Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pt.c: Intel Processor Trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <stdio.h>
   9#include <stdbool.h>
  10#include <errno.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include "session.h"
  17#include "machine.h"
  18#include "memswap.h"
  19#include "sort.h"
  20#include "tool.h"
  21#include "event.h"
  22#include "evlist.h"
  23#include "evsel.h"
  24#include "map.h"
  25#include "color.h"
  26#include "thread.h"
  27#include "thread-stack.h"
  28#include "symbol.h"
  29#include "callchain.h"
  30#include "dso.h"
  31#include "debug.h"
  32#include "auxtrace.h"
  33#include "tsc.h"
  34#include "intel-pt.h"
  35#include "config.h"
  36#include "util/perf_api_probe.h"
  37#include "util/synthetic-events.h"
  38#include "time-utils.h"
  39
  40#include "../arch/x86/include/uapi/asm/perf_regs.h"
  41
  42#include "intel-pt-decoder/intel-pt-log.h"
  43#include "intel-pt-decoder/intel-pt-decoder.h"
  44#include "intel-pt-decoder/intel-pt-insn-decoder.h"
  45#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
  46
  47#define MAX_TIMESTAMP (~0ULL)
  48
  49struct range {
  50	u64 start;
  51	u64 end;
  52};
  53
  54struct intel_pt {
  55	struct auxtrace auxtrace;
  56	struct auxtrace_queues queues;
  57	struct auxtrace_heap heap;
  58	u32 auxtrace_type;
  59	struct perf_session *session;
  60	struct machine *machine;
  61	struct evsel *switch_evsel;
  62	struct thread *unknown_thread;
  63	bool timeless_decoding;
  64	bool sampling_mode;
  65	bool snapshot_mode;
  66	bool per_cpu_mmaps;
  67	bool have_tsc;
  68	bool data_queued;
  69	bool est_tsc;
  70	bool sync_switch;
  71	bool mispred_all;
  72	bool use_thread_stack;
  73	bool callstack;
  74	unsigned int br_stack_sz;
  75	unsigned int br_stack_sz_plus;
  76	int have_sched_switch;
  77	u32 pmu_type;
  78	u64 kernel_start;
  79	u64 switch_ip;
  80	u64 ptss_ip;
  81	u64 first_timestamp;
  82
  83	struct perf_tsc_conversion tc;
  84	bool cap_user_time_zero;
  85
  86	struct itrace_synth_opts synth_opts;
  87
  88	bool sample_instructions;
  89	u64 instructions_sample_type;
  90	u64 instructions_id;
  91
  92	bool sample_branches;
  93	u32 branches_filter;
  94	u64 branches_sample_type;
  95	u64 branches_id;
  96
  97	bool sample_transactions;
  98	u64 transactions_sample_type;
  99	u64 transactions_id;
 100
 101	bool sample_ptwrites;
 102	u64 ptwrites_sample_type;
 103	u64 ptwrites_id;
 104
 105	bool sample_pwr_events;
 106	u64 pwr_events_sample_type;
 107	u64 mwait_id;
 108	u64 pwre_id;
 109	u64 exstop_id;
 110	u64 pwrx_id;
 111	u64 cbr_id;
 112	u64 psb_id;
 113
 114	bool sample_pebs;
 115	struct evsel *pebs_evsel;
 116
 117	u64 tsc_bit;
 118	u64 mtc_bit;
 119	u64 mtc_freq_bits;
 120	u32 tsc_ctc_ratio_n;
 121	u32 tsc_ctc_ratio_d;
 122	u64 cyc_bit;
 123	u64 noretcomp_bit;
 124	unsigned max_non_turbo_ratio;
 125	unsigned cbr2khz;
 126	int max_loops;
 127
 128	unsigned long num_events;
 129
 130	char *filter;
 131	struct addr_filters filts;
 132
 133	struct range *time_ranges;
 134	unsigned int range_cnt;
 135
 136	struct ip_callchain *chain;
 137	struct branch_stack *br_stack;
 138
 139	u64 dflt_tsc_offset;
 140	struct rb_root vmcs_info;
 141};
 142
 143enum switch_state {
 144	INTEL_PT_SS_NOT_TRACING,
 145	INTEL_PT_SS_UNKNOWN,
 146	INTEL_PT_SS_TRACING,
 147	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
 148	INTEL_PT_SS_EXPECTING_SWITCH_IP,
 149};
 150
 151struct intel_pt_queue {
 152	struct intel_pt *pt;
 153	unsigned int queue_nr;
 154	struct auxtrace_buffer *buffer;
 155	struct auxtrace_buffer *old_buffer;
 156	void *decoder;
 157	const struct intel_pt_state *state;
 158	struct ip_callchain *chain;
 159	struct branch_stack *last_branch;
 160	union perf_event *event_buf;
 161	bool on_heap;
 162	bool stop;
 163	bool step_through_buffers;
 164	bool use_buffer_pid_tid;
 165	bool sync_switch;
 166	pid_t pid, tid;
 167	int cpu;
 168	int switch_state;
 169	pid_t next_tid;
 170	struct thread *thread;
 171	struct machine *guest_machine;
 172	struct thread *unknown_guest_thread;
 173	pid_t guest_machine_pid;
 174	bool exclude_kernel;
 175	bool have_sample;
 176	u64 time;
 177	u64 timestamp;
 178	u64 sel_timestamp;
 179	bool sel_start;
 180	unsigned int sel_idx;
 181	u32 flags;
 182	u16 insn_len;
 183	u64 last_insn_cnt;
 184	u64 ipc_insn_cnt;
 185	u64 ipc_cyc_cnt;
 186	u64 last_in_insn_cnt;
 187	u64 last_in_cyc_cnt;
 188	u64 last_br_insn_cnt;
 189	u64 last_br_cyc_cnt;
 190	unsigned int cbr_seen;
 191	char insn[INTEL_PT_INSN_BUF_SZ];
 192};
 193
 194static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
 195			  unsigned char *buf, size_t len)
 196{
 197	struct intel_pt_pkt packet;
 198	size_t pos = 0;
 199	int ret, pkt_len, i;
 200	char desc[INTEL_PT_PKT_DESC_MAX];
 201	const char *color = PERF_COLOR_BLUE;
 202	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
 203
 204	color_fprintf(stdout, color,
 205		      ". ... Intel Processor Trace data: size %zu bytes\n",
 206		      len);
 207
 208	while (len) {
 209		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
 210		if (ret > 0)
 211			pkt_len = ret;
 212		else
 213			pkt_len = 1;
 214		printf(".");
 215		color_fprintf(stdout, color, "  %08x: ", pos);
 216		for (i = 0; i < pkt_len; i++)
 217			color_fprintf(stdout, color, " %02x", buf[i]);
 218		for (; i < 16; i++)
 219			color_fprintf(stdout, color, "   ");
 220		if (ret > 0) {
 221			ret = intel_pt_pkt_desc(&packet, desc,
 222						INTEL_PT_PKT_DESC_MAX);
 223			if (ret > 0)
 224				color_fprintf(stdout, color, " %s\n", desc);
 225		} else {
 226			color_fprintf(stdout, color, " Bad packet!\n");
 227		}
 228		pos += pkt_len;
 229		buf += pkt_len;
 230		len -= pkt_len;
 231	}
 232}
 233
 234static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
 235				size_t len)
 236{
 237	printf(".\n");
 238	intel_pt_dump(pt, buf, len);
 239}
 240
 241static void intel_pt_log_event(union perf_event *event)
 242{
 243	FILE *f = intel_pt_log_fp();
 244
 245	if (!intel_pt_enable_logging || !f)
 246		return;
 247
 248	perf_event__fprintf(event, NULL, f);
 249}
 250
 251static void intel_pt_dump_sample(struct perf_session *session,
 252				 struct perf_sample *sample)
 253{
 254	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
 255					   auxtrace);
 256
 257	printf("\n");
 258	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
 259}
 260
 261static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
 262{
 263	struct perf_time_interval *range = pt->synth_opts.ptime_range;
 264	int n = pt->synth_opts.range_num;
 265
 266	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 267		return true;
 268
 269	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
 270		return false;
 271
 272	/* perf_time__ranges_skip_sample does not work if time is zero */
 273	if (!tm)
 274		tm = 1;
 275
 276	return !n || !perf_time__ranges_skip_sample(range, n, tm);
 277}
 278
 279static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
 280							u64 vmcs,
 281							u64 dflt_tsc_offset)
 282{
 283	struct rb_node **p = &rb_root->rb_node;
 284	struct rb_node *parent = NULL;
 285	struct intel_pt_vmcs_info *v;
 286
 287	while (*p) {
 288		parent = *p;
 289		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
 290
 291		if (v->vmcs == vmcs)
 292			return v;
 293
 294		if (vmcs < v->vmcs)
 295			p = &(*p)->rb_left;
 296		else
 297			p = &(*p)->rb_right;
 298	}
 299
 300	v = zalloc(sizeof(*v));
 301	if (v) {
 302		v->vmcs = vmcs;
 303		v->tsc_offset = dflt_tsc_offset;
 304		v->reliable = dflt_tsc_offset;
 305
 306		rb_link_node(&v->rb_node, parent, p);
 307		rb_insert_color(&v->rb_node, rb_root);
 308	}
 309
 310	return v;
 311}
 312
 313static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
 314{
 315	struct intel_pt_queue *ptq = data;
 316	struct intel_pt *pt = ptq->pt;
 317
 318	if (!vmcs && !pt->dflt_tsc_offset)
 319		return NULL;
 320
 321	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
 322}
 323
 324static void intel_pt_free_vmcs_info(struct intel_pt *pt)
 325{
 326	struct intel_pt_vmcs_info *v;
 327	struct rb_node *n;
 328
 329	n = rb_first(&pt->vmcs_info);
 330	while (n) {
 331		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
 332		n = rb_next(n);
 333		rb_erase(&v->rb_node, &pt->vmcs_info);
 334		free(v);
 335	}
 336}
 337
 338static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
 339				   struct auxtrace_buffer *b)
 340{
 341	bool consecutive = false;
 342	void *start;
 343
 344	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
 345				      pt->have_tsc, &consecutive,
 346				      pt->synth_opts.vm_time_correlation);
 347	if (!start)
 348		return -EINVAL;
 349	/*
 350	 * In the case of vm_time_correlation, the overlap might contain TSC
 351	 * packets that will not be fixed, and that will then no longer work for
 352	 * overlap detection. Avoid that by zeroing out the overlap.
 353	 */
 354	if (pt->synth_opts.vm_time_correlation)
 355		memset(b->data, 0, start - b->data);
 356	b->use_size = b->data + b->size - start;
 357	b->use_data = start;
 358	if (b->use_size && consecutive)
 359		b->consecutive = true;
 360	return 0;
 361}
 362
 363static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
 364			       struct auxtrace_buffer *buffer,
 365			       struct auxtrace_buffer *old_buffer,
 366			       struct intel_pt_buffer *b)
 367{
 368	bool might_overlap;
 369
 370	if (!buffer->data) {
 371		int fd = perf_data__fd(ptq->pt->session->data);
 372
 373		buffer->data = auxtrace_buffer__get_data(buffer, fd);
 374		if (!buffer->data)
 375			return -ENOMEM;
 376	}
 377
 378	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
 379	if (might_overlap && !buffer->consecutive && old_buffer &&
 380	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
 381		return -ENOMEM;
 382
 383	if (buffer->use_data) {
 384		b->len = buffer->use_size;
 385		b->buf = buffer->use_data;
 386	} else {
 387		b->len = buffer->size;
 388		b->buf = buffer->data;
 389	}
 390	b->ref_timestamp = buffer->reference;
 391
 392	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
 393		b->consecutive = false;
 394		b->trace_nr = buffer->buffer_nr + 1;
 395	} else {
 396		b->consecutive = true;
 397	}
 398
 399	return 0;
 400}
 401
 402/* Do not drop buffers with references - refer intel_pt_get_trace() */
 403static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
 404					   struct auxtrace_buffer *buffer)
 405{
 406	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
 407		return;
 408
 409	auxtrace_buffer__drop_data(buffer);
 410}
 411
 412/* Must be serialized with respect to intel_pt_get_trace() */
 413static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
 414			      void *cb_data)
 415{
 416	struct intel_pt_queue *ptq = data;
 417	struct auxtrace_buffer *buffer = ptq->buffer;
 418	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 419	struct auxtrace_queue *queue;
 420	int err = 0;
 421
 422	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 423
 424	while (1) {
 425		struct intel_pt_buffer b = { .len = 0 };
 426
 427		buffer = auxtrace_buffer__next(queue, buffer);
 428		if (!buffer)
 429			break;
 430
 431		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
 432		if (err)
 433			break;
 434
 435		if (b.len) {
 436			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 437			old_buffer = buffer;
 438		} else {
 439			intel_pt_lookahead_drop_buffer(ptq, buffer);
 440			continue;
 441		}
 442
 443		err = cb(&b, cb_data);
 444		if (err)
 445			break;
 446	}
 447
 448	if (buffer != old_buffer)
 449		intel_pt_lookahead_drop_buffer(ptq, buffer);
 450	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
 451
 452	return err;
 453}
 454
 455/*
 456 * This function assumes data is processed sequentially only.
 457 * Must be serialized with respect to intel_pt_lookahead()
 458 */
 459static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
 460{
 461	struct intel_pt_queue *ptq = data;
 462	struct auxtrace_buffer *buffer = ptq->buffer;
 463	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
 464	struct auxtrace_queue *queue;
 465	int err;
 466
 467	if (ptq->stop) {
 468		b->len = 0;
 469		return 0;
 470	}
 471
 472	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
 473
 474	buffer = auxtrace_buffer__next(queue, buffer);
 475	if (!buffer) {
 476		if (old_buffer)
 477			auxtrace_buffer__drop_data(old_buffer);
 478		b->len = 0;
 479		return 0;
 480	}
 481
 482	ptq->buffer = buffer;
 483
 484	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
 485	if (err)
 486		return err;
 487
 488	if (ptq->step_through_buffers)
 489		ptq->stop = true;
 490
 491	if (b->len) {
 492		if (old_buffer)
 493			auxtrace_buffer__drop_data(old_buffer);
 494		ptq->old_buffer = buffer;
 495	} else {
 496		auxtrace_buffer__drop_data(buffer);
 497		return intel_pt_get_trace(b, data);
 498	}
 499
 500	return 0;
 501}
 502
 503struct intel_pt_cache_entry {
 504	struct auxtrace_cache_entry	entry;
 505	u64				insn_cnt;
 506	u64				byte_cnt;
 507	enum intel_pt_insn_op		op;
 508	enum intel_pt_insn_branch	branch;
 509	int				length;
 510	int32_t				rel;
 511	char				insn[INTEL_PT_INSN_BUF_SZ];
 512};
 513
 514static int intel_pt_config_div(const char *var, const char *value, void *data)
 515{
 516	int *d = data;
 517	long val;
 518
 519	if (!strcmp(var, "intel-pt.cache-divisor")) {
 520		val = strtol(value, NULL, 0);
 521		if (val > 0 && val <= INT_MAX)
 522			*d = val;
 523	}
 524
 525	return 0;
 526}
 527
 528static int intel_pt_cache_divisor(void)
 529{
 530	static int d;
 531
 532	if (d)
 533		return d;
 534
 535	perf_config(intel_pt_config_div, &d);
 536
 537	if (!d)
 538		d = 64;
 539
 540	return d;
 541}
 542
 543static unsigned int intel_pt_cache_size(struct dso *dso,
 544					struct machine *machine)
 545{
 546	off_t size;
 547
 548	size = dso__data_size(dso, machine);
 549	size /= intel_pt_cache_divisor();
 550	if (size < 1000)
 551		return 10;
 552	if (size > (1 << 21))
 553		return 21;
 554	return 32 - __builtin_clz(size);
 555}
 556
 557static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
 558					     struct machine *machine)
 559{
 560	struct auxtrace_cache *c;
 561	unsigned int bits;
 562
 563	if (dso->auxtrace_cache)
 564		return dso->auxtrace_cache;
 565
 566	bits = intel_pt_cache_size(dso, machine);
 567
 568	/* Ignoring cache creation failure */
 569	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
 570
 571	dso->auxtrace_cache = c;
 572
 573	return c;
 574}
 575
 576static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
 577			      u64 offset, u64 insn_cnt, u64 byte_cnt,
 578			      struct intel_pt_insn *intel_pt_insn)
 579{
 580	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 581	struct intel_pt_cache_entry *e;
 582	int err;
 583
 584	if (!c)
 585		return -ENOMEM;
 586
 587	e = auxtrace_cache__alloc_entry(c);
 588	if (!e)
 589		return -ENOMEM;
 590
 591	e->insn_cnt = insn_cnt;
 592	e->byte_cnt = byte_cnt;
 593	e->op = intel_pt_insn->op;
 594	e->branch = intel_pt_insn->branch;
 595	e->length = intel_pt_insn->length;
 596	e->rel = intel_pt_insn->rel;
 597	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
 598
 599	err = auxtrace_cache__add(c, offset, &e->entry);
 600	if (err)
 601		auxtrace_cache__free_entry(c, e);
 602
 603	return err;
 604}
 605
 606static struct intel_pt_cache_entry *
 607intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
 608{
 609	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 610
 611	if (!c)
 612		return NULL;
 613
 614	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
 615}
 616
 617static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
 618				      u64 offset)
 619{
 620	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
 621
 622	if (!c)
 623		return;
 624
 625	auxtrace_cache__remove(dso->auxtrace_cache, offset);
 626}
 627
 628static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
 629{
 630	/* Assumes 64-bit kernel */
 631	return ip & (1ULL << 63);
 632}
 633
 634static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
 635{
 636	if (nr) {
 637		return intel_pt_guest_kernel_ip(ip) ?
 638		       PERF_RECORD_MISC_GUEST_KERNEL :
 639		       PERF_RECORD_MISC_GUEST_USER;
 640	}
 641
 642	return ip >= ptq->pt->kernel_start ?
 643	       PERF_RECORD_MISC_KERNEL :
 644	       PERF_RECORD_MISC_USER;
 645}
 646
 647static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
 648{
 649	/* No support for non-zero CS base */
 650	if (from_ip)
 651		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
 652	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
 653}
 654
 655static int intel_pt_get_guest(struct intel_pt_queue *ptq)
 656{
 657	struct machines *machines = &ptq->pt->session->machines;
 658	struct machine *machine;
 659	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
 660
 661	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
 662		return 0;
 663
 664	ptq->guest_machine = NULL;
 665	thread__zput(ptq->unknown_guest_thread);
 666
 667	machine = machines__find_guest(machines, pid);
 668	if (!machine)
 669		return -1;
 670
 671	ptq->unknown_guest_thread = machine__idle_thread(machine);
 672	if (!ptq->unknown_guest_thread)
 673		return -1;
 674
 675	ptq->guest_machine = machine;
 676	ptq->guest_machine_pid = pid;
 677
 678	return 0;
 679}
 680
 681static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
 682				   uint64_t *insn_cnt_ptr, uint64_t *ip,
 683				   uint64_t to_ip, uint64_t max_insn_cnt,
 684				   void *data)
 685{
 686	struct intel_pt_queue *ptq = data;
 687	struct machine *machine = ptq->pt->machine;
 688	struct thread *thread;
 689	struct addr_location al;
 690	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
 691	ssize_t len;
 692	int x86_64;
 693	u8 cpumode;
 694	u64 offset, start_offset, start_ip;
 695	u64 insn_cnt = 0;
 696	bool one_map = true;
 697	bool nr;
 698
 699	intel_pt_insn->length = 0;
 700
 701	if (to_ip && *ip == to_ip)
 702		goto out_no_cache;
 703
 704	nr = ptq->state->to_nr;
 705	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
 706
 707	if (nr) {
 708		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
 709		    intel_pt_get_guest(ptq))
 710			return -EINVAL;
 711		machine = ptq->guest_machine;
 712		thread = ptq->unknown_guest_thread;
 713	} else {
 714		thread = ptq->thread;
 715		if (!thread) {
 716			if (cpumode != PERF_RECORD_MISC_KERNEL)
 717				return -EINVAL;
 718			thread = ptq->pt->unknown_thread;
 719		}
 720	}
 721
 722	while (1) {
 723		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
 724			return -EINVAL;
 725
 726		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 727		    dso__data_status_seen(al.map->dso,
 728					  DSO_DATA_STATUS_SEEN_ITRACE))
 729			return -ENOENT;
 730
 731		offset = al.map->map_ip(al.map, *ip);
 732
 733		if (!to_ip && one_map) {
 734			struct intel_pt_cache_entry *e;
 735
 736			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
 737			if (e &&
 738			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
 739				*insn_cnt_ptr = e->insn_cnt;
 740				*ip += e->byte_cnt;
 741				intel_pt_insn->op = e->op;
 742				intel_pt_insn->branch = e->branch;
 743				intel_pt_insn->length = e->length;
 744				intel_pt_insn->rel = e->rel;
 745				memcpy(intel_pt_insn->buf, e->insn,
 746				       INTEL_PT_INSN_BUF_SZ);
 747				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
 748				return 0;
 749			}
 750		}
 751
 752		start_offset = offset;
 753		start_ip = *ip;
 754
 755		/* Load maps to ensure dso->is_64_bit has been updated */
 756		map__load(al.map);
 757
 758		x86_64 = al.map->dso->is_64_bit;
 759
 760		while (1) {
 761			len = dso__data_read_offset(al.map->dso, machine,
 762						    offset, buf,
 763						    INTEL_PT_INSN_BUF_SZ);
 764			if (len <= 0)
 765				return -EINVAL;
 766
 767			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
 768				return -EINVAL;
 769
 770			intel_pt_log_insn(intel_pt_insn, *ip);
 771
 772			insn_cnt += 1;
 773
 774			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
 775				goto out;
 776
 777			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
 778				goto out_no_cache;
 779
 780			*ip += intel_pt_insn->length;
 781
 782			if (to_ip && *ip == to_ip) {
 783				intel_pt_insn->length = 0;
 784				goto out_no_cache;
 785			}
 786
 787			if (*ip >= al.map->end)
 788				break;
 789
 790			offset += intel_pt_insn->length;
 791		}
 792		one_map = false;
 793	}
 794out:
 795	*insn_cnt_ptr = insn_cnt;
 796
 797	if (!one_map)
 798		goto out_no_cache;
 799
 800	/*
 801	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
 802	 * entries.
 803	 */
 804	if (to_ip) {
 805		struct intel_pt_cache_entry *e;
 806
 807		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
 808		if (e)
 809			return 0;
 810	}
 811
 812	/* Ignore cache errors */
 813	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
 814			   *ip - start_ip, intel_pt_insn);
 815
 816	return 0;
 817
 818out_no_cache:
 819	*insn_cnt_ptr = insn_cnt;
 820	return 0;
 821}
 822
 823static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
 824				  uint64_t offset, const char *filename)
 825{
 826	struct addr_filter *filt;
 827	bool have_filter   = false;
 828	bool hit_tracestop = false;
 829	bool hit_filter    = false;
 830
 831	list_for_each_entry(filt, &pt->filts.head, list) {
 832		if (filt->start)
 833			have_filter = true;
 834
 835		if ((filename && !filt->filename) ||
 836		    (!filename && filt->filename) ||
 837		    (filename && strcmp(filename, filt->filename)))
 838			continue;
 839
 840		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
 841			continue;
 842
 843		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
 844			     ip, offset, filename ? filename : "[kernel]",
 845			     filt->start ? "filter" : "stop",
 846			     filt->addr, filt->size);
 847
 848		if (filt->start)
 849			hit_filter = true;
 850		else
 851			hit_tracestop = true;
 852	}
 853
 854	if (!hit_tracestop && !hit_filter)
 855		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
 856			     ip, offset, filename ? filename : "[kernel]");
 857
 858	return hit_tracestop || (have_filter && !hit_filter);
 859}
 860
 861static int __intel_pt_pgd_ip(uint64_t ip, void *data)
 862{
 863	struct intel_pt_queue *ptq = data;
 864	struct thread *thread;
 865	struct addr_location al;
 866	u8 cpumode;
 867	u64 offset;
 868
 869	if (ptq->state->to_nr) {
 870		if (intel_pt_guest_kernel_ip(ip))
 871			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 872		/* No support for decoding guest user space */
 873		return -EINVAL;
 874	} else if (ip >= ptq->pt->kernel_start) {
 875		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
 876	}
 877
 878	cpumode = PERF_RECORD_MISC_USER;
 879
 880	thread = ptq->thread;
 881	if (!thread)
 882		return -EINVAL;
 883
 884	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
 885		return -EINVAL;
 886
 887	offset = al.map->map_ip(al.map, ip);
 888
 889	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
 890				     al.map->dso->long_name);
 891}
 892
 893static bool intel_pt_pgd_ip(uint64_t ip, void *data)
 894{
 895	return __intel_pt_pgd_ip(ip, data) > 0;
 896}
 897
 898static bool intel_pt_get_config(struct intel_pt *pt,
 899				struct perf_event_attr *attr, u64 *config)
 900{
 901	if (attr->type == pt->pmu_type) {
 902		if (config)
 903			*config = attr->config;
 904		return true;
 905	}
 906
 907	return false;
 908}
 909
 910static bool intel_pt_exclude_kernel(struct intel_pt *pt)
 911{
 912	struct evsel *evsel;
 913
 914	evlist__for_each_entry(pt->session->evlist, evsel) {
 915		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 916		    !evsel->core.attr.exclude_kernel)
 917			return false;
 918	}
 919	return true;
 920}
 921
 922static bool intel_pt_return_compression(struct intel_pt *pt)
 923{
 924	struct evsel *evsel;
 925	u64 config;
 926
 927	if (!pt->noretcomp_bit)
 928		return true;
 929
 930	evlist__for_each_entry(pt->session->evlist, evsel) {
 931		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 932		    (config & pt->noretcomp_bit))
 933			return false;
 934	}
 935	return true;
 936}
 937
 938static bool intel_pt_branch_enable(struct intel_pt *pt)
 939{
 940	struct evsel *evsel;
 941	u64 config;
 942
 943	evlist__for_each_entry(pt->session->evlist, evsel) {
 944		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
 945		    (config & 1) && !(config & 0x2000))
 946			return false;
 947	}
 948	return true;
 949}
 950
 951static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
 952{
 953	struct evsel *evsel;
 954	unsigned int shift;
 955	u64 config;
 956
 957	if (!pt->mtc_freq_bits)
 958		return 0;
 959
 960	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
 961		config >>= 1;
 962
 963	evlist__for_each_entry(pt->session->evlist, evsel) {
 964		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
 965			return (config & pt->mtc_freq_bits) >> shift;
 966	}
 967	return 0;
 968}
 969
 970static bool intel_pt_timeless_decoding(struct intel_pt *pt)
 971{
 972	struct evsel *evsel;
 973	bool timeless_decoding = true;
 974	u64 config;
 975
 976	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
 977		return true;
 978
 979	evlist__for_each_entry(pt->session->evlist, evsel) {
 980		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
 981			return true;
 982		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
 983			if (config & pt->tsc_bit)
 984				timeless_decoding = false;
 985			else
 986				return true;
 987		}
 988	}
 989	return timeless_decoding;
 990}
 991
 992static bool intel_pt_tracing_kernel(struct intel_pt *pt)
 993{
 994	struct evsel *evsel;
 995
 996	evlist__for_each_entry(pt->session->evlist, evsel) {
 997		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
 998		    !evsel->core.attr.exclude_kernel)
 999			return true;
1000	}
1001	return false;
1002}
1003
1004static bool intel_pt_have_tsc(struct intel_pt *pt)
1005{
1006	struct evsel *evsel;
1007	bool have_tsc = false;
1008	u64 config;
1009
1010	if (!pt->tsc_bit)
1011		return false;
1012
1013	evlist__for_each_entry(pt->session->evlist, evsel) {
1014		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1015			if (config & pt->tsc_bit)
1016				have_tsc = true;
1017			else
1018				return false;
1019		}
1020	}
1021	return have_tsc;
1022}
1023
1024static bool intel_pt_have_mtc(struct intel_pt *pt)
1025{
1026	struct evsel *evsel;
1027	u64 config;
1028
1029	evlist__for_each_entry(pt->session->evlist, evsel) {
1030		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1031		    (config & pt->mtc_bit))
1032			return true;
1033	}
1034	return false;
1035}
1036
1037static bool intel_pt_sampling_mode(struct intel_pt *pt)
1038{
1039	struct evsel *evsel;
1040
1041	evlist__for_each_entry(pt->session->evlist, evsel) {
1042		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1043		    evsel->core.attr.aux_sample_size)
1044			return true;
1045	}
1046	return false;
1047}
1048
1049static u64 intel_pt_ctl(struct intel_pt *pt)
1050{
1051	struct evsel *evsel;
1052	u64 config;
1053
1054	evlist__for_each_entry(pt->session->evlist, evsel) {
1055		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1056			return config;
1057	}
1058	return 0;
1059}
1060
1061static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1062{
1063	u64 quot, rem;
1064
1065	quot = ns / pt->tc.time_mult;
1066	rem  = ns % pt->tc.time_mult;
1067	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1068		pt->tc.time_mult;
1069}
1070
1071static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1072{
1073	size_t sz = sizeof(struct ip_callchain);
1074
1075	/* Add 1 to callchain_sz for callchain context */
1076	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1077	return zalloc(sz);
1078}
1079
1080static int intel_pt_callchain_init(struct intel_pt *pt)
1081{
1082	struct evsel *evsel;
1083
1084	evlist__for_each_entry(pt->session->evlist, evsel) {
1085		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1086			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1087	}
1088
1089	pt->chain = intel_pt_alloc_chain(pt);
1090	if (!pt->chain)
1091		return -ENOMEM;
1092
1093	return 0;
1094}
1095
1096static void intel_pt_add_callchain(struct intel_pt *pt,
1097				   struct perf_sample *sample)
1098{
1099	struct thread *thread = machine__findnew_thread(pt->machine,
1100							sample->pid,
1101							sample->tid);
1102
1103	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1104				  pt->synth_opts.callchain_sz + 1, sample->ip,
1105				  pt->kernel_start);
1106
1107	sample->callchain = pt->chain;
1108}
1109
1110static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1111{
1112	size_t sz = sizeof(struct branch_stack);
1113
1114	sz += entry_cnt * sizeof(struct branch_entry);
1115	return zalloc(sz);
1116}
1117
1118static int intel_pt_br_stack_init(struct intel_pt *pt)
1119{
1120	struct evsel *evsel;
1121
1122	evlist__for_each_entry(pt->session->evlist, evsel) {
1123		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1124			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1125	}
1126
1127	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1128	if (!pt->br_stack)
1129		return -ENOMEM;
1130
1131	return 0;
1132}
1133
1134static void intel_pt_add_br_stack(struct intel_pt *pt,
1135				  struct perf_sample *sample)
1136{
1137	struct thread *thread = machine__findnew_thread(pt->machine,
1138							sample->pid,
1139							sample->tid);
1140
1141	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1142				     pt->br_stack_sz, sample->ip,
1143				     pt->kernel_start);
1144
1145	sample->branch_stack = pt->br_stack;
1146}
1147
1148/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1149#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1150
1151static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1152						   unsigned int queue_nr)
1153{
1154	struct intel_pt_params params = { .get_trace = 0, };
1155	struct perf_env *env = pt->machine->env;
1156	struct intel_pt_queue *ptq;
1157
1158	ptq = zalloc(sizeof(struct intel_pt_queue));
1159	if (!ptq)
1160		return NULL;
1161
1162	if (pt->synth_opts.callchain) {
1163		ptq->chain = intel_pt_alloc_chain(pt);
1164		if (!ptq->chain)
1165			goto out_free;
1166	}
1167
1168	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1169		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1170
1171		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1172		if (!ptq->last_branch)
1173			goto out_free;
1174	}
1175
1176	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1177	if (!ptq->event_buf)
1178		goto out_free;
1179
1180	ptq->pt = pt;
1181	ptq->queue_nr = queue_nr;
1182	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1183	ptq->pid = -1;
1184	ptq->tid = -1;
1185	ptq->cpu = -1;
1186	ptq->next_tid = -1;
1187
1188	params.get_trace = intel_pt_get_trace;
1189	params.walk_insn = intel_pt_walk_next_insn;
1190	params.lookahead = intel_pt_lookahead;
1191	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1192	params.data = ptq;
1193	params.return_compression = intel_pt_return_compression(pt);
1194	params.branch_enable = intel_pt_branch_enable(pt);
1195	params.ctl = intel_pt_ctl(pt);
1196	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1197	params.mtc_period = intel_pt_mtc_period(pt);
1198	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1199	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1200	params.quick = pt->synth_opts.quick;
1201	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1202	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1203	params.first_timestamp = pt->first_timestamp;
1204	params.max_loops = pt->max_loops;
1205
1206	if (pt->filts.cnt > 0)
1207		params.pgd_ip = intel_pt_pgd_ip;
1208
1209	if (pt->synth_opts.instructions) {
1210		if (pt->synth_opts.period) {
1211			switch (pt->synth_opts.period_type) {
1212			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1213				params.period_type =
1214						INTEL_PT_PERIOD_INSTRUCTIONS;
1215				params.period = pt->synth_opts.period;
1216				break;
1217			case PERF_ITRACE_PERIOD_TICKS:
1218				params.period_type = INTEL_PT_PERIOD_TICKS;
1219				params.period = pt->synth_opts.period;
1220				break;
1221			case PERF_ITRACE_PERIOD_NANOSECS:
1222				params.period_type = INTEL_PT_PERIOD_TICKS;
1223				params.period = intel_pt_ns_to_ticks(pt,
1224							pt->synth_opts.period);
1225				break;
1226			default:
1227				break;
1228			}
1229		}
1230
1231		if (!params.period) {
1232			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1233			params.period = 1;
1234		}
1235	}
1236
1237	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1238		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1239
1240	ptq->decoder = intel_pt_decoder_new(&params);
1241	if (!ptq->decoder)
1242		goto out_free;
1243
1244	return ptq;
1245
1246out_free:
1247	zfree(&ptq->event_buf);
1248	zfree(&ptq->last_branch);
1249	zfree(&ptq->chain);
1250	free(ptq);
1251	return NULL;
1252}
1253
1254static void intel_pt_free_queue(void *priv)
1255{
1256	struct intel_pt_queue *ptq = priv;
1257
1258	if (!ptq)
1259		return;
1260	thread__zput(ptq->thread);
1261	thread__zput(ptq->unknown_guest_thread);
1262	intel_pt_decoder_free(ptq->decoder);
1263	zfree(&ptq->event_buf);
1264	zfree(&ptq->last_branch);
1265	zfree(&ptq->chain);
1266	free(ptq);
1267}
1268
1269static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1270{
1271	unsigned int i;
1272
1273	pt->first_timestamp = timestamp;
1274
1275	for (i = 0; i < pt->queues.nr_queues; i++) {
1276		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1277		struct intel_pt_queue *ptq = queue->priv;
1278
1279		if (ptq && ptq->decoder)
1280			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1281	}
1282}
1283
1284static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1285				     struct auxtrace_queue *queue)
1286{
1287	struct intel_pt_queue *ptq = queue->priv;
1288
1289	if (queue->tid == -1 || pt->have_sched_switch) {
1290		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1291		if (ptq->tid == -1)
1292			ptq->pid = -1;
1293		thread__zput(ptq->thread);
1294	}
1295
1296	if (!ptq->thread && ptq->tid != -1)
1297		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1298
1299	if (ptq->thread) {
1300		ptq->pid = ptq->thread->pid_;
1301		if (queue->cpu == -1)
1302			ptq->cpu = ptq->thread->cpu;
1303	}
1304}
1305
1306static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1307{
1308	ptq->insn_len = 0;
1309	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1310		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1311	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1312		if (!ptq->state->to_ip)
1313			ptq->flags = PERF_IP_FLAG_BRANCH |
1314				     PERF_IP_FLAG_TRACE_END;
1315		else if (ptq->state->from_nr && !ptq->state->to_nr)
1316			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1317				     PERF_IP_FLAG_VMEXIT;
1318		else
1319			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1320				     PERF_IP_FLAG_ASYNC |
1321				     PERF_IP_FLAG_INTERRUPT;
1322	} else {
1323		if (ptq->state->from_ip)
1324			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1325		else
1326			ptq->flags = PERF_IP_FLAG_BRANCH |
1327				     PERF_IP_FLAG_TRACE_BEGIN;
1328		if (ptq->state->flags & INTEL_PT_IN_TX)
1329			ptq->flags |= PERF_IP_FLAG_IN_TX;
1330		ptq->insn_len = ptq->state->insn_len;
1331		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1332	}
1333
1334	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1335		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1336	if (ptq->state->type & INTEL_PT_TRACE_END)
1337		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1338}
1339
1340static void intel_pt_setup_time_range(struct intel_pt *pt,
1341				      struct intel_pt_queue *ptq)
1342{
1343	if (!pt->range_cnt)
1344		return;
1345
1346	ptq->sel_timestamp = pt->time_ranges[0].start;
1347	ptq->sel_idx = 0;
1348
1349	if (ptq->sel_timestamp) {
1350		ptq->sel_start = true;
1351	} else {
1352		ptq->sel_timestamp = pt->time_ranges[0].end;
1353		ptq->sel_start = false;
1354	}
1355}
1356
1357static int intel_pt_setup_queue(struct intel_pt *pt,
1358				struct auxtrace_queue *queue,
1359				unsigned int queue_nr)
1360{
1361	struct intel_pt_queue *ptq = queue->priv;
1362
1363	if (list_empty(&queue->head))
1364		return 0;
1365
1366	if (!ptq) {
1367		ptq = intel_pt_alloc_queue(pt, queue_nr);
1368		if (!ptq)
1369			return -ENOMEM;
1370		queue->priv = ptq;
1371
1372		if (queue->cpu != -1)
1373			ptq->cpu = queue->cpu;
1374		ptq->tid = queue->tid;
1375
1376		ptq->cbr_seen = UINT_MAX;
1377
1378		if (pt->sampling_mode && !pt->snapshot_mode &&
1379		    pt->timeless_decoding)
1380			ptq->step_through_buffers = true;
1381
1382		ptq->sync_switch = pt->sync_switch;
1383
1384		intel_pt_setup_time_range(pt, ptq);
1385	}
1386
1387	if (!ptq->on_heap &&
1388	    (!ptq->sync_switch ||
1389	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1390		const struct intel_pt_state *state;
1391		int ret;
1392
1393		if (pt->timeless_decoding)
1394			return 0;
1395
1396		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1397		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1398			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1399
1400		if (ptq->sel_start && ptq->sel_timestamp) {
1401			ret = intel_pt_fast_forward(ptq->decoder,
1402						    ptq->sel_timestamp);
1403			if (ret)
1404				return ret;
1405		}
1406
1407		while (1) {
1408			state = intel_pt_decode(ptq->decoder);
1409			if (state->err) {
1410				if (state->err == INTEL_PT_ERR_NODATA) {
1411					intel_pt_log("queue %u has no timestamp\n",
1412						     queue_nr);
1413					return 0;
1414				}
1415				continue;
1416			}
1417			if (state->timestamp)
1418				break;
1419		}
1420
1421		ptq->timestamp = state->timestamp;
1422		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1423			     queue_nr, ptq->timestamp);
1424		ptq->state = state;
1425		ptq->have_sample = true;
1426		if (ptq->sel_start && ptq->sel_timestamp &&
1427		    ptq->timestamp < ptq->sel_timestamp)
1428			ptq->have_sample = false;
1429		intel_pt_sample_flags(ptq);
1430		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1431		if (ret)
1432			return ret;
1433		ptq->on_heap = true;
1434	}
1435
1436	return 0;
1437}
1438
1439static int intel_pt_setup_queues(struct intel_pt *pt)
1440{
1441	unsigned int i;
1442	int ret;
1443
1444	for (i = 0; i < pt->queues.nr_queues; i++) {
1445		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1446		if (ret)
1447			return ret;
1448	}
1449	return 0;
1450}
1451
1452static inline bool intel_pt_skip_event(struct intel_pt *pt)
1453{
1454	return pt->synth_opts.initial_skip &&
1455	       pt->num_events++ < pt->synth_opts.initial_skip;
1456}
1457
1458/*
1459 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1460 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1461 * from this decoder state.
1462 */
1463static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1464{
1465	return pt->synth_opts.initial_skip &&
1466	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1467}
1468
1469static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1470				   union perf_event *event,
1471				   struct perf_sample *sample)
1472{
1473	event->sample.header.type = PERF_RECORD_SAMPLE;
1474	event->sample.header.size = sizeof(struct perf_event_header);
1475
1476	sample->pid = ptq->pid;
1477	sample->tid = ptq->tid;
1478	sample->cpu = ptq->cpu;
1479	sample->insn_len = ptq->insn_len;
1480	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1481}
1482
1483static void intel_pt_prep_b_sample(struct intel_pt *pt,
1484				   struct intel_pt_queue *ptq,
1485				   union perf_event *event,
1486				   struct perf_sample *sample)
1487{
1488	intel_pt_prep_a_sample(ptq, event, sample);
1489
1490	if (!pt->timeless_decoding)
1491		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1492
1493	sample->ip = ptq->state->from_ip;
1494	sample->addr = ptq->state->to_ip;
1495	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1496	sample->period = 1;
1497	sample->flags = ptq->flags;
1498
1499	event->sample.header.misc = sample->cpumode;
1500}
1501
1502static int intel_pt_inject_event(union perf_event *event,
1503				 struct perf_sample *sample, u64 type)
1504{
1505	event->header.size = perf_event__sample_event_size(sample, type, 0);
1506	return perf_event__synthesize_sample(event, type, 0, sample);
1507}
1508
1509static inline int intel_pt_opt_inject(struct intel_pt *pt,
1510				      union perf_event *event,
1511				      struct perf_sample *sample, u64 type)
1512{
1513	if (!pt->synth_opts.inject)
1514		return 0;
1515
1516	return intel_pt_inject_event(event, sample, type);
1517}
1518
1519static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1520					union perf_event *event,
1521					struct perf_sample *sample, u64 type)
1522{
1523	int ret;
1524
1525	ret = intel_pt_opt_inject(pt, event, sample, type);
1526	if (ret)
1527		return ret;
1528
1529	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1530	if (ret)
1531		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1532
1533	return ret;
1534}
1535
1536static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1537{
1538	struct intel_pt *pt = ptq->pt;
1539	union perf_event *event = ptq->event_buf;
1540	struct perf_sample sample = { .ip = 0, };
1541	struct dummy_branch_stack {
1542		u64			nr;
1543		u64			hw_idx;
1544		struct branch_entry	entries;
1545	} dummy_bs;
1546
1547	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1548		return 0;
1549
1550	if (intel_pt_skip_event(pt))
1551		return 0;
1552
1553	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1554
1555	sample.id = ptq->pt->branches_id;
1556	sample.stream_id = ptq->pt->branches_id;
1557
1558	/*
1559	 * perf report cannot handle events without a branch stack when using
1560	 * SORT_MODE__BRANCH so make a dummy one.
1561	 */
1562	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1563		dummy_bs = (struct dummy_branch_stack){
1564			.nr = 1,
1565			.hw_idx = -1ULL,
1566			.entries = {
1567				.from = sample.ip,
1568				.to = sample.addr,
1569			},
1570		};
1571		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1572	}
1573
1574	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1575		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1576	if (sample.cyc_cnt) {
1577		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1578		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1579		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1580	}
1581
1582	return intel_pt_deliver_synth_event(pt, event, &sample,
1583					    pt->branches_sample_type);
1584}
1585
1586static void intel_pt_prep_sample(struct intel_pt *pt,
1587				 struct intel_pt_queue *ptq,
1588				 union perf_event *event,
1589				 struct perf_sample *sample)
1590{
1591	intel_pt_prep_b_sample(pt, ptq, event, sample);
1592
1593	if (pt->synth_opts.callchain) {
1594		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1595				     pt->synth_opts.callchain_sz + 1,
1596				     sample->ip, pt->kernel_start);
1597		sample->callchain = ptq->chain;
1598	}
1599
1600	if (pt->synth_opts.last_branch) {
1601		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1602					pt->br_stack_sz);
1603		sample->branch_stack = ptq->last_branch;
1604	}
1605}
1606
1607static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1608{
1609	struct intel_pt *pt = ptq->pt;
1610	union perf_event *event = ptq->event_buf;
1611	struct perf_sample sample = { .ip = 0, };
1612
1613	if (intel_pt_skip_event(pt))
1614		return 0;
1615
1616	intel_pt_prep_sample(pt, ptq, event, &sample);
1617
1618	sample.id = ptq->pt->instructions_id;
1619	sample.stream_id = ptq->pt->instructions_id;
1620	if (pt->synth_opts.quick)
1621		sample.period = 1;
1622	else
1623		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1624
1625	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1626		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1627	if (sample.cyc_cnt) {
1628		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1629		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1630		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1631	}
1632
1633	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1634
1635	return intel_pt_deliver_synth_event(pt, event, &sample,
1636					    pt->instructions_sample_type);
1637}
1638
1639static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1640{
1641	struct intel_pt *pt = ptq->pt;
1642	union perf_event *event = ptq->event_buf;
1643	struct perf_sample sample = { .ip = 0, };
1644
1645	if (intel_pt_skip_event(pt))
1646		return 0;
1647
1648	intel_pt_prep_sample(pt, ptq, event, &sample);
1649
1650	sample.id = ptq->pt->transactions_id;
1651	sample.stream_id = ptq->pt->transactions_id;
1652
1653	return intel_pt_deliver_synth_event(pt, event, &sample,
1654					    pt->transactions_sample_type);
1655}
1656
1657static void intel_pt_prep_p_sample(struct intel_pt *pt,
1658				   struct intel_pt_queue *ptq,
1659				   union perf_event *event,
1660				   struct perf_sample *sample)
1661{
1662	intel_pt_prep_sample(pt, ptq, event, sample);
1663
1664	/*
1665	 * Zero IP is used to mean "trace start" but that is not the case for
1666	 * power or PTWRITE events with no IP, so clear the flags.
1667	 */
1668	if (!sample->ip)
1669		sample->flags = 0;
1670}
1671
1672static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1673{
1674	struct intel_pt *pt = ptq->pt;
1675	union perf_event *event = ptq->event_buf;
1676	struct perf_sample sample = { .ip = 0, };
1677	struct perf_synth_intel_ptwrite raw;
1678
1679	if (intel_pt_skip_event(pt))
1680		return 0;
1681
1682	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683
1684	sample.id = ptq->pt->ptwrites_id;
1685	sample.stream_id = ptq->pt->ptwrites_id;
1686
1687	raw.flags = 0;
1688	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1689	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1690
1691	sample.raw_size = perf_synth__raw_size(raw);
1692	sample.raw_data = perf_synth__raw_data(&raw);
1693
1694	return intel_pt_deliver_synth_event(pt, event, &sample,
1695					    pt->ptwrites_sample_type);
1696}
1697
1698static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1699{
1700	struct intel_pt *pt = ptq->pt;
1701	union perf_event *event = ptq->event_buf;
1702	struct perf_sample sample = { .ip = 0, };
1703	struct perf_synth_intel_cbr raw;
1704	u32 flags;
1705
1706	if (intel_pt_skip_cbr_event(pt))
1707		return 0;
1708
1709	ptq->cbr_seen = ptq->state->cbr;
1710
1711	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1712
1713	sample.id = ptq->pt->cbr_id;
1714	sample.stream_id = ptq->pt->cbr_id;
1715
1716	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1717	raw.flags = cpu_to_le32(flags);
1718	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1719	raw.reserved3 = 0;
1720
1721	sample.raw_size = perf_synth__raw_size(raw);
1722	sample.raw_data = perf_synth__raw_data(&raw);
1723
1724	return intel_pt_deliver_synth_event(pt, event, &sample,
1725					    pt->pwr_events_sample_type);
1726}
1727
1728static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1729{
1730	struct intel_pt *pt = ptq->pt;
1731	union perf_event *event = ptq->event_buf;
1732	struct perf_sample sample = { .ip = 0, };
1733	struct perf_synth_intel_psb raw;
1734
1735	if (intel_pt_skip_event(pt))
1736		return 0;
1737
1738	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1739
1740	sample.id = ptq->pt->psb_id;
1741	sample.stream_id = ptq->pt->psb_id;
1742	sample.flags = 0;
1743
1744	raw.reserved = 0;
1745	raw.offset = ptq->state->psb_offset;
1746
1747	sample.raw_size = perf_synth__raw_size(raw);
1748	sample.raw_data = perf_synth__raw_data(&raw);
1749
1750	return intel_pt_deliver_synth_event(pt, event, &sample,
1751					    pt->pwr_events_sample_type);
1752}
1753
1754static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1755{
1756	struct intel_pt *pt = ptq->pt;
1757	union perf_event *event = ptq->event_buf;
1758	struct perf_sample sample = { .ip = 0, };
1759	struct perf_synth_intel_mwait raw;
1760
1761	if (intel_pt_skip_event(pt))
1762		return 0;
1763
1764	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1765
1766	sample.id = ptq->pt->mwait_id;
1767	sample.stream_id = ptq->pt->mwait_id;
1768
1769	raw.reserved = 0;
1770	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1771
1772	sample.raw_size = perf_synth__raw_size(raw);
1773	sample.raw_data = perf_synth__raw_data(&raw);
1774
1775	return intel_pt_deliver_synth_event(pt, event, &sample,
1776					    pt->pwr_events_sample_type);
1777}
1778
1779static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1780{
1781	struct intel_pt *pt = ptq->pt;
1782	union perf_event *event = ptq->event_buf;
1783	struct perf_sample sample = { .ip = 0, };
1784	struct perf_synth_intel_pwre raw;
1785
1786	if (intel_pt_skip_event(pt))
1787		return 0;
1788
1789	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1790
1791	sample.id = ptq->pt->pwre_id;
1792	sample.stream_id = ptq->pt->pwre_id;
1793
1794	raw.reserved = 0;
1795	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1796
1797	sample.raw_size = perf_synth__raw_size(raw);
1798	sample.raw_data = perf_synth__raw_data(&raw);
1799
1800	return intel_pt_deliver_synth_event(pt, event, &sample,
1801					    pt->pwr_events_sample_type);
1802}
1803
1804static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1805{
1806	struct intel_pt *pt = ptq->pt;
1807	union perf_event *event = ptq->event_buf;
1808	struct perf_sample sample = { .ip = 0, };
1809	struct perf_synth_intel_exstop raw;
1810
1811	if (intel_pt_skip_event(pt))
1812		return 0;
1813
1814	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1815
1816	sample.id = ptq->pt->exstop_id;
1817	sample.stream_id = ptq->pt->exstop_id;
1818
1819	raw.flags = 0;
1820	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1821
1822	sample.raw_size = perf_synth__raw_size(raw);
1823	sample.raw_data = perf_synth__raw_data(&raw);
1824
1825	return intel_pt_deliver_synth_event(pt, event, &sample,
1826					    pt->pwr_events_sample_type);
1827}
1828
1829static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1830{
1831	struct intel_pt *pt = ptq->pt;
1832	union perf_event *event = ptq->event_buf;
1833	struct perf_sample sample = { .ip = 0, };
1834	struct perf_synth_intel_pwrx raw;
1835
1836	if (intel_pt_skip_event(pt))
1837		return 0;
1838
1839	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1840
1841	sample.id = ptq->pt->pwrx_id;
1842	sample.stream_id = ptq->pt->pwrx_id;
1843
1844	raw.reserved = 0;
1845	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1846
1847	sample.raw_size = perf_synth__raw_size(raw);
1848	sample.raw_data = perf_synth__raw_data(&raw);
1849
1850	return intel_pt_deliver_synth_event(pt, event, &sample,
1851					    pt->pwr_events_sample_type);
1852}
1853
1854/*
1855 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1856 * intel_pt_add_gp_regs().
1857 */
1858static const int pebs_gp_regs[] = {
1859	[PERF_REG_X86_FLAGS]	= 1,
1860	[PERF_REG_X86_IP]	= 2,
1861	[PERF_REG_X86_AX]	= 3,
1862	[PERF_REG_X86_CX]	= 4,
1863	[PERF_REG_X86_DX]	= 5,
1864	[PERF_REG_X86_BX]	= 6,
1865	[PERF_REG_X86_SP]	= 7,
1866	[PERF_REG_X86_BP]	= 8,
1867	[PERF_REG_X86_SI]	= 9,
1868	[PERF_REG_X86_DI]	= 10,
1869	[PERF_REG_X86_R8]	= 11,
1870	[PERF_REG_X86_R9]	= 12,
1871	[PERF_REG_X86_R10]	= 13,
1872	[PERF_REG_X86_R11]	= 14,
1873	[PERF_REG_X86_R12]	= 15,
1874	[PERF_REG_X86_R13]	= 16,
1875	[PERF_REG_X86_R14]	= 17,
1876	[PERF_REG_X86_R15]	= 18,
1877};
1878
1879static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1880				 const struct intel_pt_blk_items *items,
1881				 u64 regs_mask)
1882{
1883	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1884	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1885	u32 bit;
1886	int i;
1887
1888	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1889		/* Get the PEBS gp_regs array index */
1890		int n = pebs_gp_regs[i] - 1;
1891
1892		if (n < 0)
1893			continue;
1894		/*
1895		 * Add only registers that were requested (i.e. 'regs_mask') and
1896		 * that were provided (i.e. 'mask'), and update the resulting
1897		 * mask (i.e. 'intr_regs->mask') accordingly.
1898		 */
1899		if (mask & 1 << n && regs_mask & bit) {
1900			intr_regs->mask |= bit;
1901			*pos++ = gp_regs[n];
1902		}
1903	}
1904
1905	return pos;
1906}
1907
1908#ifndef PERF_REG_X86_XMM0
1909#define PERF_REG_X86_XMM0 32
1910#endif
1911
1912static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1913			     const struct intel_pt_blk_items *items,
1914			     u64 regs_mask)
1915{
1916	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1917	const u64 *xmm = items->xmm;
1918
1919	/*
1920	 * If there are any XMM registers, then there should be all of them.
1921	 * Nevertheless, follow the logic to add only registers that were
1922	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1923	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1924	 */
1925	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1926
1927	for (; mask; mask >>= 1, xmm++) {
1928		if (mask & 1)
1929			*pos++ = *xmm;
1930	}
1931}
1932
1933#define LBR_INFO_MISPRED	(1ULL << 63)
1934#define LBR_INFO_IN_TX		(1ULL << 62)
1935#define LBR_INFO_ABORT		(1ULL << 61)
1936#define LBR_INFO_CYCLES		0xffff
1937
1938/* Refer kernel's intel_pmu_store_pebs_lbrs() */
1939static u64 intel_pt_lbr_flags(u64 info)
1940{
1941	union {
1942		struct branch_flags flags;
1943		u64 result;
1944	} u;
1945
1946	u.result	  = 0;
1947	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1948	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1949	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1950	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1951	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1952
1953	return u.result;
1954}
1955
1956static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1957			      const struct intel_pt_blk_items *items)
1958{
1959	u64 *to;
1960	int i;
1961
1962	br_stack->nr = 0;
1963
1964	to = &br_stack->entries[0].from;
1965
1966	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1967		u32 mask = items->mask[i];
1968		const u64 *from = items->val[i];
1969
1970		for (; mask; mask >>= 3, from += 3) {
1971			if ((mask & 7) == 7) {
1972				*to++ = from[0];
1973				*to++ = from[1];
1974				*to++ = intel_pt_lbr_flags(from[2]);
1975				br_stack->nr += 1;
1976			}
1977		}
1978	}
1979}
1980
1981static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1982{
1983	const struct intel_pt_blk_items *items = &ptq->state->items;
1984	struct perf_sample sample = { .ip = 0, };
1985	union perf_event *event = ptq->event_buf;
1986	struct intel_pt *pt = ptq->pt;
1987	struct evsel *evsel = pt->pebs_evsel;
1988	u64 sample_type = evsel->core.attr.sample_type;
1989	u64 id = evsel->core.id[0];
1990	u8 cpumode;
1991	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1992
1993	if (intel_pt_skip_event(pt))
1994		return 0;
1995
1996	intel_pt_prep_a_sample(ptq, event, &sample);
1997
1998	sample.id = id;
1999	sample.stream_id = id;
2000
2001	if (!evsel->core.attr.freq)
2002		sample.period = evsel->core.attr.sample_period;
2003
2004	/* No support for non-zero CS base */
2005	if (items->has_ip)
2006		sample.ip = items->ip;
2007	else if (items->has_rip)
2008		sample.ip = items->rip;
2009	else
2010		sample.ip = ptq->state->from_ip;
2011
2012	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2013
2014	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2015
2016	sample.cpumode = cpumode;
2017
2018	if (sample_type & PERF_SAMPLE_TIME) {
2019		u64 timestamp = 0;
2020
2021		if (items->has_timestamp)
2022			timestamp = items->timestamp;
2023		else if (!pt->timeless_decoding)
2024			timestamp = ptq->timestamp;
2025		if (timestamp)
2026			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2027	}
2028
2029	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2030	    pt->synth_opts.callchain) {
2031		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2032				     pt->synth_opts.callchain_sz, sample.ip,
2033				     pt->kernel_start);
2034		sample.callchain = ptq->chain;
2035	}
2036
2037	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2038	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2039	     items->mask[INTEL_PT_XMM_POS])) {
2040		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2041		u64 *pos;
2042
2043		sample.intr_regs.abi = items->is_32_bit ?
2044				       PERF_SAMPLE_REGS_ABI_32 :
2045				       PERF_SAMPLE_REGS_ABI_64;
2046		sample.intr_regs.regs = regs;
2047
2048		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2049
2050		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2051	}
2052
2053	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2054		if (items->mask[INTEL_PT_LBR_0_POS] ||
2055		    items->mask[INTEL_PT_LBR_1_POS] ||
2056		    items->mask[INTEL_PT_LBR_2_POS]) {
2057			intel_pt_add_lbrs(ptq->last_branch, items);
2058		} else if (pt->synth_opts.last_branch) {
2059			thread_stack__br_sample(ptq->thread, ptq->cpu,
2060						ptq->last_branch,
2061						pt->br_stack_sz);
2062		} else {
2063			ptq->last_branch->nr = 0;
2064		}
2065		sample.branch_stack = ptq->last_branch;
2066	}
2067
2068	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2069		sample.addr = items->mem_access_address;
2070
2071	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2072		/*
2073		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2074		 * intel_hsw_weight().
2075		 */
2076		if (items->has_mem_access_latency) {
2077			u64 weight = items->mem_access_latency >> 32;
2078
2079			/*
2080			 * Starts from SPR, the mem access latency field
2081			 * contains both cache latency [47:32] and instruction
2082			 * latency [15:0]. The cache latency is the same as the
2083			 * mem access latency on previous platforms.
2084			 *
2085			 * In practice, no memory access could last than 4G
2086			 * cycles. Use latency >> 32 to distinguish the
2087			 * different format of the mem access latency field.
2088			 */
2089			if (weight > 0) {
2090				sample.weight = weight & 0xffff;
2091				sample.ins_lat = items->mem_access_latency & 0xffff;
2092			} else
2093				sample.weight = items->mem_access_latency;
2094		}
2095		if (!sample.weight && items->has_tsx_aux_info) {
2096			/* Cycles last block */
2097			sample.weight = (u32)items->tsx_aux_info;
2098		}
2099	}
2100
2101	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2102		u64 ax = items->has_rax ? items->rax : 0;
2103		/* Refer kernel's intel_hsw_transaction() */
2104		u64 txn = (u8)(items->tsx_aux_info >> 32);
2105
2106		/* For RTM XABORTs also log the abort code from AX */
2107		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2108			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2109		sample.transaction = txn;
2110	}
2111
2112	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2113}
2114
2115static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2116				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2117{
2118	union perf_event event;
2119	char msg[MAX_AUXTRACE_ERROR_MSG];
2120	int err;
2121
2122	if (pt->synth_opts.error_minus_flags) {
2123		if (code == INTEL_PT_ERR_OVR &&
2124		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2125			return 0;
2126		if (code == INTEL_PT_ERR_LOST &&
2127		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2128			return 0;
2129	}
2130
2131	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2132
2133	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2134			     code, cpu, pid, tid, ip, msg, timestamp);
2135
2136	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2137	if (err)
2138		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2139		       err);
2140
2141	return err;
2142}
2143
2144static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2145				 const struct intel_pt_state *state)
2146{
2147	struct intel_pt *pt = ptq->pt;
2148	u64 tm = ptq->timestamp;
2149
2150	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2151
2152	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2153				    ptq->tid, state->from_ip, tm);
2154}
2155
2156static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2157{
2158	struct auxtrace_queue *queue;
2159	pid_t tid = ptq->next_tid;
2160	int err;
2161
2162	if (tid == -1)
2163		return 0;
2164
2165	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2166
2167	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2168
2169	queue = &pt->queues.queue_array[ptq->queue_nr];
2170	intel_pt_set_pid_tid_cpu(pt, queue);
2171
2172	ptq->next_tid = -1;
2173
2174	return err;
2175}
2176
2177static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2178{
2179	struct intel_pt *pt = ptq->pt;
2180
2181	return ip == pt->switch_ip &&
2182	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2183	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2184			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2185}
2186
2187#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2188			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2189
2190static int intel_pt_sample(struct intel_pt_queue *ptq)
2191{
2192	const struct intel_pt_state *state = ptq->state;
2193	struct intel_pt *pt = ptq->pt;
2194	int err;
2195
2196	if (!ptq->have_sample)
2197		return 0;
2198
2199	ptq->have_sample = false;
2200
2201	ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2202	ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2203
2204	/*
2205	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2206	 * precedes the current timestamp.
2207	 */
2208	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2209		err = intel_pt_synth_pebs_sample(ptq);
2210		if (err)
2211			return err;
2212	}
2213
2214	if (pt->sample_pwr_events) {
2215		if (state->type & INTEL_PT_PSB_EVT) {
2216			err = intel_pt_synth_psb_sample(ptq);
2217			if (err)
2218				return err;
2219		}
2220		if (ptq->state->cbr != ptq->cbr_seen) {
2221			err = intel_pt_synth_cbr_sample(ptq);
2222			if (err)
2223				return err;
2224		}
2225		if (state->type & INTEL_PT_PWR_EVT) {
2226			if (state->type & INTEL_PT_MWAIT_OP) {
2227				err = intel_pt_synth_mwait_sample(ptq);
2228				if (err)
2229					return err;
2230			}
2231			if (state->type & INTEL_PT_PWR_ENTRY) {
2232				err = intel_pt_synth_pwre_sample(ptq);
2233				if (err)
2234					return err;
2235			}
2236			if (state->type & INTEL_PT_EX_STOP) {
2237				err = intel_pt_synth_exstop_sample(ptq);
2238				if (err)
2239					return err;
2240			}
2241			if (state->type & INTEL_PT_PWR_EXIT) {
2242				err = intel_pt_synth_pwrx_sample(ptq);
2243				if (err)
2244					return err;
2245			}
2246		}
2247	}
2248
2249	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2250		err = intel_pt_synth_instruction_sample(ptq);
2251		if (err)
2252			return err;
2253	}
2254
2255	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2256		err = intel_pt_synth_transaction_sample(ptq);
2257		if (err)
2258			return err;
2259	}
2260
2261	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2262		err = intel_pt_synth_ptwrite_sample(ptq);
2263		if (err)
2264			return err;
2265	}
2266
2267	if (!(state->type & INTEL_PT_BRANCH))
2268		return 0;
2269
2270	if (pt->use_thread_stack) {
2271		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2272				    state->from_ip, state->to_ip, ptq->insn_len,
2273				    state->trace_nr, pt->callstack,
2274				    pt->br_stack_sz_plus,
2275				    pt->mispred_all);
2276	} else {
2277		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2278	}
2279
2280	if (pt->sample_branches) {
2281		if (state->from_nr != state->to_nr &&
2282		    state->from_ip && state->to_ip) {
2283			struct intel_pt_state *st = (struct intel_pt_state *)state;
2284			u64 to_ip = st->to_ip;
2285			u64 from_ip = st->from_ip;
2286
2287			/*
2288			 * perf cannot handle having different machines for ip
2289			 * and addr, so create 2 branches.
2290			 */
2291			st->to_ip = 0;
2292			err = intel_pt_synth_branch_sample(ptq);
2293			if (err)
2294				return err;
2295			st->from_ip = 0;
2296			st->to_ip = to_ip;
2297			err = intel_pt_synth_branch_sample(ptq);
2298			st->from_ip = from_ip;
2299		} else {
2300			err = intel_pt_synth_branch_sample(ptq);
2301		}
2302		if (err)
2303			return err;
2304	}
2305
2306	if (!ptq->sync_switch)
2307		return 0;
2308
2309	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2310		switch (ptq->switch_state) {
2311		case INTEL_PT_SS_NOT_TRACING:
2312		case INTEL_PT_SS_UNKNOWN:
2313		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2314			err = intel_pt_next_tid(pt, ptq);
2315			if (err)
2316				return err;
2317			ptq->switch_state = INTEL_PT_SS_TRACING;
2318			break;
2319		default:
2320			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2321			return 1;
2322		}
2323	} else if (!state->to_ip) {
2324		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2325	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2326		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2327	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2328		   state->to_ip == pt->ptss_ip &&
2329		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2330		ptq->switch_state = INTEL_PT_SS_TRACING;
2331	}
2332
2333	return 0;
2334}
2335
2336static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2337{
2338	struct machine *machine = pt->machine;
2339	struct map *map;
2340	struct symbol *sym, *start;
2341	u64 ip, switch_ip = 0;
2342	const char *ptss;
2343
2344	if (ptss_ip)
2345		*ptss_ip = 0;
2346
2347	map = machine__kernel_map(machine);
2348	if (!map)
2349		return 0;
2350
2351	if (map__load(map))
2352		return 0;
2353
2354	start = dso__first_symbol(map->dso);
2355
2356	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2357		if (sym->binding == STB_GLOBAL &&
2358		    !strcmp(sym->name, "__switch_to")) {
2359			ip = map->unmap_ip(map, sym->start);
2360			if (ip >= map->start && ip < map->end) {
2361				switch_ip = ip;
2362				break;
2363			}
2364		}
2365	}
2366
2367	if (!switch_ip || !ptss_ip)
2368		return 0;
2369
2370	if (pt->have_sched_switch == 1)
2371		ptss = "perf_trace_sched_switch";
2372	else
2373		ptss = "__perf_event_task_sched_out";
2374
2375	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2376		if (!strcmp(sym->name, ptss)) {
2377			ip = map->unmap_ip(map, sym->start);
2378			if (ip >= map->start && ip < map->end) {
2379				*ptss_ip = ip;
2380				break;
2381			}
2382		}
2383	}
2384
2385	return switch_ip;
2386}
2387
2388static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2389{
2390	unsigned int i;
2391
2392	pt->sync_switch = true;
2393
2394	for (i = 0; i < pt->queues.nr_queues; i++) {
2395		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2396		struct intel_pt_queue *ptq = queue->priv;
2397
2398		if (ptq)
2399			ptq->sync_switch = true;
2400	}
2401}
2402
2403/*
2404 * To filter against time ranges, it is only necessary to look at the next start
2405 * or end time.
2406 */
2407static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2408{
2409	struct intel_pt *pt = ptq->pt;
2410
2411	if (ptq->sel_start) {
2412		/* Next time is an end time */
2413		ptq->sel_start = false;
2414		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2415		return true;
2416	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2417		/* Next time is a start time */
2418		ptq->sel_start = true;
2419		ptq->sel_idx += 1;
2420		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2421		return true;
2422	}
2423
2424	/* No next time */
2425	return false;
2426}
2427
2428static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2429{
2430	int err;
2431
2432	while (1) {
2433		if (ptq->sel_start) {
2434			if (ptq->timestamp >= ptq->sel_timestamp) {
2435				/* After start time, so consider next time */
2436				intel_pt_next_time(ptq);
2437				if (!ptq->sel_timestamp) {
2438					/* No end time */
2439					return 0;
2440				}
2441				/* Check against end time */
2442				continue;
2443			}
2444			/* Before start time, so fast forward */
2445			ptq->have_sample = false;
2446			if (ptq->sel_timestamp > *ff_timestamp) {
2447				if (ptq->sync_switch) {
2448					intel_pt_next_tid(ptq->pt, ptq);
2449					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2450				}
2451				*ff_timestamp = ptq->sel_timestamp;
2452				err = intel_pt_fast_forward(ptq->decoder,
2453							    ptq->sel_timestamp);
2454				if (err)
2455					return err;
2456			}
2457			return 0;
2458		} else if (ptq->timestamp > ptq->sel_timestamp) {
2459			/* After end time, so consider next time */
2460			if (!intel_pt_next_time(ptq)) {
2461				/* No next time range, so stop decoding */
2462				ptq->have_sample = false;
2463				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2464				return 1;
2465			}
2466			/* Check against next start time */
2467			continue;
2468		} else {
2469			/* Before end time */
2470			return 0;
2471		}
2472	}
2473}
2474
2475static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2476{
2477	const struct intel_pt_state *state = ptq->state;
2478	struct intel_pt *pt = ptq->pt;
2479	u64 ff_timestamp = 0;
2480	int err;
2481
2482	if (!pt->kernel_start) {
2483		pt->kernel_start = machine__kernel_start(pt->machine);
2484		if (pt->per_cpu_mmaps &&
2485		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2486		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2487		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2488			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2489			if (pt->switch_ip) {
2490				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2491					     pt->switch_ip, pt->ptss_ip);
2492				intel_pt_enable_sync_switch(pt);
2493			}
2494		}
2495	}
2496
2497	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2498		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2499	while (1) {
2500		err = intel_pt_sample(ptq);
2501		if (err)
2502			return err;
2503
2504		state = intel_pt_decode(ptq->decoder);
2505		if (state->err) {
2506			if (state->err == INTEL_PT_ERR_NODATA)
2507				return 1;
2508			if (ptq->sync_switch &&
2509			    state->from_ip >= pt->kernel_start) {
2510				ptq->sync_switch = false;
2511				intel_pt_next_tid(pt, ptq);
2512			}
2513			if (pt->synth_opts.errors) {
2514				err = intel_ptq_synth_error(ptq, state);
2515				if (err)
2516					return err;
2517			}
2518			continue;
2519		}
2520
2521		ptq->state = state;
2522		ptq->have_sample = true;
2523		intel_pt_sample_flags(ptq);
2524
2525		/* Use estimated TSC upon return to user space */
2526		if (pt->est_tsc &&
2527		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2528		    state->to_ip && state->to_ip < pt->kernel_start) {
2529			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2530				     state->timestamp, state->est_timestamp);
2531			ptq->timestamp = state->est_timestamp;
2532		/* Use estimated TSC in unknown switch state */
2533		} else if (ptq->sync_switch &&
2534			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2535			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2536			   ptq->next_tid == -1) {
2537			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2538				     state->timestamp, state->est_timestamp);
2539			ptq->timestamp = state->est_timestamp;
2540		} else if (state->timestamp > ptq->timestamp) {
2541			ptq->timestamp = state->timestamp;
2542		}
2543
2544		if (ptq->sel_timestamp) {
2545			err = intel_pt_time_filter(ptq, &ff_timestamp);
2546			if (err)
2547				return err;
2548		}
2549
2550		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2551			*timestamp = ptq->timestamp;
2552			return 0;
2553		}
2554	}
2555	return 0;
2556}
2557
2558static inline int intel_pt_update_queues(struct intel_pt *pt)
2559{
2560	if (pt->queues.new_data) {
2561		pt->queues.new_data = false;
2562		return intel_pt_setup_queues(pt);
2563	}
2564	return 0;
2565}
2566
2567static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2568{
2569	unsigned int queue_nr;
2570	u64 ts;
2571	int ret;
2572
2573	while (1) {
2574		struct auxtrace_queue *queue;
2575		struct intel_pt_queue *ptq;
2576
2577		if (!pt->heap.heap_cnt)
2578			return 0;
2579
2580		if (pt->heap.heap_array[0].ordinal >= timestamp)
2581			return 0;
2582
2583		queue_nr = pt->heap.heap_array[0].queue_nr;
2584		queue = &pt->queues.queue_array[queue_nr];
2585		ptq = queue->priv;
2586
2587		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2588			     queue_nr, pt->heap.heap_array[0].ordinal,
2589			     timestamp);
2590
2591		auxtrace_heap__pop(&pt->heap);
2592
2593		if (pt->heap.heap_cnt) {
2594			ts = pt->heap.heap_array[0].ordinal + 1;
2595			if (ts > timestamp)
2596				ts = timestamp;
2597		} else {
2598			ts = timestamp;
2599		}
2600
2601		intel_pt_set_pid_tid_cpu(pt, queue);
2602
2603		ret = intel_pt_run_decoder(ptq, &ts);
2604
2605		if (ret < 0) {
2606			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2607			return ret;
2608		}
2609
2610		if (!ret) {
2611			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2612			if (ret < 0)
2613				return ret;
2614		} else {
2615			ptq->on_heap = false;
2616		}
2617	}
2618
2619	return 0;
2620}
2621
2622static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2623					    u64 time_)
2624{
2625	struct auxtrace_queues *queues = &pt->queues;
2626	unsigned int i;
2627	u64 ts = 0;
2628
2629	for (i = 0; i < queues->nr_queues; i++) {
2630		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631		struct intel_pt_queue *ptq = queue->priv;
2632
2633		if (ptq && (tid == -1 || ptq->tid == tid)) {
2634			ptq->time = time_;
2635			intel_pt_set_pid_tid_cpu(pt, queue);
2636			intel_pt_run_decoder(ptq, &ts);
2637		}
2638	}
2639	return 0;
2640}
2641
2642static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2643					    struct auxtrace_queue *queue,
2644					    struct perf_sample *sample)
2645{
2646	struct machine *m = ptq->pt->machine;
2647
2648	ptq->pid = sample->pid;
2649	ptq->tid = sample->tid;
2650	ptq->cpu = queue->cpu;
2651
2652	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2653		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2654
2655	thread__zput(ptq->thread);
2656
2657	if (ptq->tid == -1)
2658		return;
2659
2660	if (ptq->pid == -1) {
2661		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2662		if (ptq->thread)
2663			ptq->pid = ptq->thread->pid_;
2664		return;
2665	}
2666
2667	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2668}
2669
2670static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2671					    struct perf_sample *sample)
2672{
2673	struct auxtrace_queue *queue;
2674	struct intel_pt_queue *ptq;
2675	u64 ts = 0;
2676
2677	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2678	if (!queue)
2679		return -EINVAL;
2680
2681	ptq = queue->priv;
2682	if (!ptq)
2683		return 0;
2684
2685	ptq->stop = false;
2686	ptq->time = sample->time;
2687	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2688	intel_pt_run_decoder(ptq, &ts);
2689	return 0;
2690}
2691
2692static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2693{
2694	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2695				    sample->pid, sample->tid, 0, sample->time);
2696}
2697
2698static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2699{
2700	unsigned i, j;
2701
2702	if (cpu < 0 || !pt->queues.nr_queues)
2703		return NULL;
2704
2705	if ((unsigned)cpu >= pt->queues.nr_queues)
2706		i = pt->queues.nr_queues - 1;
2707	else
2708		i = cpu;
2709
2710	if (pt->queues.queue_array[i].cpu == cpu)
2711		return pt->queues.queue_array[i].priv;
2712
2713	for (j = 0; i > 0; j++) {
2714		if (pt->queues.queue_array[--i].cpu == cpu)
2715			return pt->queues.queue_array[i].priv;
2716	}
2717
2718	for (; j < pt->queues.nr_queues; j++) {
2719		if (pt->queues.queue_array[j].cpu == cpu)
2720			return pt->queues.queue_array[j].priv;
2721	}
2722
2723	return NULL;
2724}
2725
2726static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2727				u64 timestamp)
2728{
2729	struct intel_pt_queue *ptq;
2730	int err;
2731
2732	if (!pt->sync_switch)
2733		return 1;
2734
2735	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2736	if (!ptq || !ptq->sync_switch)
2737		return 1;
2738
2739	switch (ptq->switch_state) {
2740	case INTEL_PT_SS_NOT_TRACING:
2741		break;
2742	case INTEL_PT_SS_UNKNOWN:
2743	case INTEL_PT_SS_TRACING:
2744		ptq->next_tid = tid;
2745		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2746		return 0;
2747	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2748		if (!ptq->on_heap) {
2749			ptq->timestamp = perf_time_to_tsc(timestamp,
2750							  &pt->tc);
2751			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2752						 ptq->timestamp);
2753			if (err)
2754				return err;
2755			ptq->on_heap = true;
2756		}
2757		ptq->switch_state = INTEL_PT_SS_TRACING;
2758		break;
2759	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2760		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2761		break;
2762	default:
2763		break;
2764	}
2765
2766	ptq->next_tid = -1;
2767
2768	return 1;
2769}
2770
2771static int intel_pt_process_switch(struct intel_pt *pt,
2772				   struct perf_sample *sample)
2773{
2774	pid_t tid;
2775	int cpu, ret;
2776	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2777
2778	if (evsel != pt->switch_evsel)
2779		return 0;
2780
2781	tid = evsel__intval(evsel, sample, "next_pid");
2782	cpu = sample->cpu;
2783
2784	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2785		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2786		     &pt->tc));
2787
2788	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2789	if (ret <= 0)
2790		return ret;
2791
2792	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2793}
2794
2795static int intel_pt_context_switch_in(struct intel_pt *pt,
2796				      struct perf_sample *sample)
2797{
2798	pid_t pid = sample->pid;
2799	pid_t tid = sample->tid;
2800	int cpu = sample->cpu;
2801
2802	if (pt->sync_switch) {
2803		struct intel_pt_queue *ptq;
2804
2805		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2806		if (ptq && ptq->sync_switch) {
2807			ptq->next_tid = -1;
2808			switch (ptq->switch_state) {
2809			case INTEL_PT_SS_NOT_TRACING:
2810			case INTEL_PT_SS_UNKNOWN:
2811			case INTEL_PT_SS_TRACING:
2812				break;
2813			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2814			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815				ptq->switch_state = INTEL_PT_SS_TRACING;
2816				break;
2817			default:
2818				break;
2819			}
2820		}
2821	}
2822
2823	/*
2824	 * If the current tid has not been updated yet, ensure it is now that
2825	 * a "switch in" event has occurred.
2826	 */
2827	if (machine__get_current_tid(pt->machine, cpu) == tid)
2828		return 0;
2829
2830	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2831}
2832
2833static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2834				   struct perf_sample *sample)
2835{
2836	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2837	pid_t pid, tid;
2838	int cpu, ret;
2839
2840	cpu = sample->cpu;
2841
2842	if (pt->have_sched_switch == 3) {
2843		if (!out)
2844			return intel_pt_context_switch_in(pt, sample);
2845		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2846			pr_err("Expecting CPU-wide context switch event\n");
2847			return -EINVAL;
2848		}
2849		pid = event->context_switch.next_prev_pid;
2850		tid = event->context_switch.next_prev_tid;
2851	} else {
2852		if (out)
2853			return 0;
2854		pid = sample->pid;
2855		tid = sample->tid;
2856	}
2857
2858	if (tid == -1)
2859		intel_pt_log("context_switch event has no tid\n");
2860
2861	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2862	if (ret <= 0)
2863		return ret;
2864
2865	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2866}
2867
2868static int intel_pt_process_itrace_start(struct intel_pt *pt,
2869					 union perf_event *event,
2870					 struct perf_sample *sample)
2871{
2872	if (!pt->per_cpu_mmaps)
2873		return 0;
2874
2875	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2876		     sample->cpu, event->itrace_start.pid,
2877		     event->itrace_start.tid, sample->time,
2878		     perf_time_to_tsc(sample->time, &pt->tc));
2879
2880	return machine__set_current_tid(pt->machine, sample->cpu,
2881					event->itrace_start.pid,
2882					event->itrace_start.tid);
2883}
2884
2885static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2886			     struct addr_location *al)
2887{
2888	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2889		if (!thread__find_map(thread, cpumode, addr, al))
2890			return -1;
2891	}
2892
2893	return 0;
2894}
2895
2896/* Invalidate all instruction cache entries that overlap the text poke */
2897static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2898{
2899	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2900	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2901	/* Assume text poke begins in a basic block no more than 4096 bytes */
2902	int cnt = 4096 + event->text_poke.new_len;
2903	struct thread *thread = pt->unknown_thread;
2904	struct addr_location al = { .map = NULL };
2905	struct machine *machine = pt->machine;
2906	struct intel_pt_cache_entry *e;
2907	u64 offset;
2908
2909	if (!event->text_poke.new_len)
2910		return 0;
2911
2912	for (; cnt; cnt--, addr--) {
2913		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2914			if (addr < event->text_poke.addr)
2915				return 0;
2916			continue;
2917		}
2918
2919		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2920			continue;
2921
2922		offset = al.map->map_ip(al.map, addr);
2923
2924		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2925		if (!e)
2926			continue;
2927
2928		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2929			/*
2930			 * No overlap. Working backwards there cannot be another
2931			 * basic block that overlaps the text poke if there is a
2932			 * branch instruction before the text poke address.
2933			 */
2934			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2935				return 0;
2936		} else {
2937			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2938			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2939				     al.map->dso->long_name, addr);
2940		}
2941	}
2942
2943	return 0;
2944}
2945
2946static int intel_pt_process_event(struct perf_session *session,
2947				  union perf_event *event,
2948				  struct perf_sample *sample,
2949				  struct perf_tool *tool)
2950{
2951	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2952					   auxtrace);
2953	u64 timestamp;
2954	int err = 0;
2955
2956	if (dump_trace)
2957		return 0;
2958
2959	if (!tool->ordered_events) {
2960		pr_err("Intel Processor Trace requires ordered events\n");
2961		return -EINVAL;
2962	}
2963
2964	if (sample->time && sample->time != (u64)-1)
2965		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2966	else
2967		timestamp = 0;
2968
2969	if (timestamp || pt->timeless_decoding) {
2970		err = intel_pt_update_queues(pt);
2971		if (err)
2972			return err;
2973	}
2974
2975	if (pt->timeless_decoding) {
2976		if (pt->sampling_mode) {
2977			if (sample->aux_sample.size)
2978				err = intel_pt_process_timeless_sample(pt,
2979								       sample);
2980		} else if (event->header.type == PERF_RECORD_EXIT) {
2981			err = intel_pt_process_timeless_queues(pt,
2982							       event->fork.tid,
2983							       sample->time);
2984		}
2985	} else if (timestamp) {
2986		if (!pt->first_timestamp)
2987			intel_pt_first_timestamp(pt, timestamp);
2988		err = intel_pt_process_queues(pt, timestamp);
2989	}
2990	if (err)
2991		return err;
2992
2993	if (event->header.type == PERF_RECORD_SAMPLE) {
2994		if (pt->synth_opts.add_callchain && !sample->callchain)
2995			intel_pt_add_callchain(pt, sample);
2996		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2997			intel_pt_add_br_stack(pt, sample);
2998	}
2999
3000	if (event->header.type == PERF_RECORD_AUX &&
3001	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3002	    pt->synth_opts.errors) {
3003		err = intel_pt_lost(pt, sample);
3004		if (err)
3005			return err;
3006	}
3007
3008	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3009		err = intel_pt_process_switch(pt, sample);
3010	else if (event->header.type == PERF_RECORD_ITRACE_START)
3011		err = intel_pt_process_itrace_start(pt, event, sample);
3012	else if (event->header.type == PERF_RECORD_SWITCH ||
3013		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3014		err = intel_pt_context_switch(pt, event, sample);
3015
3016	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3017		err = intel_pt_text_poke(pt, event);
3018
3019	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3020		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3021			     event->header.type, sample->cpu, sample->time, timestamp);
3022		intel_pt_log_event(event);
3023	}
3024
3025	return err;
3026}
3027
3028static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3029{
3030	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031					   auxtrace);
3032	int ret;
3033
3034	if (dump_trace)
3035		return 0;
3036
3037	if (!tool->ordered_events)
3038		return -EINVAL;
3039
3040	ret = intel_pt_update_queues(pt);
3041	if (ret < 0)
3042		return ret;
3043
3044	if (pt->timeless_decoding)
3045		return intel_pt_process_timeless_queues(pt, -1,
3046							MAX_TIMESTAMP - 1);
3047
3048	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3049}
3050
3051static void intel_pt_free_events(struct perf_session *session)
3052{
3053	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3054					   auxtrace);
3055	struct auxtrace_queues *queues = &pt->queues;
3056	unsigned int i;
3057
3058	for (i = 0; i < queues->nr_queues; i++) {
3059		intel_pt_free_queue(queues->queue_array[i].priv);
3060		queues->queue_array[i].priv = NULL;
3061	}
3062	intel_pt_log_disable();
3063	auxtrace_queues__free(queues);
3064}
3065
3066static void intel_pt_free(struct perf_session *session)
3067{
3068	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3069					   auxtrace);
3070
3071	auxtrace_heap__free(&pt->heap);
3072	intel_pt_free_events(session);
3073	session->auxtrace = NULL;
3074	intel_pt_free_vmcs_info(pt);
3075	thread__put(pt->unknown_thread);
3076	addr_filters__exit(&pt->filts);
3077	zfree(&pt->chain);
3078	zfree(&pt->filter);
3079	zfree(&pt->time_ranges);
3080	free(pt);
3081}
3082
3083static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3084				       struct evsel *evsel)
3085{
3086	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3087					   auxtrace);
3088
3089	return evsel->core.attr.type == pt->pmu_type;
3090}
3091
3092static int intel_pt_process_auxtrace_event(struct perf_session *session,
3093					   union perf_event *event,
3094					   struct perf_tool *tool __maybe_unused)
3095{
3096	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3097					   auxtrace);
3098
3099	if (!pt->data_queued) {
3100		struct auxtrace_buffer *buffer;
3101		off_t data_offset;
3102		int fd = perf_data__fd(session->data);
3103		int err;
3104
3105		if (perf_data__is_pipe(session->data)) {
3106			data_offset = 0;
3107		} else {
3108			data_offset = lseek(fd, 0, SEEK_CUR);
3109			if (data_offset == -1)
3110				return -errno;
3111		}
3112
3113		err = auxtrace_queues__add_event(&pt->queues, session, event,
3114						 data_offset, &buffer);
3115		if (err)
3116			return err;
3117
3118		/* Dump here now we have copied a piped trace out of the pipe */
3119		if (dump_trace) {
3120			if (auxtrace_buffer__get_data(buffer, fd)) {
3121				intel_pt_dump_event(pt, buffer->data,
3122						    buffer->size);
3123				auxtrace_buffer__put_data(buffer);
3124			}
3125		}
3126	}
3127
3128	return 0;
3129}
3130
3131static int intel_pt_queue_data(struct perf_session *session,
3132			       struct perf_sample *sample,
3133			       union perf_event *event, u64 data_offset)
3134{
3135	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136					   auxtrace);
3137	u64 timestamp;
3138
3139	if (event) {
3140		return auxtrace_queues__add_event(&pt->queues, session, event,
3141						  data_offset, NULL);
3142	}
3143
3144	if (sample->time && sample->time != (u64)-1)
3145		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3146	else
3147		timestamp = 0;
3148
3149	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3150					   data_offset, timestamp);
3151}
3152
3153struct intel_pt_synth {
3154	struct perf_tool dummy_tool;
3155	struct perf_session *session;
3156};
3157
3158static int intel_pt_event_synth(struct perf_tool *tool,
3159				union perf_event *event,
3160				struct perf_sample *sample __maybe_unused,
3161				struct machine *machine __maybe_unused)
3162{
3163	struct intel_pt_synth *intel_pt_synth =
3164			container_of(tool, struct intel_pt_synth, dummy_tool);
3165
3166	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3167						 NULL);
3168}
3169
3170static int intel_pt_synth_event(struct perf_session *session, const char *name,
3171				struct perf_event_attr *attr, u64 id)
3172{
3173	struct intel_pt_synth intel_pt_synth;
3174	int err;
3175
3176	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3177		 name, id, (u64)attr->sample_type);
3178
3179	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3180	intel_pt_synth.session = session;
3181
3182	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3183					  &id, intel_pt_event_synth);
3184	if (err)
3185		pr_err("%s: failed to synthesize '%s' event type\n",
3186		       __func__, name);
3187
3188	return err;
3189}
3190
3191static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3192				    const char *name)
3193{
3194	struct evsel *evsel;
3195
3196	evlist__for_each_entry(evlist, evsel) {
3197		if (evsel->core.id && evsel->core.id[0] == id) {
3198			if (evsel->name)
3199				zfree(&evsel->name);
3200			evsel->name = strdup(name);
3201			break;
3202		}
3203	}
3204}
3205
3206static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3207					 struct evlist *evlist)
3208{
3209	struct evsel *evsel;
3210
3211	evlist__for_each_entry(evlist, evsel) {
3212		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3213			return evsel;
3214	}
3215
3216	return NULL;
3217}
3218
3219static int intel_pt_synth_events(struct intel_pt *pt,
3220				 struct perf_session *session)
3221{
3222	struct evlist *evlist = session->evlist;
3223	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3224	struct perf_event_attr attr;
3225	u64 id;
3226	int err;
3227
3228	if (!evsel) {
3229		pr_debug("There are no selected events with Intel Processor Trace data\n");
3230		return 0;
3231	}
3232
3233	memset(&attr, 0, sizeof(struct perf_event_attr));
3234	attr.size = sizeof(struct perf_event_attr);
3235	attr.type = PERF_TYPE_HARDWARE;
3236	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3237	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3238			    PERF_SAMPLE_PERIOD;
3239	if (pt->timeless_decoding)
3240		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3241	else
3242		attr.sample_type |= PERF_SAMPLE_TIME;
3243	if (!pt->per_cpu_mmaps)
3244		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3245	attr.exclude_user = evsel->core.attr.exclude_user;
3246	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3247	attr.exclude_hv = evsel->core.attr.exclude_hv;
3248	attr.exclude_host = evsel->core.attr.exclude_host;
3249	attr.exclude_guest = evsel->core.attr.exclude_guest;
3250	attr.sample_id_all = evsel->core.attr.sample_id_all;
3251	attr.read_format = evsel->core.attr.read_format;
3252
3253	id = evsel->core.id[0] + 1000000000;
3254	if (!id)
3255		id = 1;
3256
3257	if (pt->synth_opts.branches) {
3258		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3259		attr.sample_period = 1;
3260		attr.sample_type |= PERF_SAMPLE_ADDR;
3261		err = intel_pt_synth_event(session, "branches", &attr, id);
3262		if (err)
3263			return err;
3264		pt->sample_branches = true;
3265		pt->branches_sample_type = attr.sample_type;
3266		pt->branches_id = id;
3267		id += 1;
3268		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3269	}
3270
3271	if (pt->synth_opts.callchain)
3272		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3273	if (pt->synth_opts.last_branch) {
3274		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3275		/*
3276		 * We don't use the hardware index, but the sample generation
3277		 * code uses the new format branch_stack with this field,
3278		 * so the event attributes must indicate that it's present.
3279		 */
3280		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3281	}
3282
3283	if (pt->synth_opts.instructions) {
3284		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3285		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3286			attr.sample_period =
3287				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3288		else
3289			attr.sample_period = pt->synth_opts.period;
3290		err = intel_pt_synth_event(session, "instructions", &attr, id);
3291		if (err)
3292			return err;
3293		pt->sample_instructions = true;
3294		pt->instructions_sample_type = attr.sample_type;
3295		pt->instructions_id = id;
3296		id += 1;
3297	}
3298
3299	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3300	attr.sample_period = 1;
3301
3302	if (pt->synth_opts.transactions) {
3303		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3304		err = intel_pt_synth_event(session, "transactions", &attr, id);
3305		if (err)
3306			return err;
3307		pt->sample_transactions = true;
3308		pt->transactions_sample_type = attr.sample_type;
3309		pt->transactions_id = id;
3310		intel_pt_set_event_name(evlist, id, "transactions");
3311		id += 1;
3312	}
3313
3314	attr.type = PERF_TYPE_SYNTH;
3315	attr.sample_type |= PERF_SAMPLE_RAW;
3316
3317	if (pt->synth_opts.ptwrites) {
3318		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3319		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3320		if (err)
3321			return err;
3322		pt->sample_ptwrites = true;
3323		pt->ptwrites_sample_type = attr.sample_type;
3324		pt->ptwrites_id = id;
3325		intel_pt_set_event_name(evlist, id, "ptwrite");
3326		id += 1;
3327	}
3328
3329	if (pt->synth_opts.pwr_events) {
3330		pt->sample_pwr_events = true;
3331		pt->pwr_events_sample_type = attr.sample_type;
3332
3333		attr.config = PERF_SYNTH_INTEL_CBR;
3334		err = intel_pt_synth_event(session, "cbr", &attr, id);
3335		if (err)
3336			return err;
3337		pt->cbr_id = id;
3338		intel_pt_set_event_name(evlist, id, "cbr");
3339		id += 1;
3340
3341		attr.config = PERF_SYNTH_INTEL_PSB;
3342		err = intel_pt_synth_event(session, "psb", &attr, id);
3343		if (err)
3344			return err;
3345		pt->psb_id = id;
3346		intel_pt_set_event_name(evlist, id, "psb");
3347		id += 1;
3348	}
3349
3350	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3351		attr.config = PERF_SYNTH_INTEL_MWAIT;
3352		err = intel_pt_synth_event(session, "mwait", &attr, id);
3353		if (err)
3354			return err;
3355		pt->mwait_id = id;
3356		intel_pt_set_event_name(evlist, id, "mwait");
3357		id += 1;
3358
3359		attr.config = PERF_SYNTH_INTEL_PWRE;
3360		err = intel_pt_synth_event(session, "pwre", &attr, id);
3361		if (err)
3362			return err;
3363		pt->pwre_id = id;
3364		intel_pt_set_event_name(evlist, id, "pwre");
3365		id += 1;
3366
3367		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3368		err = intel_pt_synth_event(session, "exstop", &attr, id);
3369		if (err)
3370			return err;
3371		pt->exstop_id = id;
3372		intel_pt_set_event_name(evlist, id, "exstop");
3373		id += 1;
3374
3375		attr.config = PERF_SYNTH_INTEL_PWRX;
3376		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3377		if (err)
3378			return err;
3379		pt->pwrx_id = id;
3380		intel_pt_set_event_name(evlist, id, "pwrx");
3381		id += 1;
3382	}
3383
3384	return 0;
3385}
3386
3387static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3388{
3389	struct evsel *evsel;
3390
3391	if (!pt->synth_opts.other_events)
3392		return;
3393
3394	evlist__for_each_entry(pt->session->evlist, evsel) {
3395		if (evsel->core.attr.aux_output && evsel->core.id) {
3396			pt->sample_pebs = true;
3397			pt->pebs_evsel = evsel;
3398			return;
3399		}
3400	}
3401}
3402
3403static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3404{
3405	struct evsel *evsel;
3406
3407	evlist__for_each_entry_reverse(evlist, evsel) {
3408		const char *name = evsel__name(evsel);
3409
3410		if (!strcmp(name, "sched:sched_switch"))
3411			return evsel;
3412	}
3413
3414	return NULL;
3415}
3416
3417static bool intel_pt_find_switch(struct evlist *evlist)
3418{
3419	struct evsel *evsel;
3420
3421	evlist__for_each_entry(evlist, evsel) {
3422		if (evsel->core.attr.context_switch)
3423			return true;
3424	}
3425
3426	return false;
3427}
3428
3429static int intel_pt_perf_config(const char *var, const char *value, void *data)
3430{
3431	struct intel_pt *pt = data;
3432
3433	if (!strcmp(var, "intel-pt.mispred-all"))
3434		pt->mispred_all = perf_config_bool(var, value);
3435
3436	if (!strcmp(var, "intel-pt.max-loops"))
3437		perf_config_int(&pt->max_loops, var, value);
3438
3439	return 0;
3440}
3441
3442/* Find least TSC which converts to ns or later */
3443static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3444{
3445	u64 tsc, tm;
3446
3447	tsc = perf_time_to_tsc(ns, &pt->tc);
3448
3449	while (1) {
3450		tm = tsc_to_perf_time(tsc, &pt->tc);
3451		if (tm < ns)
3452			break;
3453		tsc -= 1;
3454	}
3455
3456	while (tm < ns)
3457		tm = tsc_to_perf_time(++tsc, &pt->tc);
3458
3459	return tsc;
3460}
3461
3462/* Find greatest TSC which converts to ns or earlier */
3463static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3464{
3465	u64 tsc, tm;
3466
3467	tsc = perf_time_to_tsc(ns, &pt->tc);
3468
3469	while (1) {
3470		tm = tsc_to_perf_time(tsc, &pt->tc);
3471		if (tm > ns)
3472			break;
3473		tsc += 1;
3474	}
3475
3476	while (tm > ns)
3477		tm = tsc_to_perf_time(--tsc, &pt->tc);
3478
3479	return tsc;
3480}
3481
3482static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3483				      struct itrace_synth_opts *opts)
3484{
3485	struct perf_time_interval *p = opts->ptime_range;
3486	int n = opts->range_num;
3487	int i;
3488
3489	if (!n || !p || pt->timeless_decoding)
3490		return 0;
3491
3492	pt->time_ranges = calloc(n, sizeof(struct range));
3493	if (!pt->time_ranges)
3494		return -ENOMEM;
3495
3496	pt->range_cnt = n;
3497
3498	intel_pt_log("%s: %u range(s)\n", __func__, n);
3499
3500	for (i = 0; i < n; i++) {
3501		struct range *r = &pt->time_ranges[i];
3502		u64 ts = p[i].start;
3503		u64 te = p[i].end;
3504
3505		/*
3506		 * Take care to ensure the TSC range matches the perf-time range
3507		 * when converted back to perf-time.
3508		 */
3509		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3510		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3511
3512		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3513			     i, ts, te);
3514		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3515			     i, r->start, r->end);
3516	}
3517
3518	return 0;
3519}
3520
3521static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3522{
3523	struct intel_pt_vmcs_info *vmcs_info;
3524	u64 tsc_offset, vmcs;
3525	char *p = *args;
3526
3527	errno = 0;
3528
3529	p = skip_spaces(p);
3530	if (!*p)
3531		return 1;
3532
3533	tsc_offset = strtoull(p, &p, 0);
3534	if (errno)
3535		return -errno;
3536	p = skip_spaces(p);
3537	if (*p != ':') {
3538		pt->dflt_tsc_offset = tsc_offset;
3539		*args = p;
3540		return 0;
3541	}
3542	while (1) {
3543		vmcs = strtoull(p, &p, 0);
3544		if (errno)
3545			return -errno;
3546		if (!vmcs)
3547			return -EINVAL;
3548		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3549		if (!vmcs_info)
3550			return -ENOMEM;
3551		p = skip_spaces(p);
3552		if (*p != ',')
3553			break;
3554		p += 1;
3555	}
3556	*args = p;
3557	return 0;
3558}
3559
3560static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3561{
3562	char *args = pt->synth_opts.vm_tm_corr_args;
3563	int ret;
3564
3565	if (!args)
3566		return 0;
3567
3568	do {
3569		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3570	} while (!ret);
3571
3572	if (ret < 0) {
3573		pr_err("Failed to parse VM Time Correlation options\n");
3574		return ret;
3575	}
3576
3577	return 0;
3578}
3579
3580static const char * const intel_pt_info_fmts[] = {
3581	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3582	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3583	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3584	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3585	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3586	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3587	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3588	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3589	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3590	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3591	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3592	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3593	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3594	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3595	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3596	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3597};
3598
3599static void intel_pt_print_info(__u64 *arr, int start, int finish)
3600{
3601	int i;
3602
3603	if (!dump_trace)
3604		return;
3605
3606	for (i = start; i <= finish; i++)
3607		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3608}
3609
3610static void intel_pt_print_info_str(const char *name, const char *str)
3611{
3612	if (!dump_trace)
3613		return;
3614
3615	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3616}
3617
3618static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3619{
3620	return auxtrace_info->header.size >=
3621		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3622}
3623
3624int intel_pt_process_auxtrace_info(union perf_event *event,
3625				   struct perf_session *session)
3626{
3627	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3628	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3629	struct intel_pt *pt;
3630	void *info_end;
3631	__u64 *info;
3632	int err;
3633
3634	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3635					min_sz)
3636		return -EINVAL;
3637
3638	pt = zalloc(sizeof(struct intel_pt));
3639	if (!pt)
3640		return -ENOMEM;
3641
3642	pt->vmcs_info = RB_ROOT;
3643
3644	addr_filters__init(&pt->filts);
3645
3646	err = perf_config(intel_pt_perf_config, pt);
3647	if (err)
3648		goto err_free;
3649
3650	err = auxtrace_queues__init(&pt->queues);
3651	if (err)
3652		goto err_free;
3653
3654	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3655
3656	if (session->itrace_synth_opts->set) {
3657		pt->synth_opts = *session->itrace_synth_opts;
3658	} else {
3659		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3660
3661		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3662		if (!opts->default_no_sample && !opts->inject) {
3663			pt->synth_opts.branches = false;
3664			pt->synth_opts.callchain = true;
3665			pt->synth_opts.add_callchain = true;
3666		}
3667		pt->synth_opts.thread_stack = opts->thread_stack;
3668	}
3669
3670	pt->session = session;
3671	pt->machine = &session->machines.host; /* No kvm support */
3672	pt->auxtrace_type = auxtrace_info->type;
3673	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3674	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3675	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3676	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3677	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3678	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3679	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3680	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3681	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3682	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3683	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3684			    INTEL_PT_PER_CPU_MMAPS);
3685
3686	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3687		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3688		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3689		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3690		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3691		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3692		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3693				    INTEL_PT_CYC_BIT);
3694	}
3695
3696	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3697		pt->max_non_turbo_ratio =
3698			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3699		intel_pt_print_info(&auxtrace_info->priv[0],
3700				    INTEL_PT_MAX_NONTURBO_RATIO,
3701				    INTEL_PT_MAX_NONTURBO_RATIO);
3702	}
3703
3704	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3705	info_end = (void *)info + auxtrace_info->header.size;
3706
3707	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3708		size_t len;
3709
3710		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3711		intel_pt_print_info(&auxtrace_info->priv[0],
3712				    INTEL_PT_FILTER_STR_LEN,
3713				    INTEL_PT_FILTER_STR_LEN);
3714		if (len) {
3715			const char *filter = (const char *)info;
3716
3717			len = roundup(len + 1, 8);
3718			info += len >> 3;
3719			if ((void *)info > info_end) {
3720				pr_err("%s: bad filter string length\n", __func__);
3721				err = -EINVAL;
3722				goto err_free_queues;
3723			}
3724			pt->filter = memdup(filter, len);
3725			if (!pt->filter) {
3726				err = -ENOMEM;
3727				goto err_free_queues;
3728			}
3729			if (session->header.needs_swap)
3730				mem_bswap_64(pt->filter, len);
3731			if (pt->filter[len - 1]) {
3732				pr_err("%s: filter string not null terminated\n", __func__);
3733				err = -EINVAL;
3734				goto err_free_queues;
3735			}
3736			err = addr_filters__parse_bare_filter(&pt->filts,
3737							      filter);
3738			if (err)
3739				goto err_free_queues;
3740		}
3741		intel_pt_print_info_str("Filter string", pt->filter);
3742	}
3743
3744	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3745	if (pt->timeless_decoding && !pt->tc.time_mult)
3746		pt->tc.time_mult = 1;
3747	pt->have_tsc = intel_pt_have_tsc(pt);
3748	pt->sampling_mode = intel_pt_sampling_mode(pt);
3749	pt->est_tsc = !pt->timeless_decoding;
3750
3751	if (pt->synth_opts.vm_time_correlation) {
3752		if (pt->timeless_decoding) {
3753			pr_err("Intel PT has no time information for VM Time Correlation\n");
3754			err = -EINVAL;
3755			goto err_free_queues;
3756		}
3757		if (session->itrace_synth_opts->ptime_range) {
3758			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3759			err = -EINVAL;
3760			goto err_free_queues;
3761		}
3762		/* Currently TSC Offset is calculated using MTC packets */
3763		if (!intel_pt_have_mtc(pt)) {
3764			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3765			err = -EINVAL;
3766			goto err_free_queues;
3767		}
3768		err = intel_pt_parse_vm_tm_corr_args(pt);
3769		if (err)
3770			goto err_free_queues;
3771	}
3772
3773	pt->unknown_thread = thread__new(999999999, 999999999);
3774	if (!pt->unknown_thread) {
3775		err = -ENOMEM;
3776		goto err_free_queues;
3777	}
3778
3779	/*
3780	 * Since this thread will not be kept in any rbtree not in a
3781	 * list, initialize its list node so that at thread__put() the
3782	 * current thread lifetime assumption is kept and we don't segfault
3783	 * at list_del_init().
3784	 */
3785	INIT_LIST_HEAD(&pt->unknown_thread->node);
3786
3787	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3788	if (err)
3789		goto err_delete_thread;
3790	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3791		err = -ENOMEM;
3792		goto err_delete_thread;
3793	}
3794
3795	pt->auxtrace.process_event = intel_pt_process_event;
3796	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3797	pt->auxtrace.queue_data = intel_pt_queue_data;
3798	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3799	pt->auxtrace.flush_events = intel_pt_flush;
3800	pt->auxtrace.free_events = intel_pt_free_events;
3801	pt->auxtrace.free = intel_pt_free;
3802	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3803	session->auxtrace = &pt->auxtrace;
3804
3805	if (dump_trace)
3806		return 0;
3807
3808	if (pt->have_sched_switch == 1) {
3809		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3810		if (!pt->switch_evsel) {
3811			pr_err("%s: missing sched_switch event\n", __func__);
3812			err = -EINVAL;
3813			goto err_delete_thread;
3814		}
3815	} else if (pt->have_sched_switch == 2 &&
3816		   !intel_pt_find_switch(session->evlist)) {
3817		pr_err("%s: missing context_switch attribute flag\n", __func__);
3818		err = -EINVAL;
3819		goto err_delete_thread;
3820	}
3821
3822	if (pt->synth_opts.log)
3823		intel_pt_log_enable();
3824
3825	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3826	if (pt->tc.time_mult) {
3827		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3828
3829		if (!pt->max_non_turbo_ratio)
3830			pt->max_non_turbo_ratio =
3831					(tsc_freq + 50000000) / 100000000;
3832		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3833		intel_pt_log("Maximum non-turbo ratio %u\n",
3834			     pt->max_non_turbo_ratio);
3835		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3836	}
3837
3838	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3839	if (err)
3840		goto err_delete_thread;
3841
3842	if (pt->synth_opts.calls)
3843		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3844				       PERF_IP_FLAG_TRACE_END;
3845	if (pt->synth_opts.returns)
3846		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3847				       PERF_IP_FLAG_TRACE_BEGIN;
3848
3849	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3850	    !symbol_conf.use_callchain) {
3851		symbol_conf.use_callchain = true;
3852		if (callchain_register_param(&callchain_param) < 0) {
3853			symbol_conf.use_callchain = false;
3854			pt->synth_opts.callchain = false;
3855			pt->synth_opts.add_callchain = false;
3856		}
3857	}
3858
3859	if (pt->synth_opts.add_callchain) {
3860		err = intel_pt_callchain_init(pt);
3861		if (err)
3862			goto err_delete_thread;
3863	}
3864
3865	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3866		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3867		pt->br_stack_sz_plus = pt->br_stack_sz;
3868	}
3869
3870	if (pt->synth_opts.add_last_branch) {
3871		err = intel_pt_br_stack_init(pt);
3872		if (err)
3873			goto err_delete_thread;
3874		/*
3875		 * Additional branch stack size to cater for tracing from the
3876		 * actual sample ip to where the sample time is recorded.
3877		 * Measured at about 200 branches, but generously set to 1024.
3878		 * If kernel space is not being traced, then add just 1 for the
3879		 * branch to kernel space.
3880		 */
3881		if (intel_pt_tracing_kernel(pt))
3882			pt->br_stack_sz_plus += 1024;
3883		else
3884			pt->br_stack_sz_plus += 1;
3885	}
3886
3887	pt->use_thread_stack = pt->synth_opts.callchain ||
3888			       pt->synth_opts.add_callchain ||
3889			       pt->synth_opts.thread_stack ||
3890			       pt->synth_opts.last_branch ||
3891			       pt->synth_opts.add_last_branch;
3892
3893	pt->callstack = pt->synth_opts.callchain ||
3894			pt->synth_opts.add_callchain ||
3895			pt->synth_opts.thread_stack;
3896
3897	err = intel_pt_synth_events(pt, session);
3898	if (err)
3899		goto err_delete_thread;
3900
3901	intel_pt_setup_pebs_events(pt);
3902
3903	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3904		err = auxtrace_queue_data(session, true, true);
3905	else
3906		err = auxtrace_queues__process_index(&pt->queues, session);
3907	if (err)
3908		goto err_delete_thread;
3909
3910	if (pt->queues.populated)
3911		pt->data_queued = true;
3912
3913	if (pt->timeless_decoding)
3914		pr_debug2("Intel PT decoding without timestamps\n");
3915
3916	return 0;
3917
3918err_delete_thread:
3919	zfree(&pt->chain);
3920	thread__zput(pt->unknown_thread);
3921err_free_queues:
3922	intel_pt_log_disable();
3923	auxtrace_queues__free(&pt->queues);
3924	session->auxtrace = NULL;
3925err_free:
3926	addr_filters__exit(&pt->filts);
3927	zfree(&pt->filter);
3928	zfree(&pt->time_ranges);
3929	free(pt);
3930	return err;
3931}