p->mutex);
1202
1203	pdd = kfd_get_process_device_data(dev, p);
1204	if (!pdd) {
1205		ret = -EINVAL;
1206		goto err_unlock;
1207	}
1208
1209	if (pdd->drm_file) {
1210		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211		goto err_unlock;
1212	}
1213
1214	ret = kfd_process_device_init_vm(pdd, drm_file);
1215	if (ret)
1216		goto err_unlock;
1217	/* On success, the PDD keeps the drm_file reference */
1218	mutex_unlock(&p->mutex);
1219
1220	return 0;
1221
1222err_unlock:
1223	mutex_unlock(&p->mutex);
1224	fput(drm_file);
1225	return ret;
1226}
1227
1228bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229{
1230	struct kfd_local_mem_info mem_info;
1231
1232	if (debug_largebar) {
1233		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234		return true;
1235	}
1236
1237	if (dev->use_iommu_v2)
1238		return false;
1239
1240	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241	if (mem_info.local_mem_size_private == 0 &&
1242			mem_info.local_mem_size_public > 0)
1243		return true;
1244	return false;
1245}
1246
1247static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248					struct kfd_process *p, void *data)
1249{
1250	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251	struct kfd_process_device *pdd;
1252	void *mem;
1253	struct kfd_dev *dev;
1254	int idr_handle;
1255	long err;
1256	uint64_t offset = args->mmap_offset;
1257	uint32_t flags = args->flags;
1258
1259	if (args->size == 0)
1260		return -EINVAL;
1261
1262	dev = kfd_device_by_id(args->gpu_id);
1263	if (!dev)
1264		return -EINVAL;
1265
1266	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268		!kfd_dev_is_large_bar(dev)) {
1269		pr_err("Alloc host visible vram on small bar is not allowed\n");
1270		return -EINVAL;
1271	}
1272
1273	mutex_lock(&p->mutex);
1274
1275	pdd = kfd_bind_process_to_device(dev, p);
1276	if (IS_ERR(pdd)) {
1277		err = PTR_ERR(pdd);
1278		goto err_unlock;
1279	}
1280
1281	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1282		if (args->size != kfd_doorbell_process_slice(dev)) {
1283			err = -EINVAL;
1284			goto err_unlock;
1285		}
1286		offset = kfd_get_process_doorbells(pdd);
1287	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1288		if (args->size != PAGE_SIZE) {
1289			err = -EINVAL;
1290			goto err_unlock;
1291		}
1292		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1293		if (!offset) {
1294			err = -ENOMEM;
1295			goto err_unlock;
1296		}
1297	}
1298
1299	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1300		dev->kgd, args->va_addr, args->size,
1301		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1302		flags);
1303
1304	if (err)
1305		goto err_unlock;
1306
1307	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1308	if (idr_handle < 0) {
1309		err = -EFAULT;
1310		goto err_free;
1311	}
1312
1313	/* Update the VRAM usage count */
1314	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1315		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1316
1317	mutex_unlock(&p->mutex);
1318
1319	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1320	args->mmap_offset = offset;
1321
1322	/* MMIO is mapped through kfd device
1323	 * Generate a kfd mmap offset
1324	 */
1325	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1326		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1327					| KFD_MMAP_GPU_ID(args->gpu_id);
1328
1329	return 0;
1330
1331err_free:
1332	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1333					       pdd->drm_priv, NULL);
1334err_unlock:
1335	mutex_unlock(&p->mutex);
1336	return err;
1337}
1338
1339static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1340					struct kfd_process *p, void *data)
1341{
1342	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1343	struct kfd_process_device *pdd;
1344	void *mem;
1345	struct kfd_dev *dev;
1346	int ret;
1347	uint64_t size = 0;
1348
1349	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1350	if (!dev)
1351		return -EINVAL;
1352
1353	mutex_lock(&p->mutex);
1354
1355	pdd = kfd_get_process_device_data(dev, p);
1356	if (!pdd) {
1357		pr_err("Process device data doesn't exist\n");
1358		ret = -EINVAL;
1359		goto err_unlock;
1360	}
1361
1362	mem = kfd_process_device_translate_handle(
1363		pdd, GET_IDR_HANDLE(args->handle));
1364	if (!mem) {
1365		ret = -EINVAL;
1366		goto err_unlock;
1367	}
1368
1369	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1370				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1371
1372	/* If freeing the buffer failed, leave the handle in place for
1373	 * clean-up during process tear-down.
1374	 */
1375	if (!ret)
1376		kfd_process_device_remove_obj_handle(
1377			pdd, GET_IDR_HANDLE(args->handle));
1378
1379	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1380
1381err_unlock:
1382	mutex_unlock(&p->mutex);
1383	return ret;
1384}
1385
1386static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1387					struct kfd_process *p, void *data)
1388{
1389	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1390	struct kfd_process_device *pdd, *peer_pdd;
1391	void *mem;
1392	struct kfd_dev *dev, *peer;
1393	long err = 0;
1394	int i;
1395	uint32_t *devices_arr = NULL;
1396
1397	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1398	if (!dev)
1399		return -EINVAL;
1400
1401	if (!args->n_devices) {
1402		pr_debug("Device IDs array empty\n");
1403		return -EINVAL;
1404	}
1405	if (args->n_success > args->n_devices) {
1406		pr_debug("n_success exceeds n_devices\n");
1407		return -EINVAL;
1408	}
1409
1410	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1411				    GFP_KERNEL);
1412	if (!devices_arr)
1413		return -ENOMEM;
1414
1415	err = copy_from_user(devices_arr,
1416			     (void __user *)args->device_ids_array_ptr,
1417			     args->n_devices * sizeof(*devices_arr));
1418	if (err != 0) {
1419		err = -EFAULT;
1420		goto copy_from_user_failed;
1421	}
1422
1423	mutex_lock(&p->mutex);
1424
1425	pdd = kfd_bind_process_to_device(dev, p);
1426	if (IS_ERR(pdd)) {
1427		err = PTR_ERR(pdd);
1428		goto bind_process_to_device_failed;
1429	}
1430
1431	mem = kfd_process_device_translate_handle(pdd,
1432						GET_IDR_HANDLE(args->handle));
1433	if (!mem) {
1434		err = -ENOMEM;
1435		goto get_mem_obj_from_handle_failed;
1436	}
1437
1438	for (i = args->n_success; i < args->n_devices; i++) {
1439		peer = kfd_device_by_id(devices_arr[i]);
1440		if (!peer) {
1441			pr_debug("Getting device by id failed for 0x%x\n",
1442				 devices_arr[i]);
1443			err = -EINVAL;
1444			goto get_mem_obj_from_handle_failed;
1445		}
1446
1447		peer_pdd = kfd_bind_process_to_device(peer, p);
1448		if (IS_ERR(peer_pdd)) {
1449			err = PTR_ERR(peer_pdd);
1450			goto get_mem_obj_from_handle_failed;
1451		}
1452		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1453			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1454		if (err) {
1455			pr_err("Failed to map to gpu %d/%d\n",
1456			       i, args->n_devices);
1457			goto map_memory_to_gpu_failed;
1458		}
1459		args->n_success = i+1;
1460	}
1461
1462	mutex_unlock(&p->mutex);
1463
1464	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1465	if (err) {
1466		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1467		goto sync_memory_failed;
1468	}
1469
1470	/* Flush TLBs after waiting for the page table updates to complete */
1471	for (i = 0; i < args->n_devices; i++) {
1472		peer = kfd_device_by_id(devices_arr[i]);
1473		if (WARN_ON_ONCE(!peer))
1474			continue;
1475		peer_pdd = kfd_get_process_device_data(peer, p);
1476		if (WARN_ON_ONCE(!peer_pdd))
1477			continue;
1478		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1479	}
1480
1481	kfree(devices_arr);
1482
1483	return err;
1484
1485bind_process_to_device_failed:
1486get_mem_obj_from_handle_failed:
1487map_memory_to_gpu_failed:
1488	mutex_unlock(&p->mutex);
1489copy_from_user_failed:
1490sync_memory_failed:
1491	kfree(devices_arr);
1492
1493	return err;
1494}
1495
1496static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1497					struct kfd_process *p, void *data)
1498{
1499	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1500	struct kfd_process_device *pdd, *peer_pdd;
1501	void *mem;
1502	struct kfd_dev *dev, *peer;
1503	long err = 0;
1504	uint32_t *devices_arr = NULL, i;
1505
1506	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1507	if (!dev)
1508		return -EINVAL;
1509
1510	if (!args->n_devices) {
1511		pr_debug("Device IDs array empty\n");
1512		return -EINVAL;
1513	}
1514	if (args->n_success > args->n_devices) {
1515		pr_debug("n_success exceeds n_devices\n");
1516		return -EINVAL;
1517	}
1518
1519	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1520				    GFP_KERNEL);
1521	if (!devices_arr)
1522		return -ENOMEM;
1523
1524	err = copy_from_user(devices_arr,
1525			     (void __user *)args->device_ids_array_ptr,
1526			     args->n_devices * sizeof(*devices_arr));
1527	if (err != 0) {
1528		err = -EFAULT;
1529		goto copy_from_user_failed;
1530	}
1531
1532	mutex_lock(&p->mutex);
1533
1534	pdd = kfd_get_process_device_data(dev, p);
1535	if (!pdd) {
1536		err = -EINVAL;
1537		goto bind_process_to_device_failed;
1538	}
1539
1540	mem = kfd_process_device_translate_handle(pdd,
1541						GET_IDR_HANDLE(args->handle));
1542	if (!mem) {
1543		err = -ENOMEM;
1544		goto get_mem_obj_from_handle_failed;
1545	}
1546
1547	for (i = args->n_success; i < args->n_devices; i++) {
1548		peer = kfd_device_by_id(devices_arr[i]);
1549		if (!peer) {
1550			err = -EINVAL;
1551			goto get_mem_obj_from_handle_failed;
1552		}
1553
1554		peer_pdd = kfd_get_process_device_data(peer, p);
1555		if (!peer_pdd) {
1556			err = -ENODEV;
1557			goto get_mem_obj_from_handle_failed;
1558		}
1559		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1560			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1561		if (err) {
1562			pr_err("Failed to unmap from gpu %d/%d\n",
1563			       i, args->n_devices);
1564			goto unmap_memory_from_gpu_failed;
1565		}
1566		args->n_success = i+1;
1567	}
1568	kfree(devices_arr);
1569
1570	mutex_unlock(&p->mutex);
1571
1572	return 0;
1573
1574bind_process_to_device_failed:
1575get_mem_obj_from_handle_failed:
1576unmap_memory_from_gpu_failed:
1577	mutex_unlock(&p->mutex);
1578copy_from_user_failed:
1579	kfree(devices_arr);
1580	return err;
1581}
1582
1583static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1584		struct kfd_process *p, void *data)
1585{
1586	int retval;
1587	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1588	struct queue *q;
1589	struct kfd_dev *dev;
1590
1591	mutex_lock(&p->mutex);
1592	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1593
1594	if (q) {
1595		dev = q->device;
1596	} else {
1597		retval = -EINVAL;
1598		goto out_unlock;
1599	}
1600
1601	if (!dev->gws) {
1602		retval = -ENODEV;
1603		goto out_unlock;
1604	}
1605
1606	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1607		retval = -ENODEV;
1608		goto out_unlock;
1609	}
1610
1611	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1612	mutex_unlock(&p->mutex);
1613
1614	args->first_gws = 0;
1615	return retval;
1616
1617out_unlock:
1618	mutex_unlock(&p->mutex);
1619	return retval;
1620}
1621
1622static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1623		struct kfd_process *p, void *data)
1624{
1625	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1626	struct kfd_dev *dev = NULL;
1627	struct kgd_dev *dma_buf_kgd;
1628	void *metadata_buffer = NULL;
1629	uint32_t flags;
1630	unsigned int i;
1631	int r;
1632
1633	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1634	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1635		if (dev)
1636			break;
1637	if (!dev)
1638		return -EINVAL;
1639
1640	if (args->metadata_ptr) {
1641		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1642		if (!metadata_buffer)
1643			return -ENOMEM;
1644	}
1645
1646	/* Get dmabuf info from KGD */
1647	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1648					  &dma_buf_kgd, &args->size,
1649					  metadata_buffer, args->metadata_size,
1650					  &args->metadata_size, &flags);
1651	if (r)
1652		goto exit;
1653
1654	/* Reverse-lookup gpu_id from kgd pointer */
1655	dev = kfd_device_by_kgd(dma_buf_kgd);
1656	if (!dev) {
1657		r = -EINVAL;
1658		goto exit;
1659	}
1660	args->gpu_id = dev->id;
1661	args->flags = flags;
1662
1663	/* Copy metadata buffer to user mode */
1664	if (metadata_buffer) {
1665		r = copy_to_user((void __user *)args->metadata_ptr,
1666				 metadata_buffer, args->metadata_size);
1667		if (r != 0)
1668			r = -EFAULT;
1669	}
1670
1671exit:
1672	kfree(metadata_buffer);
1673
1674	return r;
1675}
1676
1677static int kfd_ioctl_import_dmabuf(struct file *filep,
1678				   struct kfd_process *p, void *data)
1679{
1680	struct kfd_ioctl_import_dmabuf_args *args = data;
1681	struct kfd_process_device *pdd;
1682	struct dma_buf *dmabuf;
1683	struct kfd_dev *dev;
1684	int idr_handle;
1685	uint64_t size;
1686	void *mem;
1687	int r;
1688
1689	dev = kfd_device_by_id(args->gpu_id);
1690	if (!dev)
1691		return -EINVAL;
1692
1693	dmabuf = dma_buf_get(args->dmabuf_fd);
1694	if (IS_ERR(dmabuf))
1695		return PTR_ERR(dmabuf);
1696
1697	mutex_lock(&p->mutex);
1698
1699	pdd = kfd_bind_process_to_device(dev, p);
1700	if (IS_ERR(pdd)) {
1701		r = PTR_ERR(pdd);
1702		goto err_unlock;
1703	}
1704
1705	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1706					      args->va_addr, pdd->drm_priv,
1707					      (struct kgd_mem **)&mem, &size,
1708					      NULL);
1709	if (r)
1710		goto err_unlock;
1711
1712	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1713	if (idr_handle < 0) {
1714		r = -EFAULT;
1715		goto err_free;
1716	}
1717
1718	mutex_unlock(&p->mutex);
1719	dma_buf_put(dmabuf);
1720
1721	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1722
1723	return 0;
1724
1725err_free:
1726	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1727					       pdd->drm_priv, NULL);
1728err_unlock:
1729	mutex_unlock(&p->mutex);
1730	dma_buf_put(dmabuf);
1731	return r;
1732}
1733
1734/* Handle requests for watching SMI events */
1735static int kfd_ioctl_smi_events(struct file *filep,
1736				struct kfd_process *p, void *data)
1737{
1738	struct kfd_ioctl_smi_events_args *args = data;
1739	struct kfd_dev *dev;
1740
1741	dev = kfd_device_by_id(args->gpuid);
1742	if (!dev)
1743		return -EINVAL;
1744
1745	return kfd_smi_event_open(dev, &args->anon_fd);
1746}
1747
1748static int kfd_ioctl_set_xnack_mode(struct file *filep,
1749				    struct kfd_process *p, void *data)
1750{
1751	struct kfd_ioctl_set_xnack_mode_args *args = data;
1752	int r = 0;
1753
1754	mutex_lock(&p->mutex);
1755	if (args->xnack_enabled >= 0) {
1756		if (!list_empty(&p->pqm.queues)) {
1757			pr_debug("Process has user queues running\n");
1758			mutex_unlock(&p->mutex);
1759			return -EBUSY;
1760		}
1761		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
1762			r = -EPERM;
1763		else
1764			p->xnack_enabled = args->xnack_enabled;
1765	} else {
1766		args->xnack_enabled = p->xnack_enabled;
1767	}
1768	mutex_unlock(&p->mutex);
1769
1770	return r;
1771}
1772
1773#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1774static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1775{
1776	struct kfd_ioctl_svm_args *args = data;
1777	int r = 0;
1778
1779	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1780		 args->start_addr, args->size, args->op, args->nattr);
1781
1782	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1783		return -EINVAL;
1784	if (!args->start_addr || !args->size)
1785		return -EINVAL;
1786
1787	mutex_lock(&p->mutex);
1788
1789	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1790		      args->attrs);
1791
1792	mutex_unlock(&p->mutex);
1793
1794	return r;
1795}
1796#else
1797static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1798{
1799	return -EPERM;
1800}
1801#endif
1802
1803#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1804	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1805			    .cmd_drv = 0, .name = #ioctl}
1806
1807/** Ioctl table */
1808static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1809	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1810			kfd_ioctl_get_version, 0),
1811
1812	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1813			kfd_ioctl_create_queue, 0),
1814
1815	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1816			kfd_ioctl_destroy_queue, 0),
1817
1818	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1819			kfd_ioctl_set_memory_policy, 0),
1820
1821	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1822			kfd_ioctl_get_clock_counters, 0),
1823
1824	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1825			kfd_ioctl_get_process_apertures, 0),
1826
1827	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1828			kfd_ioctl_update_queue, 0),
1829
1830	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1831			kfd_ioctl_create_event, 0),
1832
1833	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1834			kfd_ioctl_destroy_event, 0),
1835
1836	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1837			kfd_ioctl_set_event, 0),
1838
1839	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1840			kfd_ioctl_reset_event, 0),
1841
1842	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1843			kfd_ioctl_wait_events, 0),
1844
1845	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1846			kfd_ioctl_dbg_register, 0),
1847
1848	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1849			kfd_ioctl_dbg_unregister, 0),
1850
1851	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1852			kfd_ioctl_dbg_address_watch, 0),
1853
1854	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1855			kfd_ioctl_dbg_wave_control, 0),
1856
1857	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1858			kfd_ioctl_set_scratch_backing_va, 0),
1859
1860	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1861			kfd_ioctl_get_tile_config, 0),
1862
1863	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1864			kfd_ioctl_set_trap_handler, 0),
1865
1866	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1867			kfd_ioctl_get_process_apertures_new, 0),
1868
1869	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1870			kfd_ioctl_acquire_vm, 0),
1871
1872	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1873			kfd_ioctl_alloc_memory_of_gpu, 0),
1874
1875	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1876			kfd_ioctl_free_memory_of_gpu, 0),
1877
1878	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1879			kfd_ioctl_map_memory_to_gpu, 0),
1880
1881	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1882			kfd_ioctl_unmap_memory_from_gpu, 0),
1883
1884	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1885			kfd_ioctl_set_cu_mask, 0),
1886
1887	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1888			kfd_ioctl_get_queue_wave_state, 0),
1889
1890	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1891				kfd_ioctl_get_dmabuf_info, 0),
1892
1893	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1894				kfd_ioctl_import_dmabuf, 0),
1895
1896	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1897			kfd_ioctl_alloc_queue_gws, 0),
1898
1899	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
1900			kfd_ioctl_smi_events, 0),
1901
1902	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
1903
1904	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
1905			kfd_ioctl_set_xnack_mode, 0),
1906};
1907
1908#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1909
1910static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1911{
1912	struct kfd_process *process;
1913	amdkfd_ioctl_t *func;
1914	const struct amdkfd_ioctl_desc *ioctl = NULL;
1915	unsigned int nr = _IOC_NR(cmd);
1916	char stack_kdata[128];
1917	char *kdata = NULL;
1918	unsigned int usize, asize;
1919	int retcode = -EINVAL;
1920
1921	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1922		goto err_i1;
1923
1924	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1925		u32 amdkfd_size;
1926
1927		ioctl = &amdkfd_ioctls[nr];
1928
1929		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1930		usize = asize = _IOC_SIZE(cmd);
1931		if (amdkfd_size > asize)
1932			asize = amdkfd_size;
1933
1934		cmd = ioctl->cmd;
1935	} else
1936		goto err_i1;
1937
1938	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1939
1940	/* Get the process struct from the filep. Only the process
1941	 * that opened /dev/kfd can use the file descriptor. Child
1942	 * processes need to create their own KFD device context.
1943	 */
1944	process = filep->private_data;
1945	if (process->lead_thread != current->group_leader) {
1946		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1947		retcode = -EBADF;
1948		goto err_i1;
1949	}
1950
1951	/* Do not trust userspace, use our own definition */
1952	func = ioctl->func;
1953
1954	if (unlikely(!func)) {
1955		dev_dbg(kfd_device, "no function\n");
1956		retcode = -EINVAL;
1957		goto err_i1;
1958	}
1959
1960	if (cmd & (IOC_IN | IOC_OUT)) {
1961		if (asize <= sizeof(stack_kdata)) {
1962			kdata = stack_kdata;
1963		} else {
1964			kdata = kmalloc(asize, GFP_KERNEL);
1965			if (!kdata) {
1966				retcode = -ENOMEM;
1967				goto err_i1;
1968			}
1969		}
1970		if (asize > usize)
1971			memset(kdata + usize, 0, asize - usize);
1972	}
1973
1974	if (cmd & IOC_IN) {
1975		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1976			retcode = -EFAULT;
1977			goto err_i1;
1978		}
1979	} else if (cmd & IOC_OUT) {
1980		memset(kdata, 0, usize);
1981	}
1982
1983	retcode = func(filep, process, kdata);
1984
1985	if (cmd & IOC_OUT)
1986		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1987			retcode = -EFAULT;
1988
1989err_i1:
1990	if (!ioctl)
1991		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1992			  task_pid_nr(current), cmd, nr);
1993
1994	if (kdata != stack_kdata)
1995		kfree(kdata);
1996
1997	if (retcode)
1998		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1999				nr, arg, retcode);
2000
2001	return retcode;
2002}
2003
2004static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2005		      struct vm_area_struct *vma)
2006{
2007	phys_addr_t address;
2008	int ret;
2009
2010	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2011		return -EINVAL;
2012
2013	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
2014
2015	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2016				VM_DONTDUMP | VM_PFNMAP;
2017
2018	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2019
2020	pr_debug("pasid 0x%x mapping mmio page\n"
2021		 "     target user address == 0x%08llX\n"
2022		 "     physical address    == 0x%08llX\n"
2023		 "     vm_flags            == 0x%04lX\n"
2024		 "     size                == 0x%04lX\n",
2025		 process->pasid, (unsigned long long) vma->vm_start,
2026		 address, vma->vm_flags, PAGE_SIZE);
2027
2028	ret = io_remap_pfn_range(vma,
2029				vma->vm_start,
2030				address >> PAGE_SHIFT,
2031				PAGE_SIZE,
2032				vma->vm_page_prot);
2033	return ret;
2034}
2035
2036
2037static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2038{
2039	struct kfd_process *process;
2040	struct kfd_dev *dev = NULL;
2041	unsigned long mmap_offset;
2042	unsigned int gpu_id;
2043
2044	process = kfd_get_process(current);
2045	if (IS_ERR(process))
2046		return PTR_ERR(process);
2047
2048	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2049	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2050	if (gpu_id)
2051		dev = kfd_device_by_id(gpu_id);
2052
2053	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2054	case KFD_MMAP_TYPE_DOORBELL:
2055		if (!dev)
2056			return -ENODEV;
2057		return kfd_doorbell_mmap(dev, process, vma);
2058
2059	case KFD_MMAP_TYPE_EVENTS:
2060		return kfd_event_mmap(process, vma);
2061
2062	case KFD_MMAP_TYPE_RESERVED_MEM:
2063		if (!dev)
2064			return -ENODEV;
2065		return kfd_reserved_mem_mmap(dev, process, vma);
2066	case KFD_MMAP_TYPE_MMIO:
2067		if (!dev)
2068			return -ENODEV;
2069		return kfd_mmio_mmap(dev, process, vma);
2070	}
2071
2072	return -EFAULT;
2073}