Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
 
 
  21
  22#include <linux/sunrpc/clnt.h>
 
  23
  24#include "sunrpc.h"
  25
  26#ifdef RPC_DEBUG
  27#define RPCDBG_FACILITY		RPCDBG_SCHED
  28#endif
  29
  30/*
  31 * RPC slabs and memory pools
  32 */
  33#define RPC_BUFFER_MAXSIZE	(2048)
  34#define RPC_BUFFER_POOLSIZE	(8)
  35#define RPC_TASK_POOLSIZE	(8)
  36static struct kmem_cache	*rpc_task_slabp __read_mostly;
  37static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  38static mempool_t	*rpc_task_mempool __read_mostly;
  39static mempool_t	*rpc_buffer_mempool __read_mostly;
  40
  41static void			rpc_async_schedule(struct work_struct *);
  42static void			 rpc_release_task(struct rpc_task *task);
  43static void __rpc_queue_timer_fn(unsigned long ptr);
  44
  45/*
  46 * RPC tasks sit here while waiting for conditions to improve.
  47 */
  48static struct rpc_wait_queue delay_queue;
  49
  50/*
  51 * rpciod-related stuff
  52 */
  53struct workqueue_struct *rpciod_workqueue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55/*
  56 * Disable the timer for a given RPC task. Should be called with
  57 * queue->lock and bh_disabled in order to avoid races within
  58 * rpc_run_timer().
  59 */
  60static void
  61__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  62{
  63	if (task->tk_timeout == 0)
  64		return;
  65	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  66	task->tk_timeout = 0;
  67	list_del(&task->u.tk_wait.timer_list);
  68	if (list_empty(&queue->timer_list.list))
  69		del_timer(&queue->timer_list.timer);
  70}
  71
  72static void
  73rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  74{
 
  75	queue->timer_list.expires = expires;
  76	mod_timer(&queue->timer_list.timer, expires);
 
 
 
 
  77}
  78
  79/*
  80 * Set up a timer for the current task.
  81 */
  82static void
  83__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
 
  84{
  85	if (!task->tk_timeout)
  86		return;
 
 
 
  87
  88	dprintk("RPC: %5u setting alarm for %lu ms\n",
  89			task->tk_pid, task->tk_timeout * 1000 / HZ);
 
 
 
 
 
  90
  91	task->u.tk_wait.expires = jiffies + task->tk_timeout;
  92	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  93		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  94	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  95}
  96
  97/*
  98 * Add new request to a priority queue.
  99 */
 100static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 101		struct rpc_task *task,
 102		unsigned char queue_priority)
 103{
 104	struct list_head *q;
 105	struct rpc_task *t;
 106
 107	INIT_LIST_HEAD(&task->u.tk_wait.links);
 108	q = &queue->tasks[queue_priority];
 109	if (unlikely(queue_priority > queue->maxpriority))
 110		q = &queue->tasks[queue->maxpriority];
 111	list_for_each_entry(t, q, u.tk_wait.list) {
 112		if (t->tk_owner == task->tk_owner) {
 113			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 
 
 
 
 114			return;
 115		}
 116	}
 
 117	list_add_tail(&task->u.tk_wait.list, q);
 118}
 119
 120/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121 * Add new request to wait queue.
 122 *
 123 * Swapper tasks always get inserted at the head of the queue.
 124 * This should avoid many nasty memory deadlocks and hopefully
 125 * improve overall performance.
 126 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 127 */
 128static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 129		struct rpc_task *task,
 130		unsigned char queue_priority)
 131{
 132	BUG_ON (RPC_IS_QUEUED(task));
 133
 134	if (RPC_IS_PRIORITY(queue))
 135		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 136	else if (RPC_IS_SWAPPER(task))
 137		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 138	else
 139		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 140	task->tk_waitqueue = queue;
 141	queue->qlen++;
 
 
 142	rpc_set_queued(task);
 143
 144	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 145			task->tk_pid, queue, rpc_qname(queue));
 146}
 147
 148/*
 149 * Remove request from a priority queue.
 150 */
 151static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 152{
 153	struct rpc_task *t;
 154
 155	if (!list_empty(&task->u.tk_wait.links)) {
 156		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 157		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 158		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 159	}
 160}
 161
 162/*
 163 * Remove request from queue.
 164 * Note: must be called with spin lock held.
 165 */
 166static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 167{
 168	__rpc_disable_timer(queue, task);
 169	if (RPC_IS_PRIORITY(queue))
 170		__rpc_remove_wait_queue_priority(task);
 171	list_del(&task->u.tk_wait.list);
 
 172	queue->qlen--;
 173	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 174			task->tk_pid, queue, rpc_qname(queue));
 175}
 176
 177static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 178{
 179	queue->priority = priority;
 180	queue->count = 1 << (priority * 2);
 181}
 182
 183static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 184{
 185	queue->owner = pid;
 186	queue->nr = RPC_BATCH_COUNT;
 187}
 188
 189static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 190{
 191	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 192	rpc_set_waitqueue_owner(queue, 0);
 193}
 194
 195static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 196{
 197	int i;
 198
 199	spin_lock_init(&queue->lock);
 200	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 201		INIT_LIST_HEAD(&queue->tasks[i]);
 202	queue->maxpriority = nr_queues - 1;
 203	rpc_reset_waitqueue_priority(queue);
 204	queue->qlen = 0;
 205	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 
 206	INIT_LIST_HEAD(&queue->timer_list.list);
 207#ifdef RPC_DEBUG
 208	queue->name = qname;
 209#endif
 210}
 211
 212void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 213{
 214	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 215}
 216EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 217
 218void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 219{
 220	__rpc_init_priority_wait_queue(queue, qname, 1);
 221}
 222EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 223
 224void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 225{
 226	del_timer_sync(&queue->timer_list.timer);
 227}
 228EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 229
 230static int rpc_wait_bit_killable(void *word)
 231{
 232	if (fatal_signal_pending(current))
 
 233		return -ERESTARTSYS;
 234	schedule();
 235	return 0;
 236}
 237
 238#ifdef RPC_DEBUG
 239static void rpc_task_set_debuginfo(struct rpc_task *task)
 240{
 241	static atomic_t rpc_pid;
 242
 243	task->tk_pid = atomic_inc_return(&rpc_pid);
 244}
 245#else
 246static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 247{
 248}
 249#endif
 250
 251static void rpc_set_active(struct rpc_task *task)
 252{
 253	rpc_task_set_debuginfo(task);
 254	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 
 255}
 256
 257/*
 258 * Mark an RPC call as having completed by clearing the 'active' bit
 259 * and then waking up all tasks that were sleeping.
 260 */
 261static int rpc_complete_task(struct rpc_task *task)
 262{
 263	void *m = &task->tk_runstate;
 264	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 265	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 266	unsigned long flags;
 267	int ret;
 268
 
 
 269	spin_lock_irqsave(&wq->lock, flags);
 270	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 271	ret = atomic_dec_and_test(&task->tk_count);
 272	if (waitqueue_active(wq))
 273		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 274	spin_unlock_irqrestore(&wq->lock, flags);
 275	return ret;
 276}
 277
 278/*
 279 * Allow callers to wait for completion of an RPC call
 280 *
 281 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 282 * to enforce taking of the wq->lock and hence avoid races with
 283 * rpc_complete_task().
 284 */
 285int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
 286{
 287	if (action == NULL)
 288		action = rpc_wait_bit_killable;
 289	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 290			action, TASK_KILLABLE);
 291}
 292EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 293
 294/*
 295 * Make an RPC task runnable.
 296 *
 297 * Note: If the task is ASYNC, this must be called with
 298 * the spinlock held to protect the wait queue operation.
 
 
 
 
 
 299 */
 300static void rpc_make_runnable(struct rpc_task *task)
 
 301{
 
 
 302	rpc_clear_queued(task);
 303	if (rpc_test_and_set_running(task))
 304		return;
 305	if (RPC_IS_ASYNC(task)) {
 306		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 307		queue_work(rpciod_workqueue, &task->u.tk_work);
 308	} else
 309		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 310}
 311
 312/*
 313 * Prepare for sleeping on a wait queue.
 314 * By always appending tasks to the list we ensure FIFO behavior.
 315 * NB: An RPC task will only receive interrupt-driven events as long
 316 * as it's on a wait queue.
 317 */
 318static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 319		struct rpc_task *task,
 320		rpc_action action,
 321		unsigned char queue_priority)
 322{
 323	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 324			task->tk_pid, rpc_qname(q), jiffies);
 325
 326	__rpc_add_wait_queue(q, task, queue_priority);
 
 327
 328	BUG_ON(task->tk_callback != NULL);
 329	task->tk_callback = action;
 330	__rpc_add_timer(q, task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331}
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 334				rpc_action action)
 335{
 336	/* We shouldn't ever put an inactive task to sleep */
 337	BUG_ON(!RPC_IS_ACTIVATED(task));
 
 
 338
 
 339	/*
 340	 * Protect the queue operations.
 341	 */
 342	spin_lock_bh(&q->lock);
 343	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
 344	spin_unlock_bh(&q->lock);
 345}
 346EXPORT_SYMBOL_GPL(rpc_sleep_on);
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 349		rpc_action action, int priority)
 350{
 351	/* We shouldn't ever put an inactive task to sleep */
 352	BUG_ON(!RPC_IS_ACTIVATED(task));
 353
 
 
 354	/*
 355	 * Protect the queue operations.
 356	 */
 357	spin_lock_bh(&q->lock);
 358	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 359	spin_unlock_bh(&q->lock);
 360}
 
 361
 362/**
 363 * __rpc_do_wake_up_task - wake up a single rpc_task
 
 364 * @queue: wait queue
 365 * @task: task to be woken up
 366 *
 367 * Caller must hold queue->lock, and have cleared the task queued flag.
 368 */
 369static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 
 
 370{
 371	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 372			task->tk_pid, jiffies);
 373
 374	/* Has the task been executed yet? If not, we cannot wake it up! */
 375	if (!RPC_IS_ACTIVATED(task)) {
 376		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 377		return;
 378	}
 379
 380	__rpc_remove_wait_queue(queue, task);
 381
 382	rpc_make_runnable(task);
 383
 384	dprintk("RPC:       __rpc_wake_up_task done\n");
 385}
 386
 387/*
 388 * Wake up a queued task while the queue lock is being held
 389 */
 390static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 391{
 392	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
 393		__rpc_do_wake_up_task(queue, task);
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396/*
 397 * Tests whether rpc queue is empty
 398 */
 399int rpc_queue_empty(struct rpc_wait_queue *queue)
 
 400{
 401	int res;
 402
 403	spin_lock_bh(&queue->lock);
 404	res = queue->qlen;
 405	spin_unlock_bh(&queue->lock);
 406	return res == 0;
 407}
 408EXPORT_SYMBOL_GPL(rpc_queue_empty);
 409
 410/*
 411 * Wake up a task on a specific queue
 412 */
 413void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 414{
 415	spin_lock_bh(&queue->lock);
 
 
 416	rpc_wake_up_task_queue_locked(queue, task);
 417	spin_unlock_bh(&queue->lock);
 418}
 419EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421/*
 422 * Wake up the next task on a priority queue.
 423 */
 424static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
 425{
 426	struct list_head *q;
 427	struct rpc_task *task;
 428
 429	/*
 
 
 
 
 
 
 
 
 
 430	 * Service a batch of tasks from a single owner.
 431	 */
 432	q = &queue->tasks[queue->priority];
 433	if (!list_empty(q)) {
 434		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 435		if (queue->owner == task->tk_owner) {
 436			if (--queue->nr)
 437				goto out;
 438			list_move_tail(&task->u.tk_wait.list, q);
 439		}
 440		/*
 441		 * Check if we need to switch queues.
 442		 */
 443		if (--queue->count)
 444			goto new_owner;
 445	}
 446
 447	/*
 448	 * Service the next queue.
 449	 */
 450	do {
 451		if (q == &queue->tasks[0])
 452			q = &queue->tasks[queue->maxpriority];
 453		else
 454			q = q - 1;
 455		if (!list_empty(q)) {
 456			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 457			goto new_queue;
 458		}
 459	} while (q != &queue->tasks[queue->priority]);
 460
 461	rpc_reset_waitqueue_priority(queue);
 462	return NULL;
 463
 464new_queue:
 465	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 466new_owner:
 467	rpc_set_waitqueue_owner(queue, task->tk_owner);
 468out:
 469	rpc_wake_up_task_queue_locked(queue, task);
 470	return task;
 471}
 472
 
 
 
 
 
 
 
 
 
 473/*
 474 * Wake up the next task on the wait queue.
 475 */
 476struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
 
 
 477{
 478	struct rpc_task	*task = NULL;
 479
 480	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
 481			queue, rpc_qname(queue));
 482	spin_lock_bh(&queue->lock);
 483	if (RPC_IS_PRIORITY(queue))
 484		task = __rpc_wake_up_next_priority(queue);
 485	else {
 486		task_for_first(task, &queue->tasks[0])
 487			rpc_wake_up_task_queue_locked(queue, task);
 488	}
 489	spin_unlock_bh(&queue->lock);
 490
 491	return task;
 492}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 494
 495/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496 * rpc_wake_up - wake up all rpc_tasks
 497 * @queue: rpc_wait_queue on which the tasks are sleeping
 498 *
 499 * Grabs queue->lock
 500 */
 501void rpc_wake_up(struct rpc_wait_queue *queue)
 502{
 503	struct rpc_task *task, *next;
 504	struct list_head *head;
 
 
 
 
 
 
 
 
 
 
 
 
 505
 506	spin_lock_bh(&queue->lock);
 507	head = &queue->tasks[queue->maxpriority];
 508	for (;;) {
 509		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
 510			rpc_wake_up_task_queue_locked(queue, task);
 511		if (head == &queue->tasks[0])
 512			break;
 513		head--;
 514	}
 515	spin_unlock_bh(&queue->lock);
 516}
 517EXPORT_SYMBOL_GPL(rpc_wake_up);
 518
 519/**
 520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 521 * @queue: rpc_wait_queue on which the tasks are sleeping
 522 * @status: status value to set
 523 *
 524 * Grabs queue->lock
 525 */
 526void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 527{
 528	struct rpc_task *task, *next;
 529	struct list_head *head;
 530
 531	spin_lock_bh(&queue->lock);
 532	head = &queue->tasks[queue->maxpriority];
 533	for (;;) {
 534		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
 535			task->tk_status = status;
 536			rpc_wake_up_task_queue_locked(queue, task);
 537		}
 538		if (head == &queue->tasks[0])
 539			break;
 540		head--;
 541	}
 542	spin_unlock_bh(&queue->lock);
 543}
 544EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 545
 546static void __rpc_queue_timer_fn(unsigned long ptr)
 547{
 548	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 
 
 549	struct rpc_task *task, *n;
 550	unsigned long expires, now, timeo;
 551
 552	spin_lock(&queue->lock);
 553	expires = now = jiffies;
 554	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 555		timeo = task->u.tk_wait.expires;
 556		if (time_after_eq(now, timeo)) {
 557			dprintk("RPC: %5u timeout\n", task->tk_pid);
 558			task->tk_status = -ETIMEDOUT;
 559			rpc_wake_up_task_queue_locked(queue, task);
 560			continue;
 561		}
 562		if (expires == now || time_after(expires, timeo))
 563			expires = timeo;
 564	}
 565	if (!list_empty(&queue->timer_list.list))
 566		rpc_set_queue_timer(queue, expires);
 567	spin_unlock(&queue->lock);
 568}
 569
 570static void __rpc_atrun(struct rpc_task *task)
 571{
 572	task->tk_status = 0;
 
 573}
 574
 575/*
 576 * Run a task at a later time
 577 */
 578void rpc_delay(struct rpc_task *task, unsigned long delay)
 579{
 580	task->tk_timeout = delay;
 581	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 582}
 583EXPORT_SYMBOL_GPL(rpc_delay);
 584
 585/*
 586 * Helper to call task->tk_ops->rpc_call_prepare
 587 */
 588void rpc_prepare_task(struct rpc_task *task)
 589{
 590	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 591}
 592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593/*
 594 * Helper that calls task->tk_ops->rpc_call_done if it exists
 595 */
 596void rpc_exit_task(struct rpc_task *task)
 597{
 
 598	task->tk_action = NULL;
 
 
 
 
 599	if (task->tk_ops->rpc_call_done != NULL) {
 600		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 601		if (task->tk_action != NULL) {
 602			WARN_ON(RPC_ASSASSINATED(task));
 603			/* Always release the RPC slot and buffer memory */
 604			xprt_release(task);
 
 605		}
 606	}
 607}
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609void rpc_exit(struct rpc_task *task, int status)
 610{
 611	task->tk_status = status;
 612	task->tk_action = rpc_exit_task;
 613	if (RPC_IS_QUEUED(task))
 614		rpc_wake_up_queued_task(task->tk_waitqueue, task);
 615}
 616EXPORT_SYMBOL_GPL(rpc_exit);
 617
 618void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 619{
 620	if (ops->rpc_release != NULL)
 621		ops->rpc_release(calldata);
 622}
 623
 624/*
 625 * This is the RPC `scheduler' (or rather, the finite state machine).
 626 */
 627static void __rpc_execute(struct rpc_task *task)
 628{
 629	struct rpc_wait_queue *queue;
 630	int task_is_async = RPC_IS_ASYNC(task);
 631	int status = 0;
 632
 633	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 634			task->tk_pid, task->tk_flags);
 635
 636	BUG_ON(RPC_IS_QUEUED(task));
 637
 638	for (;;) {
 639		void (*do_action)(struct rpc_task *);
 640
 641		/*
 642		 * Execute any pending callback first.
 
 
 
 
 643		 */
 644		do_action = task->tk_callback;
 645		task->tk_callback = NULL;
 646		if (do_action == NULL) {
 647			/*
 648			 * Perform the next FSM step.
 649			 * tk_action may be NULL if the task has been killed.
 650			 * In particular, note that rpc_killall_tasks may
 651			 * do this at any time, so beware when dereferencing.
 652			 */
 653			do_action = task->tk_action;
 654			if (do_action == NULL)
 655				break;
 656		}
 
 
 
 657		do_action(task);
 658
 659		/*
 660		 * Lockless check for whether task is sleeping or not.
 661		 */
 662		if (!RPC_IS_QUEUED(task))
 663			continue;
 
 
 
 
 
 
 
 
 
 664		/*
 665		 * The queue->lock protects against races with
 666		 * rpc_make_runnable().
 667		 *
 668		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 669		 * rpc_task, rpc_make_runnable() can assign it to a
 670		 * different workqueue. We therefore cannot assume that the
 671		 * rpc_task pointer may still be dereferenced.
 672		 */
 673		queue = task->tk_waitqueue;
 674		spin_lock_bh(&queue->lock);
 675		if (!RPC_IS_QUEUED(task)) {
 676			spin_unlock_bh(&queue->lock);
 677			continue;
 678		}
 679		rpc_clear_running(task);
 680		spin_unlock_bh(&queue->lock);
 681		if (task_is_async)
 682			return;
 683
 684		/* sync task: sleep here */
 685		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 686		status = out_of_line_wait_on_bit(&task->tk_runstate,
 687				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 688				TASK_KILLABLE);
 689		if (status == -ERESTARTSYS) {
 690			/*
 691			 * When a sync task receives a signal, it exits with
 692			 * -ERESTARTSYS. In order to catch any callbacks that
 693			 * clean up after sleeping on some queue, we don't
 694			 * break the loop here, but go around once more.
 695			 */
 696			dprintk("RPC: %5u got signal\n", task->tk_pid);
 697			task->tk_flags |= RPC_TASK_KILLED;
 
 698			rpc_exit(task, -ERESTARTSYS);
 699		}
 700		rpc_set_running(task);
 701		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 702	}
 703
 704	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 705			task->tk_status);
 706	/* Release all resources associated with the task */
 707	rpc_release_task(task);
 708}
 709
 710/*
 711 * User-visible entry point to the scheduler.
 712 *
 713 * This may be called recursively if e.g. an async NFS task updates
 714 * the attributes and finds that dirty pages must be flushed.
 715 * NOTE: Upon exit of this function the task is guaranteed to be
 716 *	 released. In particular note that tk_release() will have
 717 *	 been called, so your task memory may have been freed.
 718 */
 719void rpc_execute(struct rpc_task *task)
 720{
 
 
 721	rpc_set_active(task);
 722	rpc_make_runnable(task);
 723	if (!RPC_IS_ASYNC(task))
 
 724		__rpc_execute(task);
 
 
 725}
 726
 727static void rpc_async_schedule(struct work_struct *work)
 728{
 
 
 729	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 
 730}
 731
 732/**
 733 * rpc_malloc - allocate an RPC buffer
 734 * @task: RPC task that will use this buffer
 735 * @size: requested byte size
 
 
 
 736 *
 737 * To prevent rpciod from hanging, this allocator never sleeps,
 738 * returning NULL if the request cannot be serviced immediately.
 739 * The caller can arrange to sleep in a way that is safe for rpciod.
 
 740 *
 741 * Most requests are 'small' (under 2KiB) and can be serviced from a
 742 * mempool, ensuring that NFS reads and writes can always proceed,
 743 * and that there is good locality of reference for these buffers.
 744 *
 745 * In order to avoid memory starvation triggering more writebacks of
 746 * NFS requests, we avoid using GFP_KERNEL.
 747 */
 748void *rpc_malloc(struct rpc_task *task, size_t size)
 749{
 
 
 750	struct rpc_buffer *buf;
 751	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
 
 
 
 752
 753	size += sizeof(struct rpc_buffer);
 754	if (size <= RPC_BUFFER_MAXSIZE)
 755		buf = mempool_alloc(rpc_buffer_mempool, gfp);
 756	else
 757		buf = kmalloc(size, gfp);
 758
 759	if (!buf)
 760		return NULL;
 761
 762	buf->len = size;
 763	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 764			task->tk_pid, size, buf);
 765	return &buf->data;
 766}
 767EXPORT_SYMBOL_GPL(rpc_malloc);
 768
 769/**
 770 * rpc_free - free buffer allocated via rpc_malloc
 771 * @buffer: buffer to free
 772 *
 773 */
 774void rpc_free(void *buffer)
 775{
 
 776	size_t size;
 777	struct rpc_buffer *buf;
 778
 779	if (!buffer)
 780		return;
 781
 782	buf = container_of(buffer, struct rpc_buffer, data);
 783	size = buf->len;
 784
 785	dprintk("RPC:       freeing buffer of size %zu at %p\n",
 786			size, buf);
 787
 788	if (size <= RPC_BUFFER_MAXSIZE)
 789		mempool_free(buf, rpc_buffer_mempool);
 790	else
 791		kfree(buf);
 792}
 793EXPORT_SYMBOL_GPL(rpc_free);
 794
 795/*
 796 * Creation and deletion of RPC task structures
 797 */
 798static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 799{
 800	memset(task, 0, sizeof(*task));
 801	atomic_set(&task->tk_count, 1);
 802	task->tk_flags  = task_setup_data->flags;
 803	task->tk_ops = task_setup_data->callback_ops;
 804	task->tk_calldata = task_setup_data->callback_data;
 805	INIT_LIST_HEAD(&task->tk_task);
 806
 807	/* Initialize retry counters */
 808	task->tk_garb_retry = 2;
 809	task->tk_cred_retry = 2;
 810	task->tk_rebind_retry = 2;
 811
 812	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 813	task->tk_owner = current->tgid;
 814
 815	/* Initialize workqueue for async tasks */
 816	task->tk_workqueue = task_setup_data->workqueue;
 817
 
 
 
 
 
 818	if (task->tk_ops->rpc_call_prepare != NULL)
 819		task->tk_action = rpc_prepare_task;
 820
 821	/* starting timestamp */
 822	task->tk_start = ktime_get();
 823
 824	dprintk("RPC:       new task initialized, procpid %u\n",
 825				task_pid_nr(current));
 826}
 827
 828static struct rpc_task *
 829rpc_alloc_task(void)
 830{
 831	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 832}
 833
 834/*
 835 * Create a new task for the specified client.
 836 */
 837struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 838{
 839	struct rpc_task	*task = setup_data->task;
 840	unsigned short flags = 0;
 841
 842	if (task == NULL) {
 843		task = rpc_alloc_task();
 844		if (task == NULL) {
 845			rpc_release_calldata(setup_data->callback_ops,
 846					setup_data->callback_data);
 847			return ERR_PTR(-ENOMEM);
 848		}
 849		flags = RPC_TASK_DYNAMIC;
 850	}
 851
 852	rpc_init_task(task, setup_data);
 853	task->tk_flags |= flags;
 854	dprintk("RPC:       allocated task %p\n", task);
 855	return task;
 856}
 857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858static void rpc_free_task(struct rpc_task *task)
 859{
 860	const struct rpc_call_ops *tk_ops = task->tk_ops;
 861	void *calldata = task->tk_calldata;
 
 
 862
 863	if (task->tk_flags & RPC_TASK_DYNAMIC) {
 864		dprintk("RPC: %5u freeing task\n", task->tk_pid);
 865		mempool_free(task, rpc_task_mempool);
 866	}
 867	rpc_release_calldata(tk_ops, calldata);
 868}
 869
 870static void rpc_async_release(struct work_struct *work)
 871{
 
 
 872	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 
 873}
 874
 875static void rpc_release_resources_task(struct rpc_task *task)
 876{
 877	if (task->tk_rqstp)
 878		xprt_release(task);
 879	if (task->tk_msg.rpc_cred) {
 880		put_rpccred(task->tk_msg.rpc_cred);
 
 881		task->tk_msg.rpc_cred = NULL;
 882	}
 883	rpc_task_release_client(task);
 884}
 885
 886static void rpc_final_put_task(struct rpc_task *task,
 887		struct workqueue_struct *q)
 888{
 889	if (q != NULL) {
 890		INIT_WORK(&task->u.tk_work, rpc_async_release);
 891		queue_work(q, &task->u.tk_work);
 892	} else
 893		rpc_free_task(task);
 894}
 895
 896static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
 897{
 898	if (atomic_dec_and_test(&task->tk_count)) {
 899		rpc_release_resources_task(task);
 900		rpc_final_put_task(task, q);
 901	}
 902}
 903
 904void rpc_put_task(struct rpc_task *task)
 905{
 906	rpc_do_put_task(task, NULL);
 907}
 908EXPORT_SYMBOL_GPL(rpc_put_task);
 909
 910void rpc_put_task_async(struct rpc_task *task)
 911{
 912	rpc_do_put_task(task, task->tk_workqueue);
 913}
 914EXPORT_SYMBOL_GPL(rpc_put_task_async);
 915
 916static void rpc_release_task(struct rpc_task *task)
 917{
 918	dprintk("RPC: %5u release task\n", task->tk_pid);
 919
 920	BUG_ON (RPC_IS_QUEUED(task));
 921
 922	rpc_release_resources_task(task);
 923
 924	/*
 925	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
 926	 * so it should be safe to use task->tk_count as a test for whether
 927	 * or not any other processes still hold references to our rpc_task.
 928	 */
 929	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
 930		/* Wake up anyone who may be waiting for task completion */
 931		if (!rpc_complete_task(task))
 932			return;
 933	} else {
 934		if (!atomic_dec_and_test(&task->tk_count))
 935			return;
 936	}
 937	rpc_final_put_task(task, task->tk_workqueue);
 938}
 939
 940int rpciod_up(void)
 941{
 942	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
 943}
 944
 945void rpciod_down(void)
 946{
 947	module_put(THIS_MODULE);
 948}
 949
 950/*
 951 * Start up the rpciod workqueue.
 952 */
 953static int rpciod_start(void)
 954{
 955	struct workqueue_struct *wq;
 956
 957	/*
 958	 * Create the rpciod thread and wait for it to start.
 959	 */
 960	dprintk("RPC:       creating workqueue rpciod\n");
 961	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
 
 962	rpciod_workqueue = wq;
 963	return rpciod_workqueue != NULL;
 
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966static void rpciod_stop(void)
 967{
 968	struct workqueue_struct *wq = NULL;
 969
 970	if (rpciod_workqueue == NULL)
 971		return;
 972	dprintk("RPC:       destroying workqueue rpciod\n");
 973
 974	wq = rpciod_workqueue;
 975	rpciod_workqueue = NULL;
 976	destroy_workqueue(wq);
 
 
 
 977}
 978
 979void
 980rpc_destroy_mempool(void)
 981{
 982	rpciod_stop();
 983	if (rpc_buffer_mempool)
 984		mempool_destroy(rpc_buffer_mempool);
 985	if (rpc_task_mempool)
 986		mempool_destroy(rpc_task_mempool);
 987	if (rpc_task_slabp)
 988		kmem_cache_destroy(rpc_task_slabp);
 989	if (rpc_buffer_slabp)
 990		kmem_cache_destroy(rpc_buffer_slabp);
 991	rpc_destroy_wait_queue(&delay_queue);
 992}
 993
 994int
 995rpc_init_mempool(void)
 996{
 997	/*
 998	 * The following is not strictly a mempool initialisation,
 999	 * but there is no harm in doing it here
1000	 */
1001	rpc_init_wait_queue(&delay_queue, "delayq");
1002	if (!rpciod_start())
1003		goto err_nomem;
1004
1005	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1006					     sizeof(struct rpc_task),
1007					     0, SLAB_HWCACHE_ALIGN,
1008					     NULL);
1009	if (!rpc_task_slabp)
1010		goto err_nomem;
1011	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1012					     RPC_BUFFER_MAXSIZE,
1013					     0, SLAB_HWCACHE_ALIGN,
1014					     NULL);
1015	if (!rpc_buffer_slabp)
1016		goto err_nomem;
1017	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1018						    rpc_task_slabp);
1019	if (!rpc_task_mempool)
1020		goto err_nomem;
1021	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1022						      rpc_buffer_slabp);
1023	if (!rpc_buffer_mempool)
1024		goto err_nomem;
1025	return 0;
1026err_nomem:
1027	rpc_destroy_mempool();
1028	return -ENOMEM;
1029}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/sunrpc.h>
 
  32
  33/*
  34 * RPC slabs and memory pools
  35 */
  36#define RPC_BUFFER_MAXSIZE	(2048)
  37#define RPC_BUFFER_POOLSIZE	(8)
  38#define RPC_TASK_POOLSIZE	(8)
  39static struct kmem_cache	*rpc_task_slabp __read_mostly;
  40static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  41static mempool_t	*rpc_task_mempool __read_mostly;
  42static mempool_t	*rpc_buffer_mempool __read_mostly;
  43
  44static void			rpc_async_schedule(struct work_struct *);
  45static void			 rpc_release_task(struct rpc_task *task);
  46static void __rpc_queue_timer_fn(struct work_struct *);
  47
  48/*
  49 * RPC tasks sit here while waiting for conditions to improve.
  50 */
  51static struct rpc_wait_queue delay_queue;
  52
  53/*
  54 * rpciod-related stuff
  55 */
  56struct workqueue_struct *rpciod_workqueue __read_mostly;
  57struct workqueue_struct *xprtiod_workqueue __read_mostly;
  58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  59
  60unsigned long
  61rpc_task_timeout(const struct rpc_task *task)
  62{
  63	unsigned long timeout = READ_ONCE(task->tk_timeout);
  64
  65	if (timeout != 0) {
  66		unsigned long now = jiffies;
  67		if (time_before(now, timeout))
  68			return timeout - now;
  69	}
  70	return 0;
  71}
  72EXPORT_SYMBOL_GPL(rpc_task_timeout);
  73
  74/*
  75 * Disable the timer for a given RPC task. Should be called with
  76 * queue->lock and bh_disabled in order to avoid races within
  77 * rpc_run_timer().
  78 */
  79static void
  80__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  81{
  82	if (list_empty(&task->u.tk_wait.timer_list))
  83		return;
 
  84	task->tk_timeout = 0;
  85	list_del(&task->u.tk_wait.timer_list);
  86	if (list_empty(&queue->timer_list.list))
  87		cancel_delayed_work(&queue->timer_list.dwork);
  88}
  89
  90static void
  91rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  92{
  93	unsigned long now = jiffies;
  94	queue->timer_list.expires = expires;
  95	if (time_before_eq(expires, now))
  96		expires = 0;
  97	else
  98		expires -= now;
  99	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 100}
 101
 102/*
 103 * Set up a timer for the current task.
 104 */
 105static void
 106__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 107		unsigned long timeout)
 108{
 109	task->tk_timeout = timeout;
 110	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 111		rpc_set_queue_timer(queue, timeout);
 112	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 113}
 114
 115static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 116{
 117	if (queue->priority != priority) {
 118		queue->priority = priority;
 119		queue->nr = 1U << priority;
 120	}
 121}
 122
 123static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 124{
 125	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 
 126}
 127
 128/*
 129 * Add a request to a queue list
 130 */
 131static void
 132__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 
 133{
 
 134	struct rpc_task *t;
 135
 
 
 
 
 136	list_for_each_entry(t, q, u.tk_wait.list) {
 137		if (t->tk_owner == task->tk_owner) {
 138			list_add_tail(&task->u.tk_wait.links,
 139					&t->u.tk_wait.links);
 140			/* Cache the queue head in task->u.tk_wait.list */
 141			task->u.tk_wait.list.next = q;
 142			task->u.tk_wait.list.prev = NULL;
 143			return;
 144		}
 145	}
 146	INIT_LIST_HEAD(&task->u.tk_wait.links);
 147	list_add_tail(&task->u.tk_wait.list, q);
 148}
 149
 150/*
 151 * Remove request from a queue list
 152 */
 153static void
 154__rpc_list_dequeue_task(struct rpc_task *task)
 155{
 156	struct list_head *q;
 157	struct rpc_task *t;
 158
 159	if (task->u.tk_wait.list.prev == NULL) {
 160		list_del(&task->u.tk_wait.links);
 161		return;
 162	}
 163	if (!list_empty(&task->u.tk_wait.links)) {
 164		t = list_first_entry(&task->u.tk_wait.links,
 165				struct rpc_task,
 166				u.tk_wait.links);
 167		/* Assume __rpc_list_enqueue_task() cached the queue head */
 168		q = t->u.tk_wait.list.next;
 169		list_add_tail(&t->u.tk_wait.list, q);
 170		list_del(&task->u.tk_wait.links);
 171	}
 172	list_del(&task->u.tk_wait.list);
 173}
 174
 175/*
 176 * Add new request to a priority queue.
 177 */
 178static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 179		struct rpc_task *task,
 180		unsigned char queue_priority)
 181{
 182	if (unlikely(queue_priority > queue->maxpriority))
 183		queue_priority = queue->maxpriority;
 184	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 185}
 186
 187/*
 188 * Add new request to wait queue.
 189 *
 190 * Swapper tasks always get inserted at the head of the queue.
 191 * This should avoid many nasty memory deadlocks and hopefully
 192 * improve overall performance.
 193 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 194 */
 195static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 196		struct rpc_task *task,
 197		unsigned char queue_priority)
 198{
 199	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 
 200	if (RPC_IS_PRIORITY(queue))
 201		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 202	else if (RPC_IS_SWAPPER(task))
 203		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 204	else
 205		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 206	task->tk_waitqueue = queue;
 207	queue->qlen++;
 208	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 209	smp_wmb();
 210	rpc_set_queued(task);
 
 
 
 211}
 212
 213/*
 214 * Remove request from a priority queue.
 215 */
 216static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 217{
 218	__rpc_list_dequeue_task(task);
 
 
 
 
 
 
 219}
 220
 221/*
 222 * Remove request from queue.
 223 * Note: must be called with spin lock held.
 224 */
 225static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 226{
 227	__rpc_disable_timer(queue, task);
 228	if (RPC_IS_PRIORITY(queue))
 229		__rpc_remove_wait_queue_priority(task);
 230	else
 231		list_del(&task->u.tk_wait.list);
 232	queue->qlen--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 236{
 237	int i;
 238
 239	spin_lock_init(&queue->lock);
 240	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 241		INIT_LIST_HEAD(&queue->tasks[i]);
 242	queue->maxpriority = nr_queues - 1;
 243	rpc_reset_waitqueue_priority(queue);
 244	queue->qlen = 0;
 245	queue->timer_list.expires = 0;
 246	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 247	INIT_LIST_HEAD(&queue->timer_list.list);
 248	rpc_assign_waitqueue_name(queue, qname);
 
 
 249}
 250
 251void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 252{
 253	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 254}
 255EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 256
 257void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 258{
 259	__rpc_init_priority_wait_queue(queue, qname, 1);
 260}
 261EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 262
 263void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 264{
 265	cancel_delayed_work_sync(&queue->timer_list.dwork);
 266}
 267EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 268
 269static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 270{
 271	freezable_schedule_unsafe();
 272	if (signal_pending_state(mode, current))
 273		return -ERESTARTSYS;
 
 274	return 0;
 275}
 276
 277#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 278static void rpc_task_set_debuginfo(struct rpc_task *task)
 279{
 280	static atomic_t rpc_pid;
 281
 282	task->tk_pid = atomic_inc_return(&rpc_pid);
 283}
 284#else
 285static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 286{
 287}
 288#endif
 289
 290static void rpc_set_active(struct rpc_task *task)
 291{
 292	rpc_task_set_debuginfo(task);
 293	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 294	trace_rpc_task_begin(task, NULL);
 295}
 296
 297/*
 298 * Mark an RPC call as having completed by clearing the 'active' bit
 299 * and then waking up all tasks that were sleeping.
 300 */
 301static int rpc_complete_task(struct rpc_task *task)
 302{
 303	void *m = &task->tk_runstate;
 304	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 305	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 306	unsigned long flags;
 307	int ret;
 308
 309	trace_rpc_task_complete(task, NULL);
 310
 311	spin_lock_irqsave(&wq->lock, flags);
 312	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 313	ret = atomic_dec_and_test(&task->tk_count);
 314	if (waitqueue_active(wq))
 315		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 316	spin_unlock_irqrestore(&wq->lock, flags);
 317	return ret;
 318}
 319
 320/*
 321 * Allow callers to wait for completion of an RPC call
 322 *
 323 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 324 * to enforce taking of the wq->lock and hence avoid races with
 325 * rpc_complete_task().
 326 */
 327int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 328{
 329	if (action == NULL)
 330		action = rpc_wait_bit_killable;
 331	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 332			action, TASK_KILLABLE);
 333}
 334EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 335
 336/*
 337 * Make an RPC task runnable.
 338 *
 339 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 340 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 341 * the wait queue operation.
 342 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 343 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 344 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 345 * the RPC_TASK_RUNNING flag.
 346 */
 347static void rpc_make_runnable(struct workqueue_struct *wq,
 348		struct rpc_task *task)
 349{
 350	bool need_wakeup = !rpc_test_and_set_running(task);
 351
 352	rpc_clear_queued(task);
 353	if (!need_wakeup)
 354		return;
 355	if (RPC_IS_ASYNC(task)) {
 356		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 357		queue_work(wq, &task->u.tk_work);
 358	} else
 359		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 360}
 361
 362/*
 363 * Prepare for sleeping on a wait queue.
 364 * By always appending tasks to the list we ensure FIFO behavior.
 365 * NB: An RPC task will only receive interrupt-driven events as long
 366 * as it's on a wait queue.
 367 */
 368static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
 369		struct rpc_task *task,
 
 370		unsigned char queue_priority)
 371{
 372	trace_rpc_task_sleep(task, q);
 
 373
 374	__rpc_add_wait_queue(q, task, queue_priority);
 375}
 376
 377static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 378		struct rpc_task *task,
 379		unsigned char queue_priority)
 380{
 381	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 382		return;
 383	__rpc_do_sleep_on_priority(q, task, queue_priority);
 384}
 385
 386static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 387		struct rpc_task *task, unsigned long timeout,
 388		unsigned char queue_priority)
 389{
 390	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 391		return;
 392	if (time_is_after_jiffies(timeout)) {
 393		__rpc_do_sleep_on_priority(q, task, queue_priority);
 394		__rpc_add_timer(q, task, timeout);
 395	} else
 396		task->tk_status = -ETIMEDOUT;
 397}
 398
 399static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 400{
 401	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 402		task->tk_callback = action;
 403}
 404
 405static bool rpc_sleep_check_activated(struct rpc_task *task)
 406{
 407	/* We shouldn't ever put an inactive task to sleep */
 408	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 409		task->tk_status = -EIO;
 410		rpc_put_task_async(task);
 411		return false;
 412	}
 413	return true;
 414}
 415
 416void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 417				rpc_action action, unsigned long timeout)
 418{
 419	if (!rpc_sleep_check_activated(task))
 420		return;
 421
 422	rpc_set_tk_callback(task, action);
 423
 424	/*
 425	 * Protect the queue operations.
 426	 */
 427	spin_lock(&q->lock);
 428	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 429	spin_unlock(&q->lock);
 430}
 431EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 432
 433void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 434				rpc_action action)
 435{
 436	if (!rpc_sleep_check_activated(task))
 437		return;
 438
 439	rpc_set_tk_callback(task, action);
 440
 441	WARN_ON_ONCE(task->tk_timeout != 0);
 442	/*
 443	 * Protect the queue operations.
 444	 */
 445	spin_lock(&q->lock);
 446	__rpc_sleep_on_priority(q, task, task->tk_priority);
 447	spin_unlock(&q->lock);
 448}
 449EXPORT_SYMBOL_GPL(rpc_sleep_on);
 450
 451void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 452		struct rpc_task *task, unsigned long timeout, int priority)
 453{
 454	if (!rpc_sleep_check_activated(task))
 455		return;
 456
 457	priority -= RPC_PRIORITY_LOW;
 458	/*
 459	 * Protect the queue operations.
 460	 */
 461	spin_lock(&q->lock);
 462	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 463	spin_unlock(&q->lock);
 464}
 465EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 466
 467void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 468		int priority)
 469{
 470	if (!rpc_sleep_check_activated(task))
 471		return;
 472
 473	WARN_ON_ONCE(task->tk_timeout != 0);
 474	priority -= RPC_PRIORITY_LOW;
 475	/*
 476	 * Protect the queue operations.
 477	 */
 478	spin_lock(&q->lock);
 479	__rpc_sleep_on_priority(q, task, priority);
 480	spin_unlock(&q->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 483
 484/**
 485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 486 * @wq: workqueue on which to run task
 487 * @queue: wait queue
 488 * @task: task to be woken up
 489 *
 490 * Caller must hold queue->lock, and have cleared the task queued flag.
 491 */
 492static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 493		struct rpc_wait_queue *queue,
 494		struct rpc_task *task)
 495{
 
 
 
 496	/* Has the task been executed yet? If not, we cannot wake it up! */
 497	if (!RPC_IS_ACTIVATED(task)) {
 498		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 499		return;
 500	}
 501
 502	trace_rpc_task_wakeup(task, queue);
 503
 504	__rpc_remove_wait_queue(queue, task);
 505
 506	rpc_make_runnable(wq, task);
 507}
 508
 509/*
 510 * Wake up a queued task while the queue lock is being held
 511 */
 512static struct rpc_task *
 513rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 514		struct rpc_wait_queue *queue, struct rpc_task *task,
 515		bool (*action)(struct rpc_task *, void *), void *data)
 516{
 517	if (RPC_IS_QUEUED(task)) {
 518		smp_rmb();
 519		if (task->tk_waitqueue == queue) {
 520			if (action == NULL || action(task, data)) {
 521				__rpc_do_wake_up_task_on_wq(wq, queue, task);
 522				return task;
 523			}
 524		}
 525	}
 526	return NULL;
 527}
 528
 529/*
 530 * Wake up a queued task while the queue lock is being held
 531 */
 532static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 533					  struct rpc_task *task)
 534{
 535	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 536						   task, NULL, NULL);
 
 
 
 
 537}
 
 538
 539/*
 540 * Wake up a task on a specific queue
 541 */
 542void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 543{
 544	if (!RPC_IS_QUEUED(task))
 545		return;
 546	spin_lock(&queue->lock);
 547	rpc_wake_up_task_queue_locked(queue, task);
 548	spin_unlock(&queue->lock);
 549}
 550EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 551
 552static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 553{
 554	task->tk_status = *(int *)status;
 555	return true;
 556}
 557
 558static void
 559rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 560		struct rpc_task *task, int status)
 561{
 562	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 563			task, rpc_task_action_set_status, &status);
 564}
 565
 566/**
 567 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 568 * @queue: pointer to rpc_wait_queue
 569 * @task: pointer to rpc_task
 570 * @status: integer error value
 571 *
 572 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 573 * set to the value of @status.
 574 */
 575void
 576rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 577		struct rpc_task *task, int status)
 578{
 579	if (!RPC_IS_QUEUED(task))
 580		return;
 581	spin_lock(&queue->lock);
 582	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 583	spin_unlock(&queue->lock);
 584}
 585
 586/*
 587 * Wake up the next task on a priority queue.
 588 */
 589static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 590{
 591	struct list_head *q;
 592	struct rpc_task *task;
 593
 594	/*
 595	 * Service the privileged queue.
 596	 */
 597	q = &queue->tasks[RPC_NR_PRIORITY - 1];
 598	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
 599		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 600		goto out;
 601	}
 602
 603	/*
 604	 * Service a batch of tasks from a single owner.
 605	 */
 606	q = &queue->tasks[queue->priority];
 607	if (!list_empty(q) && queue->nr) {
 608		queue->nr--;
 609		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 610		goto out;
 
 
 
 
 
 
 
 
 611	}
 612
 613	/*
 614	 * Service the next queue.
 615	 */
 616	do {
 617		if (q == &queue->tasks[0])
 618			q = &queue->tasks[queue->maxpriority];
 619		else
 620			q = q - 1;
 621		if (!list_empty(q)) {
 622			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 623			goto new_queue;
 624		}
 625	} while (q != &queue->tasks[queue->priority]);
 626
 627	rpc_reset_waitqueue_priority(queue);
 628	return NULL;
 629
 630new_queue:
 631	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 
 
 632out:
 
 633	return task;
 634}
 635
 636static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 637{
 638	if (RPC_IS_PRIORITY(queue))
 639		return __rpc_find_next_queued_priority(queue);
 640	if (!list_empty(&queue->tasks[0]))
 641		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 642	return NULL;
 643}
 644
 645/*
 646 * Wake up the first task on the wait queue.
 647 */
 648struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 649		struct rpc_wait_queue *queue,
 650		bool (*func)(struct rpc_task *, void *), void *data)
 651{
 652	struct rpc_task	*task = NULL;
 653
 654	spin_lock(&queue->lock);
 655	task = __rpc_find_next_queued(queue);
 656	if (task != NULL)
 657		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 658				task, func, data);
 659	spin_unlock(&queue->lock);
 
 
 
 
 660
 661	return task;
 662}
 663
 664/*
 665 * Wake up the first task on the wait queue.
 666 */
 667struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 668		bool (*func)(struct rpc_task *, void *), void *data)
 669{
 670	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 671}
 672EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 673
 674static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 675{
 676	return true;
 677}
 678
 679/*
 680 * Wake up the next task on the wait queue.
 681*/
 682struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 683{
 684	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 685}
 686EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 687
 688/**
 689 * rpc_wake_up_locked - wake up all rpc_tasks
 690 * @queue: rpc_wait_queue on which the tasks are sleeping
 691 *
 692 */
 693static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
 694{
 695	struct rpc_task *task;
 696
 697	for (;;) {
 698		task = __rpc_find_next_queued(queue);
 699		if (task == NULL)
 700			break;
 701		rpc_wake_up_task_queue_locked(queue, task);
 702	}
 703}
 704
 705/**
 706 * rpc_wake_up - wake up all rpc_tasks
 707 * @queue: rpc_wait_queue on which the tasks are sleeping
 708 *
 709 * Grabs queue->lock
 710 */
 711void rpc_wake_up(struct rpc_wait_queue *queue)
 712{
 713	spin_lock(&queue->lock);
 714	rpc_wake_up_locked(queue);
 715	spin_unlock(&queue->lock);
 716}
 717EXPORT_SYMBOL_GPL(rpc_wake_up);
 718
 719/**
 720 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
 721 * @queue: rpc_wait_queue on which the tasks are sleeping
 722 * @status: status value to set
 723 */
 724static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
 725{
 726	struct rpc_task *task;
 727
 
 
 728	for (;;) {
 729		task = __rpc_find_next_queued(queue);
 730		if (task == NULL)
 
 731			break;
 732		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 733	}
 
 734}
 
 735
 736/**
 737 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 738 * @queue: rpc_wait_queue on which the tasks are sleeping
 739 * @status: status value to set
 740 *
 741 * Grabs queue->lock
 742 */
 743void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 744{
 745	spin_lock(&queue->lock);
 746	rpc_wake_up_status_locked(queue, status);
 747	spin_unlock(&queue->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 748}
 749EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 750
 751static void __rpc_queue_timer_fn(struct work_struct *work)
 752{
 753	struct rpc_wait_queue *queue = container_of(work,
 754			struct rpc_wait_queue,
 755			timer_list.dwork.work);
 756	struct rpc_task *task, *n;
 757	unsigned long expires, now, timeo;
 758
 759	spin_lock(&queue->lock);
 760	expires = now = jiffies;
 761	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 762		timeo = task->tk_timeout;
 763		if (time_after_eq(now, timeo)) {
 764			trace_rpc_task_timeout(task, task->tk_action);
 765			task->tk_status = -ETIMEDOUT;
 766			rpc_wake_up_task_queue_locked(queue, task);
 767			continue;
 768		}
 769		if (expires == now || time_after(expires, timeo))
 770			expires = timeo;
 771	}
 772	if (!list_empty(&queue->timer_list.list))
 773		rpc_set_queue_timer(queue, expires);
 774	spin_unlock(&queue->lock);
 775}
 776
 777static void __rpc_atrun(struct rpc_task *task)
 778{
 779	if (task->tk_status == -ETIMEDOUT)
 780		task->tk_status = 0;
 781}
 782
 783/*
 784 * Run a task at a later time
 785 */
 786void rpc_delay(struct rpc_task *task, unsigned long delay)
 787{
 788	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 
 789}
 790EXPORT_SYMBOL_GPL(rpc_delay);
 791
 792/*
 793 * Helper to call task->tk_ops->rpc_call_prepare
 794 */
 795void rpc_prepare_task(struct rpc_task *task)
 796{
 797	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 798}
 799
 800static void
 801rpc_init_task_statistics(struct rpc_task *task)
 802{
 803	/* Initialize retry counters */
 804	task->tk_garb_retry = 2;
 805	task->tk_cred_retry = 2;
 806	task->tk_rebind_retry = 2;
 807
 808	/* starting timestamp */
 809	task->tk_start = ktime_get();
 810}
 811
 812static void
 813rpc_reset_task_statistics(struct rpc_task *task)
 814{
 815	task->tk_timeouts = 0;
 816	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 817	rpc_init_task_statistics(task);
 818}
 819
 820/*
 821 * Helper that calls task->tk_ops->rpc_call_done if it exists
 822 */
 823void rpc_exit_task(struct rpc_task *task)
 824{
 825	trace_rpc_task_end(task, task->tk_action);
 826	task->tk_action = NULL;
 827	if (task->tk_ops->rpc_count_stats)
 828		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 829	else if (task->tk_client)
 830		rpc_count_iostats(task, task->tk_client->cl_metrics);
 831	if (task->tk_ops->rpc_call_done != NULL) {
 832		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 833		if (task->tk_action != NULL) {
 
 834			/* Always release the RPC slot and buffer memory */
 835			xprt_release(task);
 836			rpc_reset_task_statistics(task);
 837		}
 838	}
 839}
 840
 841void rpc_signal_task(struct rpc_task *task)
 842{
 843	struct rpc_wait_queue *queue;
 844
 845	if (!RPC_IS_ACTIVATED(task))
 846		return;
 847
 848	trace_rpc_task_signalled(task, task->tk_action);
 849	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 850	smp_mb__after_atomic();
 851	queue = READ_ONCE(task->tk_waitqueue);
 852	if (queue)
 853		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 854}
 855
 856void rpc_exit(struct rpc_task *task, int status)
 857{
 858	task->tk_status = status;
 859	task->tk_action = rpc_exit_task;
 860	rpc_wake_up_queued_task(task->tk_waitqueue, task);
 
 861}
 862EXPORT_SYMBOL_GPL(rpc_exit);
 863
 864void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 865{
 866	if (ops->rpc_release != NULL)
 867		ops->rpc_release(calldata);
 868}
 869
 870/*
 871 * This is the RPC `scheduler' (or rather, the finite state machine).
 872 */
 873static void __rpc_execute(struct rpc_task *task)
 874{
 875	struct rpc_wait_queue *queue;
 876	int task_is_async = RPC_IS_ASYNC(task);
 877	int status = 0;
 878
 879	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 880	if (RPC_IS_QUEUED(task))
 881		return;
 
 882
 883	for (;;) {
 884		void (*do_action)(struct rpc_task *);
 885
 886		/*
 887		 * Perform the next FSM step or a pending callback.
 888		 *
 889		 * tk_action may be NULL if the task has been killed.
 890		 * In particular, note that rpc_killall_tasks may
 891		 * do this at any time, so beware when dereferencing.
 892		 */
 893		do_action = task->tk_action;
 894		if (task->tk_callback) {
 895			do_action = task->tk_callback;
 896			task->tk_callback = NULL;
 
 
 
 
 
 
 
 
 897		}
 898		if (!do_action)
 899			break;
 900		trace_rpc_task_run_action(task, do_action);
 901		do_action(task);
 902
 903		/*
 904		 * Lockless check for whether task is sleeping or not.
 905		 */
 906		if (!RPC_IS_QUEUED(task))
 907			continue;
 908
 909		/*
 910		 * Signalled tasks should exit rather than sleep.
 911		 */
 912		if (RPC_SIGNALLED(task)) {
 913			task->tk_rpc_status = -ERESTARTSYS;
 914			rpc_exit(task, -ERESTARTSYS);
 915		}
 916
 917		/*
 918		 * The queue->lock protects against races with
 919		 * rpc_make_runnable().
 920		 *
 921		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 922		 * rpc_task, rpc_make_runnable() can assign it to a
 923		 * different workqueue. We therefore cannot assume that the
 924		 * rpc_task pointer may still be dereferenced.
 925		 */
 926		queue = task->tk_waitqueue;
 927		spin_lock(&queue->lock);
 928		if (!RPC_IS_QUEUED(task)) {
 929			spin_unlock(&queue->lock);
 930			continue;
 931		}
 932		rpc_clear_running(task);
 933		spin_unlock(&queue->lock);
 934		if (task_is_async)
 935			return;
 936
 937		/* sync task: sleep here */
 938		trace_rpc_task_sync_sleep(task, task->tk_action);
 939		status = out_of_line_wait_on_bit(&task->tk_runstate,
 940				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 941				TASK_KILLABLE);
 942		if (status < 0) {
 943			/*
 944			 * When a sync task receives a signal, it exits with
 945			 * -ERESTARTSYS. In order to catch any callbacks that
 946			 * clean up after sleeping on some queue, we don't
 947			 * break the loop here, but go around once more.
 948			 */
 949			trace_rpc_task_signalled(task, task->tk_action);
 950			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 951			task->tk_rpc_status = -ERESTARTSYS;
 952			rpc_exit(task, -ERESTARTSYS);
 953		}
 954		trace_rpc_task_sync_wake(task, task->tk_action);
 
 955	}
 956
 
 
 957	/* Release all resources associated with the task */
 958	rpc_release_task(task);
 959}
 960
 961/*
 962 * User-visible entry point to the scheduler.
 963 *
 964 * This may be called recursively if e.g. an async NFS task updates
 965 * the attributes and finds that dirty pages must be flushed.
 966 * NOTE: Upon exit of this function the task is guaranteed to be
 967 *	 released. In particular note that tk_release() will have
 968 *	 been called, so your task memory may have been freed.
 969 */
 970void rpc_execute(struct rpc_task *task)
 971{
 972	bool is_async = RPC_IS_ASYNC(task);
 973
 974	rpc_set_active(task);
 975	rpc_make_runnable(rpciod_workqueue, task);
 976	if (!is_async) {
 977		unsigned int pflags = memalloc_nofs_save();
 978		__rpc_execute(task);
 979		memalloc_nofs_restore(pflags);
 980	}
 981}
 982
 983static void rpc_async_schedule(struct work_struct *work)
 984{
 985	unsigned int pflags = memalloc_nofs_save();
 986
 987	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 988	memalloc_nofs_restore(pflags);
 989}
 990
 991/**
 992 * rpc_malloc - allocate RPC buffer resources
 993 * @task: RPC task
 994 *
 995 * A single memory region is allocated, which is split between the
 996 * RPC call and RPC reply that this task is being used for. When
 997 * this RPC is retired, the memory is released by calling rpc_free.
 998 *
 999 * To prevent rpciod from hanging, this allocator never sleeps,
1000 * returning -ENOMEM and suppressing warning if the request cannot
1001 * be serviced immediately. The caller can arrange to sleep in a
1002 * way that is safe for rpciod.
1003 *
1004 * Most requests are 'small' (under 2KiB) and can be serviced from a
1005 * mempool, ensuring that NFS reads and writes can always proceed,
1006 * and that there is good locality of reference for these buffers.
 
 
 
1007 */
1008int rpc_malloc(struct rpc_task *task)
1009{
1010	struct rpc_rqst *rqst = task->tk_rqstp;
1011	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1012	struct rpc_buffer *buf;
1013	gfp_t gfp = GFP_NOFS;
1014
1015	if (RPC_IS_SWAPPER(task))
1016		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1017
1018	size += sizeof(struct rpc_buffer);
1019	if (size <= RPC_BUFFER_MAXSIZE)
1020		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1021	else
1022		buf = kmalloc(size, gfp);
1023
1024	if (!buf)
1025		return -ENOMEM;
1026
1027	buf->len = size;
1028	rqst->rq_buffer = buf->data;
1029	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1030	return 0;
1031}
1032EXPORT_SYMBOL_GPL(rpc_malloc);
1033
1034/**
1035 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1036 * @task: RPC task
1037 *
1038 */
1039void rpc_free(struct rpc_task *task)
1040{
1041	void *buffer = task->tk_rqstp->rq_buffer;
1042	size_t size;
1043	struct rpc_buffer *buf;
1044
 
 
 
1045	buf = container_of(buffer, struct rpc_buffer, data);
1046	size = buf->len;
1047
 
 
 
1048	if (size <= RPC_BUFFER_MAXSIZE)
1049		mempool_free(buf, rpc_buffer_mempool);
1050	else
1051		kfree(buf);
1052}
1053EXPORT_SYMBOL_GPL(rpc_free);
1054
1055/*
1056 * Creation and deletion of RPC task structures
1057 */
1058static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1059{
1060	memset(task, 0, sizeof(*task));
1061	atomic_set(&task->tk_count, 1);
1062	task->tk_flags  = task_setup_data->flags;
1063	task->tk_ops = task_setup_data->callback_ops;
1064	task->tk_calldata = task_setup_data->callback_data;
1065	INIT_LIST_HEAD(&task->tk_task);
1066
 
 
 
 
 
1067	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1068	task->tk_owner = current->tgid;
1069
1070	/* Initialize workqueue for async tasks */
1071	task->tk_workqueue = task_setup_data->workqueue;
1072
1073	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1074			xprt_get(task_setup_data->rpc_xprt));
1075
1076	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1077
1078	if (task->tk_ops->rpc_call_prepare != NULL)
1079		task->tk_action = rpc_prepare_task;
1080
1081	rpc_init_task_statistics(task);
 
 
 
 
1082}
1083
1084static struct rpc_task *
1085rpc_alloc_task(void)
1086{
1087	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1088}
1089
1090/*
1091 * Create a new task for the specified client.
1092 */
1093struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1094{
1095	struct rpc_task	*task = setup_data->task;
1096	unsigned short flags = 0;
1097
1098	if (task == NULL) {
1099		task = rpc_alloc_task();
 
 
 
 
 
1100		flags = RPC_TASK_DYNAMIC;
1101	}
1102
1103	rpc_init_task(task, setup_data);
1104	task->tk_flags |= flags;
 
1105	return task;
1106}
1107
1108/*
1109 * rpc_free_task - release rpc task and perform cleanups
1110 *
1111 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1112 * in order to work around a workqueue dependency issue.
1113 *
1114 * Tejun Heo states:
1115 * "Workqueue currently considers two work items to be the same if they're
1116 * on the same address and won't execute them concurrently - ie. it
1117 * makes a work item which is queued again while being executed wait
1118 * for the previous execution to complete.
1119 *
1120 * If a work function frees the work item, and then waits for an event
1121 * which should be performed by another work item and *that* work item
1122 * recycles the freed work item, it can create a false dependency loop.
1123 * There really is no reliable way to detect this short of verifying
1124 * every memory free."
1125 *
1126 */
1127static void rpc_free_task(struct rpc_task *task)
1128{
1129	unsigned short tk_flags = task->tk_flags;
1130
1131	put_rpccred(task->tk_op_cred);
1132	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1133
1134	if (tk_flags & RPC_TASK_DYNAMIC)
 
1135		mempool_free(task, rpc_task_mempool);
 
 
1136}
1137
1138static void rpc_async_release(struct work_struct *work)
1139{
1140	unsigned int pflags = memalloc_nofs_save();
1141
1142	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1143	memalloc_nofs_restore(pflags);
1144}
1145
1146static void rpc_release_resources_task(struct rpc_task *task)
1147{
1148	xprt_release(task);
 
1149	if (task->tk_msg.rpc_cred) {
1150		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1151			put_cred(task->tk_msg.rpc_cred);
1152		task->tk_msg.rpc_cred = NULL;
1153	}
1154	rpc_task_release_client(task);
1155}
1156
1157static void rpc_final_put_task(struct rpc_task *task,
1158		struct workqueue_struct *q)
1159{
1160	if (q != NULL) {
1161		INIT_WORK(&task->u.tk_work, rpc_async_release);
1162		queue_work(q, &task->u.tk_work);
1163	} else
1164		rpc_free_task(task);
1165}
1166
1167static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1168{
1169	if (atomic_dec_and_test(&task->tk_count)) {
1170		rpc_release_resources_task(task);
1171		rpc_final_put_task(task, q);
1172	}
1173}
1174
1175void rpc_put_task(struct rpc_task *task)
1176{
1177	rpc_do_put_task(task, NULL);
1178}
1179EXPORT_SYMBOL_GPL(rpc_put_task);
1180
1181void rpc_put_task_async(struct rpc_task *task)
1182{
1183	rpc_do_put_task(task, task->tk_workqueue);
1184}
1185EXPORT_SYMBOL_GPL(rpc_put_task_async);
1186
1187static void rpc_release_task(struct rpc_task *task)
1188{
1189	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 
 
1190
1191	rpc_release_resources_task(task);
1192
1193	/*
1194	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1195	 * so it should be safe to use task->tk_count as a test for whether
1196	 * or not any other processes still hold references to our rpc_task.
1197	 */
1198	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1199		/* Wake up anyone who may be waiting for task completion */
1200		if (!rpc_complete_task(task))
1201			return;
1202	} else {
1203		if (!atomic_dec_and_test(&task->tk_count))
1204			return;
1205	}
1206	rpc_final_put_task(task, task->tk_workqueue);
1207}
1208
1209int rpciod_up(void)
1210{
1211	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1212}
1213
1214void rpciod_down(void)
1215{
1216	module_put(THIS_MODULE);
1217}
1218
1219/*
1220 * Start up the rpciod workqueue.
1221 */
1222static int rpciod_start(void)
1223{
1224	struct workqueue_struct *wq;
1225
1226	/*
1227	 * Create the rpciod thread and wait for it to start.
1228	 */
1229	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1230	if (!wq)
1231		goto out_failed;
1232	rpciod_workqueue = wq;
1233	/* Note: highpri because network receive is latency sensitive */
1234	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1235	if (!wq)
1236		goto free_rpciod;
1237	xprtiod_workqueue = wq;
1238	return 1;
1239free_rpciod:
1240	wq = rpciod_workqueue;
1241	rpciod_workqueue = NULL;
1242	destroy_workqueue(wq);
1243out_failed:
1244	return 0;
1245}
1246
1247static void rpciod_stop(void)
1248{
1249	struct workqueue_struct *wq = NULL;
1250
1251	if (rpciod_workqueue == NULL)
1252		return;
 
1253
1254	wq = rpciod_workqueue;
1255	rpciod_workqueue = NULL;
1256	destroy_workqueue(wq);
1257	wq = xprtiod_workqueue;
1258	xprtiod_workqueue = NULL;
1259	destroy_workqueue(wq);
1260}
1261
1262void
1263rpc_destroy_mempool(void)
1264{
1265	rpciod_stop();
1266	mempool_destroy(rpc_buffer_mempool);
1267	mempool_destroy(rpc_task_mempool);
1268	kmem_cache_destroy(rpc_task_slabp);
1269	kmem_cache_destroy(rpc_buffer_slabp);
 
 
 
 
1270	rpc_destroy_wait_queue(&delay_queue);
1271}
1272
1273int
1274rpc_init_mempool(void)
1275{
1276	/*
1277	 * The following is not strictly a mempool initialisation,
1278	 * but there is no harm in doing it here
1279	 */
1280	rpc_init_wait_queue(&delay_queue, "delayq");
1281	if (!rpciod_start())
1282		goto err_nomem;
1283
1284	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1285					     sizeof(struct rpc_task),
1286					     0, SLAB_HWCACHE_ALIGN,
1287					     NULL);
1288	if (!rpc_task_slabp)
1289		goto err_nomem;
1290	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1291					     RPC_BUFFER_MAXSIZE,
1292					     0, SLAB_HWCACHE_ALIGN,
1293					     NULL);
1294	if (!rpc_buffer_slabp)
1295		goto err_nomem;
1296	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1297						    rpc_task_slabp);
1298	if (!rpc_task_mempool)
1299		goto err_nomem;
1300	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1301						      rpc_buffer_slabp);
1302	if (!rpc_buffer_mempool)
1303		goto err_nomem;
1304	return 0;
1305err_nomem:
1306	rpc_destroy_mempool();
1307	return -ENOMEM;
1308}