Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 
 
 119
 120#include	<asm/cacheflush.h>
 121#include	<asm/tlbflush.h>
 122#include	<asm/page.h>
 123
 
 
 
 
 
 
 124/*
 125 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 126 *		  0 for faster, smaller code (especially in the critical paths).
 127 *
 128 * STATS	- 1 to collect stats for /proc/slabinfo.
 129 *		  0 for faster, smaller code (especially in the critical paths).
 130 *
 131 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 132 */
 133
 134#ifdef CONFIG_DEBUG_SLAB
 135#define	DEBUG		1
 136#define	STATS		1
 137#define	FORCED_DEBUG	1
 138#else
 139#define	DEBUG		0
 140#define	STATS		0
 141#define	FORCED_DEBUG	0
 142#endif
 143
 144/* Shouldn't this be in a header file somewhere? */
 145#define	BYTES_PER_WORD		sizeof(void *)
 146#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 147
 148#ifndef ARCH_KMALLOC_FLAGS
 149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 150#endif
 151
 152/* Legal flag mask for kmem_cache_create(). */
 153#if DEBUG
 154# define CREATE_MASK	(SLAB_RED_ZONE | \
 155			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 156			 SLAB_CACHE_DMA | \
 157			 SLAB_STORE_USER | \
 158			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 159			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 160			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 161#else
 162# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
 163			 SLAB_CACHE_DMA | \
 164			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 165			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 166			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 167#endif
 168
 169/*
 170 * kmem_bufctl_t:
 171 *
 172 * Bufctl's are used for linking objs within a slab
 173 * linked offsets.
 174 *
 175 * This implementation relies on "struct page" for locating the cache &
 176 * slab an object belongs to.
 177 * This allows the bufctl structure to be small (one int), but limits
 178 * the number of objects a slab (not a cache) can contain when off-slab
 179 * bufctls are used. The limit is the size of the largest general cache
 180 * that does not use off-slab slabs.
 181 * For 32bit archs with 4 kB pages, is this 56.
 182 * This is not serious, as it is only for large objects, when it is unwise
 183 * to have too many per slab.
 184 * Note: This limit can be raised by introducing a general cache whose size
 185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 186 */
 187
 188typedef unsigned int kmem_bufctl_t;
 189#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
 190#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
 191#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
 192#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
 193
 194/*
 195 * struct slab_rcu
 196 *
 197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 198 * arrange for kmem_freepages to be called via RCU.  This is useful if
 199 * we need to approach a kernel structure obliquely, from its address
 200 * obtained without the usual locking.  We can lock the structure to
 201 * stabilize it and check it's still at the given address, only if we
 202 * can be sure that the memory has not been meanwhile reused for some
 203 * other kind of object (which our subsystem's lock might corrupt).
 204 *
 205 * rcu_read_lock before reading the address, then rcu_read_unlock after
 206 * taking the spinlock within the structure expected at that address.
 207 */
 208struct slab_rcu {
 209	struct rcu_head head;
 210	struct kmem_cache *cachep;
 211	void *addr;
 212};
 213
 214/*
 215 * struct slab
 216 *
 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 218 * for a slab, or allocated from an general cache.
 219 * Slabs are chained into three list: fully used, partial, fully free slabs.
 220 */
 221struct slab {
 222	union {
 223		struct {
 224			struct list_head list;
 225			unsigned long colouroff;
 226			void *s_mem;		/* including colour offset */
 227			unsigned int inuse;	/* num of objs active in slab */
 228			kmem_bufctl_t free;
 229			unsigned short nodeid;
 230		};
 231		struct slab_rcu __slab_cover_slab_rcu;
 232	};
 233};
 234
 235/*
 236 * struct array_cache
 237 *
 238 * Purpose:
 239 * - LIFO ordering, to hand out cache-warm objects from _alloc
 240 * - reduce the number of linked list operations
 241 * - reduce spinlock operations
 242 *
 243 * The limit is stored in the per-cpu structure to reduce the data cache
 244 * footprint.
 245 *
 246 */
 247struct array_cache {
 248	unsigned int avail;
 249	unsigned int limit;
 250	unsigned int batchcount;
 251	unsigned int touched;
 252	spinlock_t lock;
 253	void *entry[];	/*
 254			 * Must have this definition in here for the proper
 255			 * alignment of array_cache. Also simplifies accessing
 256			 * the entries.
 257			 */
 258};
 259
 260/*
 261 * bootstrap: The caches do not work without cpuarrays anymore, but the
 262 * cpuarrays are allocated from the generic caches...
 263 */
 264#define BOOT_CPUCACHE_ENTRIES	1
 265struct arraycache_init {
 266	struct array_cache cache;
 267	void *entries[BOOT_CPUCACHE_ENTRIES];
 268};
 269
 270/*
 271 * The slab lists for all objects.
 272 */
 273struct kmem_list3 {
 274	struct list_head slabs_partial;	/* partial list first, better asm code */
 275	struct list_head slabs_full;
 276	struct list_head slabs_free;
 277	unsigned long free_objects;
 278	unsigned int free_limit;
 279	unsigned int colour_next;	/* Per-node cache coloring */
 280	spinlock_t list_lock;
 281	struct array_cache *shared;	/* shared per node */
 282	struct array_cache **alien;	/* on other nodes */
 283	unsigned long next_reap;	/* updated without locking */
 284	int free_touched;		/* updated without locking */
 285};
 286
 287/*
 288 * Need this for bootstrapping a per node allocator.
 289 */
 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 292#define	CACHE_CACHE 0
 293#define	SIZE_AC MAX_NUMNODES
 294#define	SIZE_L3 (2 * MAX_NUMNODES)
 295
 296static int drain_freelist(struct kmem_cache *cache,
 297			struct kmem_list3 *l3, int tofree);
 298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 299			int node);
 
 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 301static void cache_reap(struct work_struct *unused);
 302
 303/*
 304 * This function must be completely optimized away if a constant is passed to
 305 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 306 */
 307static __always_inline int index_of(const size_t size)
 308{
 309	extern void __bad_size(void);
 310
 311	if (__builtin_constant_p(size)) {
 312		int i = 0;
 313
 314#define CACHE(x) \
 315	if (size <=x) \
 316		return i; \
 317	else \
 318		i++;
 319#include <linux/kmalloc_sizes.h>
 320#undef CACHE
 321		__bad_size();
 322	} else
 323		__bad_size();
 324	return 0;
 325}
 326
 327static int slab_early_init = 1;
 328
 329#define INDEX_AC index_of(sizeof(struct arraycache_init))
 330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 331
 332static void kmem_list3_init(struct kmem_list3 *parent)
 333{
 334	INIT_LIST_HEAD(&parent->slabs_full);
 335	INIT_LIST_HEAD(&parent->slabs_partial);
 336	INIT_LIST_HEAD(&parent->slabs_free);
 
 
 337	parent->shared = NULL;
 338	parent->alien = NULL;
 339	parent->colour_next = 0;
 340	spin_lock_init(&parent->list_lock);
 341	parent->free_objects = 0;
 342	parent->free_touched = 0;
 343}
 344
 345#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 346	do {								\
 347		INIT_LIST_HEAD(listp);					\
 348		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
 349	} while (0)
 350
 351#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 352	do {								\
 353	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 354	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 355	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 356	} while (0)
 357
 358#define CFLGS_OFF_SLAB		(0x80000000UL)
 
 
 359#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 360
 361#define BATCHREFILL_LIMIT	16
 362/*
 363 * Optimization question: fewer reaps means less probability for unnessary
 364 * cpucache drain/refill cycles.
 365 *
 366 * OTOH the cpuarrays can contain lots of objects,
 367 * which could lock up otherwise freeable slabs.
 368 */
 369#define REAPTIMEOUT_CPUC	(2*HZ)
 370#define REAPTIMEOUT_LIST3	(4*HZ)
 371
 372#if STATS
 373#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 374#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 375#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 376#define	STATS_INC_GROWN(x)	((x)->grown++)
 377#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 378#define	STATS_SET_HIGH(x)						\
 379	do {								\
 380		if ((x)->num_active > (x)->high_mark)			\
 381			(x)->high_mark = (x)->num_active;		\
 382	} while (0)
 383#define	STATS_INC_ERR(x)	((x)->errors++)
 384#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 385#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 386#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 387#define	STATS_SET_FREEABLE(x, i)					\
 388	do {								\
 389		if ((x)->max_freeable < i)				\
 390			(x)->max_freeable = i;				\
 391	} while (0)
 392#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 393#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 394#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 395#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 396#else
 397#define	STATS_INC_ACTIVE(x)	do { } while (0)
 398#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 399#define	STATS_INC_ALLOCED(x)	do { } while (0)
 400#define	STATS_INC_GROWN(x)	do { } while (0)
 401#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 402#define	STATS_SET_HIGH(x)	do { } while (0)
 403#define	STATS_INC_ERR(x)	do { } while (0)
 404#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 405#define	STATS_INC_NODEFREES(x)	do { } while (0)
 406#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 407#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 408#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 409#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 410#define STATS_INC_FREEHIT(x)	do { } while (0)
 411#define STATS_INC_FREEMISS(x)	do { } while (0)
 412#endif
 413
 414#if DEBUG
 415
 416/*
 417 * memory layout of objects:
 418 * 0		: objp
 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 420 * 		the end of an object is aligned with the end of the real
 421 * 		allocation. Catches writes behind the end of the allocation.
 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 423 * 		redzone word.
 424 * cachep->obj_offset: The real object.
 425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 427 *					[BYTES_PER_WORD long]
 428 */
 429static int obj_offset(struct kmem_cache *cachep)
 430{
 431	return cachep->obj_offset;
 432}
 433
 434static int obj_size(struct kmem_cache *cachep)
 435{
 436	return cachep->obj_size;
 437}
 438
 439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 440{
 441	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 442	return (unsigned long long*) (objp + obj_offset(cachep) -
 443				      sizeof(unsigned long long));
 444}
 445
 446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 447{
 448	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 449	if (cachep->flags & SLAB_STORE_USER)
 450		return (unsigned long long *)(objp + cachep->buffer_size -
 451					      sizeof(unsigned long long) -
 452					      REDZONE_ALIGN);
 453	return (unsigned long long *) (objp + cachep->buffer_size -
 454				       sizeof(unsigned long long));
 455}
 456
 457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 458{
 459	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 460	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 461}
 462
 463#else
 464
 465#define obj_offset(x)			0
 466#define obj_size(cachep)		(cachep->buffer_size)
 467#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 468#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 469#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 470
 471#endif
 472
 473#ifdef CONFIG_TRACING
 474size_t slab_buffer_size(struct kmem_cache *cachep)
 475{
 476	return cachep->buffer_size;
 477}
 478EXPORT_SYMBOL(slab_buffer_size);
 479#endif
 480
 481/*
 482 * Do not go above this order unless 0 objects fit into the slab.
 483 */
 484#define	BREAK_GFP_ORDER_HI	1
 485#define	BREAK_GFP_ORDER_LO	0
 486static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 487
 488/*
 489 * Functions for storing/retrieving the cachep and or slab from the page
 490 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 491 * these are used to find the cache which an obj belongs to.
 492 */
 493static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 494{
 495	page->lru.next = (struct list_head *)cache;
 496}
 497
 498static inline struct kmem_cache *page_get_cache(struct page *page)
 499{
 500	page = compound_head(page);
 501	BUG_ON(!PageSlab(page));
 502	return (struct kmem_cache *)page->lru.next;
 503}
 504
 505static inline void page_set_slab(struct page *page, struct slab *slab)
 506{
 507	page->lru.prev = (struct list_head *)slab;
 508}
 509
 510static inline struct slab *page_get_slab(struct page *page)
 511{
 512	BUG_ON(!PageSlab(page));
 513	return (struct slab *)page->lru.prev;
 514}
 515
 516static inline struct kmem_cache *virt_to_cache(const void *obj)
 517{
 518	struct page *page = virt_to_head_page(obj);
 519	return page_get_cache(page);
 520}
 521
 522static inline struct slab *virt_to_slab(const void *obj)
 523{
 524	struct page *page = virt_to_head_page(obj);
 525	return page_get_slab(page);
 526}
 527
 528static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 529				 unsigned int idx)
 530{
 531	return slab->s_mem + cache->buffer_size * idx;
 532}
 533
 534/*
 535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 536 *   Using the fact that buffer_size is a constant for a particular cache,
 537 *   we can replace (offset / cache->buffer_size) by
 538 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 539 */
 540static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 541					const struct slab *slab, void *obj)
 542{
 543	u32 offset = (obj - slab->s_mem);
 544	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 545}
 546
 547/*
 548 * These are the default caches for kmalloc. Custom caches can have other sizes.
 549 */
 550struct cache_sizes malloc_sizes[] = {
 551#define CACHE(x) { .cs_size = (x) },
 552#include <linux/kmalloc_sizes.h>
 553	CACHE(ULONG_MAX)
 554#undef CACHE
 555};
 556EXPORT_SYMBOL(malloc_sizes);
 557
 558/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 559struct cache_names {
 560	char *name;
 561	char *name_dma;
 562};
 563
 564static struct cache_names __initdata cache_names[] = {
 565#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 566#include <linux/kmalloc_sizes.h>
 567	{NULL,}
 568#undef CACHE
 569};
 570
 571static struct arraycache_init initarray_cache __initdata =
 572    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 573static struct arraycache_init initarray_generic =
 574    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 575
 576/* internal cache of cache description objs */
 577static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
 578static struct kmem_cache cache_cache = {
 579	.nodelists = cache_cache_nodelists,
 580	.batchcount = 1,
 581	.limit = BOOT_CPUCACHE_ENTRIES,
 582	.shared = 1,
 583	.buffer_size = sizeof(struct kmem_cache),
 584	.name = "kmem_cache",
 585};
 586
 587#define BAD_ALIEN_MAGIC 0x01020304ul
 588
 589/*
 590 * chicken and egg problem: delay the per-cpu array allocation
 591 * until the general caches are up.
 592 */
 593static enum {
 594	NONE,
 595	PARTIAL_AC,
 596	PARTIAL_L3,
 597	EARLY,
 598	FULL
 599} g_cpucache_up;
 600
 601/*
 602 * used by boot code to determine if it can use slab based allocator
 603 */
 604int slab_is_available(void)
 605{
 606	return g_cpucache_up >= EARLY;
 607}
 608
 609#ifdef CONFIG_LOCKDEP
 610
 611/*
 612 * Slab sometimes uses the kmalloc slabs to store the slab headers
 613 * for other slabs "off slab".
 614 * The locking for this is tricky in that it nests within the locks
 615 * of all other slabs in a few places; to deal with this special
 616 * locking we put on-slab caches into a separate lock-class.
 617 *
 618 * We set lock class for alien array caches which are up during init.
 619 * The lock annotation will be lost if all cpus of a node goes down and
 620 * then comes back up during hotplug
 621 */
 622static struct lock_class_key on_slab_l3_key;
 623static struct lock_class_key on_slab_alc_key;
 624
 625static struct lock_class_key debugobj_l3_key;
 626static struct lock_class_key debugobj_alc_key;
 627
 628static void slab_set_lock_classes(struct kmem_cache *cachep,
 629		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
 630		int q)
 631{
 632	struct array_cache **alc;
 633	struct kmem_list3 *l3;
 634	int r;
 635
 636	l3 = cachep->nodelists[q];
 637	if (!l3)
 638		return;
 639
 640	lockdep_set_class(&l3->list_lock, l3_key);
 641	alc = l3->alien;
 642	/*
 643	 * FIXME: This check for BAD_ALIEN_MAGIC
 644	 * should go away when common slab code is taught to
 645	 * work even without alien caches.
 646	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 647	 * for alloc_alien_cache,
 648	 */
 649	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 650		return;
 651	for_each_node(r) {
 652		if (alc[r])
 653			lockdep_set_class(&alc[r]->lock, alc_key);
 654	}
 655}
 656
 657static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 658{
 659	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
 660}
 661
 662static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 663{
 664	int node;
 665
 666	for_each_online_node(node)
 667		slab_set_debugobj_lock_classes_node(cachep, node);
 668}
 669
 670static void init_node_lock_keys(int q)
 671{
 672	struct cache_sizes *s = malloc_sizes;
 673
 674	if (g_cpucache_up != FULL)
 675		return;
 676
 677	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
 678		struct kmem_list3 *l3;
 679
 680		l3 = s->cs_cachep->nodelists[q];
 681		if (!l3 || OFF_SLAB(s->cs_cachep))
 682			continue;
 683
 684		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
 685				&on_slab_alc_key, q);
 686	}
 687}
 688
 689static inline void init_lock_keys(void)
 690{
 691	int node;
 692
 693	for_each_node(node)
 694		init_node_lock_keys(node);
 695}
 696#else
 697static void init_node_lock_keys(int q)
 698{
 699}
 700
 701static inline void init_lock_keys(void)
 702{
 703}
 704
 705static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 706{
 707}
 708
 709static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 710{
 711}
 712#endif
 713
 714/*
 715 * Guard access to the cache-chain.
 716 */
 717static DEFINE_MUTEX(cache_chain_mutex);
 718static struct list_head cache_chain;
 719
 720static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 721
 722static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 723{
 724	return cachep->array[smp_processor_id()];
 725}
 726
 727static inline struct kmem_cache *__find_general_cachep(size_t size,
 728							gfp_t gfpflags)
 729{
 730	struct cache_sizes *csizep = malloc_sizes;
 731
 732#if DEBUG
 733	/* This happens if someone tries to call
 734	 * kmem_cache_create(), or __kmalloc(), before
 735	 * the generic caches are initialized.
 736	 */
 737	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 738#endif
 739	if (!size)
 740		return ZERO_SIZE_PTR;
 741
 742	while (size > csizep->cs_size)
 743		csizep++;
 744
 745	/*
 746	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 747	 * has cs_{dma,}cachep==NULL. Thus no special case
 748	 * for large kmalloc calls required.
 749	 */
 750#ifdef CONFIG_ZONE_DMA
 751	if (unlikely(gfpflags & GFP_DMA))
 752		return csizep->cs_dmacachep;
 753#endif
 754	return csizep->cs_cachep;
 755}
 756
 757static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 758{
 759	return __find_general_cachep(size, gfpflags);
 760}
 761
 762static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 763{
 764	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 765}
 766
 767/*
 768 * Calculate the number of objects and left-over bytes for a given buffer size.
 769 */
 770static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 771			   size_t align, int flags, size_t *left_over,
 772			   unsigned int *num)
 773{
 774	int nr_objs;
 775	size_t mgmt_size;
 776	size_t slab_size = PAGE_SIZE << gfporder;
 777
 778	/*
 779	 * The slab management structure can be either off the slab or
 780	 * on it. For the latter case, the memory allocated for a
 781	 * slab is used for:
 782	 *
 783	 * - The struct slab
 784	 * - One kmem_bufctl_t for each object
 785	 * - Padding to respect alignment of @align
 786	 * - @buffer_size bytes for each object
 
 
 
 
 
 787	 *
 788	 * If the slab management structure is off the slab, then the
 789	 * alignment will already be calculated into the size. Because
 790	 * the slabs are all pages aligned, the objects will be at the
 791	 * correct alignment when allocated.
 792	 */
 793	if (flags & CFLGS_OFF_SLAB) {
 794		mgmt_size = 0;
 795		nr_objs = slab_size / buffer_size;
 796
 797		if (nr_objs > SLAB_LIMIT)
 798			nr_objs = SLAB_LIMIT;
 799	} else {
 800		/*
 801		 * Ignore padding for the initial guess. The padding
 802		 * is at most @align-1 bytes, and @buffer_size is at
 803		 * least @align. In the worst case, this result will
 804		 * be one greater than the number of objects that fit
 805		 * into the memory allocation when taking the padding
 806		 * into account.
 807		 */
 808		nr_objs = (slab_size - sizeof(struct slab)) /
 809			  (buffer_size + sizeof(kmem_bufctl_t));
 810
 811		/*
 812		 * This calculated number will be either the right
 813		 * amount, or one greater than what we want.
 814		 */
 815		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 816		       > slab_size)
 817			nr_objs--;
 818
 819		if (nr_objs > SLAB_LIMIT)
 820			nr_objs = SLAB_LIMIT;
 821
 822		mgmt_size = slab_mgmt_size(nr_objs, align);
 823	}
 824	*num = nr_objs;
 825	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 826}
 827
 
 828#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 829
 830static void __slab_error(const char *function, struct kmem_cache *cachep,
 831			char *msg)
 832{
 833	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 834	       function, cachep->name, msg);
 835	dump_stack();
 
 836}
 
 837
 838/*
 839 * By default on NUMA we use alien caches to stage the freeing of
 840 * objects allocated from other nodes. This causes massive memory
 841 * inefficiencies when using fake NUMA setup to split memory into a
 842 * large number of small nodes, so it can be disabled on the command
 843 * line
 844  */
 845
 846static int use_alien_caches __read_mostly = 1;
 847static int __init noaliencache_setup(char *s)
 848{
 849	use_alien_caches = 0;
 850	return 1;
 851}
 852__setup("noaliencache", noaliencache_setup);
 853
 
 
 
 
 
 
 
 
 
 
 
 854#ifdef CONFIG_NUMA
 855/*
 856 * Special reaping functions for NUMA systems called from cache_reap().
 857 * These take care of doing round robin flushing of alien caches (containing
 858 * objects freed on different nodes from which they were allocated) and the
 859 * flushing of remote pcps by calling drain_node_pages.
 860 */
 861static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 862
 863static void init_reap_node(int cpu)
 864{
 865	int node;
 866
 867	node = next_node(cpu_to_mem(cpu), node_online_map);
 868	if (node == MAX_NUMNODES)
 869		node = first_node(node_online_map);
 870
 871	per_cpu(slab_reap_node, cpu) = node;
 872}
 873
 874static void next_reap_node(void)
 875{
 876	int node = __this_cpu_read(slab_reap_node);
 877
 878	node = next_node(node, node_online_map);
 879	if (unlikely(node >= MAX_NUMNODES))
 880		node = first_node(node_online_map);
 881	__this_cpu_write(slab_reap_node, node);
 882}
 883
 884#else
 885#define init_reap_node(cpu) do { } while (0)
 886#define next_reap_node(void) do { } while (0)
 887#endif
 888
 889/*
 890 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 891 * via the workqueue/eventd.
 892 * Add the CPU number into the expiration time to minimize the possibility of
 893 * the CPUs getting into lockstep and contending for the global cache chain
 894 * lock.
 895 */
 896static void __cpuinit start_cpu_timer(int cpu)
 897{
 898	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 899
 900	/*
 901	 * When this gets called from do_initcalls via cpucache_init(),
 902	 * init_workqueues() has already run, so keventd will be setup
 903	 * at that time.
 904	 */
 905	if (keventd_up() && reap_work->work.func == NULL) {
 906		init_reap_node(cpu);
 907		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
 908		schedule_delayed_work_on(cpu, reap_work,
 909					__round_jiffies_relative(HZ, cpu));
 910	}
 911}
 912
 
 
 
 
 
 
 
 
 
 
 913static struct array_cache *alloc_arraycache(int node, int entries,
 914					    int batchcount, gfp_t gfp)
 915{
 916	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 917	struct array_cache *nc = NULL;
 918
 919	nc = kmalloc_node(memsize, gfp, node);
 920	/*
 921	 * The array_cache structures contain pointers to free object.
 922	 * However, when such objects are allocated or transferred to another
 923	 * cache the pointers are not cleared and they could be counted as
 924	 * valid references during a kmemleak scan. Therefore, kmemleak must
 925	 * not scan such objects.
 926	 */
 927	kmemleak_no_scan(nc);
 928	if (nc) {
 929		nc->avail = 0;
 930		nc->limit = entries;
 931		nc->batchcount = batchcount;
 932		nc->touched = 0;
 933		spin_lock_init(&nc->lock);
 934	}
 935	return nc;
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938/*
 939 * Transfer objects in one arraycache to another.
 940 * Locking must be handled by the caller.
 941 *
 942 * Return the number of entries transferred.
 943 */
 944static int transfer_objects(struct array_cache *to,
 945		struct array_cache *from, unsigned int max)
 946{
 947	/* Figure out how many entries to transfer */
 948	int nr = min3(from->avail, max, to->limit - to->avail);
 949
 950	if (!nr)
 951		return 0;
 952
 953	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 954			sizeof(void *) *nr);
 955
 956	from->avail -= nr;
 957	to->avail += nr;
 958	return nr;
 959}
 960
 
 
 
 
 
 
 
 
 
 
 961#ifndef CONFIG_NUMA
 962
 963#define drain_alien_cache(cachep, alien) do { } while (0)
 964#define reap_alien(cachep, l3) do { } while (0)
 965
 966static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 
 967{
 968	return (struct array_cache **)BAD_ALIEN_MAGIC;
 969}
 970
 971static inline void free_alien_cache(struct array_cache **ac_ptr)
 972{
 973}
 974
 975static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 976{
 977	return 0;
 978}
 979
 980static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 981		gfp_t flags)
 982{
 983	return NULL;
 984}
 985
 986static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 987		 gfp_t flags, int nodeid)
 988{
 989	return NULL;
 990}
 991
 
 
 
 
 
 992#else	/* CONFIG_NUMA */
 993
 994static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 995static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 996
 997static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998{
 999	struct array_cache **ac_ptr;
1000	int memsize = sizeof(void *) * nr_node_ids;
1001	int i;
1002
1003	if (limit > 1)
1004		limit = 12;
1005	ac_ptr = kzalloc_node(memsize, gfp, node);
1006	if (ac_ptr) {
1007		for_each_node(i) {
1008			if (i == node || !node_online(i))
1009				continue;
1010			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1011			if (!ac_ptr[i]) {
1012				for (i--; i >= 0; i--)
1013					kfree(ac_ptr[i]);
1014				kfree(ac_ptr);
1015				return NULL;
1016			}
 
1017		}
1018	}
1019	return ac_ptr;
1020}
1021
1022static void free_alien_cache(struct array_cache **ac_ptr)
1023{
1024	int i;
1025
1026	if (!ac_ptr)
1027		return;
1028	for_each_node(i)
1029	    kfree(ac_ptr[i]);
1030	kfree(ac_ptr);
1031}
1032
1033static void __drain_alien_cache(struct kmem_cache *cachep,
1034				struct array_cache *ac, int node)
 
1035{
1036	struct kmem_list3 *rl3 = cachep->nodelists[node];
1037
1038	if (ac->avail) {
1039		spin_lock(&rl3->list_lock);
1040		/*
1041		 * Stuff objects into the remote nodes shared array first.
1042		 * That way we could avoid the overhead of putting the objects
1043		 * into the free lists and getting them back later.
1044		 */
1045		if (rl3->shared)
1046			transfer_objects(rl3->shared, ac, ac->limit);
1047
1048		free_block(cachep, ac->entry, ac->avail, node);
1049		ac->avail = 0;
1050		spin_unlock(&rl3->list_lock);
1051	}
1052}
1053
1054/*
1055 * Called from cache_reap() to regularly drain alien caches round robin.
1056 */
1057static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1058{
1059	int node = __this_cpu_read(slab_reap_node);
1060
1061	if (l3->alien) {
1062		struct array_cache *ac = l3->alien[node];
1063
1064		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1065			__drain_alien_cache(cachep, ac, node);
1066			spin_unlock_irq(&ac->lock);
 
 
 
 
 
 
 
1067		}
1068	}
1069}
1070
1071static void drain_alien_cache(struct kmem_cache *cachep,
1072				struct array_cache **alien)
1073{
1074	int i = 0;
 
1075	struct array_cache *ac;
1076	unsigned long flags;
1077
1078	for_each_online_node(i) {
1079		ac = alien[i];
1080		if (ac) {
1081			spin_lock_irqsave(&ac->lock, flags);
1082			__drain_alien_cache(cachep, ac, i);
1083			spin_unlock_irqrestore(&ac->lock, flags);
 
 
 
 
1084		}
1085	}
1086}
1087
1088static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 
1089{
1090	struct slab *slabp = virt_to_slab(objp);
1091	int nodeid = slabp->nodeid;
1092	struct kmem_list3 *l3;
1093	struct array_cache *alien = NULL;
1094	int node;
1095
1096	node = numa_mem_id();
1097
1098	/*
1099	 * Make sure we are not freeing a object from another node to the array
1100	 * cache on this cpu.
1101	 */
1102	if (likely(slabp->nodeid == node))
1103		return 0;
1104
1105	l3 = cachep->nodelists[node];
1106	STATS_INC_NODEFREES(cachep);
1107	if (l3->alien && l3->alien[nodeid]) {
1108		alien = l3->alien[nodeid];
 
1109		spin_lock(&alien->lock);
1110		if (unlikely(alien->avail == alien->limit)) {
1111			STATS_INC_ACOVERFLOW(cachep);
1112			__drain_alien_cache(cachep, alien, nodeid);
1113		}
1114		alien->entry[alien->avail++] = objp;
1115		spin_unlock(&alien->lock);
 
1116	} else {
1117		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1118		free_block(cachep, &objp, 1, nodeid);
1119		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
 
 
1120	}
1121	return 1;
1122}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123#endif
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125/*
1126 * Allocates and initializes nodelists for a node on each slab cache, used for
1127 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1128 * will be allocated off-node since memory is not yet online for the new node.
1129 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1130 * already in use.
1131 *
1132 * Must hold cache_chain_mutex.
1133 */
1134static int init_cache_nodelists_node(int node)
1135{
 
1136	struct kmem_cache *cachep;
1137	struct kmem_list3 *l3;
1138	const int memsize = sizeof(struct kmem_list3);
1139
1140	list_for_each_entry(cachep, &cache_chain, next) {
1141		/*
1142		 * Set up the size64 kmemlist for cpu before we can
1143		 * begin anything. Make sure some other cpu on this
1144		 * node has not already allocated this
1145		 */
1146		if (!cachep->nodelists[node]) {
1147			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1148			if (!l3)
1149				return -ENOMEM;
1150			kmem_list3_init(l3);
1151			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1152			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1153
1154			/*
1155			 * The l3s don't come and go as CPUs come and
1156			 * go.  cache_chain_mutex is sufficient
1157			 * protection here.
1158			 */
1159			cachep->nodelists[node] = l3;
1160		}
1161
1162		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1163		cachep->nodelists[node]->free_limit =
1164			(1 + nr_cpus_node(node)) *
1165			cachep->batchcount + cachep->num;
1166		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
 
 
 
 
 
 
 
 
 
1167	}
1168	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169}
1170
1171static void __cpuinit cpuup_canceled(long cpu)
 
 
1172{
1173	struct kmem_cache *cachep;
1174	struct kmem_list3 *l3 = NULL;
1175	int node = cpu_to_mem(cpu);
1176	const struct cpumask *mask = cpumask_of_node(node);
1177
1178	list_for_each_entry(cachep, &cache_chain, next) {
1179		struct array_cache *nc;
1180		struct array_cache *shared;
1181		struct array_cache **alien;
 
 
 
 
 
 
 
 
 
 
1182
1183		/* cpu is dead; no one can alloc from it. */
1184		nc = cachep->array[cpu];
1185		cachep->array[cpu] = NULL;
1186		l3 = cachep->nodelists[node];
1187
1188		if (!l3)
1189			goto free_array_cache;
1190
1191		spin_lock_irq(&l3->list_lock);
1192
1193		/* Free limit for this kmem_list3 */
1194		l3->free_limit -= cachep->batchcount;
1195		if (nc)
1196			free_block(cachep, nc->entry, nc->avail, node);
1197
1198		if (!cpumask_empty(mask)) {
1199			spin_unlock_irq(&l3->list_lock);
1200			goto free_array_cache;
1201		}
1202
1203		shared = l3->shared;
1204		if (shared) {
1205			free_block(cachep, shared->entry,
1206				   shared->avail, node);
1207			l3->shared = NULL;
1208		}
1209
1210		alien = l3->alien;
1211		l3->alien = NULL;
1212
1213		spin_unlock_irq(&l3->list_lock);
1214
1215		kfree(shared);
1216		if (alien) {
1217			drain_alien_cache(cachep, alien);
1218			free_alien_cache(alien);
1219		}
1220free_array_cache:
1221		kfree(nc);
 
1222	}
1223	/*
1224	 * In the previous loop, all the objects were freed to
1225	 * the respective cache's slabs,  now we can go ahead and
1226	 * shrink each nodelist to its limit.
1227	 */
1228	list_for_each_entry(cachep, &cache_chain, next) {
1229		l3 = cachep->nodelists[node];
1230		if (!l3)
1231			continue;
1232		drain_freelist(cachep, l3, l3->free_objects);
1233	}
1234}
1235
1236static int __cpuinit cpuup_prepare(long cpu)
1237{
1238	struct kmem_cache *cachep;
1239	struct kmem_list3 *l3 = NULL;
1240	int node = cpu_to_mem(cpu);
1241	int err;
1242
1243	/*
1244	 * We need to do this right in the beginning since
1245	 * alloc_arraycache's are going to use this list.
1246	 * kmalloc_node allows us to add the slab to the right
1247	 * kmem_list3 and not this cpu's kmem_list3
1248	 */
1249	err = init_cache_nodelists_node(node);
1250	if (err < 0)
1251		goto bad;
1252
1253	/*
1254	 * Now we can go ahead with allocating the shared arrays and
1255	 * array caches
1256	 */
1257	list_for_each_entry(cachep, &cache_chain, next) {
1258		struct array_cache *nc;
1259		struct array_cache *shared = NULL;
1260		struct array_cache **alien = NULL;
1261
1262		nc = alloc_arraycache(node, cachep->limit,
1263					cachep->batchcount, GFP_KERNEL);
1264		if (!nc)
1265			goto bad;
1266		if (cachep->shared) {
1267			shared = alloc_arraycache(node,
1268				cachep->shared * cachep->batchcount,
1269				0xbaadf00d, GFP_KERNEL);
1270			if (!shared) {
1271				kfree(nc);
1272				goto bad;
1273			}
1274		}
1275		if (use_alien_caches) {
1276			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1277			if (!alien) {
1278				kfree(shared);
1279				kfree(nc);
1280				goto bad;
1281			}
1282		}
1283		cachep->array[cpu] = nc;
1284		l3 = cachep->nodelists[node];
1285		BUG_ON(!l3);
1286
1287		spin_lock_irq(&l3->list_lock);
1288		if (!l3->shared) {
1289			/*
1290			 * We are serialised from CPU_DEAD or
1291			 * CPU_UP_CANCELLED by the cpucontrol lock
1292			 */
1293			l3->shared = shared;
1294			shared = NULL;
1295		}
1296#ifdef CONFIG_NUMA
1297		if (!l3->alien) {
1298			l3->alien = alien;
1299			alien = NULL;
1300		}
1301#endif
1302		spin_unlock_irq(&l3->list_lock);
1303		kfree(shared);
1304		free_alien_cache(alien);
1305		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1306			slab_set_debugobj_lock_classes_node(cachep, node);
1307	}
1308	init_node_lock_keys(node);
1309
1310	return 0;
1311bad:
1312	cpuup_canceled(cpu);
1313	return -ENOMEM;
1314}
1315
1316static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1317				    unsigned long action, void *hcpu)
1318{
1319	long cpu = (long)hcpu;
1320	int err = 0;
1321
1322	switch (action) {
1323	case CPU_UP_PREPARE:
1324	case CPU_UP_PREPARE_FROZEN:
1325		mutex_lock(&cache_chain_mutex);
1326		err = cpuup_prepare(cpu);
1327		mutex_unlock(&cache_chain_mutex);
1328		break;
1329	case CPU_ONLINE:
1330	case CPU_ONLINE_FROZEN:
1331		start_cpu_timer(cpu);
1332		break;
1333#ifdef CONFIG_HOTPLUG_CPU
1334  	case CPU_DOWN_PREPARE:
1335  	case CPU_DOWN_PREPARE_FROZEN:
1336		/*
1337		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1338		 * held so that if cache_reap() is invoked it cannot do
1339		 * anything expensive but will only modify reap_work
1340		 * and reschedule the timer.
1341		*/
1342		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1343		/* Now the cache_reaper is guaranteed to be not running. */
1344		per_cpu(slab_reap_work, cpu).work.func = NULL;
1345  		break;
1346  	case CPU_DOWN_FAILED:
1347  	case CPU_DOWN_FAILED_FROZEN:
1348		start_cpu_timer(cpu);
1349  		break;
1350	case CPU_DEAD:
1351	case CPU_DEAD_FROZEN:
1352		/*
1353		 * Even if all the cpus of a node are down, we don't free the
1354		 * kmem_list3 of any cache. This to avoid a race between
1355		 * cpu_down, and a kmalloc allocation from another cpu for
1356		 * memory from the node of the cpu going down.  The list3
1357		 * structure is usually allocated from kmem_cache_create() and
1358		 * gets destroyed at kmem_cache_destroy().
1359		 */
1360		/* fall through */
1361#endif
1362	case CPU_UP_CANCELED:
1363	case CPU_UP_CANCELED_FROZEN:
1364		mutex_lock(&cache_chain_mutex);
1365		cpuup_canceled(cpu);
1366		mutex_unlock(&cache_chain_mutex);
1367		break;
1368	}
1369	return notifier_from_errno(err);
1370}
1371
1372static struct notifier_block __cpuinitdata cpucache_notifier = {
1373	&cpuup_callback, NULL, 0
1374};
 
 
 
 
 
 
 
 
 
 
1375
1376#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1377/*
1378 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1379 * Returns -EBUSY if all objects cannot be drained so that the node is not
1380 * removed.
1381 *
1382 * Must hold cache_chain_mutex.
1383 */
1384static int __meminit drain_cache_nodelists_node(int node)
1385{
1386	struct kmem_cache *cachep;
1387	int ret = 0;
1388
1389	list_for_each_entry(cachep, &cache_chain, next) {
1390		struct kmem_list3 *l3;
1391
1392		l3 = cachep->nodelists[node];
1393		if (!l3)
1394			continue;
1395
1396		drain_freelist(cachep, l3, l3->free_objects);
1397
1398		if (!list_empty(&l3->slabs_full) ||
1399		    !list_empty(&l3->slabs_partial)) {
1400			ret = -EBUSY;
1401			break;
1402		}
1403	}
1404	return ret;
1405}
1406
1407static int __meminit slab_memory_callback(struct notifier_block *self,
1408					unsigned long action, void *arg)
1409{
1410	struct memory_notify *mnb = arg;
1411	int ret = 0;
1412	int nid;
1413
1414	nid = mnb->status_change_nid;
1415	if (nid < 0)
1416		goto out;
1417
1418	switch (action) {
1419	case MEM_GOING_ONLINE:
1420		mutex_lock(&cache_chain_mutex);
1421		ret = init_cache_nodelists_node(nid);
1422		mutex_unlock(&cache_chain_mutex);
1423		break;
1424	case MEM_GOING_OFFLINE:
1425		mutex_lock(&cache_chain_mutex);
1426		ret = drain_cache_nodelists_node(nid);
1427		mutex_unlock(&cache_chain_mutex);
1428		break;
1429	case MEM_ONLINE:
1430	case MEM_OFFLINE:
1431	case MEM_CANCEL_ONLINE:
1432	case MEM_CANCEL_OFFLINE:
1433		break;
1434	}
1435out:
1436	return notifier_from_errno(ret);
1437}
1438#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1439
1440/*
1441 * swap the static kmem_list3 with kmalloced memory
1442 */
1443static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1444				int nodeid)
1445{
1446	struct kmem_list3 *ptr;
1447
1448	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1449	BUG_ON(!ptr);
1450
1451	memcpy(ptr, list, sizeof(struct kmem_list3));
1452	/*
1453	 * Do not assume that spinlocks can be initialized via memcpy:
1454	 */
1455	spin_lock_init(&ptr->list_lock);
1456
1457	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1458	cachep->nodelists[nodeid] = ptr;
1459}
1460
1461/*
1462 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1463 * size of kmem_list3.
1464 */
1465static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1466{
1467	int node;
1468
1469	for_each_online_node(node) {
1470		cachep->nodelists[node] = &initkmem_list3[index + node];
1471		cachep->nodelists[node]->next_reap = jiffies +
1472		    REAPTIMEOUT_LIST3 +
1473		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1474	}
1475}
1476
1477/*
1478 * Initialisation.  Called after the page allocator have been initialised and
1479 * before smp_init().
1480 */
1481void __init kmem_cache_init(void)
1482{
1483	size_t left_over;
1484	struct cache_sizes *sizes;
1485	struct cache_names *names;
1486	int i;
1487	int order;
1488	int node;
1489
1490	if (num_possible_nodes() == 1)
 
 
1491		use_alien_caches = 0;
1492
1493	for (i = 0; i < NUM_INIT_LISTS; i++) {
1494		kmem_list3_init(&initkmem_list3[i]);
1495		if (i < MAX_NUMNODES)
1496			cache_cache.nodelists[i] = NULL;
1497	}
1498	set_up_list3s(&cache_cache, CACHE_CACHE);
1499
1500	/*
1501	 * Fragmentation resistance on low memory - only use bigger
1502	 * page orders on machines with more than 32MB of memory.
 
1503	 */
1504	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1505		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1506
1507	/* Bootstrap is tricky, because several objects are allocated
1508	 * from caches that do not exist yet:
1509	 * 1) initialize the cache_cache cache: it contains the struct
1510	 *    kmem_cache structures of all caches, except cache_cache itself:
1511	 *    cache_cache is statically allocated.
1512	 *    Initially an __init data area is used for the head array and the
1513	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1514	 *    array at the end of the bootstrap.
1515	 * 2) Create the first kmalloc cache.
1516	 *    The struct kmem_cache for the new cache is allocated normally.
1517	 *    An __init data area is used for the head array.
1518	 * 3) Create the remaining kmalloc caches, with minimally sized
1519	 *    head arrays.
1520	 * 4) Replace the __init data head arrays for cache_cache and the first
1521	 *    kmalloc cache with kmalloc allocated arrays.
1522	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1523	 *    the other cache's with kmalloc allocated memory.
1524	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1525	 */
1526
1527	node = numa_mem_id();
1528
1529	/* 1) create the cache_cache */
1530	INIT_LIST_HEAD(&cache_chain);
1531	list_add(&cache_cache.next, &cache_chain);
1532	cache_cache.colour_off = cache_line_size();
1533	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1534	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1535
1536	/*
1537	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1538	 */
1539	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1540				  nr_node_ids * sizeof(struct kmem_list3 *);
1541#if DEBUG
1542	cache_cache.obj_size = cache_cache.buffer_size;
1543#endif
1544	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1545					cache_line_size());
1546	cache_cache.reciprocal_buffer_size =
1547		reciprocal_value(cache_cache.buffer_size);
1548
1549	for (order = 0; order < MAX_ORDER; order++) {
1550		cache_estimate(order, cache_cache.buffer_size,
1551			cache_line_size(), 0, &left_over, &cache_cache.num);
1552		if (cache_cache.num)
1553			break;
1554	}
1555	BUG_ON(!cache_cache.num);
1556	cache_cache.gfporder = order;
1557	cache_cache.colour = left_over / cache_cache.colour_off;
1558	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1559				      sizeof(struct slab), cache_line_size());
1560
1561	/* 2+3) create the kmalloc caches */
1562	sizes = malloc_sizes;
1563	names = cache_names;
1564
1565	/*
1566	 * Initialize the caches that provide memory for the array cache and the
1567	 * kmem_list3 structures first.  Without this, further allocations will
1568	 * bug.
1569	 */
1570
1571	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1572					sizes[INDEX_AC].cs_size,
1573					ARCH_KMALLOC_MINALIGN,
1574					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1575					NULL);
1576
1577	if (INDEX_AC != INDEX_L3) {
1578		sizes[INDEX_L3].cs_cachep =
1579			kmem_cache_create(names[INDEX_L3].name,
1580				sizes[INDEX_L3].cs_size,
1581				ARCH_KMALLOC_MINALIGN,
1582				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1583				NULL);
1584	}
1585
1586	slab_early_init = 0;
1587
1588	while (sizes->cs_size != ULONG_MAX) {
1589		/*
1590		 * For performance, all the general caches are L1 aligned.
1591		 * This should be particularly beneficial on SMP boxes, as it
1592		 * eliminates "false sharing".
1593		 * Note for systems short on memory removing the alignment will
1594		 * allow tighter packing of the smaller caches.
1595		 */
1596		if (!sizes->cs_cachep) {
1597			sizes->cs_cachep = kmem_cache_create(names->name,
1598					sizes->cs_size,
1599					ARCH_KMALLOC_MINALIGN,
1600					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1601					NULL);
1602		}
1603#ifdef CONFIG_ZONE_DMA
1604		sizes->cs_dmacachep = kmem_cache_create(
1605					names->name_dma,
1606					sizes->cs_size,
1607					ARCH_KMALLOC_MINALIGN,
1608					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1609						SLAB_PANIC,
1610					NULL);
1611#endif
1612		sizes++;
1613		names++;
1614	}
1615	/* 4) Replace the bootstrap head arrays */
1616	{
1617		struct array_cache *ptr;
1618
1619		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1620
1621		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1622		memcpy(ptr, cpu_cache_get(&cache_cache),
1623		       sizeof(struct arraycache_init));
1624		/*
1625		 * Do not assume that spinlocks can be initialized via memcpy:
1626		 */
1627		spin_lock_init(&ptr->lock);
1628
1629		cache_cache.array[smp_processor_id()] = ptr;
1630
1631		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1632
1633		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1634		       != &initarray_generic.cache);
1635		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1636		       sizeof(struct arraycache_init));
1637		/*
1638		 * Do not assume that spinlocks can be initialized via memcpy:
1639		 */
1640		spin_lock_init(&ptr->lock);
1641
1642		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1643		    ptr;
1644	}
1645	/* 5) Replace the bootstrap kmem_list3's */
1646	{
1647		int nid;
1648
1649		for_each_online_node(nid) {
1650			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1651
1652			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1653				  &initkmem_list3[SIZE_AC + nid], nid);
1654
1655			if (INDEX_AC != INDEX_L3) {
1656				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1657					  &initkmem_list3[SIZE_L3 + nid], nid);
1658			}
1659		}
1660	}
1661
1662	g_cpucache_up = EARLY;
1663}
1664
1665void __init kmem_cache_init_late(void)
1666{
1667	struct kmem_cache *cachep;
1668
1669	/* Annotate slab for lockdep -- annotate the malloc caches */
1670	init_lock_keys();
1671
1672	/* 6) resize the head arrays to their final sizes */
1673	mutex_lock(&cache_chain_mutex);
1674	list_for_each_entry(cachep, &cache_chain, next)
1675		if (enable_cpucache(cachep, GFP_NOWAIT))
1676			BUG();
1677	mutex_unlock(&cache_chain_mutex);
1678
1679	/* Done! */
1680	g_cpucache_up = FULL;
1681
1682	/*
1683	 * Register a cpu startup notifier callback that initializes
1684	 * cpu_cache_get for all new cpus
1685	 */
1686	register_cpu_notifier(&cpucache_notifier);
1687
1688#ifdef CONFIG_NUMA
1689	/*
1690	 * Register a memory hotplug callback that initializes and frees
1691	 * nodelists.
1692	 */
1693	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1694#endif
1695
1696	/*
1697	 * The reap timers are started later, with a module init call: That part
1698	 * of the kernel is not yet operational.
1699	 */
1700}
1701
1702static int __init cpucache_init(void)
1703{
1704	int cpu;
1705
1706	/*
1707	 * Register the timers that return unneeded pages to the page allocator
1708	 */
1709	for_each_online_cpu(cpu)
1710		start_cpu_timer(cpu);
 
 
1711	return 0;
1712}
1713__initcall(cpucache_init);
1714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715/*
1716 * Interface to system's page allocator. No need to hold the cache-lock.
 
1717 *
1718 * If we requested dmaable memory, we will get it. Even if we
1719 * did not request dmaable memory, we might get it, but that
1720 * would be relatively rare and ignorable.
1721 */
1722static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
1723{
1724	struct page *page;
1725	int nr_pages;
1726	int i;
1727
1728#ifndef CONFIG_MMU
1729	/*
1730	 * Nommu uses slab's for process anonymous memory allocations, and thus
1731	 * requires __GFP_COMP to properly refcount higher order allocations
1732	 */
1733	flags |= __GFP_COMP;
1734#endif
1735
1736	flags |= cachep->gfpflags;
1737	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738		flags |= __GFP_RECLAIMABLE;
1739
1740	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1741	if (!page)
 
1742		return NULL;
1743
1744	nr_pages = (1 << cachep->gfporder);
1745	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1746		add_zone_page_state(page_zone(page),
1747			NR_SLAB_RECLAIMABLE, nr_pages);
1748	else
1749		add_zone_page_state(page_zone(page),
1750			NR_SLAB_UNRECLAIMABLE, nr_pages);
1751	for (i = 0; i < nr_pages; i++)
1752		__SetPageSlab(page + i);
1753
1754	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1755		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1756
1757		if (cachep->ctor)
1758			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1759		else
1760			kmemcheck_mark_unallocated_pages(page, nr_pages);
1761	}
1762
1763	return page_address(page);
 
 
 
 
 
 
1764}
1765
1766/*
1767 * Interface to system's page release.
1768 */
1769static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1770{
1771	unsigned long i = (1 << cachep->gfporder);
1772	struct page *page = virt_to_page(addr);
1773	const unsigned long nr_freed = i;
1774
1775	kmemcheck_free_shadow(page, cachep->gfporder);
 
 
 
 
 
1776
1777	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1778		sub_zone_page_state(page_zone(page),
1779				NR_SLAB_RECLAIMABLE, nr_freed);
1780	else
1781		sub_zone_page_state(page_zone(page),
1782				NR_SLAB_UNRECLAIMABLE, nr_freed);
1783	while (i--) {
1784		BUG_ON(!PageSlab(page));
1785		__ClearPageSlab(page);
1786		page++;
1787	}
1788	if (current->reclaim_state)
1789		current->reclaim_state->reclaimed_slab += nr_freed;
1790	free_pages((unsigned long)addr, cachep->gfporder);
 
1791}
1792
1793static void kmem_rcu_free(struct rcu_head *head)
1794{
1795	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1796	struct kmem_cache *cachep = slab_rcu->cachep;
1797
1798	kmem_freepages(cachep, slab_rcu->addr);
1799	if (OFF_SLAB(cachep))
1800		kmem_cache_free(cachep->slabp_cache, slab_rcu);
 
1801}
1802
1803#if DEBUG
1804
1805#ifdef CONFIG_DEBUG_PAGEALLOC
1806static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1807			    unsigned long caller)
1808{
1809	int size = obj_size(cachep);
 
 
1810
1811	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
 
1812
1813	if (size < 5 * sizeof(unsigned long))
 
 
 
1814		return;
1815
1816	*addr++ = 0x12345678;
1817	*addr++ = caller;
1818	*addr++ = smp_processor_id();
1819	size -= 3 * sizeof(unsigned long);
1820	{
1821		unsigned long *sptr = &caller;
1822		unsigned long svalue;
1823
1824		while (!kstack_end(sptr)) {
1825			svalue = *sptr++;
1826			if (kernel_text_address(svalue)) {
1827				*addr++ = svalue;
1828				size -= sizeof(unsigned long);
1829				if (size <= sizeof(unsigned long))
1830					break;
1831			}
1832		}
1833
1834	}
1835	*addr++ = 0x87654321;
1836}
1837#endif
1838
1839static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1840{
1841	int size = obj_size(cachep);
1842	addr = &((char *)addr)[obj_offset(cachep)];
1843
1844	memset(addr, val, size);
1845	*(unsigned char *)(addr + size - 1) = POISON_END;
1846}
1847
1848static void dump_line(char *data, int offset, int limit)
1849{
1850	int i;
1851	unsigned char error = 0;
1852	int bad_count = 0;
1853
1854	printk(KERN_ERR "%03x:", offset);
1855	for (i = 0; i < limit; i++) {
1856		if (data[offset + i] != POISON_FREE) {
1857			error = data[offset + i];
1858			bad_count++;
1859		}
1860		printk(" %02x", (unsigned char)data[offset + i]);
1861	}
1862	printk("\n");
 
1863
1864	if (bad_count == 1) {
1865		error ^= POISON_FREE;
1866		if (!(error & (error - 1))) {
1867			printk(KERN_ERR "Single bit error detected. Probably "
1868					"bad RAM.\n");
1869#ifdef CONFIG_X86
1870			printk(KERN_ERR "Run memtest86+ or a similar memory "
1871					"test tool.\n");
1872#else
1873			printk(KERN_ERR "Run a memory test tool.\n");
1874#endif
1875		}
1876	}
1877}
1878#endif
1879
1880#if DEBUG
1881
1882static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1883{
1884	int i, size;
1885	char *realobj;
1886
1887	if (cachep->flags & SLAB_RED_ZONE) {
1888		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1889			*dbg_redzone1(cachep, objp),
1890			*dbg_redzone2(cachep, objp));
1891	}
1892
1893	if (cachep->flags & SLAB_STORE_USER) {
1894		printk(KERN_ERR "Last user: [<%p>]",
1895			*dbg_userword(cachep, objp));
1896		print_symbol("(%s)",
1897				(unsigned long)*dbg_userword(cachep, objp));
1898		printk("\n");
1899	}
1900	realobj = (char *)objp + obj_offset(cachep);
1901	size = obj_size(cachep);
1902	for (i = 0; i < size && lines; i += 16, lines--) {
1903		int limit;
1904		limit = 16;
1905		if (i + limit > size)
1906			limit = size - i;
1907		dump_line(realobj, i, limit);
1908	}
1909}
1910
1911static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1912{
1913	char *realobj;
1914	int size, i;
1915	int lines = 0;
1916
 
 
 
1917	realobj = (char *)objp + obj_offset(cachep);
1918	size = obj_size(cachep);
1919
1920	for (i = 0; i < size; i++) {
1921		char exp = POISON_FREE;
1922		if (i == size - 1)
1923			exp = POISON_END;
1924		if (realobj[i] != exp) {
1925			int limit;
1926			/* Mismatch ! */
1927			/* Print header */
1928			if (lines == 0) {
1929				printk(KERN_ERR
1930					"Slab corruption: %s start=%p, len=%d\n",
1931					cachep->name, realobj, size);
1932				print_objinfo(cachep, objp, 0);
1933			}
1934			/* Hexdump the affected line */
1935			i = (i / 16) * 16;
1936			limit = 16;
1937			if (i + limit > size)
1938				limit = size - i;
1939			dump_line(realobj, i, limit);
1940			i += 16;
1941			lines++;
1942			/* Limit to 5 lines */
1943			if (lines > 5)
1944				break;
1945		}
1946	}
1947	if (lines != 0) {
1948		/* Print some data about the neighboring objects, if they
1949		 * exist:
1950		 */
1951		struct slab *slabp = virt_to_slab(objp);
1952		unsigned int objnr;
1953
1954		objnr = obj_to_index(cachep, slabp, objp);
1955		if (objnr) {
1956			objp = index_to_obj(cachep, slabp, objnr - 1);
1957			realobj = (char *)objp + obj_offset(cachep);
1958			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1959			       realobj, size);
1960			print_objinfo(cachep, objp, 2);
1961		}
1962		if (objnr + 1 < cachep->num) {
1963			objp = index_to_obj(cachep, slabp, objnr + 1);
1964			realobj = (char *)objp + obj_offset(cachep);
1965			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1966			       realobj, size);
1967			print_objinfo(cachep, objp, 2);
1968		}
1969	}
1970}
1971#endif
1972
1973#if DEBUG
1974static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
1975{
1976	int i;
 
 
 
 
 
 
1977	for (i = 0; i < cachep->num; i++) {
1978		void *objp = index_to_obj(cachep, slabp, i);
1979
1980		if (cachep->flags & SLAB_POISON) {
1981#ifdef CONFIG_DEBUG_PAGEALLOC
1982			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1983					OFF_SLAB(cachep))
1984				kernel_map_pages(virt_to_page(objp),
1985					cachep->buffer_size / PAGE_SIZE, 1);
1986			else
1987				check_poison_obj(cachep, objp);
1988#else
1989			check_poison_obj(cachep, objp);
1990#endif
1991		}
1992		if (cachep->flags & SLAB_RED_ZONE) {
1993			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1994				slab_error(cachep, "start of a freed object "
1995					   "was overwritten");
1996			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1997				slab_error(cachep, "end of a freed object "
1998					   "was overwritten");
1999		}
2000	}
2001}
2002#else
2003static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
2004{
2005}
2006#endif
2007
2008/**
2009 * slab_destroy - destroy and release all objects in a slab
2010 * @cachep: cache pointer being destroyed
2011 * @slabp: slab pointer being destroyed
2012 *
2013 * Destroy all the objs in a slab, and release the mem back to the system.
2014 * Before calling the slab must have been unlinked from the cache.  The
2015 * cache-lock is not held/needed.
2016 */
2017static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2018{
2019	void *addr = slabp->s_mem - slabp->colouroff;
2020
2021	slab_destroy_debugcheck(cachep, slabp);
2022	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2023		struct slab_rcu *slab_rcu;
 
 
 
2024
2025		slab_rcu = (struct slab_rcu *)slabp;
2026		slab_rcu->cachep = cachep;
2027		slab_rcu->addr = addr;
2028		call_rcu(&slab_rcu->head, kmem_rcu_free);
2029	} else {
2030		kmem_freepages(cachep, addr);
2031		if (OFF_SLAB(cachep))
2032			kmem_cache_free(cachep->slabp_cache, slabp);
2033	}
2034}
2035
2036static void __kmem_cache_destroy(struct kmem_cache *cachep)
 
 
 
 
2037{
2038	int i;
2039	struct kmem_list3 *l3;
2040
2041	for_each_online_cpu(i)
2042	    kfree(cachep->array[i]);
2043
2044	/* NUMA: free the list3 structures */
2045	for_each_online_node(i) {
2046		l3 = cachep->nodelists[i];
2047		if (l3) {
2048			kfree(l3->shared);
2049			free_alien_cache(l3->alien);
2050			kfree(l3);
2051		}
2052	}
2053	kmem_cache_free(&cache_cache, cachep);
2054}
2055
2056
2057/**
2058 * calculate_slab_order - calculate size (page order) of slabs
2059 * @cachep: pointer to the cache that is being created
2060 * @size: size of objects to be created in this cache.
2061 * @align: required alignment for the objects.
2062 * @flags: slab allocation flags
2063 *
2064 * Also calculates the number of objects per slab.
2065 *
2066 * This could be made much more intelligent.  For now, try to avoid using
2067 * high order pages for slabs.  When the gfp() functions are more friendly
2068 * towards high-order requests, this should be changed.
 
 
2069 */
2070static size_t calculate_slab_order(struct kmem_cache *cachep,
2071			size_t size, size_t align, unsigned long flags)
2072{
2073	unsigned long offslab_limit;
2074	size_t left_over = 0;
2075	int gfporder;
2076
2077	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2078		unsigned int num;
2079		size_t remainder;
2080
2081		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2082		if (!num)
2083			continue;
2084
 
 
 
 
2085		if (flags & CFLGS_OFF_SLAB) {
 
 
 
 
 
 
 
 
2086			/*
2087			 * Max number of objs-per-slab for caches which
2088			 * use off-slab slabs. Needed to avoid a possible
2089			 * looping condition in cache_grow().
2090			 */
2091			offslab_limit = size - sizeof(struct slab);
2092			offslab_limit /= sizeof(kmem_bufctl_t);
2093
2094 			if (num > offslab_limit)
2095				break;
 
2096		}
2097
2098		/* Found something acceptable - save it away */
2099		cachep->num = num;
2100		cachep->gfporder = gfporder;
2101		left_over = remainder;
2102
2103		/*
2104		 * A VFS-reclaimable slab tends to have most allocations
2105		 * as GFP_NOFS and we really don't want to have to be allocating
2106		 * higher-order pages when we are unable to shrink dcache.
2107		 */
2108		if (flags & SLAB_RECLAIM_ACCOUNT)
2109			break;
2110
2111		/*
2112		 * Large number of objects is good, but very large slabs are
2113		 * currently bad for the gfp()s.
2114		 */
2115		if (gfporder >= slab_break_gfp_order)
2116			break;
2117
2118		/*
2119		 * Acceptable internal fragmentation?
2120		 */
2121		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2122			break;
2123	}
2124	return left_over;
2125}
2126
2127static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128{
2129	if (g_cpucache_up == FULL)
2130		return enable_cpucache(cachep, gfp);
2131
2132	if (g_cpucache_up == NONE) {
2133		/*
2134		 * Note: the first kmem_cache_create must create the cache
2135		 * that's used by kmalloc(24), otherwise the creation of
2136		 * further caches will BUG().
2137		 */
2138		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2139
2140		/*
2141		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2142		 * the first cache, then we need to set up all its list3s,
2143		 * otherwise the creation of further caches will BUG().
2144		 */
2145		set_up_list3s(cachep, SIZE_AC);
2146		if (INDEX_AC == INDEX_L3)
2147			g_cpucache_up = PARTIAL_L3;
2148		else
2149			g_cpucache_up = PARTIAL_AC;
2150	} else {
2151		cachep->array[smp_processor_id()] =
2152			kmalloc(sizeof(struct arraycache_init), gfp);
2153
2154		if (g_cpucache_up == PARTIAL_AC) {
2155			set_up_list3s(cachep, SIZE_L3);
2156			g_cpucache_up = PARTIAL_L3;
2157		} else {
2158			int node;
2159			for_each_online_node(node) {
2160				cachep->nodelists[node] =
2161				    kmalloc_node(sizeof(struct kmem_list3),
2162						gfp, node);
2163				BUG_ON(!cachep->nodelists[node]);
2164				kmem_list3_init(cachep->nodelists[node]);
2165			}
2166		}
2167	}
2168	cachep->nodelists[numa_mem_id()]->next_reap =
2169			jiffies + REAPTIMEOUT_LIST3 +
2170			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
2171
2172	cpu_cache_get(cachep)->avail = 0;
2173	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2174	cpu_cache_get(cachep)->batchcount = 1;
2175	cpu_cache_get(cachep)->touched = 0;
2176	cachep->batchcount = 1;
2177	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2178	return 0;
2179}
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181/**
2182 * kmem_cache_create - Create a cache.
2183 * @name: A string which is used in /proc/slabinfo to identify this cache.
2184 * @size: The size of objects to be created in this cache.
2185 * @align: The required alignment for the objects.
2186 * @flags: SLAB flags
2187 * @ctor: A constructor for the objects.
2188 *
2189 * Returns a ptr to the cache on success, NULL on failure.
2190 * Cannot be called within a int, but can be interrupted.
2191 * The @ctor is run when new pages are allocated by the cache.
2192 *
2193 * @name must be valid until the cache is destroyed. This implies that
2194 * the module calling this has to destroy the cache before getting unloaded.
2195 *
2196 * The flags are
2197 *
2198 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2199 * to catch references to uninitialised memory.
2200 *
2201 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2202 * for buffer overruns.
2203 *
2204 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2205 * cacheline.  This can be beneficial if you're counting cycles as closely
2206 * as davem.
 
 
2207 */
2208struct kmem_cache *
2209kmem_cache_create (const char *name, size_t size, size_t align,
2210	unsigned long flags, void (*ctor)(void *))
2211{
2212	size_t left_over, slab_size, ralign;
2213	struct kmem_cache *cachep = NULL, *pc;
2214	gfp_t gfp;
2215
2216	/*
2217	 * Sanity checks... these are all serious usage bugs.
2218	 */
2219	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2220	    size > KMALLOC_MAX_SIZE) {
2221		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2222				name);
2223		BUG();
2224	}
2225
2226	/*
2227	 * We use cache_chain_mutex to ensure a consistent view of
2228	 * cpu_online_mask as well.  Please see cpuup_callback
2229	 */
2230	if (slab_is_available()) {
2231		get_online_cpus();
2232		mutex_lock(&cache_chain_mutex);
2233	}
2234
2235	list_for_each_entry(pc, &cache_chain, next) {
2236		char tmp;
2237		int res;
2238
2239		/*
2240		 * This happens when the module gets unloaded and doesn't
2241		 * destroy its slab cache and no-one else reuses the vmalloc
2242		 * area of the module.  Print a warning.
2243		 */
2244		res = probe_kernel_address(pc->name, tmp);
2245		if (res) {
2246			printk(KERN_ERR
2247			       "SLAB: cache with size %d has lost its name\n",
2248			       pc->buffer_size);
2249			continue;
2250		}
2251
2252		if (!strcmp(pc->name, name)) {
2253			printk(KERN_ERR
2254			       "kmem_cache_create: duplicate cache %s\n", name);
2255			dump_stack();
2256			goto oops;
2257		}
2258	}
2259
2260#if DEBUG
2261	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2262#if FORCED_DEBUG
2263	/*
2264	 * Enable redzoning and last user accounting, except for caches with
2265	 * large objects, if the increased size would increase the object size
2266	 * above the next power of two: caches with object sizes just above a
2267	 * power of two have a significant amount of internal fragmentation.
2268	 */
2269	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2270						2 * sizeof(unsigned long long)))
2271		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2272	if (!(flags & SLAB_DESTROY_BY_RCU))
2273		flags |= SLAB_POISON;
2274#endif
2275	if (flags & SLAB_DESTROY_BY_RCU)
2276		BUG_ON(flags & SLAB_POISON);
2277#endif
2278	/*
2279	 * Always checks flags, a caller might be expecting debug support which
2280	 * isn't available.
2281	 */
2282	BUG_ON(flags & ~CREATE_MASK);
2283
2284	/*
2285	 * Check that size is in terms of words.  This is needed to avoid
2286	 * unaligned accesses for some archs when redzoning is used, and makes
2287	 * sure any on-slab bufctl's are also correctly aligned.
2288	 */
2289	if (size & (BYTES_PER_WORD - 1)) {
2290		size += (BYTES_PER_WORD - 1);
2291		size &= ~(BYTES_PER_WORD - 1);
2292	}
2293
2294	/* calculate the final buffer alignment: */
2295
2296	/* 1) arch recommendation: can be overridden for debug */
2297	if (flags & SLAB_HWCACHE_ALIGN) {
2298		/*
2299		 * Default alignment: as specified by the arch code.  Except if
2300		 * an object is really small, then squeeze multiple objects into
2301		 * one cacheline.
2302		 */
2303		ralign = cache_line_size();
2304		while (size <= ralign / 2)
2305			ralign /= 2;
2306	} else {
2307		ralign = BYTES_PER_WORD;
2308	}
2309
2310	/*
2311	 * Redzoning and user store require word alignment or possibly larger.
2312	 * Note this will be overridden by architecture or caller mandated
2313	 * alignment if either is greater than BYTES_PER_WORD.
2314	 */
2315	if (flags & SLAB_STORE_USER)
2316		ralign = BYTES_PER_WORD;
2317
2318	if (flags & SLAB_RED_ZONE) {
2319		ralign = REDZONE_ALIGN;
2320		/* If redzoning, ensure that the second redzone is suitably
2321		 * aligned, by adjusting the object size accordingly. */
2322		size += REDZONE_ALIGN - 1;
2323		size &= ~(REDZONE_ALIGN - 1);
2324	}
2325
2326	/* 2) arch mandated alignment */
2327	if (ralign < ARCH_SLAB_MINALIGN) {
2328		ralign = ARCH_SLAB_MINALIGN;
2329	}
2330	/* 3) caller mandated alignment */
2331	if (ralign < align) {
2332		ralign = align;
2333	}
2334	/* disable debug if necessary */
2335	if (ralign > __alignof__(unsigned long long))
2336		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2337	/*
2338	 * 4) Store it.
2339	 */
2340	align = ralign;
 
 
 
 
2341
2342	if (slab_is_available())
2343		gfp = GFP_KERNEL;
2344	else
2345		gfp = GFP_NOWAIT;
2346
2347	/* Get cache's description obj. */
2348	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2349	if (!cachep)
2350		goto oops;
2351
2352	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2353#if DEBUG
2354	cachep->obj_size = size;
2355
2356	/*
2357	 * Both debugging options require word-alignment which is calculated
2358	 * into align above.
2359	 */
2360	if (flags & SLAB_RED_ZONE) {
2361		/* add space for red zone words */
2362		cachep->obj_offset += sizeof(unsigned long long);
2363		size += 2 * sizeof(unsigned long long);
2364	}
2365	if (flags & SLAB_STORE_USER) {
2366		/* user store requires one word storage behind the end of
2367		 * the real object. But if the second red zone needs to be
2368		 * aligned to 64 bits, we must allow that much space.
2369		 */
2370		if (flags & SLAB_RED_ZONE)
2371			size += REDZONE_ALIGN;
2372		else
2373			size += BYTES_PER_WORD;
2374	}
2375#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2376	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2377	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2378		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2379		size = PAGE_SIZE;
2380	}
2381#endif
2382#endif
2383
 
 
 
2384	/*
2385	 * Determine if the slab management is 'on' or 'off' slab.
2386	 * (bootstrapping cannot cope with offslab caches so don't do
2387	 * it too early on. Always use on-slab management when
2388	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2389	 */
2390	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2391	    !(flags & SLAB_NOLEAKTRACE))
2392		/*
2393		 * Size is large, assume best to place the slab management obj
2394		 * off-slab (should allow better packing of objs).
2395		 */
2396		flags |= CFLGS_OFF_SLAB;
2397
2398	size = ALIGN(size, align);
2399
2400	left_over = calculate_slab_order(cachep, size, align, flags);
2401
2402	if (!cachep->num) {
2403		printk(KERN_ERR
2404		       "kmem_cache_create: couldn't create cache %s.\n", name);
2405		kmem_cache_free(&cache_cache, cachep);
2406		cachep = NULL;
2407		goto oops;
 
 
 
 
 
 
 
 
 
 
 
 
2408	}
2409	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2410			  + sizeof(struct slab), align);
2411
2412	/*
2413	 * If the slab has been placed off-slab, and we have enough space then
2414	 * move it on-slab. This is at the expense of any extra colouring.
2415	 */
2416	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2417		flags &= ~CFLGS_OFF_SLAB;
2418		left_over -= slab_size;
2419	}
2420
2421	if (flags & CFLGS_OFF_SLAB) {
2422		/* really off slab. No need for manual alignment */
2423		slab_size =
2424		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2425
2426#ifdef CONFIG_PAGE_POISONING
2427		/* If we're going to use the generic kernel_map_pages()
2428		 * poisoning, then it's going to smash the contents of
2429		 * the redzone and userword anyhow, so switch them off.
2430		 */
2431		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2432			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2433#endif
2434	}
2435
2436	cachep->colour_off = cache_line_size();
2437	/* Offset must be a multiple of the alignment. */
2438	if (cachep->colour_off < align)
2439		cachep->colour_off = align;
2440	cachep->colour = left_over / cachep->colour_off;
2441	cachep->slab_size = slab_size;
 
2442	cachep->flags = flags;
2443	cachep->gfpflags = 0;
2444	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2445		cachep->gfpflags |= GFP_DMA;
2446	cachep->buffer_size = size;
 
 
 
 
2447	cachep->reciprocal_buffer_size = reciprocal_value(size);
2448
2449	if (flags & CFLGS_OFF_SLAB) {
2450		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2451		/*
2452		 * This is a possibility for one of the malloc_sizes caches.
2453		 * But since we go off slab only for object size greater than
2454		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2455		 * this should not happen at all.
2456		 * But leave a BUG_ON for some lucky dude.
2457		 */
2458		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2459	}
2460	cachep->ctor = ctor;
2461	cachep->name = name;
2462
2463	if (setup_cpu_cache(cachep, gfp)) {
2464		__kmem_cache_destroy(cachep);
2465		cachep = NULL;
2466		goto oops;
2467	}
2468
2469	if (flags & SLAB_DEBUG_OBJECTS) {
2470		/*
2471		 * Would deadlock through slab_destroy()->call_rcu()->
2472		 * debug_object_activate()->kmem_cache_alloc().
2473		 */
2474		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2475
2476		slab_set_debugobj_lock_classes(cachep);
2477	}
2478
2479	/* cache setup completed, link it into the list */
2480	list_add(&cachep->next, &cache_chain);
2481oops:
2482	if (!cachep && (flags & SLAB_PANIC))
2483		panic("kmem_cache_create(): failed to create slab `%s'\n",
2484		      name);
2485	if (slab_is_available()) {
2486		mutex_unlock(&cache_chain_mutex);
2487		put_online_cpus();
2488	}
2489	return cachep;
2490}
2491EXPORT_SYMBOL(kmem_cache_create);
2492
2493#if DEBUG
2494static void check_irq_off(void)
2495{
2496	BUG_ON(!irqs_disabled());
2497}
2498
2499static void check_irq_on(void)
2500{
2501	BUG_ON(irqs_disabled());
2502}
2503
 
 
 
 
 
2504static void check_spinlock_acquired(struct kmem_cache *cachep)
2505{
2506#ifdef CONFIG_SMP
2507	check_irq_off();
2508	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2509#endif
2510}
2511
2512static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2513{
2514#ifdef CONFIG_SMP
2515	check_irq_off();
2516	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2517#endif
2518}
2519
2520#else
2521#define check_irq_off()	do { } while(0)
2522#define check_irq_on()	do { } while(0)
 
2523#define check_spinlock_acquired(x) do { } while(0)
2524#define check_spinlock_acquired_node(x, y) do { } while(0)
2525#endif
2526
2527static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2528			struct array_cache *ac,
2529			int force, int node);
 
 
 
 
 
 
 
 
 
 
 
 
 
2530
2531static void do_drain(void *arg)
2532{
2533	struct kmem_cache *cachep = arg;
2534	struct array_cache *ac;
2535	int node = numa_mem_id();
 
 
2536
2537	check_irq_off();
2538	ac = cpu_cache_get(cachep);
2539	spin_lock(&cachep->nodelists[node]->list_lock);
2540	free_block(cachep, ac->entry, ac->avail, node);
2541	spin_unlock(&cachep->nodelists[node]->list_lock);
 
2542	ac->avail = 0;
 
2543}
2544
2545static void drain_cpu_caches(struct kmem_cache *cachep)
2546{
2547	struct kmem_list3 *l3;
2548	int node;
 
2549
2550	on_each_cpu(do_drain, cachep, 1);
2551	check_irq_on();
2552	for_each_online_node(node) {
2553		l3 = cachep->nodelists[node];
2554		if (l3 && l3->alien)
2555			drain_alien_cache(cachep, l3->alien);
2556	}
 
 
 
2557
2558	for_each_online_node(node) {
2559		l3 = cachep->nodelists[node];
2560		if (l3)
2561			drain_array(cachep, l3, l3->shared, 1, node);
2562	}
2563}
2564
2565/*
2566 * Remove slabs from the list of free slabs.
2567 * Specify the number of slabs to drain in tofree.
2568 *
2569 * Returns the actual number of slabs released.
2570 */
2571static int drain_freelist(struct kmem_cache *cache,
2572			struct kmem_list3 *l3, int tofree)
2573{
2574	struct list_head *p;
2575	int nr_freed;
2576	struct slab *slabp;
2577
2578	nr_freed = 0;
2579	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2580
2581		spin_lock_irq(&l3->list_lock);
2582		p = l3->slabs_free.prev;
2583		if (p == &l3->slabs_free) {
2584			spin_unlock_irq(&l3->list_lock);
2585			goto out;
2586		}
2587
2588		slabp = list_entry(p, struct slab, list);
2589#if DEBUG
2590		BUG_ON(slabp->inuse);
2591#endif
2592		list_del(&slabp->list);
2593		/*
2594		 * Safe to drop the lock. The slab is no longer linked
2595		 * to the cache.
2596		 */
2597		l3->free_objects -= cache->num;
2598		spin_unlock_irq(&l3->list_lock);
2599		slab_destroy(cache, slabp);
2600		nr_freed++;
2601	}
2602out:
2603	return nr_freed;
2604}
2605
2606/* Called with cache_chain_mutex held to protect against cpu hotplug */
2607static int __cache_shrink(struct kmem_cache *cachep)
2608{
2609	int ret = 0, i = 0;
2610	struct kmem_list3 *l3;
 
 
 
 
 
 
 
 
 
 
 
 
 
2611
2612	drain_cpu_caches(cachep);
2613
2614	check_irq_on();
2615	for_each_online_node(i) {
2616		l3 = cachep->nodelists[i];
2617		if (!l3)
2618			continue;
2619
2620		drain_freelist(cachep, l3, l3->free_objects);
2621
2622		ret += !list_empty(&l3->slabs_full) ||
2623			!list_empty(&l3->slabs_partial);
2624	}
2625	return (ret ? 1 : 0);
2626}
2627
2628/**
2629 * kmem_cache_shrink - Shrink a cache.
2630 * @cachep: The cache to shrink.
2631 *
2632 * Releases as many slabs as possible for a cache.
2633 * To help debugging, a zero exit status indicates all slabs were released.
2634 */
2635int kmem_cache_shrink(struct kmem_cache *cachep)
2636{
2637	int ret;
2638	BUG_ON(!cachep || in_interrupt());
2639
2640	get_online_cpus();
2641	mutex_lock(&cache_chain_mutex);
2642	ret = __cache_shrink(cachep);
2643	mutex_unlock(&cache_chain_mutex);
2644	put_online_cpus();
2645	return ret;
2646}
2647EXPORT_SYMBOL(kmem_cache_shrink);
2648
2649/**
2650 * kmem_cache_destroy - delete a cache
2651 * @cachep: the cache to destroy
2652 *
2653 * Remove a &struct kmem_cache object from the slab cache.
2654 *
2655 * It is expected this function will be called by a module when it is
2656 * unloaded.  This will remove the cache completely, and avoid a duplicate
2657 * cache being allocated each time a module is loaded and unloaded, if the
2658 * module doesn't have persistent in-kernel storage across loads and unloads.
2659 *
2660 * The cache must be empty before calling this function.
2661 *
2662 * The caller must guarantee that no one will allocate memory from the cache
2663 * during the kmem_cache_destroy().
2664 */
2665void kmem_cache_destroy(struct kmem_cache *cachep)
2666{
2667	BUG_ON(!cachep || in_interrupt());
 
2668
2669	/* Find the cache in the chain of caches. */
2670	get_online_cpus();
2671	mutex_lock(&cache_chain_mutex);
2672	/*
2673	 * the chain is never empty, cache_cache is never destroyed
2674	 */
2675	list_del(&cachep->next);
2676	if (__cache_shrink(cachep)) {
2677		slab_error(cachep, "Can't free all objects");
2678		list_add(&cachep->next, &cache_chain);
2679		mutex_unlock(&cache_chain_mutex);
2680		put_online_cpus();
2681		return;
2682	}
2683
2684	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2685		rcu_barrier();
2686
2687	__kmem_cache_destroy(cachep);
2688	mutex_unlock(&cache_chain_mutex);
2689	put_online_cpus();
 
 
 
 
2690}
2691EXPORT_SYMBOL(kmem_cache_destroy);
2692
2693/*
2694 * Get the memory for a slab management obj.
2695 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2696 * always come from malloc_sizes caches.  The slab descriptor cannot
2697 * come from the same cache which is getting created because,
2698 * when we are searching for an appropriate cache for these
2699 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2700 * If we are creating a malloc_sizes cache here it would not be visible to
2701 * kmem_find_general_cachep till the initialization is complete.
2702 * Hence we cannot have slabp_cache same as the original cache.
2703 */
2704static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2705				   int colour_off, gfp_t local_flags,
2706				   int nodeid)
2707{
2708	struct slab *slabp;
2709
2710	if (OFF_SLAB(cachep)) {
 
 
 
 
 
 
 
 
 
2711		/* Slab management obj is off-slab. */
2712		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2713					      local_flags, nodeid);
2714		/*
2715		 * If the first object in the slab is leaked (it's allocated
2716		 * but no one has a reference to it), we want to make sure
2717		 * kmemleak does not treat the ->s_mem pointer as a reference
2718		 * to the object. Otherwise we will not report the leak.
2719		 */
2720		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2721				   local_flags);
2722		if (!slabp)
2723			return NULL;
2724	} else {
2725		slabp = objp + colour_off;
2726		colour_off += cachep->slab_size;
 
2727	}
2728	slabp->inuse = 0;
2729	slabp->colouroff = colour_off;
2730	slabp->s_mem = objp + colour_off;
2731	slabp->nodeid = nodeid;
2732	slabp->free = 0;
2733	return slabp;
2734}
2735
2736static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2737{
2738	return (kmem_bufctl_t *) (slabp + 1);
2739}
2740
2741static void cache_init_objs(struct kmem_cache *cachep,
2742			    struct slab *slabp)
 
 
 
 
 
2743{
 
2744	int i;
2745
2746	for (i = 0; i < cachep->num; i++) {
2747		void *objp = index_to_obj(cachep, slabp, i);
2748#if DEBUG
2749		/* need to poison the objs? */
2750		if (cachep->flags & SLAB_POISON)
2751			poison_obj(cachep, objp, POISON_FREE);
2752		if (cachep->flags & SLAB_STORE_USER)
2753			*dbg_userword(cachep, objp) = NULL;
2754
2755		if (cachep->flags & SLAB_RED_ZONE) {
2756			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2757			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2758		}
2759		/*
2760		 * Constructors are not allowed to allocate memory from the same
2761		 * cache which they are a constructor for.  Otherwise, deadlock.
2762		 * They must also be threaded.
2763		 */
2764		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
 
 
2765			cachep->ctor(objp + obj_offset(cachep));
 
 
 
2766
2767		if (cachep->flags & SLAB_RED_ZONE) {
2768			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2769				slab_error(cachep, "constructor overwrote the"
2770					   " end of an object");
2771			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2772				slab_error(cachep, "constructor overwrote the"
2773					   " start of an object");
2774		}
2775		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2776			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2777			kernel_map_pages(virt_to_page(objp),
2778					 cachep->buffer_size / PAGE_SIZE, 0);
2779#else
2780		if (cachep->ctor)
2781			cachep->ctor(objp);
2782#endif
2783		slab_bufctl(slabp)[i] = i + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784	}
2785	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2786}
2787
2788static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 
2789{
2790	if (CONFIG_ZONE_DMA_FLAG) {
2791		if (flags & GFP_DMA)
2792			BUG_ON(!(cachep->gfpflags & GFP_DMA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793		else
2794			BUG_ON(cachep->gfpflags & GFP_DMA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2795	}
 
 
 
 
 
2796}
 
 
 
 
 
 
 
2797
2798static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2799				int nodeid)
2800{
2801	void *objp = index_to_obj(cachep, slabp, slabp->free);
2802	kmem_bufctl_t next;
 
2803
2804	slabp->inuse++;
2805	next = slab_bufctl(slabp)[slabp->free];
2806#if DEBUG
2807	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2808	WARN_ON(slabp->nodeid != nodeid);
2809#endif
2810	slabp->free = next;
2811
2812	return objp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813}
2814
2815static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2816				void *objp, int nodeid)
2817{
2818	unsigned int objnr = obj_to_index(cachep, slabp, objp);
 
 
 
 
 
 
2819
 
 
 
 
2820#if DEBUG
2821	/* Verify that the slab belongs to the intended node */
2822	WARN_ON(slabp->nodeid != nodeid);
2823
2824	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2825		printk(KERN_ERR "slab: double free detected in cache "
2826				"'%s', objp %p\n", cachep->name, objp);
2827		BUG();
 
 
 
2828	}
2829#endif
2830	slab_bufctl(slabp)[objnr] = slabp->free;
2831	slabp->free = objnr;
2832	slabp->inuse--;
 
 
2833}
2834
2835/*
2836 * Map pages beginning at addr to the given cache and slab. This is required
2837 * for the slab allocator to be able to lookup the cache and slab of a
2838 * virtual address for kfree, ksize, and slab debugging.
2839 */
2840static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2841			   void *addr)
2842{
2843	int nr_pages;
2844	struct page *page;
2845
2846	page = virt_to_page(addr);
2847
2848	nr_pages = 1;
2849	if (likely(!PageCompound(page)))
2850		nr_pages <<= cache->gfporder;
2851
2852	do {
2853		page_set_cache(page, cache);
2854		page_set_slab(page, slab);
2855		page++;
2856	} while (--nr_pages);
2857}
2858
2859/*
2860 * Grow (by 1) the number of slabs within a cache.  This is called by
2861 * kmem_cache_alloc() when there are no active objs left in a cache.
2862 */
2863static int cache_grow(struct kmem_cache *cachep,
2864		gfp_t flags, int nodeid, void *objp)
2865{
2866	struct slab *slabp;
2867	size_t offset;
2868	gfp_t local_flags;
2869	struct kmem_list3 *l3;
 
 
2870
2871	/*
2872	 * Be lazy and only check for valid flags here,  keeping it out of the
2873	 * critical path in kmem_cache_alloc().
2874	 */
2875	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 
 
 
2876	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2877
2878	/* Take the l3 list lock to change the colour_next on this node */
2879	check_irq_off();
2880	l3 = cachep->nodelists[nodeid];
2881	spin_lock(&l3->list_lock);
2882
2883	/* Get colour for the slab, and cal the next value. */
2884	offset = l3->colour_next;
2885	l3->colour_next++;
2886	if (l3->colour_next >= cachep->colour)
2887		l3->colour_next = 0;
2888	spin_unlock(&l3->list_lock);
2889
2890	offset *= cachep->colour_off;
2891
2892	if (local_flags & __GFP_WAIT)
2893		local_irq_enable();
2894
2895	/*
2896	 * The test for missing atomic flag is performed here, rather than
2897	 * the more obvious place, simply to reduce the critical path length
2898	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2899	 * will eventually be caught here (where it matters).
2900	 */
2901	kmem_flagcheck(cachep, flags);
2902
2903	/*
2904	 * Get mem for the objs.  Attempt to allocate a physical page from
2905	 * 'nodeid'.
2906	 */
2907	if (!objp)
2908		objp = kmem_getpages(cachep, local_flags, nodeid);
2909	if (!objp)
2910		goto failed;
2911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912	/* Get slab management. */
2913	slabp = alloc_slabmgmt(cachep, objp, offset,
2914			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2915	if (!slabp)
2916		goto opps1;
2917
2918	slab_map_pages(cachep, slabp, objp);
2919
2920	cache_init_objs(cachep, slabp);
2921
2922	if (local_flags & __GFP_WAIT)
2923		local_irq_disable();
2924	check_irq_off();
2925	spin_lock(&l3->list_lock);
2926
2927	/* Make slab active. */
2928	list_add_tail(&slabp->list, &(l3->slabs_free));
2929	STATS_INC_GROWN(cachep);
2930	l3->free_objects += cachep->num;
2931	spin_unlock(&l3->list_lock);
2932	return 1;
2933opps1:
2934	kmem_freepages(cachep, objp);
2935failed:
2936	if (local_flags & __GFP_WAIT)
2937		local_irq_disable();
2938	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939}
2940
2941#if DEBUG
2942
2943/*
2944 * Perform extra freeing checks:
2945 * - detect bad pointers.
2946 * - POISON/RED_ZONE checking
2947 */
2948static void kfree_debugcheck(const void *objp)
2949{
2950	if (!virt_addr_valid(objp)) {
2951		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2952		       (unsigned long)objp);
2953		BUG();
2954	}
2955}
2956
2957static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2958{
2959	unsigned long long redzone1, redzone2;
2960
2961	redzone1 = *dbg_redzone1(cache, obj);
2962	redzone2 = *dbg_redzone2(cache, obj);
2963
2964	/*
2965	 * Redzone is ok.
2966	 */
2967	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2968		return;
2969
2970	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2971		slab_error(cache, "double free detected");
2972	else
2973		slab_error(cache, "memory outside object was overwritten");
2974
2975	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2976			obj, redzone1, redzone2);
2977}
2978
2979static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2980				   void *caller)
2981{
2982	struct page *page;
2983	unsigned int objnr;
2984	struct slab *slabp;
2985
2986	BUG_ON(virt_to_cache(objp) != cachep);
2987
2988	objp -= obj_offset(cachep);
2989	kfree_debugcheck(objp);
2990	page = virt_to_head_page(objp);
2991
2992	slabp = page_get_slab(page);
2993
2994	if (cachep->flags & SLAB_RED_ZONE) {
2995		verify_redzone_free(cachep, objp);
2996		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2997		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2998	}
2999	if (cachep->flags & SLAB_STORE_USER)
3000		*dbg_userword(cachep, objp) = caller;
3001
3002	objnr = obj_to_index(cachep, slabp, objp);
3003
3004	BUG_ON(objnr >= cachep->num);
3005	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3006
3007#ifdef CONFIG_DEBUG_SLAB_LEAK
3008	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3009#endif
3010	if (cachep->flags & SLAB_POISON) {
3011#ifdef CONFIG_DEBUG_PAGEALLOC
3012		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3013			store_stackinfo(cachep, objp, (unsigned long)caller);
3014			kernel_map_pages(virt_to_page(objp),
3015					 cachep->buffer_size / PAGE_SIZE, 0);
3016		} else {
3017			poison_obj(cachep, objp, POISON_FREE);
3018		}
3019#else
3020		poison_obj(cachep, objp, POISON_FREE);
3021#endif
3022	}
3023	return objp;
3024}
3025
3026static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
 
 
 
 
 
 
3027{
3028	kmem_bufctl_t i;
3029	int entries = 0;
 
3030
3031	/* Check slab's freelist to see if this obj is there. */
3032	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3033		entries++;
3034		if (entries > cachep->num || i >= cachep->num)
3035			goto bad;
3036	}
3037	if (entries != cachep->num - slabp->inuse) {
3038bad:
3039		printk(KERN_ERR "slab: Internal list corruption detected in "
3040				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3041			cachep->name, cachep->num, slabp, slabp->inuse);
3042		for (i = 0;
3043		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
3044		     i++) {
3045			if (i % 16 == 0)
3046				printk("\n%03x:", i);
3047			printk(" %02x", ((unsigned char *)slabp)[i]);
 
 
 
 
 
 
 
 
 
 
 
3048		}
3049		printk("\n");
3050		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3051	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3052}
3053#else
3054#define kfree_debugcheck(x) do { } while(0)
3055#define cache_free_debugcheck(x,objp,z) (objp)
3056#define check_slabp(x,y) do { } while(0)
3057#endif
3058
3059static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3060{
3061	int batchcount;
3062	struct kmem_list3 *l3;
3063	struct array_cache *ac;
3064	int node;
 
 
3065
3066retry:
3067	check_irq_off();
3068	node = numa_mem_id();
 
3069	ac = cpu_cache_get(cachep);
3070	batchcount = ac->batchcount;
3071	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3072		/*
3073		 * If there was little recent activity on this cache, then
3074		 * perform only a partial refill.  Otherwise we could generate
3075		 * refill bouncing.
3076		 */
3077		batchcount = BATCHREFILL_LIMIT;
3078	}
3079	l3 = cachep->nodelists[node];
3080
3081	BUG_ON(ac->avail > 0 || !l3);
3082	spin_lock(&l3->list_lock);
 
 
 
 
 
3083
3084	/* See if we can refill from the shared array */
3085	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3086		l3->shared->touched = 1;
3087		goto alloc_done;
3088	}
3089
3090	while (batchcount > 0) {
3091		struct list_head *entry;
3092		struct slab *slabp;
3093		/* Get slab alloc is to come from. */
3094		entry = l3->slabs_partial.next;
3095		if (entry == &l3->slabs_partial) {
3096			l3->free_touched = 1;
3097			entry = l3->slabs_free.next;
3098			if (entry == &l3->slabs_free)
3099				goto must_grow;
3100		}
3101
3102		slabp = list_entry(entry, struct slab, list);
3103		check_slabp(cachep, slabp);
3104		check_spinlock_acquired(cachep);
3105
3106		/*
3107		 * The slab was either on partial or free list so
3108		 * there must be at least one object available for
3109		 * allocation.
3110		 */
3111		BUG_ON(slabp->inuse >= cachep->num);
3112
3113		while (slabp->inuse < cachep->num && batchcount--) {
3114			STATS_INC_ALLOCED(cachep);
3115			STATS_INC_ACTIVE(cachep);
3116			STATS_SET_HIGH(cachep);
3117
3118			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3119							    node);
3120		}
3121		check_slabp(cachep, slabp);
3122
3123		/* move slabp to correct slabp list: */
3124		list_del(&slabp->list);
3125		if (slabp->free == BUFCTL_END)
3126			list_add(&slabp->list, &l3->slabs_full);
3127		else
3128			list_add(&slabp->list, &l3->slabs_partial);
3129	}
3130
3131must_grow:
3132	l3->free_objects -= ac->avail;
3133alloc_done:
3134	spin_unlock(&l3->list_lock);
 
3135
 
3136	if (unlikely(!ac->avail)) {
3137		int x;
3138		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
 
3139
3140		/* cache_grow can reenable interrupts, then ac could change. */
 
 
 
 
 
 
 
 
 
3141		ac = cpu_cache_get(cachep);
3142		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3143			return NULL;
 
3144
3145		if (!ac->avail)		/* objects refilled by interrupt? */
3146			goto retry;
3147	}
3148	ac->touched = 1;
 
3149	return ac->entry[--ac->avail];
3150}
3151
3152static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3153						gfp_t flags)
3154{
3155	might_sleep_if(flags & __GFP_WAIT);
3156#if DEBUG
3157	kmem_flagcheck(cachep, flags);
3158#endif
3159}
3160
3161#if DEBUG
3162static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3163				gfp_t flags, void *objp, void *caller)
3164{
3165	if (!objp)
 
3166		return objp;
3167	if (cachep->flags & SLAB_POISON) {
3168#ifdef CONFIG_DEBUG_PAGEALLOC
3169		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3170			kernel_map_pages(virt_to_page(objp),
3171					 cachep->buffer_size / PAGE_SIZE, 1);
3172		else
3173			check_poison_obj(cachep, objp);
3174#else
3175		check_poison_obj(cachep, objp);
3176#endif
3177		poison_obj(cachep, objp, POISON_INUSE);
3178	}
3179	if (cachep->flags & SLAB_STORE_USER)
3180		*dbg_userword(cachep, objp) = caller;
3181
3182	if (cachep->flags & SLAB_RED_ZONE) {
3183		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3184				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3185			slab_error(cachep, "double free, or memory outside"
3186						" object was overwritten");
3187			printk(KERN_ERR
3188				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3189				objp, *dbg_redzone1(cachep, objp),
3190				*dbg_redzone2(cachep, objp));
3191		}
3192		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3193		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3194	}
3195#ifdef CONFIG_DEBUG_SLAB_LEAK
3196	{
3197		struct slab *slabp;
3198		unsigned objnr;
3199
3200		slabp = page_get_slab(virt_to_head_page(objp));
3201		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3202		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3203	}
3204#endif
3205	objp += obj_offset(cachep);
3206	if (cachep->ctor && cachep->flags & SLAB_POISON)
3207		cachep->ctor(objp);
3208	if (ARCH_SLAB_MINALIGN &&
3209	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3210		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3211		       objp, (int)ARCH_SLAB_MINALIGN);
3212	}
3213	return objp;
3214}
3215#else
3216#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3217#endif
3218
3219static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3220{
3221	if (cachep == &cache_cache)
3222		return false;
3223
3224	return should_failslab(obj_size(cachep), flags, cachep->flags);
3225}
3226
3227static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3228{
3229	void *objp;
3230	struct array_cache *ac;
3231
3232	check_irq_off();
3233
3234	ac = cpu_cache_get(cachep);
3235	if (likely(ac->avail)) {
3236		STATS_INC_ALLOCHIT(cachep);
3237		ac->touched = 1;
3238		objp = ac->entry[--ac->avail];
3239	} else {
3240		STATS_INC_ALLOCMISS(cachep);
3241		objp = cache_alloc_refill(cachep, flags);
3242		/*
3243		 * the 'ac' may be updated by cache_alloc_refill(),
3244		 * and kmemleak_erase() requires its correct value.
3245		 */
3246		ac = cpu_cache_get(cachep);
3247	}
 
 
 
 
 
 
 
 
 
 
3248	/*
3249	 * To avoid a false negative, if an object that is in one of the
3250	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3251	 * treat the array pointers as a reference to the object.
3252	 */
3253	if (objp)
3254		kmemleak_erase(&ac->entry[ac->avail]);
3255	return objp;
3256}
3257
3258#ifdef CONFIG_NUMA
3259/*
3260 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261 *
3262 * If we are in_interrupt, then process context, including cpusets and
3263 * mempolicy, may not apply and should not be used for allocation policy.
3264 */
3265static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3266{
3267	int nid_alloc, nid_here;
3268
3269	if (in_interrupt() || (flags & __GFP_THISNODE))
3270		return NULL;
3271	nid_alloc = nid_here = numa_mem_id();
3272	get_mems_allowed();
3273	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3274		nid_alloc = cpuset_slab_spread_node();
3275	else if (current->mempolicy)
3276		nid_alloc = slab_node(current->mempolicy);
3277	put_mems_allowed();
3278	if (nid_alloc != nid_here)
3279		return ____cache_alloc_node(cachep, flags, nid_alloc);
3280	return NULL;
3281}
3282
3283/*
3284 * Fallback function if there was no memory available and no objects on a
3285 * certain node and fall back is permitted. First we scan all the
3286 * available nodelists for available objects. If that fails then we
3287 * perform an allocation without specifying a node. This allows the page
3288 * allocator to do its reclaim / fallback magic. We then insert the
3289 * slab into the proper nodelist and then allocate from it.
3290 */
3291static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3292{
3293	struct zonelist *zonelist;
3294	gfp_t local_flags;
3295	struct zoneref *z;
3296	struct zone *zone;
3297	enum zone_type high_zoneidx = gfp_zone(flags);
3298	void *obj = NULL;
 
3299	int nid;
 
3300
3301	if (flags & __GFP_THISNODE)
3302		return NULL;
3303
3304	get_mems_allowed();
3305	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3306	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3307
3308retry:
3309	/*
3310	 * Look through allowed nodes for objects available
3311	 * from existing per node queues.
3312	 */
3313	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3314		nid = zone_to_nid(zone);
3315
3316		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3317			cache->nodelists[nid] &&
3318			cache->nodelists[nid]->free_objects) {
3319				obj = ____cache_alloc_node(cache,
3320					flags | GFP_THISNODE, nid);
3321				if (obj)
3322					break;
3323		}
3324	}
3325
3326	if (!obj) {
3327		/*
3328		 * This allocation will be performed within the constraints
3329		 * of the current cpuset / memory policy requirements.
3330		 * We may trigger various forms of reclaim on the allowed
3331		 * set and go into memory reserves if necessary.
3332		 */
3333		if (local_flags & __GFP_WAIT)
3334			local_irq_enable();
3335		kmem_flagcheck(cache, flags);
3336		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3337		if (local_flags & __GFP_WAIT)
3338			local_irq_disable();
3339		if (obj) {
3340			/*
3341			 * Insert into the appropriate per node queues
 
3342			 */
3343			nid = page_to_nid(virt_to_page(obj));
3344			if (cache_grow(cache, flags, nid, obj)) {
3345				obj = ____cache_alloc_node(cache,
3346					flags | GFP_THISNODE, nid);
3347				if (!obj)
3348					/*
3349					 * Another processor may allocate the
3350					 * objects in the slab since we are
3351					 * not holding any locks.
3352					 */
3353					goto retry;
3354			} else {
3355				/* cache_grow already freed obj */
3356				obj = NULL;
3357			}
3358		}
3359	}
3360	put_mems_allowed();
 
 
3361	return obj;
3362}
3363
3364/*
3365 * A interface to enable slab creation on nodeid
3366 */
3367static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3368				int nodeid)
3369{
3370	struct list_head *entry;
3371	struct slab *slabp;
3372	struct kmem_list3 *l3;
3373	void *obj;
3374	int x;
3375
3376	l3 = cachep->nodelists[nodeid];
3377	BUG_ON(!l3);
 
3378
3379retry:
3380	check_irq_off();
3381	spin_lock(&l3->list_lock);
3382	entry = l3->slabs_partial.next;
3383	if (entry == &l3->slabs_partial) {
3384		l3->free_touched = 1;
3385		entry = l3->slabs_free.next;
3386		if (entry == &l3->slabs_free)
3387			goto must_grow;
3388	}
3389
3390	slabp = list_entry(entry, struct slab, list);
3391	check_spinlock_acquired_node(cachep, nodeid);
3392	check_slabp(cachep, slabp);
3393
3394	STATS_INC_NODEALLOCS(cachep);
3395	STATS_INC_ACTIVE(cachep);
3396	STATS_SET_HIGH(cachep);
3397
3398	BUG_ON(slabp->inuse == cachep->num);
3399
3400	obj = slab_get_obj(cachep, slabp, nodeid);
3401	check_slabp(cachep, slabp);
3402	l3->free_objects--;
3403	/* move slabp to correct slabp list: */
3404	list_del(&slabp->list);
3405
3406	if (slabp->free == BUFCTL_END)
3407		list_add(&slabp->list, &l3->slabs_full);
3408	else
3409		list_add(&slabp->list, &l3->slabs_partial);
3410
3411	spin_unlock(&l3->list_lock);
3412	goto done;
 
3413
3414must_grow:
3415	spin_unlock(&l3->list_lock);
3416	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3417	if (x)
3418		goto retry;
3419
3420	return fallback_alloc(cachep, flags);
 
3421
3422done:
3423	return obj;
3424}
3425
3426/**
3427 * kmem_cache_alloc_node - Allocate an object on the specified node
3428 * @cachep: The cache to allocate from.
3429 * @flags: See kmalloc().
3430 * @nodeid: node number of the target node.
3431 * @caller: return address of caller, used for debug information
3432 *
3433 * Identical to kmem_cache_alloc but it will allocate memory on the given
3434 * node, which can improve the performance for cpu bound structures.
3435 *
3436 * Fallback to other node is possible if __GFP_THISNODE is not set.
3437 */
3438static __always_inline void *
3439__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3440		   void *caller)
3441{
3442	unsigned long save_flags;
3443	void *ptr;
3444	int slab_node = numa_mem_id();
 
 
3445
3446	flags &= gfp_allowed_mask;
3447
3448	lockdep_trace_alloc(flags);
3449
3450	if (slab_should_failslab(cachep, flags))
3451		return NULL;
3452
 
 
 
 
3453	cache_alloc_debugcheck_before(cachep, flags);
3454	local_irq_save(save_flags);
3455
3456	if (nodeid == NUMA_NO_NODE)
3457		nodeid = slab_node;
3458
3459	if (unlikely(!cachep->nodelists[nodeid])) {
3460		/* Node not bootstrapped yet */
3461		ptr = fallback_alloc(cachep, flags);
3462		goto out;
3463	}
3464
3465	if (nodeid == slab_node) {
3466		/*
3467		 * Use the locally cached objects if possible.
3468		 * However ____cache_alloc does not allow fallback
3469		 * to other nodes. It may fail while we still have
3470		 * objects on other nodes available.
3471		 */
3472		ptr = ____cache_alloc(cachep, flags);
3473		if (ptr)
3474			goto out;
3475	}
3476	/* ___cache_alloc_node can fall back to other nodes */
3477	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3478  out:
3479	local_irq_restore(save_flags);
3480	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3481	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3482				 flags);
3483
3484	if (likely(ptr))
3485		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3486
3487	if (unlikely((flags & __GFP_ZERO) && ptr))
3488		memset(ptr, 0, obj_size(cachep));
3489
 
 
3490	return ptr;
3491}
3492
3493static __always_inline void *
3494__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3495{
3496	void *objp;
3497
3498	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3499		objp = alternate_node_alloc(cache, flags);
3500		if (objp)
3501			goto out;
3502	}
3503	objp = ____cache_alloc(cache, flags);
3504
3505	/*
3506	 * We may just have run out of memory on the local node.
3507	 * ____cache_alloc_node() knows how to locate memory on other nodes
3508	 */
3509	if (!objp)
3510		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3511
3512  out:
3513	return objp;
3514}
3515#else
3516
3517static __always_inline void *
3518__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3519{
3520	return ____cache_alloc(cachep, flags);
3521}
3522
3523#endif /* CONFIG_NUMA */
3524
3525static __always_inline void *
3526__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3527{
3528	unsigned long save_flags;
3529	void *objp;
 
 
3530
3531	flags &= gfp_allowed_mask;
3532
3533	lockdep_trace_alloc(flags);
3534
3535	if (slab_should_failslab(cachep, flags))
3536		return NULL;
3537
 
 
 
 
3538	cache_alloc_debugcheck_before(cachep, flags);
3539	local_irq_save(save_flags);
3540	objp = __do_cache_alloc(cachep, flags);
3541	local_irq_restore(save_flags);
3542	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3543	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3544				 flags);
3545	prefetchw(objp);
 
3546
3547	if (likely(objp))
3548		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3549
3550	if (unlikely((flags & __GFP_ZERO) && objp))
3551		memset(objp, 0, obj_size(cachep));
3552
3553	return objp;
3554}
3555
3556/*
3557 * Caller needs to acquire correct kmem_list's list_lock
 
3558 */
3559static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3560		       int node)
3561{
3562	int i;
3563	struct kmem_list3 *l3;
 
 
 
3564
3565	for (i = 0; i < nr_objects; i++) {
3566		void *objp = objpp[i];
3567		struct slab *slabp;
 
 
3568
3569		slabp = virt_to_slab(objp);
3570		l3 = cachep->nodelists[node];
3571		list_del(&slabp->list);
3572		check_spinlock_acquired_node(cachep, node);
3573		check_slabp(cachep, slabp);
3574		slab_put_obj(cachep, slabp, objp, node);
3575		STATS_DEC_ACTIVE(cachep);
3576		l3->free_objects++;
3577		check_slabp(cachep, slabp);
3578
3579		/* fixup slab chains */
3580		if (slabp->inuse == 0) {
3581			if (l3->free_objects > l3->free_limit) {
3582				l3->free_objects -= cachep->num;
3583				/* No need to drop any previously held
3584				 * lock here, even if we have a off-slab slab
3585				 * descriptor it is guaranteed to come from
3586				 * a different cache, refer to comments before
3587				 * alloc_slabmgmt.
3588				 */
3589				slab_destroy(cachep, slabp);
3590			} else {
3591				list_add(&slabp->list, &l3->slabs_free);
3592			}
3593		} else {
3594			/* Unconditionally move a slab to the end of the
3595			 * partial list on free - maximum time for the
3596			 * other objects to be freed, too.
3597			 */
3598			list_add_tail(&slabp->list, &l3->slabs_partial);
3599		}
3600	}
 
 
 
 
 
 
 
 
 
3601}
3602
3603static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3604{
3605	int batchcount;
3606	struct kmem_list3 *l3;
3607	int node = numa_mem_id();
 
3608
3609	batchcount = ac->batchcount;
3610#if DEBUG
3611	BUG_ON(!batchcount || batchcount > ac->avail);
3612#endif
3613	check_irq_off();
3614	l3 = cachep->nodelists[node];
3615	spin_lock(&l3->list_lock);
3616	if (l3->shared) {
3617		struct array_cache *shared_array = l3->shared;
3618		int max = shared_array->limit - shared_array->avail;
3619		if (max) {
3620			if (batchcount > max)
3621				batchcount = max;
3622			memcpy(&(shared_array->entry[shared_array->avail]),
3623			       ac->entry, sizeof(void *) * batchcount);
3624			shared_array->avail += batchcount;
3625			goto free_done;
3626		}
3627	}
3628
3629	free_block(cachep, ac->entry, batchcount, node);
3630free_done:
3631#if STATS
3632	{
3633		int i = 0;
3634		struct list_head *p;
3635
3636		p = l3->slabs_free.next;
3637		while (p != &(l3->slabs_free)) {
3638			struct slab *slabp;
3639
3640			slabp = list_entry(p, struct slab, list);
3641			BUG_ON(slabp->inuse);
3642
3643			i++;
3644			p = p->next;
3645		}
3646		STATS_SET_FREEABLE(cachep, i);
3647	}
3648#endif
3649	spin_unlock(&l3->list_lock);
3650	ac->avail -= batchcount;
3651	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3652}
3653
3654/*
3655 * Release an obj back to its cache. If the obj has a constructed state, it must
3656 * be in this state _before_ it is released.  Called with disabled ints.
3657 */
3658static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3659    void *caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660{
3661	struct array_cache *ac = cpu_cache_get(cachep);
3662
3663	check_irq_off();
3664	kmemleak_free_recursive(objp, cachep->flags);
3665	objp = cache_free_debugcheck(cachep, objp, caller);
3666
3667	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3668
3669	/*
3670	 * Skip calling cache_free_alien() when the platform is not numa.
3671	 * This will avoid cache misses that happen while accessing slabp (which
3672	 * is per page memory  reference) to get nodeid. Instead use a global
3673	 * variable to skip the call, which is mostly likely to be present in
3674	 * the cache.
3675	 */
3676	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3677		return;
3678
3679	if (likely(ac->avail < ac->limit)) {
3680		STATS_INC_FREEHIT(cachep);
3681		ac->entry[ac->avail++] = objp;
3682		return;
3683	} else {
3684		STATS_INC_FREEMISS(cachep);
3685		cache_flusharray(cachep, ac);
3686		ac->entry[ac->avail++] = objp;
3687	}
 
 
 
 
 
 
 
 
 
 
 
3688}
3689
3690/**
3691 * kmem_cache_alloc - Allocate an object
3692 * @cachep: The cache to allocate from.
3693 * @flags: See kmalloc().
3694 *
3695 * Allocate an object from this cache.  The flags are only relevant
3696 * if the cache has no available objects.
 
 
3697 */
3698void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3699{
3700	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3701
3702	trace_kmem_cache_alloc(_RET_IP_, ret,
3703			       obj_size(cachep), cachep->buffer_size, flags);
3704
3705	return ret;
3706}
3707EXPORT_SYMBOL(kmem_cache_alloc);
3708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709#ifdef CONFIG_TRACING
3710void *
3711kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3712{
3713	void *ret;
3714
3715	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3716
 
3717	trace_kmalloc(_RET_IP_, ret,
3718		      size, slab_buffer_size(cachep), flags);
3719	return ret;
3720}
3721EXPORT_SYMBOL(kmem_cache_alloc_trace);
3722#endif
3723
3724#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
3725void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3726{
3727	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3728				       __builtin_return_address(0));
3729
3730	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3731				    obj_size(cachep), cachep->buffer_size,
3732				    flags, nodeid);
3733
3734	return ret;
3735}
3736EXPORT_SYMBOL(kmem_cache_alloc_node);
3737
3738#ifdef CONFIG_TRACING
3739void *kmem_cache_alloc_node_trace(size_t size,
3740				  struct kmem_cache *cachep,
3741				  gfp_t flags,
3742				  int nodeid)
 
3743{
3744	void *ret;
3745
3746	ret = __cache_alloc_node(cachep, flags, nodeid,
3747				  __builtin_return_address(0));
 
3748	trace_kmalloc_node(_RET_IP_, ret,
3749			   size, slab_buffer_size(cachep),
3750			   flags, nodeid);
3751	return ret;
3752}
3753EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3754#endif
3755
3756static __always_inline void *
3757__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3758{
3759	struct kmem_cache *cachep;
 
3760
3761	cachep = kmem_find_general_cachep(size, flags);
 
 
3762	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3763		return cachep;
3764	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
 
 
 
3765}
3766
3767#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3768void *__kmalloc_node(size_t size, gfp_t flags, int node)
3769{
3770	return __do_kmalloc_node(size, flags, node,
3771			__builtin_return_address(0));
3772}
3773EXPORT_SYMBOL(__kmalloc_node);
3774
3775void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3776		int node, unsigned long caller)
3777{
3778	return __do_kmalloc_node(size, flags, node, (void *)caller);
3779}
3780EXPORT_SYMBOL(__kmalloc_node_track_caller);
3781#else
3782void *__kmalloc_node(size_t size, gfp_t flags, int node)
 
 
3783{
3784	return __do_kmalloc_node(size, flags, node, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
3786EXPORT_SYMBOL(__kmalloc_node);
3787#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3788#endif /* CONFIG_NUMA */
3789
3790/**
3791 * __do_kmalloc - allocate memory
3792 * @size: how many bytes of memory are required.
3793 * @flags: the type of memory to allocate (see kmalloc).
3794 * @caller: function caller for debug tracking of the caller
 
 
3795 */
3796static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3797					  void *caller)
3798{
3799	struct kmem_cache *cachep;
3800	void *ret;
3801
3802	/* If you want to save a few bytes .text space: replace
3803	 * __ with kmem_.
3804	 * Then kmalloc uses the uninlined functions instead of the inline
3805	 * functions.
3806	 */
3807	cachep = __find_general_cachep(size, flags);
3808	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809		return cachep;
3810	ret = __cache_alloc(cachep, flags, caller);
3811
3812	trace_kmalloc((unsigned long) caller, ret,
3813		      size, cachep->buffer_size, flags);
 
3814
3815	return ret;
3816}
3817
3818
3819#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3820void *__kmalloc(size_t size, gfp_t flags)
3821{
3822	return __do_kmalloc(size, flags, __builtin_return_address(0));
3823}
3824EXPORT_SYMBOL(__kmalloc);
3825
3826void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3827{
3828	return __do_kmalloc(size, flags, (void *)caller);
3829}
3830EXPORT_SYMBOL(__kmalloc_track_caller);
3831
3832#else
3833void *__kmalloc(size_t size, gfp_t flags)
3834{
3835	return __do_kmalloc(size, flags, NULL);
3836}
3837EXPORT_SYMBOL(__kmalloc);
3838#endif
3839
3840/**
3841 * kmem_cache_free - Deallocate an object
3842 * @cachep: The cache the allocation was from.
3843 * @objp: The previously allocated object.
3844 *
3845 * Free an object which was previously allocated from this
3846 * cache.
3847 */
3848void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3849{
3850	unsigned long flags;
 
 
 
3851
3852	local_irq_save(flags);
3853	debug_check_no_locks_freed(objp, obj_size(cachep));
3854	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3855		debug_check_no_obj_freed(objp, obj_size(cachep));
3856	__cache_free(cachep, objp, __builtin_return_address(0));
3857	local_irq_restore(flags);
3858
3859	trace_kmem_cache_free(_RET_IP_, objp);
3860}
3861EXPORT_SYMBOL(kmem_cache_free);
3862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863/**
3864 * kfree - free previously allocated memory
3865 * @objp: pointer returned by kmalloc.
3866 *
3867 * If @objp is NULL, no operation is performed.
3868 *
3869 * Don't free memory not originally allocated by kmalloc()
3870 * or you will run into trouble.
3871 */
3872void kfree(const void *objp)
3873{
3874	struct kmem_cache *c;
3875	unsigned long flags;
3876
3877	trace_kfree(_RET_IP_, objp);
3878
3879	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3880		return;
3881	local_irq_save(flags);
3882	kfree_debugcheck(objp);
3883	c = virt_to_cache(objp);
3884	debug_check_no_locks_freed(objp, obj_size(c));
3885	debug_check_no_obj_freed(objp, obj_size(c));
3886	__cache_free(c, (void *)objp, __builtin_return_address(0));
 
 
 
 
 
3887	local_irq_restore(flags);
3888}
3889EXPORT_SYMBOL(kfree);
3890
3891unsigned int kmem_cache_size(struct kmem_cache *cachep)
3892{
3893	return obj_size(cachep);
3894}
3895EXPORT_SYMBOL(kmem_cache_size);
3896
3897/*
3898 * This initializes kmem_list3 or resizes various caches for all nodes.
3899 */
3900static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3901{
 
3902	int node;
3903	struct kmem_list3 *l3;
3904	struct array_cache *new_shared;
3905	struct array_cache **new_alien = NULL;
3906
3907	for_each_online_node(node) {
3908
3909                if (use_alien_caches) {
3910                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3911                        if (!new_alien)
3912                                goto fail;
3913                }
3914
3915		new_shared = NULL;
3916		if (cachep->shared) {
3917			new_shared = alloc_arraycache(node,
3918				cachep->shared*cachep->batchcount,
3919					0xbaadf00d, gfp);
3920			if (!new_shared) {
3921				free_alien_cache(new_alien);
3922				goto fail;
3923			}
3924		}
3925
3926		l3 = cachep->nodelists[node];
3927		if (l3) {
3928			struct array_cache *shared = l3->shared;
3929
3930			spin_lock_irq(&l3->list_lock);
3931
3932			if (shared)
3933				free_block(cachep, shared->entry,
3934						shared->avail, node);
3935
3936			l3->shared = new_shared;
3937			if (!l3->alien) {
3938				l3->alien = new_alien;
3939				new_alien = NULL;
3940			}
3941			l3->free_limit = (1 + nr_cpus_node(node)) *
3942					cachep->batchcount + cachep->num;
3943			spin_unlock_irq(&l3->list_lock);
3944			kfree(shared);
3945			free_alien_cache(new_alien);
3946			continue;
3947		}
3948		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3949		if (!l3) {
3950			free_alien_cache(new_alien);
3951			kfree(new_shared);
3952			goto fail;
3953		}
3954
3955		kmem_list3_init(l3);
3956		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3957				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3958		l3->shared = new_shared;
3959		l3->alien = new_alien;
3960		l3->free_limit = (1 + nr_cpus_node(node)) *
3961					cachep->batchcount + cachep->num;
3962		cachep->nodelists[node] = l3;
3963	}
 
3964	return 0;
3965
3966fail:
3967	if (!cachep->next.next) {
3968		/* Cache is not active yet. Roll back what we did */
3969		node--;
3970		while (node >= 0) {
3971			if (cachep->nodelists[node]) {
3972				l3 = cachep->nodelists[node];
3973
3974				kfree(l3->shared);
3975				free_alien_cache(l3->alien);
3976				kfree(l3);
3977				cachep->nodelists[node] = NULL;
3978			}
3979			node--;
3980		}
3981	}
3982	return -ENOMEM;
3983}
3984
3985struct ccupdate_struct {
3986	struct kmem_cache *cachep;
3987	struct array_cache *new[0];
3988};
3989
3990static void do_ccupdate_local(void *info)
3991{
3992	struct ccupdate_struct *new = info;
3993	struct array_cache *old;
3994
3995	check_irq_off();
3996	old = cpu_cache_get(new->cachep);
3997
3998	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3999	new->new[smp_processor_id()] = old;
4000}
4001
4002/* Always called with the cache_chain_mutex held */
4003static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4004				int batchcount, int shared, gfp_t gfp)
4005{
4006	struct ccupdate_struct *new;
4007	int i;
4008
4009	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4010		      gfp);
4011	if (!new)
4012		return -ENOMEM;
4013
4014	for_each_online_cpu(i) {
4015		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4016						batchcount, gfp);
4017		if (!new->new[i]) {
4018			for (i--; i >= 0; i--)
4019				kfree(new->new[i]);
4020			kfree(new);
4021			return -ENOMEM;
4022		}
4023	}
4024	new->cachep = cachep;
4025
4026	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4027
4028	check_irq_on();
4029	cachep->batchcount = batchcount;
4030	cachep->limit = limit;
4031	cachep->shared = shared;
4032
4033	for_each_online_cpu(i) {
4034		struct array_cache *ccold = new->new[i];
4035		if (!ccold)
4036			continue;
4037		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4038		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4039		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4040		kfree(ccold);
 
 
 
 
 
 
 
4041	}
4042	kfree(new);
4043	return alloc_kmemlist(cachep, gfp);
 
 
4044}
4045
4046/* Called with cache_chain_mutex held always */
4047static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4048{
4049	int err;
4050	int limit, shared;
 
 
 
 
 
 
4051
 
 
4052	/*
4053	 * The head array serves three purposes:
4054	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4055	 * - reduce the number of spinlock operations.
4056	 * - reduce the number of linked list operations on the slab and
4057	 *   bufctl chains: array operations are cheaper.
4058	 * The numbers are guessed, we should auto-tune as described by
4059	 * Bonwick.
4060	 */
4061	if (cachep->buffer_size > 131072)
4062		limit = 1;
4063	else if (cachep->buffer_size > PAGE_SIZE)
4064		limit = 8;
4065	else if (cachep->buffer_size > 1024)
4066		limit = 24;
4067	else if (cachep->buffer_size > 256)
4068		limit = 54;
4069	else
4070		limit = 120;
4071
4072	/*
4073	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4074	 * allocation behaviour: Most allocs on one cpu, most free operations
4075	 * on another cpu. For these cases, an efficient object passing between
4076	 * cpus is necessary. This is provided by a shared array. The array
4077	 * replaces Bonwick's magazine layer.
4078	 * On uniprocessor, it's functionally equivalent (but less efficient)
4079	 * to a larger limit. Thus disabled by default.
4080	 */
4081	shared = 0;
4082	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4083		shared = 8;
4084
4085#if DEBUG
4086	/*
4087	 * With debugging enabled, large batchcount lead to excessively long
4088	 * periods with disabled local interrupts. Limit the batchcount
4089	 */
4090	if (limit > 32)
4091		limit = 32;
4092#endif
4093	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
 
 
 
4094	if (err)
4095		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4096		       cachep->name, -err);
4097	return err;
4098}
4099
4100/*
4101 * Drain an array if it contains any elements taking the l3 lock only if
4102 * necessary. Note that the l3 listlock also protects the array_cache
4103 * if drain_array() is used on the shared array.
4104 */
4105static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4106			 struct array_cache *ac, int force, int node)
4107{
4108	int tofree;
 
 
 
4109
4110	if (!ac || !ac->avail)
4111		return;
4112	if (ac->touched && !force) {
 
4113		ac->touched = 0;
4114	} else {
4115		spin_lock_irq(&l3->list_lock);
4116		if (ac->avail) {
4117			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4118			if (tofree > ac->avail)
4119				tofree = (ac->avail + 1) / 2;
4120			free_block(cachep, ac->entry, tofree, node);
4121			ac->avail -= tofree;
4122			memmove(ac->entry, &(ac->entry[tofree]),
4123				sizeof(void *) * ac->avail);
4124		}
4125		spin_unlock_irq(&l3->list_lock);
4126	}
 
 
 
 
 
 
4127}
4128
4129/**
4130 * cache_reap - Reclaim memory from caches.
4131 * @w: work descriptor
4132 *
4133 * Called from workqueue/eventd every few seconds.
4134 * Purpose:
4135 * - clear the per-cpu caches for this CPU.
4136 * - return freeable pages to the main free memory pool.
4137 *
4138 * If we cannot acquire the cache chain mutex then just give up - we'll try
4139 * again on the next iteration.
4140 */
4141static void cache_reap(struct work_struct *w)
4142{
4143	struct kmem_cache *searchp;
4144	struct kmem_list3 *l3;
4145	int node = numa_mem_id();
4146	struct delayed_work *work = to_delayed_work(w);
4147
4148	if (!mutex_trylock(&cache_chain_mutex))
4149		/* Give up. Setup the next iteration. */
4150		goto out;
4151
4152	list_for_each_entry(searchp, &cache_chain, next) {
4153		check_irq_on();
4154
4155		/*
4156		 * We only take the l3 lock if absolutely necessary and we
4157		 * have established with reasonable certainty that
4158		 * we can do some work if the lock was obtained.
4159		 */
4160		l3 = searchp->nodelists[node];
4161
4162		reap_alien(searchp, l3);
4163
4164		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4165
4166		/*
4167		 * These are racy checks but it does not matter
4168		 * if we skip one check or scan twice.
4169		 */
4170		if (time_after(l3->next_reap, jiffies))
4171			goto next;
4172
4173		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4174
4175		drain_array(searchp, l3, l3->shared, 0, node);
4176
4177		if (l3->free_touched)
4178			l3->free_touched = 0;
4179		else {
4180			int freed;
4181
4182			freed = drain_freelist(searchp, l3, (l3->free_limit +
4183				5 * searchp->num - 1) / (5 * searchp->num));
4184			STATS_ADD_REAPED(searchp, freed);
4185		}
4186next:
4187		cond_resched();
4188	}
4189	check_irq_on();
4190	mutex_unlock(&cache_chain_mutex);
4191	next_reap_node();
4192out:
4193	/* Set up the next iteration */
4194	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
 
4195}
4196
4197#ifdef CONFIG_SLABINFO
4198
4199static void print_slabinfo_header(struct seq_file *m)
4200{
4201	/*
4202	 * Output format version, so at least we can change it
4203	 * without _too_ many complaints.
4204	 */
4205#if STATS
4206	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4207#else
4208	seq_puts(m, "slabinfo - version: 2.1\n");
4209#endif
4210	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4211		 "<objperslab> <pagesperslab>");
4212	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4213	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4214#if STATS
4215	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4216		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4217	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4218#endif
4219	seq_putc(m, '\n');
4220}
4221
4222static void *s_start(struct seq_file *m, loff_t *pos)
4223{
4224	loff_t n = *pos;
4225
4226	mutex_lock(&cache_chain_mutex);
4227	if (!n)
4228		print_slabinfo_header(m);
4229
4230	return seq_list_start(&cache_chain, *pos);
4231}
4232
4233static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4234{
4235	return seq_list_next(p, &cache_chain, pos);
4236}
4237
4238static void s_stop(struct seq_file *m, void *p)
4239{
4240	mutex_unlock(&cache_chain_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4241}
4242
4243static int s_show(struct seq_file *m, void *p)
4244{
4245	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4246	struct slab *slabp;
4247	unsigned long active_objs;
4248	unsigned long num_objs;
4249	unsigned long active_slabs = 0;
4250	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4251	const char *name;
4252	char *error = NULL;
4253	int node;
4254	struct kmem_list3 *l3;
4255
4256	active_objs = 0;
4257	num_slabs = 0;
4258	for_each_online_node(node) {
4259		l3 = cachep->nodelists[node];
4260		if (!l3)
4261			continue;
4262
4263		check_irq_on();
4264		spin_lock_irq(&l3->list_lock);
4265
4266		list_for_each_entry(slabp, &l3->slabs_full, list) {
4267			if (slabp->inuse != cachep->num && !error)
4268				error = "slabs_full accounting error";
4269			active_objs += cachep->num;
4270			active_slabs++;
4271		}
4272		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4273			if (slabp->inuse == cachep->num && !error)
4274				error = "slabs_partial inuse accounting error";
4275			if (!slabp->inuse && !error)
4276				error = "slabs_partial/inuse accounting error";
4277			active_objs += slabp->inuse;
4278			active_slabs++;
4279		}
4280		list_for_each_entry(slabp, &l3->slabs_free, list) {
4281			if (slabp->inuse && !error)
4282				error = "slabs_free/inuse accounting error";
4283			num_slabs++;
4284		}
4285		free_objects += l3->free_objects;
4286		if (l3->shared)
4287			shared_avail += l3->shared->avail;
4288
4289		spin_unlock_irq(&l3->list_lock);
4290	}
4291	num_slabs += active_slabs;
4292	num_objs = num_slabs * cachep->num;
4293	if (num_objs - active_objs != free_objects && !error)
4294		error = "free_objects accounting error";
4295
4296	name = cachep->name;
4297	if (error)
4298		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4299
4300	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4301		   name, active_objs, num_objs, cachep->buffer_size,
4302		   cachep->num, (1 << cachep->gfporder));
4303	seq_printf(m, " : tunables %4u %4u %4u",
4304		   cachep->limit, cachep->batchcount, cachep->shared);
4305	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4306		   active_slabs, num_slabs, shared_avail);
4307#if STATS
4308	{			/* list3 stats */
4309		unsigned long high = cachep->high_mark;
4310		unsigned long allocs = cachep->num_allocations;
4311		unsigned long grown = cachep->grown;
4312		unsigned long reaped = cachep->reaped;
4313		unsigned long errors = cachep->errors;
4314		unsigned long max_freeable = cachep->max_freeable;
4315		unsigned long node_allocs = cachep->node_allocs;
4316		unsigned long node_frees = cachep->node_frees;
4317		unsigned long overflows = cachep->node_overflow;
4318
4319		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4320			   "%4lu %4lu %4lu %4lu %4lu",
4321			   allocs, high, grown,
4322			   reaped, errors, max_freeable, node_allocs,
4323			   node_frees, overflows);
4324	}
4325	/* cpu stats */
4326	{
4327		unsigned long allochit = atomic_read(&cachep->allochit);
4328		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4329		unsigned long freehit = atomic_read(&cachep->freehit);
4330		unsigned long freemiss = atomic_read(&cachep->freemiss);
4331
4332		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4333			   allochit, allocmiss, freehit, freemiss);
4334	}
4335#endif
4336	seq_putc(m, '\n');
4337	return 0;
4338}
4339
4340/*
4341 * slabinfo_op - iterator that generates /proc/slabinfo
4342 *
4343 * Output layout:
4344 * cache-name
4345 * num-active-objs
4346 * total-objs
4347 * object size
4348 * num-active-slabs
4349 * total-slabs
4350 * num-pages-per-slab
4351 * + further values on SMP and with statistics enabled
4352 */
4353
4354static const struct seq_operations slabinfo_op = {
4355	.start = s_start,
4356	.next = s_next,
4357	.stop = s_stop,
4358	.show = s_show,
4359};
4360
4361#define MAX_SLABINFO_WRITE 128
4362/**
4363 * slabinfo_write - Tuning for the slab allocator
4364 * @file: unused
4365 * @buffer: user buffer
4366 * @count: data length
4367 * @ppos: unused
 
 
4368 */
4369static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4370		       size_t count, loff_t *ppos)
4371{
4372	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4373	int limit, batchcount, shared, res;
4374	struct kmem_cache *cachep;
4375
4376	if (count > MAX_SLABINFO_WRITE)
4377		return -EINVAL;
4378	if (copy_from_user(&kbuf, buffer, count))
4379		return -EFAULT;
4380	kbuf[MAX_SLABINFO_WRITE] = '\0';
4381
4382	tmp = strchr(kbuf, ' ');
4383	if (!tmp)
4384		return -EINVAL;
4385	*tmp = '\0';
4386	tmp++;
4387	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4388		return -EINVAL;
4389
4390	/* Find the cache in the chain of caches. */
4391	mutex_lock(&cache_chain_mutex);
4392	res = -EINVAL;
4393	list_for_each_entry(cachep, &cache_chain, next) {
4394		if (!strcmp(cachep->name, kbuf)) {
4395			if (limit < 1 || batchcount < 1 ||
4396					batchcount > limit || shared < 0) {
4397				res = 0;
4398			} else {
4399				res = do_tune_cpucache(cachep, limit,
4400						       batchcount, shared,
4401						       GFP_KERNEL);
4402			}
4403			break;
4404		}
4405	}
4406	mutex_unlock(&cache_chain_mutex);
4407	if (res >= 0)
4408		res = count;
4409	return res;
4410}
4411
4412static int slabinfo_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
4413{
4414	return seq_open(file, &slabinfo_op);
4415}
4416
4417static const struct file_operations proc_slabinfo_operations = {
4418	.open		= slabinfo_open,
4419	.read		= seq_read,
4420	.write		= slabinfo_write,
4421	.llseek		= seq_lseek,
4422	.release	= seq_release,
4423};
4424
4425#ifdef CONFIG_DEBUG_SLAB_LEAK
4426
4427static void *leaks_start(struct seq_file *m, loff_t *pos)
4428{
4429	mutex_lock(&cache_chain_mutex);
4430	return seq_list_start(&cache_chain, *pos);
4431}
4432
4433static inline int add_caller(unsigned long *n, unsigned long v)
4434{
4435	unsigned long *p;
4436	int l;
4437	if (!v)
4438		return 1;
4439	l = n[1];
4440	p = n + 2;
4441	while (l) {
4442		int i = l/2;
4443		unsigned long *q = p + 2 * i;
4444		if (*q == v) {
4445			q[1]++;
4446			return 1;
4447		}
4448		if (*q > v) {
4449			l = i;
4450		} else {
4451			p = q + 2;
4452			l -= i + 1;
4453		}
4454	}
4455	if (++n[1] == n[0])
4456		return 0;
4457	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4458	p[0] = v;
4459	p[1] = 1;
4460	return 1;
4461}
4462
4463static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4464{
4465	void *p;
4466	int i;
4467	if (n[0] == n[1])
4468		return;
4469	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4470		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4471			continue;
4472		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4473			return;
4474	}
4475}
4476
4477static void show_symbol(struct seq_file *m, unsigned long address)
4478{
4479#ifdef CONFIG_KALLSYMS
4480	unsigned long offset, size;
4481	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4482
4483	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4484		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4485		if (modname[0])
4486			seq_printf(m, " [%s]", modname);
4487		return;
4488	}
4489#endif
4490	seq_printf(m, "%p", (void *)address);
4491}
4492
4493static int leaks_show(struct seq_file *m, void *p)
4494{
4495	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4496	struct slab *slabp;
4497	struct kmem_list3 *l3;
4498	const char *name;
4499	unsigned long *n = m->private;
4500	int node;
4501	int i;
4502
4503	if (!(cachep->flags & SLAB_STORE_USER))
4504		return 0;
4505	if (!(cachep->flags & SLAB_RED_ZONE))
4506		return 0;
4507
4508	/* OK, we can do it */
4509
4510	n[1] = 0;
4511
4512	for_each_online_node(node) {
4513		l3 = cachep->nodelists[node];
4514		if (!l3)
4515			continue;
4516
4517		check_irq_on();
4518		spin_lock_irq(&l3->list_lock);
4519
4520		list_for_each_entry(slabp, &l3->slabs_full, list)
4521			handle_slab(n, cachep, slabp);
4522		list_for_each_entry(slabp, &l3->slabs_partial, list)
4523			handle_slab(n, cachep, slabp);
4524		spin_unlock_irq(&l3->list_lock);
4525	}
4526	name = cachep->name;
4527	if (n[0] == n[1]) {
4528		/* Increase the buffer size */
4529		mutex_unlock(&cache_chain_mutex);
4530		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4531		if (!m->private) {
4532			/* Too bad, we are really out */
4533			m->private = n;
4534			mutex_lock(&cache_chain_mutex);
4535			return -ENOMEM;
4536		}
4537		*(unsigned long *)m->private = n[0] * 2;
4538		kfree(n);
4539		mutex_lock(&cache_chain_mutex);
4540		/* Now make sure this entry will be retried */
4541		m->count = m->size;
4542		return 0;
4543	}
4544	for (i = 0; i < n[1]; i++) {
4545		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4546		show_symbol(m, n[2*i+2]);
4547		seq_putc(m, '\n');
4548	}
4549
4550	return 0;
4551}
4552
4553static const struct seq_operations slabstats_op = {
4554	.start = leaks_start,
4555	.next = s_next,
4556	.stop = s_stop,
4557	.show = leaks_show,
4558};
4559
4560static int slabstats_open(struct inode *inode, struct file *file)
4561{
4562	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4563	int ret = -ENOMEM;
4564	if (n) {
4565		ret = seq_open(file, &slabstats_op);
4566		if (!ret) {
4567			struct seq_file *m = file->private_data;
4568			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4569			m->private = n;
4570			n = NULL;
4571		}
4572		kfree(n);
4573	}
4574	return ret;
4575}
4576
4577static const struct file_operations proc_slabstats_operations = {
4578	.open		= slabstats_open,
4579	.read		= seq_read,
4580	.llseek		= seq_lseek,
4581	.release	= seq_release_private,
4582};
4583#endif
4584
4585static int __init slab_proc_init(void)
4586{
4587	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4588#ifdef CONFIG_DEBUG_SLAB_LEAK
4589	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4590#endif
4591	return 0;
4592}
4593module_init(slab_proc_init);
4594#endif
4595
4596/**
4597 * ksize - get the actual amount of memory allocated for a given object
4598 * @objp: Pointer to the object
 
 
 
4599 *
4600 * kmalloc may internally round up allocations and return more memory
4601 * than requested. ksize() can be used to determine the actual amount of
4602 * memory allocated. The caller may use this additional memory, even though
4603 * a smaller amount of memory was initially specified with the kmalloc call.
4604 * The caller must guarantee that objp points to a valid object previously
4605 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4606 * must not be freed during the duration of the call.
4607 */
4608size_t ksize(const void *objp)
4609{
 
 
 
4610	BUG_ON(!objp);
4611	if (unlikely(objp == ZERO_SIZE_PTR))
4612		return 0;
4613
4614	return obj_size(virt_to_cache(objp));
 
 
 
4615}
4616EXPORT_SYMBOL(ksize);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 
 
 
 
 167#else
 168typedef unsigned short freelist_idx_t;
 
 
 
 
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct page *page,
 222				void **list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 
 
 
 
 
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 
 
 
 
 
 
 
 374
 375static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376				 unsigned int idx)
 377{
 378	return page->s_mem + cache->size * idx;
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES	1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 
 
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 
 403{
 404	unsigned int num;
 
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 
 
 
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 
 
 
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431	}
 432
 433	return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 
 
 
 
 
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 
 
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 
 
 
 
 
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct page *page, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int page_node;
 557	LIST_HEAD(list);
 558
 559	page_node = page_to_nid(page);
 560	n = get_node(cachep, page_node);
 561
 562	spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, page_node, &list);
 564	spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 623		gfp_t flags)
 624{
 625	return NULL;
 626}
 627
 628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 629		 gfp_t flags, int nodeid)
 630{
 631	return NULL;
 632}
 633
 634static inline gfp_t gfp_exact_node(gfp_t flags)
 635{
 636	return flags & ~__GFP_NOFAIL;
 637}
 638
 639#else	/* CONFIG_NUMA */
 640
 641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 643
 644static struct alien_cache *__alloc_alien_cache(int node, int entries,
 645						int batch, gfp_t gfp)
 646{
 647	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 648	struct alien_cache *alc = NULL;
 649
 650	alc = kmalloc_node(memsize, gfp, node);
 651	if (alc) {
 652		kmemleak_no_scan(alc);
 653		init_arraycache(&alc->ac, entries, batch);
 654		spin_lock_init(&alc->lock);
 655	}
 656	return alc;
 657}
 658
 659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 660{
 661	struct alien_cache **alc_ptr;
 
 662	int i;
 663
 664	if (limit > 1)
 665		limit = 12;
 666	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 667	if (!alc_ptr)
 668		return NULL;
 669
 670	for_each_node(i) {
 671		if (i == node || !node_online(i))
 672			continue;
 673		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 674		if (!alc_ptr[i]) {
 675			for (i--; i >= 0; i--)
 676				kfree(alc_ptr[i]);
 677			kfree(alc_ptr);
 678			return NULL;
 679		}
 680	}
 681	return alc_ptr;
 682}
 683
 684static void free_alien_cache(struct alien_cache **alc_ptr)
 685{
 686	int i;
 687
 688	if (!alc_ptr)
 689		return;
 690	for_each_node(i)
 691	    kfree(alc_ptr[i]);
 692	kfree(alc_ptr);
 693}
 694
 695static void __drain_alien_cache(struct kmem_cache *cachep,
 696				struct array_cache *ac, int node,
 697				struct list_head *list)
 698{
 699	struct kmem_cache_node *n = get_node(cachep, node);
 700
 701	if (ac->avail) {
 702		spin_lock(&n->list_lock);
 703		/*
 704		 * Stuff objects into the remote nodes shared array first.
 705		 * That way we could avoid the overhead of putting the objects
 706		 * into the free lists and getting them back later.
 707		 */
 708		if (n->shared)
 709			transfer_objects(n->shared, ac, ac->limit);
 710
 711		free_block(cachep, ac->entry, ac->avail, node, list);
 712		ac->avail = 0;
 713		spin_unlock(&n->list_lock);
 714	}
 715}
 716
 717/*
 718 * Called from cache_reap() to regularly drain alien caches round robin.
 719 */
 720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 721{
 722	int node = __this_cpu_read(slab_reap_node);
 723
 724	if (n->alien) {
 725		struct alien_cache *alc = n->alien[node];
 726		struct array_cache *ac;
 727
 728		if (alc) {
 729			ac = &alc->ac;
 730			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 731				LIST_HEAD(list);
 732
 733				__drain_alien_cache(cachep, ac, node, &list);
 734				spin_unlock_irq(&alc->lock);
 735				slabs_destroy(cachep, &list);
 736			}
 737		}
 738	}
 739}
 740
 741static void drain_alien_cache(struct kmem_cache *cachep,
 742				struct alien_cache **alien)
 743{
 744	int i = 0;
 745	struct alien_cache *alc;
 746	struct array_cache *ac;
 747	unsigned long flags;
 748
 749	for_each_online_node(i) {
 750		alc = alien[i];
 751		if (alc) {
 752			LIST_HEAD(list);
 753
 754			ac = &alc->ac;
 755			spin_lock_irqsave(&alc->lock, flags);
 756			__drain_alien_cache(cachep, ac, i, &list);
 757			spin_unlock_irqrestore(&alc->lock, flags);
 758			slabs_destroy(cachep, &list);
 759		}
 760	}
 761}
 762
 763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 764				int node, int page_node)
 765{
 766	struct kmem_cache_node *n;
 767	struct alien_cache *alien = NULL;
 768	struct array_cache *ac;
 769	LIST_HEAD(list);
 
 
 
 
 
 
 
 
 
 
 770
 771	n = get_node(cachep, node);
 772	STATS_INC_NODEFREES(cachep);
 773	if (n->alien && n->alien[page_node]) {
 774		alien = n->alien[page_node];
 775		ac = &alien->ac;
 776		spin_lock(&alien->lock);
 777		if (unlikely(ac->avail == ac->limit)) {
 778			STATS_INC_ACOVERFLOW(cachep);
 779			__drain_alien_cache(cachep, ac, page_node, &list);
 780		}
 781		__free_one(ac, objp);
 782		spin_unlock(&alien->lock);
 783		slabs_destroy(cachep, &list);
 784	} else {
 785		n = get_node(cachep, page_node);
 786		spin_lock(&n->list_lock);
 787		free_block(cachep, &objp, 1, page_node, &list);
 788		spin_unlock(&n->list_lock);
 789		slabs_destroy(cachep, &list);
 790	}
 791	return 1;
 792}
 793
 794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 795{
 796	int page_node = page_to_nid(virt_to_page(objp));
 797	int node = numa_mem_id();
 798	/*
 799	 * Make sure we are not freeing a object from another node to the array
 800	 * cache on this cpu.
 801	 */
 802	if (likely(node == page_node))
 803		return 0;
 804
 805	return __cache_free_alien(cachep, objp, node, page_node);
 806}
 807
 808/*
 809 * Construct gfp mask to allocate from a specific node but do not reclaim or
 810 * warn about failures.
 811 */
 812static inline gfp_t gfp_exact_node(gfp_t flags)
 813{
 814	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 815}
 816#endif
 817
 818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 819{
 820	struct kmem_cache_node *n;
 821
 822	/*
 823	 * Set up the kmem_cache_node for cpu before we can
 824	 * begin anything. Make sure some other cpu on this
 825	 * node has not already allocated this
 826	 */
 827	n = get_node(cachep, node);
 828	if (n) {
 829		spin_lock_irq(&n->list_lock);
 830		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 831				cachep->num;
 832		spin_unlock_irq(&n->list_lock);
 833
 834		return 0;
 835	}
 836
 837	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 838	if (!n)
 839		return -ENOMEM;
 840
 841	kmem_cache_node_init(n);
 842	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 843		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 844
 845	n->free_limit =
 846		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 847
 848	/*
 849	 * The kmem_cache_nodes don't come and go as CPUs
 850	 * come and go.  slab_mutex is sufficient
 851	 * protection here.
 852	 */
 853	cachep->node[node] = n;
 854
 855	return 0;
 856}
 857
 858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 859/*
 860 * Allocates and initializes node for a node on each slab cache, used for
 861 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 862 * will be allocated off-node since memory is not yet online for the new node.
 863 * When hotplugging memory or a cpu, existing node are not replaced if
 864 * already in use.
 865 *
 866 * Must hold slab_mutex.
 867 */
 868static int init_cache_node_node(int node)
 869{
 870	int ret;
 871	struct kmem_cache *cachep;
 
 
 872
 873	list_for_each_entry(cachep, &slab_caches, list) {
 874		ret = init_cache_node(cachep, node, GFP_KERNEL);
 875		if (ret)
 876			return ret;
 877	}
 
 
 
 
 
 
 
 
 878
 879	return 0;
 880}
 881#endif
 
 
 
 
 882
 883static int setup_kmem_cache_node(struct kmem_cache *cachep,
 884				int node, gfp_t gfp, bool force_change)
 885{
 886	int ret = -ENOMEM;
 887	struct kmem_cache_node *n;
 888	struct array_cache *old_shared = NULL;
 889	struct array_cache *new_shared = NULL;
 890	struct alien_cache **new_alien = NULL;
 891	LIST_HEAD(list);
 892
 893	if (use_alien_caches) {
 894		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 895		if (!new_alien)
 896			goto fail;
 897	}
 898
 899	if (cachep->shared) {
 900		new_shared = alloc_arraycache(node,
 901			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 902		if (!new_shared)
 903			goto fail;
 904	}
 905
 906	ret = init_cache_node(cachep, node, gfp);
 907	if (ret)
 908		goto fail;
 909
 910	n = get_node(cachep, node);
 911	spin_lock_irq(&n->list_lock);
 912	if (n->shared && force_change) {
 913		free_block(cachep, n->shared->entry,
 914				n->shared->avail, node, &list);
 915		n->shared->avail = 0;
 916	}
 917
 918	if (!n->shared || force_change) {
 919		old_shared = n->shared;
 920		n->shared = new_shared;
 921		new_shared = NULL;
 922	}
 923
 924	if (!n->alien) {
 925		n->alien = new_alien;
 926		new_alien = NULL;
 927	}
 928
 929	spin_unlock_irq(&n->list_lock);
 930	slabs_destroy(cachep, &list);
 931
 932	/*
 933	 * To protect lockless access to n->shared during irq disabled context.
 934	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 935	 * guaranteed to be valid until irq is re-enabled, because it will be
 936	 * freed after synchronize_rcu().
 937	 */
 938	if (old_shared && force_change)
 939		synchronize_rcu();
 940
 941fail:
 942	kfree(old_shared);
 943	kfree(new_shared);
 944	free_alien_cache(new_alien);
 945
 946	return ret;
 947}
 948
 949#ifdef CONFIG_SMP
 950
 951static void cpuup_canceled(long cpu)
 952{
 953	struct kmem_cache *cachep;
 954	struct kmem_cache_node *n = NULL;
 955	int node = cpu_to_mem(cpu);
 956	const struct cpumask *mask = cpumask_of_node(node);
 957
 958	list_for_each_entry(cachep, &slab_caches, list) {
 959		struct array_cache *nc;
 960		struct array_cache *shared;
 961		struct alien_cache **alien;
 962		LIST_HEAD(list);
 963
 964		n = get_node(cachep, node);
 965		if (!n)
 966			continue;
 967
 968		spin_lock_irq(&n->list_lock);
 969
 970		/* Free limit for this kmem_cache_node */
 971		n->free_limit -= cachep->batchcount;
 972
 973		/* cpu is dead; no one can alloc from it. */
 974		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 975		free_block(cachep, nc->entry, nc->avail, node, &list);
 976		nc->avail = 0;
 
 
 
 
 
 
 
 
 
 
 977
 978		if (!cpumask_empty(mask)) {
 979			spin_unlock_irq(&n->list_lock);
 980			goto free_slab;
 981		}
 982
 983		shared = n->shared;
 984		if (shared) {
 985			free_block(cachep, shared->entry,
 986				   shared->avail, node, &list);
 987			n->shared = NULL;
 988		}
 989
 990		alien = n->alien;
 991		n->alien = NULL;
 992
 993		spin_unlock_irq(&n->list_lock);
 994
 995		kfree(shared);
 996		if (alien) {
 997			drain_alien_cache(cachep, alien);
 998			free_alien_cache(alien);
 999		}
1000
1001free_slab:
1002		slabs_destroy(cachep, &list);
1003	}
1004	/*
1005	 * In the previous loop, all the objects were freed to
1006	 * the respective cache's slabs,  now we can go ahead and
1007	 * shrink each nodelist to its limit.
1008	 */
1009	list_for_each_entry(cachep, &slab_caches, list) {
1010		n = get_node(cachep, node);
1011		if (!n)
1012			continue;
1013		drain_freelist(cachep, n, INT_MAX);
1014	}
1015}
1016
1017static int cpuup_prepare(long cpu)
1018{
1019	struct kmem_cache *cachep;
 
1020	int node = cpu_to_mem(cpu);
1021	int err;
1022
1023	/*
1024	 * We need to do this right in the beginning since
1025	 * alloc_arraycache's are going to use this list.
1026	 * kmalloc_node allows us to add the slab to the right
1027	 * kmem_cache_node and not this cpu's kmem_cache_node
1028	 */
1029	err = init_cache_node_node(node);
1030	if (err < 0)
1031		goto bad;
1032
1033	/*
1034	 * Now we can go ahead with allocating the shared arrays and
1035	 * array caches
1036	 */
1037	list_for_each_entry(cachep, &slab_caches, list) {
1038		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039		if (err)
 
 
 
 
 
1040			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	}
 
1042
1043	return 0;
1044bad:
1045	cpuup_canceled(cpu);
1046	return -ENOMEM;
1047}
1048
1049int slab_prepare_cpu(unsigned int cpu)
 
1050{
1051	int err;
 
1052
1053	mutex_lock(&slab_mutex);
1054	err = cpuup_prepare(cpu);
1055	mutex_unlock(&slab_mutex);
1056	return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1065 * a kmalloc allocation from another cpu for memory from the node of
1066 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071	mutex_lock(&slab_mutex);
1072	cpuup_canceled(cpu);
1073	mutex_unlock(&slab_mutex);
1074	return 0;
1075}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076#endif
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080	start_cpu_timer(cpu);
1081	return 0;
 
 
 
1082}
1083
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086	/*
1087	 * Shutdown cache reaper. Note that the slab_mutex is held so
1088	 * that if cache_reap() is invoked it cannot do anything
1089	 * expensive but will only modify reap_work and reschedule the
1090	 * timer.
1091	 */
1092	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093	/* Now the cache_reaper is guaranteed to be not running. */
1094	per_cpu(slab_reap_work, cpu).work.func = NULL;
1095	return 0;
1096}
1097
1098#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
1104 * Must hold slab_mutex.
1105 */
1106static int __meminit drain_cache_node_node(int node)
1107{
1108	struct kmem_cache *cachep;
1109	int ret = 0;
1110
1111	list_for_each_entry(cachep, &slab_caches, list) {
1112		struct kmem_cache_node *n;
1113
1114		n = get_node(cachep, node);
1115		if (!n)
1116			continue;
1117
1118		drain_freelist(cachep, n, INT_MAX);
1119
1120		if (!list_empty(&n->slabs_full) ||
1121		    !list_empty(&n->slabs_partial)) {
1122			ret = -EBUSY;
1123			break;
1124		}
1125	}
1126	return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130					unsigned long action, void *arg)
1131{
1132	struct memory_notify *mnb = arg;
1133	int ret = 0;
1134	int nid;
1135
1136	nid = mnb->status_change_nid;
1137	if (nid < 0)
1138		goto out;
1139
1140	switch (action) {
1141	case MEM_GOING_ONLINE:
1142		mutex_lock(&slab_mutex);
1143		ret = init_cache_node_node(nid);
1144		mutex_unlock(&slab_mutex);
1145		break;
1146	case MEM_GOING_OFFLINE:
1147		mutex_lock(&slab_mutex);
1148		ret = drain_cache_node_node(nid);
1149		mutex_unlock(&slab_mutex);
1150		break;
1151	case MEM_ONLINE:
1152	case MEM_OFFLINE:
1153	case MEM_CANCEL_ONLINE:
1154	case MEM_CANCEL_OFFLINE:
1155		break;
1156	}
1157out:
1158	return notifier_from_errno(ret);
1159}
1160#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1161
1162/*
1163 * swap the static kmem_cache_node with kmalloced memory
1164 */
1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1166				int nodeid)
1167{
1168	struct kmem_cache_node *ptr;
1169
1170	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1171	BUG_ON(!ptr);
1172
1173	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174	/*
1175	 * Do not assume that spinlocks can be initialized via memcpy:
1176	 */
1177	spin_lock_init(&ptr->list_lock);
1178
1179	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1180	cachep->node[nodeid] = ptr;
1181}
1182
1183/*
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
1186 */
1187static void __init set_up_node(struct kmem_cache *cachep, int index)
1188{
1189	int node;
1190
1191	for_each_online_node(node) {
1192		cachep->node[node] = &init_kmem_cache_node[index + node];
1193		cachep->node[node]->next_reap = jiffies +
1194		    REAPTIMEOUT_NODE +
1195		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1196	}
1197}
1198
1199/*
1200 * Initialisation.  Called after the page allocator have been initialised and
1201 * before smp_init().
1202 */
1203void __init kmem_cache_init(void)
1204{
 
 
 
1205	int i;
 
 
1206
1207	kmem_cache = &kmem_cache_boot;
1208
1209	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1210		use_alien_caches = 0;
1211
1212	for (i = 0; i < NUM_INIT_LISTS; i++)
1213		kmem_cache_node_init(&init_kmem_cache_node[i]);
 
 
 
 
1214
1215	/*
1216	 * Fragmentation resistance on low memory - only use bigger
1217	 * page orders on machines with more than 32MB of memory if
1218	 * not overridden on the command line.
1219	 */
1220	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1221		slab_max_order = SLAB_MAX_ORDER_HI;
1222
1223	/* Bootstrap is tricky, because several objects are allocated
1224	 * from caches that do not exist yet:
1225	 * 1) initialize the kmem_cache cache: it contains the struct
1226	 *    kmem_cache structures of all caches, except kmem_cache itself:
1227	 *    kmem_cache is statically allocated.
1228	 *    Initially an __init data area is used for the head array and the
1229	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1230	 *    array at the end of the bootstrap.
1231	 * 2) Create the first kmalloc cache.
1232	 *    The struct kmem_cache for the new cache is allocated normally.
1233	 *    An __init data area is used for the head array.
1234	 * 3) Create the remaining kmalloc caches, with minimally sized
1235	 *    head arrays.
1236	 * 4) Replace the __init data head arrays for kmem_cache and the first
1237	 *    kmalloc cache with kmalloc allocated arrays.
1238	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1239	 *    the other cache's with kmalloc allocated memory.
1240	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1241	 */
1242
1243	/* 1) create the kmem_cache */
 
 
 
 
 
 
 
1244
1245	/*
1246	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247	 */
1248	create_boot_cache(kmem_cache, "kmem_cache",
1249		offsetof(struct kmem_cache, node) +
1250				  nr_node_ids * sizeof(struct kmem_cache_node *),
1251				  SLAB_HWCACHE_ALIGN, 0, 0);
1252	list_add(&kmem_cache->list, &slab_caches);
1253	slab_state = PARTIAL;
1254
1255	/*
1256	 * Initialize the caches that provide memory for the  kmem_cache_node
1257	 * structures first.  Without this, further allocations will bug.
1258	 */
1259	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1260				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1261				kmalloc_info[INDEX_NODE].size,
1262				ARCH_KMALLOC_FLAGS, 0,
1263				kmalloc_info[INDEX_NODE].size);
1264	slab_state = PARTIAL_NODE;
1265	setup_kmalloc_cache_index_table();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266
1267	slab_early_init = 0;
1268
1269	/* 5) Replace the bootstrap kmem_cache_node */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	{
1271		int nid;
1272
1273		for_each_online_node(nid) {
1274			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275
1276			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1277					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 
 
 
 
 
1278		}
1279	}
1280
1281	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286	struct kmem_cache *cachep;
1287
 
 
 
1288	/* 6) resize the head arrays to their final sizes */
1289	mutex_lock(&slab_mutex);
1290	list_for_each_entry(cachep, &slab_caches, list)
1291		if (enable_cpucache(cachep, GFP_NOWAIT))
1292			BUG();
1293	mutex_unlock(&slab_mutex);
1294
1295	/* Done! */
1296	slab_state = FULL;
 
 
 
 
 
 
1297
1298#ifdef CONFIG_NUMA
1299	/*
1300	 * Register a memory hotplug callback that initializes and frees
1301	 * node.
1302	 */
1303	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
1306	/*
1307	 * The reap timers are started later, with a module init call: That part
1308	 * of the kernel is not yet operational.
1309	 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
1314	int ret;
1315
1316	/*
1317	 * Register the timers that return unneeded pages to the page allocator
1318	 */
1319	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320				slab_online_cpu, slab_offline_cpu);
1321	WARN_ON(ret < 0);
1322
1323	return 0;
1324}
1325__initcall(cpucache_init);
1326
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
1330#if DEBUG
1331	struct kmem_cache_node *n;
1332	unsigned long flags;
1333	int node;
1334	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335				      DEFAULT_RATELIMIT_BURST);
1336
1337	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338		return;
1339
1340	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341		nodeid, gfpflags, &gfpflags);
1342	pr_warn("  cache: %s, object size: %d, order: %d\n",
1343		cachep->name, cachep->size, cachep->gfporder);
1344
1345	for_each_kmem_cache_node(cachep, node, n) {
1346		unsigned long total_slabs, free_slabs, free_objs;
1347
1348		spin_lock_irqsave(&n->list_lock, flags);
1349		total_slabs = n->total_slabs;
1350		free_slabs = n->free_slabs;
1351		free_objs = n->free_objects;
1352		spin_unlock_irqrestore(&n->list_lock, flags);
1353
1354		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355			node, total_slabs - free_slabs, total_slabs,
1356			(total_slabs * cachep->num) - free_objs,
1357			total_slabs * cachep->num);
1358	}
1359#endif
1360}
1361
1362/*
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371								int nodeid)
1372{
1373	struct page *page;
 
 
 
 
 
 
 
 
 
 
1374
1375	flags |= cachep->allocflags;
 
 
1376
1377	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1378	if (!page) {
1379		slab_out_of_memory(cachep, flags, nodeid);
1380		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	}
1382
1383	account_slab_page(page, cachep->gfporder, cachep, flags);
1384	__SetPageSlab(page);
1385	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1387		SetPageSlabPfmemalloc(page);
1388
1389	return page;
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396{
1397	int order = cachep->gfporder;
 
 
1398
1399	BUG_ON(!PageSlab(page));
1400	__ClearPageSlabPfmemalloc(page);
1401	__ClearPageSlab(page);
1402	page_mapcount_reset(page);
1403	/* In union with page->mapping where page allocator expects NULL */
1404	page->slab_cache = NULL;
1405
 
 
 
 
 
 
 
 
 
 
 
1406	if (current->reclaim_state)
1407		current->reclaim_state->reclaimed_slab += 1 << order;
1408	unaccount_slab_page(page, order, cachep);
1409	__free_pages(page, order);
1410}
1411
1412static void kmem_rcu_free(struct rcu_head *head)
1413{
1414	struct kmem_cache *cachep;
1415	struct page *page;
1416
1417	page = container_of(head, struct page, rcu_head);
1418	cachep = page->slab_cache;
1419
1420	kmem_freepages(cachep, page);
1421}
1422
1423#if DEBUG
1424static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
 
 
 
1425{
1426	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1427		(cachep->size % PAGE_SIZE) == 0)
1428		return true;
1429
1430	return false;
1431}
1432
1433#ifdef CONFIG_DEBUG_PAGEALLOC
1434static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1435{
1436	if (!is_debug_pagealloc_cache(cachep))
1437		return;
1438
1439	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1440}
 
 
 
 
 
1441
1442#else
1443static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1444				int map) {}
 
 
 
 
 
 
1445
 
 
 
1446#endif
1447
1448static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449{
1450	int size = cachep->object_size;
1451	addr = &((char *)addr)[obj_offset(cachep)];
1452
1453	memset(addr, val, size);
1454	*(unsigned char *)(addr + size - 1) = POISON_END;
1455}
1456
1457static void dump_line(char *data, int offset, int limit)
1458{
1459	int i;
1460	unsigned char error = 0;
1461	int bad_count = 0;
1462
1463	pr_err("%03x: ", offset);
1464	for (i = 0; i < limit; i++) {
1465		if (data[offset + i] != POISON_FREE) {
1466			error = data[offset + i];
1467			bad_count++;
1468		}
 
1469	}
1470	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471			&data[offset], limit, 1);
1472
1473	if (bad_count == 1) {
1474		error ^= POISON_FREE;
1475		if (!(error & (error - 1))) {
1476			pr_err("Single bit error detected. Probably bad RAM.\n");
 
1477#ifdef CONFIG_X86
1478			pr_err("Run memtest86+ or a similar memory test tool.\n");
 
1479#else
1480			pr_err("Run a memory test tool.\n");
1481#endif
1482		}
1483	}
1484}
1485#endif
1486
1487#if DEBUG
1488
1489static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490{
1491	int i, size;
1492	char *realobj;
1493
1494	if (cachep->flags & SLAB_RED_ZONE) {
1495		pr_err("Redzone: 0x%llx/0x%llx\n",
1496		       *dbg_redzone1(cachep, objp),
1497		       *dbg_redzone2(cachep, objp));
1498	}
1499
1500	if (cachep->flags & SLAB_STORE_USER)
1501		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
 
 
1502	realobj = (char *)objp + obj_offset(cachep);
1503	size = cachep->object_size;
1504	for (i = 0; i < size && lines; i += 16, lines--) {
1505		int limit;
1506		limit = 16;
1507		if (i + limit > size)
1508			limit = size - i;
1509		dump_line(realobj, i, limit);
1510	}
1511}
1512
1513static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514{
1515	char *realobj;
1516	int size, i;
1517	int lines = 0;
1518
1519	if (is_debug_pagealloc_cache(cachep))
1520		return;
1521
1522	realobj = (char *)objp + obj_offset(cachep);
1523	size = cachep->object_size;
1524
1525	for (i = 0; i < size; i++) {
1526		char exp = POISON_FREE;
1527		if (i == size - 1)
1528			exp = POISON_END;
1529		if (realobj[i] != exp) {
1530			int limit;
1531			/* Mismatch ! */
1532			/* Print header */
1533			if (lines == 0) {
1534				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1535				       print_tainted(), cachep->name,
1536				       realobj, size);
1537				print_objinfo(cachep, objp, 0);
1538			}
1539			/* Hexdump the affected line */
1540			i = (i / 16) * 16;
1541			limit = 16;
1542			if (i + limit > size)
1543				limit = size - i;
1544			dump_line(realobj, i, limit);
1545			i += 16;
1546			lines++;
1547			/* Limit to 5 lines */
1548			if (lines > 5)
1549				break;
1550		}
1551	}
1552	if (lines != 0) {
1553		/* Print some data about the neighboring objects, if they
1554		 * exist:
1555		 */
1556		struct page *page = virt_to_head_page(objp);
1557		unsigned int objnr;
1558
1559		objnr = obj_to_index(cachep, page, objp);
1560		if (objnr) {
1561			objp = index_to_obj(cachep, page, objnr - 1);
1562			realobj = (char *)objp + obj_offset(cachep);
1563			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
 
1564			print_objinfo(cachep, objp, 2);
1565		}
1566		if (objnr + 1 < cachep->num) {
1567			objp = index_to_obj(cachep, page, objnr + 1);
1568			realobj = (char *)objp + obj_offset(cachep);
1569			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
 
1570			print_objinfo(cachep, objp, 2);
1571		}
1572	}
1573}
1574#endif
1575
1576#if DEBUG
1577static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578						struct page *page)
1579{
1580	int i;
1581
1582	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583		poison_obj(cachep, page->freelist - obj_offset(cachep),
1584			POISON_FREE);
1585	}
1586
1587	for (i = 0; i < cachep->num; i++) {
1588		void *objp = index_to_obj(cachep, page, i);
1589
1590		if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
 
1591			check_poison_obj(cachep, objp);
1592			slab_kernel_map(cachep, objp, 1);
1593		}
1594		if (cachep->flags & SLAB_RED_ZONE) {
1595			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1596				slab_error(cachep, "start of a freed object was overwritten");
 
1597			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1598				slab_error(cachep, "end of a freed object was overwritten");
 
1599		}
1600	}
1601}
1602#else
1603static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604						struct page *page)
1605{
1606}
1607#endif
1608
1609/**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
1612 * @page: page pointer being destroyed
1613 *
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
1617 */
1618static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619{
1620	void *freelist;
1621
1622	freelist = page->freelist;
1623	slab_destroy_debugcheck(cachep, page);
1624	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1625		call_rcu(&page->rcu_head, kmem_rcu_free);
1626	else
1627		kmem_freepages(cachep, page);
1628
1629	/*
1630	 * From now on, we don't use freelist
1631	 * although actual page can be freed in rcu context
1632	 */
1633	if (OFF_SLAB(cachep))
1634		kmem_cache_free(cachep->freelist_cache, freelist);
 
 
 
1635}
1636
1637/*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
1641static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642{
1643	struct page *page, *n;
 
1644
1645	list_for_each_entry_safe(page, n, list, slab_list) {
1646		list_del(&page->slab_list);
1647		slab_destroy(cachep, page);
 
 
 
 
 
 
 
 
1648	}
 
1649}
1650
 
1651/**
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
 
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
1658 *
1659 * This could be made much more intelligent.  For now, try to avoid using
1660 * high order pages for slabs.  When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
1662 *
1663 * Return: number of left-over bytes in a slab
1664 */
1665static size_t calculate_slab_order(struct kmem_cache *cachep,
1666				size_t size, slab_flags_t flags)
1667{
 
1668	size_t left_over = 0;
1669	int gfporder;
1670
1671	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1672		unsigned int num;
1673		size_t remainder;
1674
1675		num = cache_estimate(gfporder, size, flags, &remainder);
1676		if (!num)
1677			continue;
1678
1679		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680		if (num > SLAB_OBJ_MAX_NUM)
1681			break;
1682
1683		if (flags & CFLGS_OFF_SLAB) {
1684			struct kmem_cache *freelist_cache;
1685			size_t freelist_size;
1686
1687			freelist_size = num * sizeof(freelist_idx_t);
1688			freelist_cache = kmalloc_slab(freelist_size, 0u);
1689			if (!freelist_cache)
1690				continue;
1691
1692			/*
1693			 * Needed to avoid possible looping condition
1694			 * in cache_grow_begin()
 
1695			 */
1696			if (OFF_SLAB(freelist_cache))
1697				continue;
1698
1699			/* check if off slab has enough benefit */
1700			if (freelist_cache->size > cachep->size / 2)
1701				continue;
1702		}
1703
1704		/* Found something acceptable - save it away */
1705		cachep->num = num;
1706		cachep->gfporder = gfporder;
1707		left_over = remainder;
1708
1709		/*
1710		 * A VFS-reclaimable slab tends to have most allocations
1711		 * as GFP_NOFS and we really don't want to have to be allocating
1712		 * higher-order pages when we are unable to shrink dcache.
1713		 */
1714		if (flags & SLAB_RECLAIM_ACCOUNT)
1715			break;
1716
1717		/*
1718		 * Large number of objects is good, but very large slabs are
1719		 * currently bad for the gfp()s.
1720		 */
1721		if (gfporder >= slab_max_order)
1722			break;
1723
1724		/*
1725		 * Acceptable internal fragmentation?
1726		 */
1727		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1728			break;
1729	}
1730	return left_over;
1731}
1732
1733static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734		struct kmem_cache *cachep, int entries, int batchcount)
1735{
1736	int cpu;
1737	size_t size;
1738	struct array_cache __percpu *cpu_cache;
1739
1740	size = sizeof(void *) * entries + sizeof(struct array_cache);
1741	cpu_cache = __alloc_percpu(size, sizeof(void *));
1742
1743	if (!cpu_cache)
1744		return NULL;
1745
1746	for_each_possible_cpu(cpu) {
1747		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748				entries, batchcount);
1749	}
1750
1751	return cpu_cache;
1752}
1753
1754static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755{
1756	if (slab_state >= FULL)
1757		return enable_cpucache(cachep, gfp);
1758
1759	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760	if (!cachep->cpu_cache)
1761		return 1;
 
 
 
 
1762
1763	if (slab_state == DOWN) {
1764		/* Creation of first cache (kmem_cache). */
1765		set_up_node(kmem_cache, CACHE_CACHE);
1766	} else if (slab_state == PARTIAL) {
1767		/* For kmem_cache_node */
1768		set_up_node(cachep, SIZE_NODE);
 
 
 
 
1769	} else {
1770		int node;
 
1771
1772		for_each_online_node(node) {
1773			cachep->node[node] = kmalloc_node(
1774				sizeof(struct kmem_cache_node), gfp, node);
1775			BUG_ON(!cachep->node[node]);
1776			kmem_cache_node_init(cachep->node[node]);
 
 
 
 
 
 
 
1777		}
1778	}
1779
1780	cachep->node[numa_mem_id()]->next_reap =
1781			jiffies + REAPTIMEOUT_NODE +
1782			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783
1784	cpu_cache_get(cachep)->avail = 0;
1785	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786	cpu_cache_get(cachep)->batchcount = 1;
1787	cpu_cache_get(cachep)->touched = 0;
1788	cachep->batchcount = 1;
1789	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1790	return 0;
1791}
1792
1793slab_flags_t kmem_cache_flags(unsigned int object_size,
1794	slab_flags_t flags, const char *name)
1795{
1796	return flags;
1797}
1798
1799struct kmem_cache *
1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801		   slab_flags_t flags, void (*ctor)(void *))
1802{
1803	struct kmem_cache *cachep;
1804
1805	cachep = find_mergeable(size, align, flags, name, ctor);
1806	if (cachep) {
1807		cachep->refcount++;
1808
1809		/*
1810		 * Adjust the object sizes so that we clear
1811		 * the complete object on kzalloc.
1812		 */
1813		cachep->object_size = max_t(int, cachep->object_size, size);
1814	}
1815	return cachep;
1816}
1817
1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819			size_t size, slab_flags_t flags)
1820{
1821	size_t left;
1822
1823	cachep->num = 0;
1824
1825	/*
1826	 * If slab auto-initialization on free is enabled, store the freelist
1827	 * off-slab, so that its contents don't end up in one of the allocated
1828	 * objects.
1829	 */
1830	if (unlikely(slab_want_init_on_free(cachep)))
1831		return false;
1832
1833	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834		return false;
1835
1836	left = calculate_slab_order(cachep, size,
1837			flags | CFLGS_OBJFREELIST_SLAB);
1838	if (!cachep->num)
1839		return false;
1840
1841	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842		return false;
1843
1844	cachep->colour = left / cachep->colour_off;
1845
1846	return true;
1847}
1848
1849static bool set_off_slab_cache(struct kmem_cache *cachep,
1850			size_t size, slab_flags_t flags)
1851{
1852	size_t left;
1853
1854	cachep->num = 0;
1855
1856	/*
1857	 * Always use on-slab management when SLAB_NOLEAKTRACE
1858	 * to avoid recursive calls into kmemleak.
1859	 */
1860	if (flags & SLAB_NOLEAKTRACE)
1861		return false;
1862
1863	/*
1864	 * Size is large, assume best to place the slab management obj
1865	 * off-slab (should allow better packing of objs).
1866	 */
1867	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868	if (!cachep->num)
1869		return false;
1870
1871	/*
1872	 * If the slab has been placed off-slab, and we have enough space then
1873	 * move it on-slab. This is at the expense of any extra colouring.
1874	 */
1875	if (left >= cachep->num * sizeof(freelist_idx_t))
1876		return false;
1877
1878	cachep->colour = left / cachep->colour_off;
1879
1880	return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
1884			size_t size, slab_flags_t flags)
1885{
1886	size_t left;
1887
1888	cachep->num = 0;
1889
1890	left = calculate_slab_order(cachep, size, flags);
1891	if (!cachep->num)
1892		return false;
1893
1894	cachep->colour = left / cachep->colour_off;
1895
1896	return true;
1897}
1898
1899/**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
 
 
1902 * @flags: SLAB flags
 
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
 
 
 
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline.  This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
 
1923{
1924	size_t ralign = BYTES_PER_WORD;
 
1925	gfp_t gfp;
1926	int err;
1927	unsigned int size = cachep->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928
1929#if DEBUG
 
1930#if FORCED_DEBUG
1931	/*
1932	 * Enable redzoning and last user accounting, except for caches with
1933	 * large objects, if the increased size would increase the object size
1934	 * above the next power of two: caches with object sizes just above a
1935	 * power of two have a significant amount of internal fragmentation.
1936	 */
1937	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938						2 * sizeof(unsigned long long)))
1939		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941		flags |= SLAB_POISON;
1942#endif
 
 
1943#endif
 
 
 
 
 
1944
1945	/*
1946	 * Check that size is in terms of words.  This is needed to avoid
1947	 * unaligned accesses for some archs when redzoning is used, and makes
1948	 * sure any on-slab bufctl's are also correctly aligned.
1949	 */
1950	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952	if (flags & SLAB_RED_ZONE) {
1953		ralign = REDZONE_ALIGN;
1954		/* If redzoning, ensure that the second redzone is suitably
1955		 * aligned, by adjusting the object size accordingly. */
1956		size = ALIGN(size, REDZONE_ALIGN);
 
1957	}
1958
 
 
 
 
1959	/* 3) caller mandated alignment */
1960	if (ralign < cachep->align) {
1961		ralign = cachep->align;
1962	}
1963	/* disable debug if necessary */
1964	if (ralign > __alignof__(unsigned long long))
1965		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966	/*
1967	 * 4) Store it.
1968	 */
1969	cachep->align = ralign;
1970	cachep->colour_off = cache_line_size();
1971	/* Offset must be a multiple of the alignment. */
1972	if (cachep->colour_off < cachep->align)
1973		cachep->colour_off = cachep->align;
1974
1975	if (slab_is_available())
1976		gfp = GFP_KERNEL;
1977	else
1978		gfp = GFP_NOWAIT;
1979
 
 
 
 
 
 
1980#if DEBUG
 
1981
1982	/*
1983	 * Both debugging options require word-alignment which is calculated
1984	 * into align above.
1985	 */
1986	if (flags & SLAB_RED_ZONE) {
1987		/* add space for red zone words */
1988		cachep->obj_offset += sizeof(unsigned long long);
1989		size += 2 * sizeof(unsigned long long);
1990	}
1991	if (flags & SLAB_STORE_USER) {
1992		/* user store requires one word storage behind the end of
1993		 * the real object. But if the second red zone needs to be
1994		 * aligned to 64 bits, we must allow that much space.
1995		 */
1996		if (flags & SLAB_RED_ZONE)
1997			size += REDZONE_ALIGN;
1998		else
1999			size += BYTES_PER_WORD;
2000	}
 
 
 
 
 
 
 
2001#endif
2002
2003	kasan_cache_create(cachep, &size, &flags);
2004
2005	size = ALIGN(size, cachep->align);
2006	/*
2007	 * We should restrict the number of objects in a slab to implement
2008	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
 
 
2009	 */
2010	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
 
 
 
 
 
 
 
2012
2013#if DEBUG
2014	/*
2015	 * To activate debug pagealloc, off-slab management is necessary
2016	 * requirement. In early phase of initialization, small sized slab
2017	 * doesn't get initialized so it would not be possible. So, we need
2018	 * to check size >= 256. It guarantees that all necessary small
2019	 * sized slab is initialized in current slab initialization sequence.
2020	 */
2021	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022		size >= 256 && cachep->object_size > cache_line_size()) {
2023		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027				flags |= CFLGS_OFF_SLAB;
2028				cachep->obj_offset += tmp_size - size;
2029				size = tmp_size;
2030				goto done;
2031			}
2032		}
2033	}
2034#endif
 
2035
2036	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037		flags |= CFLGS_OBJFREELIST_SLAB;
2038		goto done;
 
 
 
 
2039	}
2040
2041	if (set_off_slab_cache(cachep, size, flags)) {
2042		flags |= CFLGS_OFF_SLAB;
2043		goto done;
 
 
 
 
 
 
 
 
 
 
2044	}
2045
2046	if (set_on_slab_cache(cachep, size, flags))
2047		goto done;
2048
2049	return -E2BIG;
2050
2051done:
2052	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053	cachep->flags = flags;
2054	cachep->allocflags = __GFP_COMP;
2055	if (flags & SLAB_CACHE_DMA)
2056		cachep->allocflags |= GFP_DMA;
2057	if (flags & SLAB_CACHE_DMA32)
2058		cachep->allocflags |= GFP_DMA32;
2059	if (flags & SLAB_RECLAIM_ACCOUNT)
2060		cachep->allocflags |= __GFP_RECLAIMABLE;
2061	cachep->size = size;
2062	cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064#if DEBUG
2065	/*
2066	 * If we're going to use the generic kernel_map_pages()
2067	 * poisoning, then it's going to smash the contents of
2068	 * the redzone and userword anyhow, so switch them off.
2069	 */
2070	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071		(cachep->flags & SLAB_POISON) &&
2072		is_debug_pagealloc_cache(cachep))
2073		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
 
 
2075
2076	if (OFF_SLAB(cachep)) {
2077		cachep->freelist_cache =
2078			kmalloc_slab(cachep->freelist_size, 0u);
 
2079	}
2080
2081	err = setup_cpu_cache(cachep, gfp);
2082	if (err) {
2083		__kmem_cache_release(cachep);
2084		return err;
 
 
 
 
2085	}
2086
2087	return 0;
 
 
 
 
 
 
 
 
 
 
2088}
 
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093	BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098	BUG_ON(irqs_disabled());
2099}
2100
2101static void check_mutex_acquired(void)
2102{
2103	BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
2106static void check_spinlock_acquired(struct kmem_cache *cachep)
2107{
2108#ifdef CONFIG_SMP
2109	check_irq_off();
2110	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111#endif
2112}
2113
2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115{
2116#ifdef CONFIG_SMP
2117	check_irq_off();
2118	assert_spin_locked(&get_node(cachep, node)->list_lock);
2119#endif
2120}
2121
2122#else
2123#define check_irq_off()	do { } while(0)
2124#define check_irq_on()	do { } while(0)
2125#define check_mutex_acquired()	do { } while(0)
2126#define check_spinlock_acquired(x) do { } while(0)
2127#define check_spinlock_acquired_node(x, y) do { } while(0)
2128#endif
2129
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131				int node, bool free_all, struct list_head *list)
2132{
2133	int tofree;
2134
2135	if (!ac || !ac->avail)
2136		return;
2137
2138	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139	if (tofree > ac->avail)
2140		tofree = (ac->avail + 1) / 2;
2141
2142	free_block(cachep, ac->entry, tofree, node, list);
2143	ac->avail -= tofree;
2144	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
2146
2147static void do_drain(void *arg)
2148{
2149	struct kmem_cache *cachep = arg;
2150	struct array_cache *ac;
2151	int node = numa_mem_id();
2152	struct kmem_cache_node *n;
2153	LIST_HEAD(list);
2154
2155	check_irq_off();
2156	ac = cpu_cache_get(cachep);
2157	n = get_node(cachep, node);
2158	spin_lock(&n->list_lock);
2159	free_block(cachep, ac->entry, ac->avail, node, &list);
2160	spin_unlock(&n->list_lock);
2161	ac->avail = 0;
2162	slabs_destroy(cachep, &list);
2163}
2164
2165static void drain_cpu_caches(struct kmem_cache *cachep)
2166{
2167	struct kmem_cache_node *n;
2168	int node;
2169	LIST_HEAD(list);
2170
2171	on_each_cpu(do_drain, cachep, 1);
2172	check_irq_on();
2173	for_each_kmem_cache_node(cachep, node, n)
2174		if (n->alien)
2175			drain_alien_cache(cachep, n->alien);
2176
2177	for_each_kmem_cache_node(cachep, node, n) {
2178		spin_lock_irq(&n->list_lock);
2179		drain_array_locked(cachep, n->shared, node, true, &list);
2180		spin_unlock_irq(&n->list_lock);
2181
2182		slabs_destroy(cachep, &list);
 
 
 
2183	}
2184}
2185
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
2193			struct kmem_cache_node *n, int tofree)
2194{
2195	struct list_head *p;
2196	int nr_freed;
2197	struct page *page;
2198
2199	nr_freed = 0;
2200	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202		spin_lock_irq(&n->list_lock);
2203		p = n->slabs_free.prev;
2204		if (p == &n->slabs_free) {
2205			spin_unlock_irq(&n->list_lock);
2206			goto out;
2207		}
2208
2209		page = list_entry(p, struct page, slab_list);
2210		list_del(&page->slab_list);
2211		n->free_slabs--;
2212		n->total_slabs--;
 
2213		/*
2214		 * Safe to drop the lock. The slab is no longer linked
2215		 * to the cache.
2216		 */
2217		n->free_objects -= cache->num;
2218		spin_unlock_irq(&n->list_lock);
2219		slab_destroy(cache, page);
2220		nr_freed++;
2221	}
2222out:
2223	return nr_freed;
2224}
2225
2226bool __kmem_cache_empty(struct kmem_cache *s)
 
2227{
2228	int node;
2229	struct kmem_cache_node *n;
2230
2231	for_each_kmem_cache_node(s, node, n)
2232		if (!list_empty(&n->slabs_full) ||
2233		    !list_empty(&n->slabs_partial))
2234			return false;
2235	return true;
2236}
2237
2238int __kmem_cache_shrink(struct kmem_cache *cachep)
2239{
2240	int ret = 0;
2241	int node;
2242	struct kmem_cache_node *n;
2243
2244	drain_cpu_caches(cachep);
2245
2246	check_irq_on();
2247	for_each_kmem_cache_node(cachep, node, n) {
2248		drain_freelist(cachep, n, INT_MAX);
 
 
2249
2250		ret += !list_empty(&n->slabs_full) ||
2251			!list_empty(&n->slabs_partial);
 
 
2252	}
2253	return (ret ? 1 : 0);
2254}
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
 
 
 
 
 
 
 
2257{
2258	return __kmem_cache_shrink(cachep);
 
 
 
 
 
 
 
 
2259}
 
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262{
2263	int i;
2264	struct kmem_cache_node *n;
2265
2266	cache_random_seq_destroy(cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
2267
2268	free_percpu(cachep->cpu_cache);
 
2269
2270	/* NUMA: free the node structures */
2271	for_each_kmem_cache_node(cachep, i, n) {
2272		kfree(n->shared);
2273		free_alien_cache(n->alien);
2274		kfree(n);
2275		cachep->node[i] = NULL;
2276	}
2277}
 
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294				   struct page *page, int colour_off,
2295				   gfp_t local_flags, int nodeid)
2296{
2297	void *freelist;
2298	void *addr = page_address(page);
2299
2300	page->s_mem = addr + colour_off;
2301	page->active = 0;
2302
2303	if (OBJFREELIST_SLAB(cachep))
2304		freelist = NULL;
2305	else if (OFF_SLAB(cachep)) {
2306		/* Slab management obj is off-slab. */
2307		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308					      local_flags, nodeid);
 
 
 
 
 
 
 
 
 
 
2309	} else {
2310		/* We will use last bytes at the slab for freelist */
2311		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312				cachep->freelist_size;
2313	}
2314
2315	return freelist;
 
 
 
 
2316}
2317
2318static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319{
2320	return ((freelist_idx_t *)page->freelist)[idx];
2321}
2322
2323static inline void set_free_obj(struct page *page,
2324					unsigned int idx, freelist_idx_t val)
2325{
2326	((freelist_idx_t *)(page->freelist))[idx] = val;
2327}
2328
2329static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330{
2331#if DEBUG
2332	int i;
2333
2334	for (i = 0; i < cachep->num; i++) {
2335		void *objp = index_to_obj(cachep, page, i);
2336
 
 
 
2337		if (cachep->flags & SLAB_STORE_USER)
2338			*dbg_userword(cachep, objp) = NULL;
2339
2340		if (cachep->flags & SLAB_RED_ZONE) {
2341			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343		}
2344		/*
2345		 * Constructors are not allowed to allocate memory from the same
2346		 * cache which they are a constructor for.  Otherwise, deadlock.
2347		 * They must also be threaded.
2348		 */
2349		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350			kasan_unpoison_object_data(cachep,
2351						   objp + obj_offset(cachep));
2352			cachep->ctor(objp + obj_offset(cachep));
2353			kasan_poison_object_data(
2354				cachep, objp + obj_offset(cachep));
2355		}
2356
2357		if (cachep->flags & SLAB_RED_ZONE) {
2358			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359				slab_error(cachep, "constructor overwrote the end of an object");
 
2360			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361				slab_error(cachep, "constructor overwrote the start of an object");
 
2362		}
2363		/* need to poison the objs? */
2364		if (cachep->flags & SLAB_POISON) {
2365			poison_obj(cachep, objp, POISON_FREE);
2366			slab_kernel_map(cachep, objp, 0);
2367		}
2368	}
 
2369#endif
2370}
2371
2372#ifdef CONFIG_SLAB_FREELIST_RANDOM
2373/* Hold information during a freelist initialization */
2374union freelist_init_state {
2375	struct {
2376		unsigned int pos;
2377		unsigned int *list;
2378		unsigned int count;
2379	};
2380	struct rnd_state rnd_state;
2381};
2382
2383/*
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
2386 */
2387static bool freelist_state_initialize(union freelist_init_state *state,
2388				struct kmem_cache *cachep,
2389				unsigned int count)
2390{
2391	bool ret;
2392	unsigned int rand;
2393
2394	/* Use best entropy available to define a random shift */
2395	rand = get_random_int();
2396
2397	/* Use a random state if the pre-computed list is not available */
2398	if (!cachep->random_seq) {
2399		prandom_seed_state(&state->rnd_state, rand);
2400		ret = false;
2401	} else {
2402		state->list = cachep->random_seq;
2403		state->count = count;
2404		state->pos = rand % count;
2405		ret = true;
2406	}
2407	return ret;
2408}
2409
2410/* Get the next entry on the list and randomize it using a random shift */
2411static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412{
2413	if (state->pos >= state->count)
2414		state->pos = 0;
2415	return state->list[state->pos++];
2416}
2417
2418/* Swap two freelist entries */
2419static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420{
2421	swap(((freelist_idx_t *)page->freelist)[a],
2422		((freelist_idx_t *)page->freelist)[b]);
2423}
2424
2425/*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
2429static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430{
2431	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432	union freelist_init_state state;
2433	bool precomputed;
2434
2435	if (count < 2)
2436		return false;
2437
2438	precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440	/* Take a random entry as the objfreelist */
2441	if (OBJFREELIST_SLAB(cachep)) {
2442		if (!precomputed)
2443			objfreelist = count - 1;
2444		else
2445			objfreelist = next_random_slot(&state);
2446		page->freelist = index_to_obj(cachep, page, objfreelist) +
2447						obj_offset(cachep);
2448		count--;
2449	}
2450
2451	/*
2452	 * On early boot, generate the list dynamically.
2453	 * Later use a pre-computed list for speed.
2454	 */
2455	if (!precomputed) {
2456		for (i = 0; i < count; i++)
2457			set_free_obj(page, i, i);
2458
2459		/* Fisher-Yates shuffle */
2460		for (i = count - 1; i > 0; i--) {
2461			rand = prandom_u32_state(&state.rnd_state);
2462			rand %= (i + 1);
2463			swap_free_obj(page, i, rand);
2464		}
2465	} else {
2466		for (i = 0; i < count; i++)
2467			set_free_obj(page, i, next_random_slot(&state));
2468	}
2469
2470	if (OBJFREELIST_SLAB(cachep))
2471		set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473	return true;
2474}
2475#else
2476static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477				struct page *page)
2478{
2479	return false;
2480}
2481#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484			    struct page *page)
2485{
2486	int i;
2487	void *objp;
2488	bool shuffled;
2489
2490	cache_init_objs_debug(cachep, page);
 
 
 
 
 
 
2491
2492	/* Try to randomize the freelist if enabled */
2493	shuffled = shuffle_freelist(cachep, page);
2494
2495	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497						obj_offset(cachep);
2498	}
2499
2500	for (i = 0; i < cachep->num; i++) {
2501		objp = index_to_obj(cachep, page, i);
2502		objp = kasan_init_slab_obj(cachep, objp);
2503
2504		/* constructor could break poison info */
2505		if (DEBUG == 0 && cachep->ctor) {
2506			kasan_unpoison_object_data(cachep, objp);
2507			cachep->ctor(objp);
2508			kasan_poison_object_data(cachep, objp);
2509		}
2510
2511		if (!shuffled)
2512			set_free_obj(page, i, i);
2513	}
2514}
2515
2516static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
 
2517{
2518	void *objp;
2519
2520	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521	page->active++;
2522
2523	return objp;
2524}
2525
2526static void slab_put_obj(struct kmem_cache *cachep,
2527			struct page *page, void *objp)
2528{
2529	unsigned int objnr = obj_to_index(cachep, page, objp);
2530#if DEBUG
2531	unsigned int i;
 
2532
2533	/* Verify double free bug */
2534	for (i = page->active; i < cachep->num; i++) {
2535		if (get_free_obj(page, i) == objnr) {
2536			pr_err("slab: double free detected in cache '%s', objp %px\n",
2537			       cachep->name, objp);
2538			BUG();
2539		}
2540	}
2541#endif
2542	page->active--;
2543	if (!page->freelist)
2544		page->freelist = objp + obj_offset(cachep);
2545
2546	set_free_obj(page, page->active, objnr);
2547}
2548
2549/*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2553 */
2554static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555			   void *freelist)
2556{
2557	page->slab_cache = cache;
2558	page->freelist = freelist;
 
 
 
 
 
 
 
 
 
 
 
 
2559}
2560
2561/*
2562 * Grow (by 1) the number of slabs within a cache.  This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
2565static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566				gfp_t flags, int nodeid)
2567{
2568	void *freelist;
2569	size_t offset;
2570	gfp_t local_flags;
2571	int page_node;
2572	struct kmem_cache_node *n;
2573	struct page *page;
2574
2575	/*
2576	 * Be lazy and only check for valid flags here,  keeping it out of the
2577	 * critical path in kmem_cache_alloc().
2578	 */
2579	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580		flags = kmalloc_fix_flags(flags);
2581
2582	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584
 
2585	check_irq_off();
2586	if (gfpflags_allow_blocking(local_flags))
 
 
 
 
 
 
 
 
 
 
 
 
2587		local_irq_enable();
2588
2589	/*
 
 
 
 
 
 
 
 
2590	 * Get mem for the objs.  Attempt to allocate a physical page from
2591	 * 'nodeid'.
2592	 */
2593	page = kmem_getpages(cachep, local_flags, nodeid);
2594	if (!page)
 
2595		goto failed;
2596
2597	page_node = page_to_nid(page);
2598	n = get_node(cachep, page_node);
2599
2600	/* Get colour for the slab, and cal the next value. */
2601	n->colour_next++;
2602	if (n->colour_next >= cachep->colour)
2603		n->colour_next = 0;
2604
2605	offset = n->colour_next;
2606	if (offset >= cachep->colour)
2607		offset = 0;
2608
2609	offset *= cachep->colour_off;
2610
2611	/*
2612	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613	 * page_address() in the latter returns a non-tagged pointer,
2614	 * as it should be for slab pages.
2615	 */
2616	kasan_poison_slab(page);
2617
2618	/* Get slab management. */
2619	freelist = alloc_slabmgmt(cachep, page, offset,
2620			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621	if (OFF_SLAB(cachep) && !freelist)
2622		goto opps1;
2623
2624	slab_map_pages(cachep, page, freelist);
2625
2626	cache_init_objs(cachep, page);
2627
2628	if (gfpflags_allow_blocking(local_flags))
2629		local_irq_disable();
 
 
2630
2631	return page;
2632
 
 
 
 
2633opps1:
2634	kmem_freepages(cachep, page);
2635failed:
2636	if (gfpflags_allow_blocking(local_flags))
2637		local_irq_disable();
2638	return NULL;
2639}
2640
2641static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642{
2643	struct kmem_cache_node *n;
2644	void *list = NULL;
2645
2646	check_irq_off();
2647
2648	if (!page)
2649		return;
2650
2651	INIT_LIST_HEAD(&page->slab_list);
2652	n = get_node(cachep, page_to_nid(page));
2653
2654	spin_lock(&n->list_lock);
2655	n->total_slabs++;
2656	if (!page->active) {
2657		list_add_tail(&page->slab_list, &n->slabs_free);
2658		n->free_slabs++;
2659	} else
2660		fixup_slab_list(cachep, n, page, &list);
2661
2662	STATS_INC_GROWN(cachep);
2663	n->free_objects += cachep->num - page->active;
2664	spin_unlock(&n->list_lock);
2665
2666	fixup_objfreelist_debug(cachep, &list);
2667}
2668
2669#if DEBUG
2670
2671/*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2675 */
2676static void kfree_debugcheck(const void *objp)
2677{
2678	if (!virt_addr_valid(objp)) {
2679		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680		       (unsigned long)objp);
2681		BUG();
2682	}
2683}
2684
2685static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686{
2687	unsigned long long redzone1, redzone2;
2688
2689	redzone1 = *dbg_redzone1(cache, obj);
2690	redzone2 = *dbg_redzone2(cache, obj);
2691
2692	/*
2693	 * Redzone is ok.
2694	 */
2695	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696		return;
2697
2698	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699		slab_error(cache, "double free detected");
2700	else
2701		slab_error(cache, "memory outside object was overwritten");
2702
2703	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704	       obj, redzone1, redzone2);
2705}
2706
2707static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708				   unsigned long caller)
2709{
 
2710	unsigned int objnr;
2711	struct page *page;
2712
2713	BUG_ON(virt_to_cache(objp) != cachep);
2714
2715	objp -= obj_offset(cachep);
2716	kfree_debugcheck(objp);
2717	page = virt_to_head_page(objp);
2718
 
 
2719	if (cachep->flags & SLAB_RED_ZONE) {
2720		verify_redzone_free(cachep, objp);
2721		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723	}
2724	if (cachep->flags & SLAB_STORE_USER)
2725		*dbg_userword(cachep, objp) = (void *)caller;
2726
2727	objnr = obj_to_index(cachep, page, objp);
2728
2729	BUG_ON(objnr >= cachep->num);
2730	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731
 
 
 
2732	if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
 
 
2733		poison_obj(cachep, objp, POISON_FREE);
2734		slab_kernel_map(cachep, objp, 0);
2735	}
2736	return objp;
2737}
2738
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x, objp, z) (objp)
2742#endif
2743
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745						void **list)
2746{
2747#if DEBUG
2748	void *next = *list;
2749	void *objp;
2750
2751	while (next) {
2752		objp = next - obj_offset(cachep);
2753		next = *(void **)next;
2754		poison_obj(cachep, objp, POISON_FREE);
 
2755	}
2756#endif
2757}
2758
2759static inline void fixup_slab_list(struct kmem_cache *cachep,
2760				struct kmem_cache_node *n, struct page *page,
2761				void **list)
2762{
2763	/* move slabp to correct slabp list: */
2764	list_del(&page->slab_list);
2765	if (page->active == cachep->num) {
2766		list_add(&page->slab_list, &n->slabs_full);
2767		if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769			/* Poisoning will be done without holding the lock */
2770			if (cachep->flags & SLAB_POISON) {
2771				void **objp = page->freelist;
2772
2773				*objp = *list;
2774				*list = objp;
2775			}
2776#endif
2777			page->freelist = NULL;
2778		}
2779	} else
2780		list_add(&page->slab_list, &n->slabs_partial);
2781}
2782
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785					struct page *page, bool pfmemalloc)
2786{
2787	if (!page)
2788		return NULL;
2789
2790	if (pfmemalloc)
2791		return page;
2792
2793	if (!PageSlabPfmemalloc(page))
2794		return page;
2795
2796	/* No need to keep pfmemalloc slab if we have enough free objects */
2797	if (n->free_objects > n->free_limit) {
2798		ClearPageSlabPfmemalloc(page);
2799		return page;
2800	}
2801
2802	/* Move pfmemalloc slab to the end of list to speed up next search */
2803	list_del(&page->slab_list);
2804	if (!page->active) {
2805		list_add_tail(&page->slab_list, &n->slabs_free);
2806		n->free_slabs++;
2807	} else
2808		list_add_tail(&page->slab_list, &n->slabs_partial);
2809
2810	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811		if (!PageSlabPfmemalloc(page))
2812			return page;
2813	}
2814
2815	n->free_touched = 1;
2816	list_for_each_entry(page, &n->slabs_free, slab_list) {
2817		if (!PageSlabPfmemalloc(page)) {
2818			n->free_slabs--;
2819			return page;
2820		}
2821	}
2822
2823	return NULL;
2824}
2825
2826static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827{
2828	struct page *page;
2829
2830	assert_spin_locked(&n->list_lock);
2831	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832					slab_list);
2833	if (!page) {
2834		n->free_touched = 1;
2835		page = list_first_entry_or_null(&n->slabs_free, struct page,
2836						slab_list);
2837		if (page)
2838			n->free_slabs--;
2839	}
2840
2841	if (sk_memalloc_socks())
2842		page = get_valid_first_slab(n, page, pfmemalloc);
2843
2844	return page;
2845}
2846
2847static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848				struct kmem_cache_node *n, gfp_t flags)
2849{
2850	struct page *page;
2851	void *obj;
2852	void *list = NULL;
2853
2854	if (!gfp_pfmemalloc_allowed(flags))
2855		return NULL;
2856
2857	spin_lock(&n->list_lock);
2858	page = get_first_slab(n, true);
2859	if (!page) {
2860		spin_unlock(&n->list_lock);
2861		return NULL;
2862	}
2863
2864	obj = slab_get_obj(cachep, page);
2865	n->free_objects--;
2866
2867	fixup_slab_list(cachep, n, page, &list);
2868
2869	spin_unlock(&n->list_lock);
2870	fixup_objfreelist_debug(cachep, &list);
2871
2872	return obj;
2873}
2874
2875/*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
2879static __always_inline int alloc_block(struct kmem_cache *cachep,
2880		struct array_cache *ac, struct page *page, int batchcount)
2881{
2882	/*
2883	 * There must be at least one object available for
2884	 * allocation.
2885	 */
2886	BUG_ON(page->active >= cachep->num);
2887
2888	while (page->active < cachep->num && batchcount--) {
2889		STATS_INC_ALLOCED(cachep);
2890		STATS_INC_ACTIVE(cachep);
2891		STATS_SET_HIGH(cachep);
2892
2893		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894	}
2895
2896	return batchcount;
2897}
 
 
 
 
 
2898
2899static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900{
2901	int batchcount;
2902	struct kmem_cache_node *n;
2903	struct array_cache *ac, *shared;
2904	int node;
2905	void *list = NULL;
2906	struct page *page;
2907
 
2908	check_irq_off();
2909	node = numa_mem_id();
2910
2911	ac = cpu_cache_get(cachep);
2912	batchcount = ac->batchcount;
2913	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914		/*
2915		 * If there was little recent activity on this cache, then
2916		 * perform only a partial refill.  Otherwise we could generate
2917		 * refill bouncing.
2918		 */
2919		batchcount = BATCHREFILL_LIMIT;
2920	}
2921	n = get_node(cachep, node);
2922
2923	BUG_ON(ac->avail > 0 || !n);
2924	shared = READ_ONCE(n->shared);
2925	if (!n->free_objects && (!shared || !shared->avail))
2926		goto direct_grow;
2927
2928	spin_lock(&n->list_lock);
2929	shared = READ_ONCE(n->shared);
2930
2931	/* See if we can refill from the shared array */
2932	if (shared && transfer_objects(ac, shared, batchcount)) {
2933		shared->touched = 1;
2934		goto alloc_done;
2935	}
2936
2937	while (batchcount > 0) {
 
 
2938		/* Get slab alloc is to come from. */
2939		page = get_first_slab(n, false);
2940		if (!page)
2941			goto must_grow;
 
 
 
 
2942
 
 
2943		check_spinlock_acquired(cachep);
2944
2945		batchcount = alloc_block(cachep, ac, page, batchcount);
2946		fixup_slab_list(cachep, n, page, &list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947	}
2948
2949must_grow:
2950	n->free_objects -= ac->avail;
2951alloc_done:
2952	spin_unlock(&n->list_lock);
2953	fixup_objfreelist_debug(cachep, &list);
2954
2955direct_grow:
2956	if (unlikely(!ac->avail)) {
2957		/* Check if we can use obj in pfmemalloc slab */
2958		if (sk_memalloc_socks()) {
2959			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961			if (obj)
2962				return obj;
2963		}
2964
2965		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966
2967		/*
2968		 * cache_grow_begin() can reenable interrupts,
2969		 * then ac could change.
2970		 */
2971		ac = cpu_cache_get(cachep);
2972		if (!ac->avail && page)
2973			alloc_block(cachep, ac, page, batchcount);
2974		cache_grow_end(cachep, page);
2975
2976		if (!ac->avail)
2977			return NULL;
2978	}
2979	ac->touched = 1;
2980
2981	return ac->entry[--ac->avail];
2982}
2983
2984static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985						gfp_t flags)
2986{
2987	might_sleep_if(gfpflags_allow_blocking(flags));
 
 
 
2988}
2989
2990#if DEBUG
2991static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992				gfp_t flags, void *objp, unsigned long caller)
2993{
2994	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995	if (!objp || is_kfence_address(objp))
2996		return objp;
2997	if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
2998		check_poison_obj(cachep, objp);
2999		slab_kernel_map(cachep, objp, 1);
3000		poison_obj(cachep, objp, POISON_INUSE);
3001	}
3002	if (cachep->flags & SLAB_STORE_USER)
3003		*dbg_userword(cachep, objp) = (void *)caller;
3004
3005	if (cachep->flags & SLAB_RED_ZONE) {
3006		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008			slab_error(cachep, "double free, or memory outside object was overwritten");
3009			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010			       objp, *dbg_redzone1(cachep, objp),
3011			       *dbg_redzone2(cachep, objp));
 
 
3012		}
3013		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015	}
 
 
 
 
3016
 
 
 
 
 
3017	objp += obj_offset(cachep);
3018	if (cachep->ctor && cachep->flags & SLAB_POISON)
3019		cachep->ctor(objp);
3020	if (ARCH_SLAB_MINALIGN &&
3021	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023		       objp, (int)ARCH_SLAB_MINALIGN);
3024	}
3025	return objp;
3026}
3027#else
3028#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3029#endif
3030
 
 
 
 
 
 
 
 
3031static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3032{
3033	void *objp;
3034	struct array_cache *ac;
3035
3036	check_irq_off();
3037
3038	ac = cpu_cache_get(cachep);
3039	if (likely(ac->avail)) {
 
3040		ac->touched = 1;
3041		objp = ac->entry[--ac->avail];
3042
3043		STATS_INC_ALLOCHIT(cachep);
3044		goto out;
 
 
 
 
 
3045	}
3046
3047	STATS_INC_ALLOCMISS(cachep);
3048	objp = cache_alloc_refill(cachep, flags);
3049	/*
3050	 * the 'ac' may be updated by cache_alloc_refill(),
3051	 * and kmemleak_erase() requires its correct value.
3052	 */
3053	ac = cpu_cache_get(cachep);
3054
3055out:
3056	/*
3057	 * To avoid a false negative, if an object that is in one of the
3058	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059	 * treat the array pointers as a reference to the object.
3060	 */
3061	if (objp)
3062		kmemleak_erase(&ac->entry[ac->avail]);
3063	return objp;
3064}
3065
3066#ifdef CONFIG_NUMA
3067/*
3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3069 *
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3072 */
3073static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074{
3075	int nid_alloc, nid_here;
3076
3077	if (in_interrupt() || (flags & __GFP_THISNODE))
3078		return NULL;
3079	nid_alloc = nid_here = numa_mem_id();
 
3080	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081		nid_alloc = cpuset_slab_spread_node();
3082	else if (current->mempolicy)
3083		nid_alloc = mempolicy_slab_node();
 
3084	if (nid_alloc != nid_here)
3085		return ____cache_alloc_node(cachep, flags, nid_alloc);
3086	return NULL;
3087}
3088
3089/*
3090 * Fallback function if there was no memory available and no objects on a
3091 * certain node and fall back is permitted. First we scan all the
3092 * available node for available objects. If that fails then we
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
3096 */
3097static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3098{
3099	struct zonelist *zonelist;
 
3100	struct zoneref *z;
3101	struct zone *zone;
3102	enum zone_type highest_zoneidx = gfp_zone(flags);
3103	void *obj = NULL;
3104	struct page *page;
3105	int nid;
3106	unsigned int cpuset_mems_cookie;
3107
3108	if (flags & __GFP_THISNODE)
3109		return NULL;
3110
3111retry_cpuset:
3112	cpuset_mems_cookie = read_mems_allowed_begin();
3113	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114
3115retry:
3116	/*
3117	 * Look through allowed nodes for objects available
3118	 * from existing per node queues.
3119	 */
3120	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121		nid = zone_to_nid(zone);
3122
3123		if (cpuset_zone_allowed(zone, flags) &&
3124			get_node(cache, nid) &&
3125			get_node(cache, nid)->free_objects) {
3126				obj = ____cache_alloc_node(cache,
3127					gfp_exact_node(flags), nid);
3128				if (obj)
3129					break;
3130		}
3131	}
3132
3133	if (!obj) {
3134		/*
3135		 * This allocation will be performed within the constraints
3136		 * of the current cpuset / memory policy requirements.
3137		 * We may trigger various forms of reclaim on the allowed
3138		 * set and go into memory reserves if necessary.
3139		 */
3140		page = cache_grow_begin(cache, flags, numa_mem_id());
3141		cache_grow_end(cache, page);
3142		if (page) {
3143			nid = page_to_nid(page);
3144			obj = ____cache_alloc_node(cache,
3145				gfp_exact_node(flags), nid);
3146
3147			/*
3148			 * Another processor may allocate the objects in
3149			 * the slab since we are not holding any locks.
3150			 */
3151			if (!obj)
3152				goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
3153		}
3154	}
3155
3156	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157		goto retry_cpuset;
3158	return obj;
3159}
3160
3161/*
3162 * A interface to enable slab creation on nodeid
3163 */
3164static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165				int nodeid)
3166{
3167	struct page *page;
3168	struct kmem_cache_node *n;
3169	void *obj = NULL;
3170	void *list = NULL;
 
3171
3172	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173	n = get_node(cachep, nodeid);
3174	BUG_ON(!n);
3175
 
3176	check_irq_off();
3177	spin_lock(&n->list_lock);
3178	page = get_first_slab(n, false);
3179	if (!page)
3180		goto must_grow;
 
 
 
 
3181
 
3182	check_spinlock_acquired_node(cachep, nodeid);
 
3183
3184	STATS_INC_NODEALLOCS(cachep);
3185	STATS_INC_ACTIVE(cachep);
3186	STATS_SET_HIGH(cachep);
3187
3188	BUG_ON(page->active == cachep->num);
3189
3190	obj = slab_get_obj(cachep, page);
3191	n->free_objects--;
 
 
 
3192
3193	fixup_slab_list(cachep, n, page, &list);
 
 
 
3194
3195	spin_unlock(&n->list_lock);
3196	fixup_objfreelist_debug(cachep, &list);
3197	return obj;
3198
3199must_grow:
3200	spin_unlock(&n->list_lock);
3201	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202	if (page) {
3203		/* This slab isn't counted yet so don't update free_objects */
3204		obj = slab_get_obj(cachep, page);
3205	}
3206	cache_grow_end(cachep, page);
3207
3208	return obj ? obj : fallback_alloc(cachep, flags);
 
3209}
3210
 
 
 
 
 
 
 
 
 
 
 
 
3211static __always_inline void *
3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3213		   unsigned long caller)
3214{
3215	unsigned long save_flags;
3216	void *ptr;
3217	int slab_node = numa_mem_id();
3218	struct obj_cgroup *objcg = NULL;
3219	bool init = false;
3220
3221	flags &= gfp_allowed_mask;
3222	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3223	if (unlikely(!cachep))
 
 
3224		return NULL;
3225
3226	ptr = kfence_alloc(cachep, orig_size, flags);
3227	if (unlikely(ptr))
3228		goto out_hooks;
3229
3230	cache_alloc_debugcheck_before(cachep, flags);
3231	local_irq_save(save_flags);
3232
3233	if (nodeid == NUMA_NO_NODE)
3234		nodeid = slab_node;
3235
3236	if (unlikely(!get_node(cachep, nodeid))) {
3237		/* Node not bootstrapped yet */
3238		ptr = fallback_alloc(cachep, flags);
3239		goto out;
3240	}
3241
3242	if (nodeid == slab_node) {
3243		/*
3244		 * Use the locally cached objects if possible.
3245		 * However ____cache_alloc does not allow fallback
3246		 * to other nodes. It may fail while we still have
3247		 * objects on other nodes available.
3248		 */
3249		ptr = ____cache_alloc(cachep, flags);
3250		if (ptr)
3251			goto out;
3252	}
3253	/* ___cache_alloc_node can fall back to other nodes */
3254	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255  out:
3256	local_irq_restore(save_flags);
3257	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258	init = slab_want_init_on_alloc(flags, cachep);
 
 
 
 
 
 
 
3259
3260out_hooks:
3261	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3262	return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268	void *objp;
3269
3270	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3271		objp = alternate_node_alloc(cache, flags);
3272		if (objp)
3273			goto out;
3274	}
3275	objp = ____cache_alloc(cache, flags);
3276
3277	/*
3278	 * We may just have run out of memory on the local node.
3279	 * ____cache_alloc_node() knows how to locate memory on other nodes
3280	 */
3281	if (!objp)
3282		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3283
3284  out:
3285	return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292	return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
3299{
3300	unsigned long save_flags;
3301	void *objp;
3302	struct obj_cgroup *objcg = NULL;
3303	bool init = false;
3304
3305	flags &= gfp_allowed_mask;
3306	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3307	if (unlikely(!cachep))
 
 
3308		return NULL;
3309
3310	objp = kfence_alloc(cachep, orig_size, flags);
3311	if (unlikely(objp))
3312		goto out;
3313
3314	cache_alloc_debugcheck_before(cachep, flags);
3315	local_irq_save(save_flags);
3316	objp = __do_cache_alloc(cachep, flags);
3317	local_irq_restore(save_flags);
3318	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 
 
3319	prefetchw(objp);
3320	init = slab_want_init_on_alloc(flags, cachep);
3321
3322out:
3323	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
 
 
 
 
3324	return objp;
3325}
3326
3327/*
3328 * Caller needs to acquire correct kmem_cache_node's list_lock
3329 * @list: List of detached free slabs should be freed by caller
3330 */
3331static void free_block(struct kmem_cache *cachep, void **objpp,
3332			int nr_objects, int node, struct list_head *list)
3333{
3334	int i;
3335	struct kmem_cache_node *n = get_node(cachep, node);
3336	struct page *page;
3337
3338	n->free_objects += nr_objects;
3339
3340	for (i = 0; i < nr_objects; i++) {
3341		void *objp;
3342		struct page *page;
3343
3344		objp = objpp[i];
3345
3346		page = virt_to_head_page(objp);
3347		list_del(&page->slab_list);
 
3348		check_spinlock_acquired_node(cachep, node);
3349		slab_put_obj(cachep, page, objp);
 
3350		STATS_DEC_ACTIVE(cachep);
 
 
3351
3352		/* fixup slab chains */
3353		if (page->active == 0) {
3354			list_add(&page->slab_list, &n->slabs_free);
3355			n->free_slabs++;
 
 
 
 
 
 
 
 
 
 
3356		} else {
3357			/* Unconditionally move a slab to the end of the
3358			 * partial list on free - maximum time for the
3359			 * other objects to be freed, too.
3360			 */
3361			list_add_tail(&page->slab_list, &n->slabs_partial);
3362		}
3363	}
3364
3365	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3366		n->free_objects -= cachep->num;
3367
3368		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3369		list_move(&page->slab_list, list);
3370		n->free_slabs--;
3371		n->total_slabs--;
3372	}
3373}
3374
3375static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3376{
3377	int batchcount;
3378	struct kmem_cache_node *n;
3379	int node = numa_mem_id();
3380	LIST_HEAD(list);
3381
3382	batchcount = ac->batchcount;
3383
 
 
3384	check_irq_off();
3385	n = get_node(cachep, node);
3386	spin_lock(&n->list_lock);
3387	if (n->shared) {
3388		struct array_cache *shared_array = n->shared;
3389		int max = shared_array->limit - shared_array->avail;
3390		if (max) {
3391			if (batchcount > max)
3392				batchcount = max;
3393			memcpy(&(shared_array->entry[shared_array->avail]),
3394			       ac->entry, sizeof(void *) * batchcount);
3395			shared_array->avail += batchcount;
3396			goto free_done;
3397		}
3398	}
3399
3400	free_block(cachep, ac->entry, batchcount, node, &list);
3401free_done:
3402#if STATS
3403	{
3404		int i = 0;
3405		struct page *page;
3406
3407		list_for_each_entry(page, &n->slabs_free, slab_list) {
3408			BUG_ON(page->active);
 
 
 
 
3409
3410			i++;
 
3411		}
3412		STATS_SET_FREEABLE(cachep, i);
3413	}
3414#endif
3415	spin_unlock(&n->list_lock);
3416	ac->avail -= batchcount;
3417	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3418	slabs_destroy(cachep, &list);
3419}
3420
3421/*
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released.  Called with disabled ints.
3424 */
3425static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426					 unsigned long caller)
3427{
3428	bool init;
3429
3430	if (is_kfence_address(objp)) {
3431		kmemleak_free_recursive(objp, cachep->flags);
3432		__kfence_free(objp);
3433		return;
3434	}
3435
3436	/*
3437	 * As memory initialization might be integrated into KASAN,
3438	 * kasan_slab_free and initialization memset must be
3439	 * kept together to avoid discrepancies in behavior.
3440	 */
3441	init = slab_want_init_on_free(cachep);
3442	if (init && !kasan_has_integrated_init())
3443		memset(objp, 0, cachep->object_size);
3444	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3445	if (kasan_slab_free(cachep, objp, init))
3446		return;
3447
3448	/* Use KCSAN to help debug racy use-after-free. */
3449	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3450		__kcsan_check_access(objp, cachep->object_size,
3451				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3452
3453	___cache_free(cachep, objp, caller);
3454}
3455
3456void ___cache_free(struct kmem_cache *cachep, void *objp,
3457		unsigned long caller)
3458{
3459	struct array_cache *ac = cpu_cache_get(cachep);
3460
3461	check_irq_off();
3462	kmemleak_free_recursive(objp, cachep->flags);
3463	objp = cache_free_debugcheck(cachep, objp, caller);
3464	memcg_slab_free_hook(cachep, &objp, 1);
 
3465
3466	/*
3467	 * Skip calling cache_free_alien() when the platform is not numa.
3468	 * This will avoid cache misses that happen while accessing slabp (which
3469	 * is per page memory  reference) to get nodeid. Instead use a global
3470	 * variable to skip the call, which is mostly likely to be present in
3471	 * the cache.
3472	 */
3473	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3474		return;
3475
3476	if (ac->avail < ac->limit) {
3477		STATS_INC_FREEHIT(cachep);
 
 
3478	} else {
3479		STATS_INC_FREEMISS(cachep);
3480		cache_flusharray(cachep, ac);
 
3481	}
3482
3483	if (sk_memalloc_socks()) {
3484		struct page *page = virt_to_head_page(objp);
3485
3486		if (unlikely(PageSlabPfmemalloc(page))) {
3487			cache_free_pfmemalloc(cachep, page, objp);
3488			return;
3489		}
3490	}
3491
3492	__free_one(ac, objp);
3493}
3494
3495/**
3496 * kmem_cache_alloc - Allocate an object
3497 * @cachep: The cache to allocate from.
3498 * @flags: See kmalloc().
3499 *
3500 * Allocate an object from this cache.  The flags are only relevant
3501 * if the cache has no available objects.
3502 *
3503 * Return: pointer to the new object or %NULL in case of error
3504 */
3505void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3506{
3507	void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
3508
3509	trace_kmem_cache_alloc(_RET_IP_, ret,
3510			       cachep->object_size, cachep->size, flags);
3511
3512	return ret;
3513}
3514EXPORT_SYMBOL(kmem_cache_alloc);
3515
3516static __always_inline void
3517cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3518				  size_t size, void **p, unsigned long caller)
3519{
3520	size_t i;
3521
3522	for (i = 0; i < size; i++)
3523		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3524}
3525
3526int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3527			  void **p)
3528{
3529	size_t i;
3530	struct obj_cgroup *objcg = NULL;
3531
3532	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3533	if (!s)
3534		return 0;
3535
3536	cache_alloc_debugcheck_before(s, flags);
3537
3538	local_irq_disable();
3539	for (i = 0; i < size; i++) {
3540		void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3541
3542		if (unlikely(!objp))
3543			goto error;
3544		p[i] = objp;
3545	}
3546	local_irq_enable();
3547
3548	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3549
3550	/*
3551	 * memcg and kmem_cache debug support and memory initialization.
3552	 * Done outside of the IRQ disabled section.
3553	 */
3554	slab_post_alloc_hook(s, objcg, flags, size, p,
3555				slab_want_init_on_alloc(flags, s));
3556	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3557	return size;
3558error:
3559	local_irq_enable();
3560	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3561	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3562	__kmem_cache_free_bulk(s, i, p);
3563	return 0;
3564}
3565EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3566
3567#ifdef CONFIG_TRACING
3568void *
3569kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3570{
3571	void *ret;
3572
3573	ret = slab_alloc(cachep, flags, size, _RET_IP_);
3574
3575	ret = kasan_kmalloc(cachep, ret, size, flags);
3576	trace_kmalloc(_RET_IP_, ret,
3577		      size, cachep->size, flags);
3578	return ret;
3579}
3580EXPORT_SYMBOL(kmem_cache_alloc_trace);
3581#endif
3582
3583#ifdef CONFIG_NUMA
3584/**
3585 * kmem_cache_alloc_node - Allocate an object on the specified node
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 * @nodeid: node number of the target node.
3589 *
3590 * Identical to kmem_cache_alloc but it will allocate memory on the given
3591 * node, which can improve the performance for cpu bound structures.
3592 *
3593 * Fallback to other node is possible if __GFP_THISNODE is not set.
3594 *
3595 * Return: pointer to the new object or %NULL in case of error
3596 */
3597void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3598{
3599	void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
 
3600
3601	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3602				    cachep->object_size, cachep->size,
3603				    flags, nodeid);
3604
3605	return ret;
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc_node);
3608
3609#ifdef CONFIG_TRACING
3610void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
 
3611				  gfp_t flags,
3612				  int nodeid,
3613				  size_t size)
3614{
3615	void *ret;
3616
3617	ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3618
3619	ret = kasan_kmalloc(cachep, ret, size, flags);
3620	trace_kmalloc_node(_RET_IP_, ret,
3621			   size, cachep->size,
3622			   flags, nodeid);
3623	return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3626#endif
3627
3628static __always_inline void *
3629__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3630{
3631	struct kmem_cache *cachep;
3632	void *ret;
3633
3634	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3635		return NULL;
3636	cachep = kmalloc_slab(size, flags);
3637	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3638		return cachep;
3639	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3640	ret = kasan_kmalloc(cachep, ret, size, flags);
3641
3642	return ret;
3643}
3644
 
3645void *__kmalloc_node(size_t size, gfp_t flags, int node)
3646{
3647	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 
3648}
3649EXPORT_SYMBOL(__kmalloc_node);
3650
3651void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3652		int node, unsigned long caller)
3653{
3654	return __do_kmalloc_node(size, flags, node, caller);
3655}
3656EXPORT_SYMBOL(__kmalloc_node_track_caller);
3657#endif /* CONFIG_NUMA */
3658
3659#ifdef CONFIG_PRINTK
3660void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3661{
3662	struct kmem_cache *cachep;
3663	unsigned int objnr;
3664	void *objp;
3665
3666	kpp->kp_ptr = object;
3667	kpp->kp_page = page;
3668	cachep = page->slab_cache;
3669	kpp->kp_slab_cache = cachep;
3670	objp = object - obj_offset(cachep);
3671	kpp->kp_data_offset = obj_offset(cachep);
3672	page = virt_to_head_page(objp);
3673	objnr = obj_to_index(cachep, page, objp);
3674	objp = index_to_obj(cachep, page, objnr);
3675	kpp->kp_objp = objp;
3676	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3677		kpp->kp_ret = *dbg_userword(cachep, objp);
3678}
3679#endif
 
 
3680
3681/**
3682 * __do_kmalloc - allocate memory
3683 * @size: how many bytes of memory are required.
3684 * @flags: the type of memory to allocate (see kmalloc).
3685 * @caller: function caller for debug tracking of the caller
3686 *
3687 * Return: pointer to the allocated memory or %NULL in case of error
3688 */
3689static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690					  unsigned long caller)
3691{
3692	struct kmem_cache *cachep;
3693	void *ret;
3694
3695	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3696		return NULL;
3697	cachep = kmalloc_slab(size, flags);
 
 
 
3698	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699		return cachep;
3700	ret = slab_alloc(cachep, flags, size, caller);
3701
3702	ret = kasan_kmalloc(cachep, ret, size, flags);
3703	trace_kmalloc(caller, ret,
3704		      size, cachep->size, flags);
3705
3706	return ret;
3707}
3708
 
 
3709void *__kmalloc(size_t size, gfp_t flags)
3710{
3711	return __do_kmalloc(size, flags, _RET_IP_);
3712}
3713EXPORT_SYMBOL(__kmalloc);
3714
3715void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3716{
3717	return __do_kmalloc(size, flags, caller);
3718}
3719EXPORT_SYMBOL(__kmalloc_track_caller);
3720
 
 
 
 
 
 
 
 
3721/**
3722 * kmem_cache_free - Deallocate an object
3723 * @cachep: The cache the allocation was from.
3724 * @objp: The previously allocated object.
3725 *
3726 * Free an object which was previously allocated from this
3727 * cache.
3728 */
3729void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3730{
3731	unsigned long flags;
3732	cachep = cache_from_obj(cachep, objp);
3733	if (!cachep)
3734		return;
3735
3736	local_irq_save(flags);
3737	debug_check_no_locks_freed(objp, cachep->object_size);
3738	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3739		debug_check_no_obj_freed(objp, cachep->object_size);
3740	__cache_free(cachep, objp, _RET_IP_);
3741	local_irq_restore(flags);
3742
3743	trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3744}
3745EXPORT_SYMBOL(kmem_cache_free);
3746
3747void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3748{
3749	struct kmem_cache *s;
3750	size_t i;
3751
3752	local_irq_disable();
3753	for (i = 0; i < size; i++) {
3754		void *objp = p[i];
3755
3756		if (!orig_s) /* called via kfree_bulk */
3757			s = virt_to_cache(objp);
3758		else
3759			s = cache_from_obj(orig_s, objp);
3760		if (!s)
3761			continue;
3762
3763		debug_check_no_locks_freed(objp, s->object_size);
3764		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3765			debug_check_no_obj_freed(objp, s->object_size);
3766
3767		__cache_free(s, objp, _RET_IP_);
3768	}
3769	local_irq_enable();
3770
3771	/* FIXME: add tracing */
3772}
3773EXPORT_SYMBOL(kmem_cache_free_bulk);
3774
3775/**
3776 * kfree - free previously allocated memory
3777 * @objp: pointer returned by kmalloc.
3778 *
3779 * If @objp is NULL, no operation is performed.
3780 *
3781 * Don't free memory not originally allocated by kmalloc()
3782 * or you will run into trouble.
3783 */
3784void kfree(const void *objp)
3785{
3786	struct kmem_cache *c;
3787	unsigned long flags;
3788
3789	trace_kfree(_RET_IP_, objp);
3790
3791	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3792		return;
3793	local_irq_save(flags);
3794	kfree_debugcheck(objp);
3795	c = virt_to_cache(objp);
3796	if (!c) {
3797		local_irq_restore(flags);
3798		return;
3799	}
3800	debug_check_no_locks_freed(objp, c->object_size);
3801
3802	debug_check_no_obj_freed(objp, c->object_size);
3803	__cache_free(c, (void *)objp, _RET_IP_);
3804	local_irq_restore(flags);
3805}
3806EXPORT_SYMBOL(kfree);
3807
 
 
 
 
 
 
3808/*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
3811static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812{
3813	int ret;
3814	int node;
3815	struct kmem_cache_node *n;
 
 
3816
3817	for_each_online_node(node) {
3818		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3820			goto fail;
 
3821
 
 
 
 
 
 
 
 
3822	}
3823
3824	return 0;
3825
3826fail:
3827	if (!cachep->list.next) {
3828		/* Cache is not active yet. Roll back what we did */
3829		node--;
3830		while (node >= 0) {
3831			n = get_node(cachep, node);
3832			if (n) {
3833				kfree(n->shared);
3834				free_alien_cache(n->alien);
3835				kfree(n);
3836				cachep->node[node] = NULL;
 
3837			}
3838			node--;
3839		}
3840	}
3841	return -ENOMEM;
3842}
3843
3844/* Always called with the slab_mutex held */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846			    int batchcount, int shared, gfp_t gfp)
3847{
3848	struct array_cache __percpu *cpu_cache, *prev;
3849	int cpu;
3850
3851	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852	if (!cpu_cache)
 
3853		return -ENOMEM;
3854
3855	prev = cachep->cpu_cache;
3856	cachep->cpu_cache = cpu_cache;
3857	/*
3858	 * Without a previous cpu_cache there's no need to synchronize remote
3859	 * cpus, so skip the IPIs.
3860	 */
3861	if (prev)
3862		kick_all_cpus_sync();
 
 
 
 
 
3863
3864	check_irq_on();
3865	cachep->batchcount = batchcount;
3866	cachep->limit = limit;
3867	cachep->shared = shared;
3868
3869	if (!prev)
3870		goto setup_node;
3871
3872	for_each_online_cpu(cpu) {
3873		LIST_HEAD(list);
3874		int node;
3875		struct kmem_cache_node *n;
3876		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878		node = cpu_to_mem(cpu);
3879		n = get_node(cachep, node);
3880		spin_lock_irq(&n->list_lock);
3881		free_block(cachep, ac->entry, ac->avail, node, &list);
3882		spin_unlock_irq(&n->list_lock);
3883		slabs_destroy(cachep, &list);
3884	}
3885	free_percpu(prev);
3886
3887setup_node:
3888	return setup_kmem_cache_nodes(cachep, gfp);
3889}
3890
3891/* Called with slab_mutex held always */
3892static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3893{
3894	int err;
3895	int limit = 0;
3896	int shared = 0;
3897	int batchcount = 0;
3898
3899	err = cache_random_seq_create(cachep, cachep->num, gfp);
3900	if (err)
3901		goto end;
3902
3903	if (limit && shared && batchcount)
3904		goto skip_setup;
3905	/*
3906	 * The head array serves three purposes:
3907	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3908	 * - reduce the number of spinlock operations.
3909	 * - reduce the number of linked list operations on the slab and
3910	 *   bufctl chains: array operations are cheaper.
3911	 * The numbers are guessed, we should auto-tune as described by
3912	 * Bonwick.
3913	 */
3914	if (cachep->size > 131072)
3915		limit = 1;
3916	else if (cachep->size > PAGE_SIZE)
3917		limit = 8;
3918	else if (cachep->size > 1024)
3919		limit = 24;
3920	else if (cachep->size > 256)
3921		limit = 54;
3922	else
3923		limit = 120;
3924
3925	/*
3926	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927	 * allocation behaviour: Most allocs on one cpu, most free operations
3928	 * on another cpu. For these cases, an efficient object passing between
3929	 * cpus is necessary. This is provided by a shared array. The array
3930	 * replaces Bonwick's magazine layer.
3931	 * On uniprocessor, it's functionally equivalent (but less efficient)
3932	 * to a larger limit. Thus disabled by default.
3933	 */
3934	shared = 0;
3935	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936		shared = 8;
3937
3938#if DEBUG
3939	/*
3940	 * With debugging enabled, large batchcount lead to excessively long
3941	 * periods with disabled local interrupts. Limit the batchcount
3942	 */
3943	if (limit > 32)
3944		limit = 32;
3945#endif
3946	batchcount = (limit + 1) / 2;
3947skip_setup:
3948	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949end:
3950	if (err)
3951		pr_err("enable_cpucache failed for %s, error %d\n",
3952		       cachep->name, -err);
3953	return err;
3954}
3955
3956/*
3957 * Drain an array if it contains any elements taking the node lock only if
3958 * necessary. Note that the node listlock also protects the array_cache
3959 * if drain_array() is used on the shared array.
3960 */
3961static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3962			 struct array_cache *ac, int node)
3963{
3964	LIST_HEAD(list);
3965
3966	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3967	check_mutex_acquired();
3968
3969	if (!ac || !ac->avail)
3970		return;
3971
3972	if (ac->touched) {
3973		ac->touched = 0;
3974		return;
 
 
 
 
 
 
 
 
 
 
 
3975	}
3976
3977	spin_lock_irq(&n->list_lock);
3978	drain_array_locked(cachep, ac, node, false, &list);
3979	spin_unlock_irq(&n->list_lock);
3980
3981	slabs_destroy(cachep, &list);
3982}
3983
3984/**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
3996static void cache_reap(struct work_struct *w)
3997{
3998	struct kmem_cache *searchp;
3999	struct kmem_cache_node *n;
4000	int node = numa_mem_id();
4001	struct delayed_work *work = to_delayed_work(w);
4002
4003	if (!mutex_trylock(&slab_mutex))
4004		/* Give up. Setup the next iteration. */
4005		goto out;
4006
4007	list_for_each_entry(searchp, &slab_caches, list) {
4008		check_irq_on();
4009
4010		/*
4011		 * We only take the node lock if absolutely necessary and we
4012		 * have established with reasonable certainty that
4013		 * we can do some work if the lock was obtained.
4014		 */
4015		n = get_node(searchp, node);
4016
4017		reap_alien(searchp, n);
4018
4019		drain_array(searchp, n, cpu_cache_get(searchp), node);
4020
4021		/*
4022		 * These are racy checks but it does not matter
4023		 * if we skip one check or scan twice.
4024		 */
4025		if (time_after(n->next_reap, jiffies))
4026			goto next;
4027
4028		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4029
4030		drain_array(searchp, n, n->shared, node);
4031
4032		if (n->free_touched)
4033			n->free_touched = 0;
4034		else {
4035			int freed;
4036
4037			freed = drain_freelist(searchp, n, (n->free_limit +
4038				5 * searchp->num - 1) / (5 * searchp->num));
4039			STATS_ADD_REAPED(searchp, freed);
4040		}
4041next:
4042		cond_resched();
4043	}
4044	check_irq_on();
4045	mutex_unlock(&slab_mutex);
4046	next_reap_node();
4047out:
4048	/* Set up the next iteration */
4049	schedule_delayed_work_on(smp_processor_id(), work,
4050				round_jiffies_relative(REAPTIMEOUT_AC));
4051}
4052
4053void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
 
 
4054{
4055	unsigned long active_objs, num_objs, active_slabs;
4056	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4057	unsigned long free_slabs = 0;
4058	int node;
4059	struct kmem_cache_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4060
4061	for_each_kmem_cache_node(cachep, node, n) {
4062		check_irq_on();
4063		spin_lock_irq(&n->list_lock);
 
4064
4065		total_slabs += n->total_slabs;
4066		free_slabs += n->free_slabs;
4067		free_objs += n->free_objects;
4068
4069		if (n->shared)
4070			shared_avail += n->shared->avail;
4071
4072		spin_unlock_irq(&n->list_lock);
4073	}
4074	num_objs = total_slabs * cachep->num;
4075	active_slabs = total_slabs - free_slabs;
4076	active_objs = num_objs - free_objs;
4077
4078	sinfo->active_objs = active_objs;
4079	sinfo->num_objs = num_objs;
4080	sinfo->active_slabs = active_slabs;
4081	sinfo->num_slabs = total_slabs;
4082	sinfo->shared_avail = shared_avail;
4083	sinfo->limit = cachep->limit;
4084	sinfo->batchcount = cachep->batchcount;
4085	sinfo->shared = cachep->shared;
4086	sinfo->objects_per_slab = cachep->num;
4087	sinfo->cache_order = cachep->gfporder;
4088}
4089
4090void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4091{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4092#if STATS
4093	{			/* node stats */
4094		unsigned long high = cachep->high_mark;
4095		unsigned long allocs = cachep->num_allocations;
4096		unsigned long grown = cachep->grown;
4097		unsigned long reaped = cachep->reaped;
4098		unsigned long errors = cachep->errors;
4099		unsigned long max_freeable = cachep->max_freeable;
4100		unsigned long node_allocs = cachep->node_allocs;
4101		unsigned long node_frees = cachep->node_frees;
4102		unsigned long overflows = cachep->node_overflow;
4103
4104		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
 
4105			   allocs, high, grown,
4106			   reaped, errors, max_freeable, node_allocs,
4107			   node_frees, overflows);
4108	}
4109	/* cpu stats */
4110	{
4111		unsigned long allochit = atomic_read(&cachep->allochit);
4112		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4113		unsigned long freehit = atomic_read(&cachep->freehit);
4114		unsigned long freemiss = atomic_read(&cachep->freemiss);
4115
4116		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4117			   allochit, allocmiss, freehit, freemiss);
4118	}
4119#endif
 
 
4120}
4121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4122#define MAX_SLABINFO_WRITE 128
4123/**
4124 * slabinfo_write - Tuning for the slab allocator
4125 * @file: unused
4126 * @buffer: user buffer
4127 * @count: data length
4128 * @ppos: unused
4129 *
4130 * Return: %0 on success, negative error code otherwise.
4131 */
4132ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4133		       size_t count, loff_t *ppos)
4134{
4135	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4136	int limit, batchcount, shared, res;
4137	struct kmem_cache *cachep;
4138
4139	if (count > MAX_SLABINFO_WRITE)
4140		return -EINVAL;
4141	if (copy_from_user(&kbuf, buffer, count))
4142		return -EFAULT;
4143	kbuf[MAX_SLABINFO_WRITE] = '\0';
4144
4145	tmp = strchr(kbuf, ' ');
4146	if (!tmp)
4147		return -EINVAL;
4148	*tmp = '\0';
4149	tmp++;
4150	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4151		return -EINVAL;
4152
4153	/* Find the cache in the chain of caches. */
4154	mutex_lock(&slab_mutex);
4155	res = -EINVAL;
4156	list_for_each_entry(cachep, &slab_caches, list) {
4157		if (!strcmp(cachep->name, kbuf)) {
4158			if (limit < 1 || batchcount < 1 ||
4159					batchcount > limit || shared < 0) {
4160				res = 0;
4161			} else {
4162				res = do_tune_cpucache(cachep, limit,
4163						       batchcount, shared,
4164						       GFP_KERNEL);
4165			}
4166			break;
4167		}
4168	}
4169	mutex_unlock(&slab_mutex);
4170	if (res >= 0)
4171		res = count;
4172	return res;
4173}
4174
4175#ifdef CONFIG_HARDENED_USERCOPY
4176/*
4177 * Rejects incorrectly sized objects and objects that are to be copied
4178 * to/from userspace but do not fall entirely within the containing slab
4179 * cache's usercopy region.
4180 *
4181 * Returns NULL if check passes, otherwise const char * to name of cache
4182 * to indicate an error.
4183 */
4184void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4185			 bool to_user)
4186{
4187	struct kmem_cache *cachep;
4188	unsigned int objnr;
4189	unsigned long offset;
 
 
 
 
 
 
 
4190
4191	ptr = kasan_reset_tag(ptr);
4192
4193	/* Find and validate object. */
4194	cachep = page->slab_cache;
4195	objnr = obj_to_index(cachep, page, (void *)ptr);
4196	BUG_ON(objnr >= cachep->num);
 
4197
4198	/* Find offset within object. */
4199	if (is_kfence_address(ptr))
4200		offset = ptr - kfence_object_start(ptr);
4201	else
4202		offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4203
4204	/* Allow address range falling entirely within usercopy region. */
4205	if (offset >= cachep->useroffset &&
4206	    offset - cachep->useroffset <= cachep->usersize &&
4207	    n <= cachep->useroffset - offset + cachep->usersize)
 
4208		return;
 
 
 
 
 
 
 
4209
4210	/*
4211	 * If the copy is still within the allocated object, produce
4212	 * a warning instead of rejecting the copy. This is intended
4213	 * to be a temporary method to find any missing usercopy
4214	 * whitelists.
4215	 */
4216	if (usercopy_fallback &&
4217	    offset <= cachep->object_size &&
4218	    n <= cachep->object_size - offset) {
4219		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4220		return;
4221	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4222
4223	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4224}
4225#endif /* CONFIG_HARDENED_USERCOPY */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4226
4227/**
4228 * __ksize -- Uninstrumented ksize.
4229 * @objp: pointer to the object
4230 *
4231 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4232 * safety checks as ksize() with KASAN instrumentation enabled.
4233 *
4234 * Return: size of the actual memory used by @objp in bytes
 
 
 
 
 
 
4235 */
4236size_t __ksize(const void *objp)
4237{
4238	struct kmem_cache *c;
4239	size_t size;
4240
4241	BUG_ON(!objp);
4242	if (unlikely(objp == ZERO_SIZE_PTR))
4243		return 0;
4244
4245	c = virt_to_cache(objp);
4246	size = c ? c->object_size : 0;
4247
4248	return size;
4249}
4250EXPORT_SYMBOL(__ksize);