Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27	SCAN_FAIL,
  28	SCAN_SUCCEED,
  29	SCAN_PMD_NULL,
  30	SCAN_EXCEED_NONE_PTE,
  31	SCAN_EXCEED_SWAP_PTE,
  32	SCAN_EXCEED_SHARED_PTE,
  33	SCAN_PTE_NON_PRESENT,
  34	SCAN_PTE_UFFD_WP,
  35	SCAN_PAGE_RO,
  36	SCAN_LACK_REFERENCED_PAGE,
  37	SCAN_PAGE_NULL,
  38	SCAN_SCAN_ABORT,
  39	SCAN_PAGE_COUNT,
  40	SCAN_PAGE_LRU,
  41	SCAN_PAGE_LOCK,
  42	SCAN_PAGE_ANON,
  43	SCAN_PAGE_COMPOUND,
  44	SCAN_ANY_PROCESS,
  45	SCAN_VMA_NULL,
  46	SCAN_VMA_CHECK,
  47	SCAN_ADDRESS_RANGE,
  48	SCAN_SWAP_CACHE_PAGE,
  49	SCAN_DEL_PAGE_LRU,
  50	SCAN_ALLOC_HUGE_PAGE_FAIL,
  51	SCAN_CGROUP_CHARGE_FAIL,
  52	SCAN_TRUNCATED,
  53	SCAN_PAGE_HAS_PRIVATE,
  54};
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/huge_memory.h>
  58
  59static struct task_struct *khugepaged_thread __read_mostly;
  60static DEFINE_MUTEX(khugepaged_mutex);
  61
  62/* default scan 8*512 pte (or vmas) every 30 second */
  63static unsigned int khugepaged_pages_to_scan __read_mostly;
  64static unsigned int khugepaged_pages_collapsed;
  65static unsigned int khugepaged_full_scans;
  66static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  67/* during fragmentation poll the hugepage allocator once every minute */
  68static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  69static unsigned long khugepaged_sleep_expire;
  70static DEFINE_SPINLOCK(khugepaged_mm_lock);
  71static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  72/*
  73 * default collapse hugepages if there is at least one pte mapped like
  74 * it would have happened if the vma was large enough during page
  75 * fault.
  76 */
  77static unsigned int khugepaged_max_ptes_none __read_mostly;
  78static unsigned int khugepaged_max_ptes_swap __read_mostly;
  79static unsigned int khugepaged_max_ptes_shared __read_mostly;
  80
  81#define MM_SLOTS_HASH_BITS 10
  82static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  83
  84static struct kmem_cache *mm_slot_cache __read_mostly;
  85
  86#define MAX_PTE_MAPPED_THP 8
  87
  88/**
  89 * struct mm_slot - hash lookup from mm to mm_slot
  90 * @hash: hash collision list
  91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  92 * @mm: the mm that this information is valid for
  93 * @nr_pte_mapped_thp: number of pte mapped THP
  94 * @pte_mapped_thp: address array corresponding pte mapped THP
  95 */
  96struct mm_slot {
  97	struct hlist_node hash;
  98	struct list_head mm_node;
  99	struct mm_struct *mm;
 100
 101	/* pte-mapped THP in this mm */
 102	int nr_pte_mapped_thp;
 103	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
 104};
 105
 106/**
 107 * struct khugepaged_scan - cursor for scanning
 108 * @mm_head: the head of the mm list to scan
 109 * @mm_slot: the current mm_slot we are scanning
 110 * @address: the next address inside that to be scanned
 111 *
 112 * There is only the one khugepaged_scan instance of this cursor structure.
 113 */
 114struct khugepaged_scan {
 115	struct list_head mm_head;
 116	struct mm_slot *mm_slot;
 117	unsigned long address;
 118};
 119
 120static struct khugepaged_scan khugepaged_scan = {
 121	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 122};
 123
 124#ifdef CONFIG_SYSFS
 125static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 126					 struct kobj_attribute *attr,
 127					 char *buf)
 128{
 129	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 130}
 131
 132static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 133					  struct kobj_attribute *attr,
 134					  const char *buf, size_t count)
 135{
 136	unsigned int msecs;
 137	int err;
 138
 139	err = kstrtouint(buf, 10, &msecs);
 140	if (err)
 141		return -EINVAL;
 142
 143	khugepaged_scan_sleep_millisecs = msecs;
 144	khugepaged_sleep_expire = 0;
 145	wake_up_interruptible(&khugepaged_wait);
 146
 147	return count;
 148}
 149static struct kobj_attribute scan_sleep_millisecs_attr =
 150	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 151	       scan_sleep_millisecs_store);
 152
 153static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 154					  struct kobj_attribute *attr,
 155					  char *buf)
 156{
 157	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 158}
 159
 160static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 161					   struct kobj_attribute *attr,
 162					   const char *buf, size_t count)
 163{
 164	unsigned int msecs;
 165	int err;
 166
 167	err = kstrtouint(buf, 10, &msecs);
 168	if (err)
 169		return -EINVAL;
 170
 171	khugepaged_alloc_sleep_millisecs = msecs;
 172	khugepaged_sleep_expire = 0;
 173	wake_up_interruptible(&khugepaged_wait);
 174
 175	return count;
 176}
 177static struct kobj_attribute alloc_sleep_millisecs_attr =
 178	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 179	       alloc_sleep_millisecs_store);
 180
 181static ssize_t pages_to_scan_show(struct kobject *kobj,
 182				  struct kobj_attribute *attr,
 183				  char *buf)
 184{
 185	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
 186}
 187static ssize_t pages_to_scan_store(struct kobject *kobj,
 188				   struct kobj_attribute *attr,
 189				   const char *buf, size_t count)
 190{
 191	unsigned int pages;
 192	int err;
 193
 194	err = kstrtouint(buf, 10, &pages);
 195	if (err || !pages)
 196		return -EINVAL;
 197
 198	khugepaged_pages_to_scan = pages;
 199
 200	return count;
 201}
 202static struct kobj_attribute pages_to_scan_attr =
 203	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 204	       pages_to_scan_store);
 205
 206static ssize_t pages_collapsed_show(struct kobject *kobj,
 207				    struct kobj_attribute *attr,
 208				    char *buf)
 209{
 210	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
 211}
 212static struct kobj_attribute pages_collapsed_attr =
 213	__ATTR_RO(pages_collapsed);
 214
 215static ssize_t full_scans_show(struct kobject *kobj,
 216			       struct kobj_attribute *attr,
 217			       char *buf)
 218{
 219	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
 220}
 221static struct kobj_attribute full_scans_attr =
 222	__ATTR_RO(full_scans);
 223
 224static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 225				      struct kobj_attribute *attr, char *buf)
 226{
 227	return single_hugepage_flag_show(kobj, attr, buf,
 228					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 229}
 230static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 231				       struct kobj_attribute *attr,
 232				       const char *buf, size_t count)
 233{
 234	return single_hugepage_flag_store(kobj, attr, buf, count,
 235				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 236}
 237static struct kobj_attribute khugepaged_defrag_attr =
 238	__ATTR(defrag, 0644, khugepaged_defrag_show,
 239	       khugepaged_defrag_store);
 240
 241/*
 242 * max_ptes_none controls if khugepaged should collapse hugepages over
 243 * any unmapped ptes in turn potentially increasing the memory
 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 245 * reduce the available free memory in the system as it
 246 * runs. Increasing max_ptes_none will instead potentially reduce the
 247 * free memory in the system during the khugepaged scan.
 248 */
 249static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 250					     struct kobj_attribute *attr,
 251					     char *buf)
 252{
 253	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
 254}
 255static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 256					      struct kobj_attribute *attr,
 257					      const char *buf, size_t count)
 258{
 259	int err;
 260	unsigned long max_ptes_none;
 261
 262	err = kstrtoul(buf, 10, &max_ptes_none);
 263	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 264		return -EINVAL;
 265
 266	khugepaged_max_ptes_none = max_ptes_none;
 267
 268	return count;
 269}
 270static struct kobj_attribute khugepaged_max_ptes_none_attr =
 271	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 272	       khugepaged_max_ptes_none_store);
 273
 274static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 275					     struct kobj_attribute *attr,
 276					     char *buf)
 277{
 278	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
 279}
 280
 281static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 282					      struct kobj_attribute *attr,
 283					      const char *buf, size_t count)
 284{
 285	int err;
 286	unsigned long max_ptes_swap;
 287
 288	err  = kstrtoul(buf, 10, &max_ptes_swap);
 289	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 290		return -EINVAL;
 291
 292	khugepaged_max_ptes_swap = max_ptes_swap;
 293
 294	return count;
 295}
 296
 297static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 298	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 299	       khugepaged_max_ptes_swap_store);
 300
 301static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
 302					       struct kobj_attribute *attr,
 303					       char *buf)
 304{
 305	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
 306}
 307
 308static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
 309					      struct kobj_attribute *attr,
 310					      const char *buf, size_t count)
 311{
 312	int err;
 313	unsigned long max_ptes_shared;
 314
 315	err  = kstrtoul(buf, 10, &max_ptes_shared);
 316	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
 317		return -EINVAL;
 318
 319	khugepaged_max_ptes_shared = max_ptes_shared;
 320
 321	return count;
 322}
 323
 324static struct kobj_attribute khugepaged_max_ptes_shared_attr =
 325	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
 326	       khugepaged_max_ptes_shared_store);
 327
 328static struct attribute *khugepaged_attr[] = {
 329	&khugepaged_defrag_attr.attr,
 330	&khugepaged_max_ptes_none_attr.attr,
 331	&khugepaged_max_ptes_swap_attr.attr,
 332	&khugepaged_max_ptes_shared_attr.attr,
 333	&pages_to_scan_attr.attr,
 334	&pages_collapsed_attr.attr,
 335	&full_scans_attr.attr,
 336	&scan_sleep_millisecs_attr.attr,
 337	&alloc_sleep_millisecs_attr.attr,
 338	NULL,
 339};
 340
 341struct attribute_group khugepaged_attr_group = {
 342	.attrs = khugepaged_attr,
 343	.name = "khugepaged",
 344};
 345#endif /* CONFIG_SYSFS */
 346
 347int hugepage_madvise(struct vm_area_struct *vma,
 348		     unsigned long *vm_flags, int advice)
 349{
 350	switch (advice) {
 351	case MADV_HUGEPAGE:
 352#ifdef CONFIG_S390
 353		/*
 354		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 355		 * can't handle this properly after s390_enable_sie, so we simply
 356		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 357		 */
 358		if (mm_has_pgste(vma->vm_mm))
 359			return 0;
 360#endif
 361		*vm_flags &= ~VM_NOHUGEPAGE;
 362		*vm_flags |= VM_HUGEPAGE;
 363		/*
 364		 * If the vma become good for khugepaged to scan,
 365		 * register it here without waiting a page fault that
 366		 * may not happen any time soon.
 367		 */
 368		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 369				khugepaged_enter_vma_merge(vma, *vm_flags))
 370			return -ENOMEM;
 371		break;
 372	case MADV_NOHUGEPAGE:
 373		*vm_flags &= ~VM_HUGEPAGE;
 374		*vm_flags |= VM_NOHUGEPAGE;
 375		/*
 376		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 377		 * this vma even if we leave the mm registered in khugepaged if
 378		 * it got registered before VM_NOHUGEPAGE was set.
 379		 */
 380		break;
 381	}
 382
 383	return 0;
 384}
 385
 386int __init khugepaged_init(void)
 387{
 388	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 389					  sizeof(struct mm_slot),
 390					  __alignof__(struct mm_slot), 0, NULL);
 391	if (!mm_slot_cache)
 392		return -ENOMEM;
 393
 394	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 395	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 396	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 397	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
 398
 399	return 0;
 400}
 401
 402void __init khugepaged_destroy(void)
 403{
 404	kmem_cache_destroy(mm_slot_cache);
 405}
 406
 407static inline struct mm_slot *alloc_mm_slot(void)
 408{
 409	if (!mm_slot_cache)	/* initialization failed */
 410		return NULL;
 411	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 412}
 413
 414static inline void free_mm_slot(struct mm_slot *mm_slot)
 415{
 416	kmem_cache_free(mm_slot_cache, mm_slot);
 417}
 418
 419static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 420{
 421	struct mm_slot *mm_slot;
 422
 423	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 424		if (mm == mm_slot->mm)
 425			return mm_slot;
 426
 427	return NULL;
 428}
 429
 430static void insert_to_mm_slots_hash(struct mm_struct *mm,
 431				    struct mm_slot *mm_slot)
 432{
 433	mm_slot->mm = mm;
 434	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 435}
 436
 437static inline int khugepaged_test_exit(struct mm_struct *mm)
 438{
 439	return atomic_read(&mm->mm_users) == 0;
 440}
 441
 442static bool hugepage_vma_check(struct vm_area_struct *vma,
 443			       unsigned long vm_flags)
 444{
 445	if (!transhuge_vma_enabled(vma, vm_flags))
 446		return false;
 447
 448	/* Enabled via shmem mount options or sysfs settings. */
 449	if (shmem_file(vma->vm_file) && shmem_huge_enabled(vma)) {
 450		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 451				HPAGE_PMD_NR);
 452	}
 453
 454	/* THP settings require madvise. */
 455	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
 456		return false;
 457
 458	/* Read-only file mappings need to be aligned for THP to work. */
 459	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
 460	    !inode_is_open_for_write(vma->vm_file->f_inode) &&
 461	    (vm_flags & VM_EXEC)) {
 462		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 463				HPAGE_PMD_NR);
 464	}
 465
 466	if (!vma->anon_vma || vma->vm_ops)
 467		return false;
 468	if (vma_is_temporary_stack(vma))
 469		return false;
 470	return !(vm_flags & VM_NO_KHUGEPAGED);
 471}
 472
 473int __khugepaged_enter(struct mm_struct *mm)
 474{
 475	struct mm_slot *mm_slot;
 476	int wakeup;
 477
 478	mm_slot = alloc_mm_slot();
 479	if (!mm_slot)
 480		return -ENOMEM;
 481
 482	/* __khugepaged_exit() must not run from under us */
 483	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 484	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 485		free_mm_slot(mm_slot);
 486		return 0;
 487	}
 488
 489	spin_lock(&khugepaged_mm_lock);
 490	insert_to_mm_slots_hash(mm, mm_slot);
 491	/*
 492	 * Insert just behind the scanning cursor, to let the area settle
 493	 * down a little.
 494	 */
 495	wakeup = list_empty(&khugepaged_scan.mm_head);
 496	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 497	spin_unlock(&khugepaged_mm_lock);
 498
 499	mmgrab(mm);
 500	if (wakeup)
 501		wake_up_interruptible(&khugepaged_wait);
 502
 503	return 0;
 504}
 505
 506int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 507			       unsigned long vm_flags)
 508{
 509	unsigned long hstart, hend;
 510
 511	/*
 512	 * khugepaged only supports read-only files for non-shmem files.
 513	 * khugepaged does not yet work on special mappings. And
 514	 * file-private shmem THP is not supported.
 515	 */
 516	if (!hugepage_vma_check(vma, vm_flags))
 517		return 0;
 518
 519	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 520	hend = vma->vm_end & HPAGE_PMD_MASK;
 521	if (hstart < hend)
 522		return khugepaged_enter(vma, vm_flags);
 523	return 0;
 524}
 525
 526void __khugepaged_exit(struct mm_struct *mm)
 527{
 528	struct mm_slot *mm_slot;
 529	int free = 0;
 530
 531	spin_lock(&khugepaged_mm_lock);
 532	mm_slot = get_mm_slot(mm);
 533	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 534		hash_del(&mm_slot->hash);
 535		list_del(&mm_slot->mm_node);
 536		free = 1;
 537	}
 538	spin_unlock(&khugepaged_mm_lock);
 539
 540	if (free) {
 541		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 542		free_mm_slot(mm_slot);
 543		mmdrop(mm);
 544	} else if (mm_slot) {
 545		/*
 546		 * This is required to serialize against
 547		 * khugepaged_test_exit() (which is guaranteed to run
 548		 * under mmap sem read mode). Stop here (after we
 549		 * return all pagetables will be destroyed) until
 550		 * khugepaged has finished working on the pagetables
 551		 * under the mmap_lock.
 552		 */
 553		mmap_write_lock(mm);
 554		mmap_write_unlock(mm);
 555	}
 556}
 557
 558static void release_pte_page(struct page *page)
 559{
 560	mod_node_page_state(page_pgdat(page),
 561			NR_ISOLATED_ANON + page_is_file_lru(page),
 562			-compound_nr(page));
 563	unlock_page(page);
 564	putback_lru_page(page);
 565}
 566
 567static void release_pte_pages(pte_t *pte, pte_t *_pte,
 568		struct list_head *compound_pagelist)
 569{
 570	struct page *page, *tmp;
 571
 572	while (--_pte >= pte) {
 573		pte_t pteval = *_pte;
 574
 575		page = pte_page(pteval);
 576		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
 577				!PageCompound(page))
 578			release_pte_page(page);
 579	}
 580
 581	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
 582		list_del(&page->lru);
 583		release_pte_page(page);
 584	}
 585}
 586
 587static bool is_refcount_suitable(struct page *page)
 588{
 589	int expected_refcount;
 590
 591	expected_refcount = total_mapcount(page);
 592	if (PageSwapCache(page))
 593		expected_refcount += compound_nr(page);
 594
 595	return page_count(page) == expected_refcount;
 596}
 597
 598static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 599					unsigned long address,
 600					pte_t *pte,
 601					struct list_head *compound_pagelist)
 602{
 603	struct page *page = NULL;
 604	pte_t *_pte;
 605	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
 606	bool writable = false;
 607
 608	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 609	     _pte++, address += PAGE_SIZE) {
 610		pte_t pteval = *_pte;
 611		if (pte_none(pteval) || (pte_present(pteval) &&
 612				is_zero_pfn(pte_pfn(pteval)))) {
 613			if (!userfaultfd_armed(vma) &&
 614			    ++none_or_zero <= khugepaged_max_ptes_none) {
 615				continue;
 616			} else {
 617				result = SCAN_EXCEED_NONE_PTE;
 618				goto out;
 619			}
 620		}
 621		if (!pte_present(pteval)) {
 622			result = SCAN_PTE_NON_PRESENT;
 623			goto out;
 624		}
 625		page = vm_normal_page(vma, address, pteval);
 626		if (unlikely(!page)) {
 627			result = SCAN_PAGE_NULL;
 628			goto out;
 629		}
 630
 631		VM_BUG_ON_PAGE(!PageAnon(page), page);
 632
 633		if (page_mapcount(page) > 1 &&
 634				++shared > khugepaged_max_ptes_shared) {
 635			result = SCAN_EXCEED_SHARED_PTE;
 636			goto out;
 637		}
 638
 639		if (PageCompound(page)) {
 640			struct page *p;
 641			page = compound_head(page);
 642
 643			/*
 644			 * Check if we have dealt with the compound page
 645			 * already
 646			 */
 647			list_for_each_entry(p, compound_pagelist, lru) {
 648				if (page == p)
 649					goto next;
 650			}
 651		}
 652
 653		/*
 654		 * We can do it before isolate_lru_page because the
 655		 * page can't be freed from under us. NOTE: PG_lock
 656		 * is needed to serialize against split_huge_page
 657		 * when invoked from the VM.
 658		 */
 659		if (!trylock_page(page)) {
 660			result = SCAN_PAGE_LOCK;
 661			goto out;
 662		}
 663
 664		/*
 665		 * Check if the page has any GUP (or other external) pins.
 666		 *
 667		 * The page table that maps the page has been already unlinked
 668		 * from the page table tree and this process cannot get
 669		 * an additional pin on the page.
 670		 *
 671		 * New pins can come later if the page is shared across fork,
 672		 * but not from this process. The other process cannot write to
 673		 * the page, only trigger CoW.
 674		 */
 675		if (!is_refcount_suitable(page)) {
 676			unlock_page(page);
 677			result = SCAN_PAGE_COUNT;
 678			goto out;
 679		}
 680		if (!pte_write(pteval) && PageSwapCache(page) &&
 681				!reuse_swap_page(page, NULL)) {
 682			/*
 683			 * Page is in the swap cache and cannot be re-used.
 684			 * It cannot be collapsed into a THP.
 685			 */
 686			unlock_page(page);
 687			result = SCAN_SWAP_CACHE_PAGE;
 688			goto out;
 689		}
 690
 691		/*
 692		 * Isolate the page to avoid collapsing an hugepage
 693		 * currently in use by the VM.
 694		 */
 695		if (isolate_lru_page(page)) {
 696			unlock_page(page);
 697			result = SCAN_DEL_PAGE_LRU;
 698			goto out;
 699		}
 700		mod_node_page_state(page_pgdat(page),
 701				NR_ISOLATED_ANON + page_is_file_lru(page),
 702				compound_nr(page));
 703		VM_BUG_ON_PAGE(!PageLocked(page), page);
 704		VM_BUG_ON_PAGE(PageLRU(page), page);
 705
 706		if (PageCompound(page))
 707			list_add_tail(&page->lru, compound_pagelist);
 708next:
 709		/* There should be enough young pte to collapse the page */
 710		if (pte_young(pteval) ||
 711		    page_is_young(page) || PageReferenced(page) ||
 712		    mmu_notifier_test_young(vma->vm_mm, address))
 713			referenced++;
 714
 715		if (pte_write(pteval))
 716			writable = true;
 717	}
 718
 719	if (unlikely(!writable)) {
 720		result = SCAN_PAGE_RO;
 721	} else if (unlikely(!referenced)) {
 722		result = SCAN_LACK_REFERENCED_PAGE;
 723	} else {
 724		result = SCAN_SUCCEED;
 725		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 726						    referenced, writable, result);
 727		return 1;
 728	}
 729out:
 730	release_pte_pages(pte, _pte, compound_pagelist);
 731	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 732					    referenced, writable, result);
 733	return 0;
 734}
 735
 736static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 737				      struct vm_area_struct *vma,
 738				      unsigned long address,
 739				      spinlock_t *ptl,
 740				      struct list_head *compound_pagelist)
 741{
 742	struct page *src_page, *tmp;
 743	pte_t *_pte;
 744	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 745				_pte++, page++, address += PAGE_SIZE) {
 746		pte_t pteval = *_pte;
 747
 748		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 749			clear_user_highpage(page, address);
 750			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 751			if (is_zero_pfn(pte_pfn(pteval))) {
 752				/*
 753				 * ptl mostly unnecessary.
 754				 */
 755				spin_lock(ptl);
 756				/*
 757				 * paravirt calls inside pte_clear here are
 758				 * superfluous.
 759				 */
 760				pte_clear(vma->vm_mm, address, _pte);
 761				spin_unlock(ptl);
 762			}
 763		} else {
 764			src_page = pte_page(pteval);
 765			copy_user_highpage(page, src_page, address, vma);
 766			if (!PageCompound(src_page))
 767				release_pte_page(src_page);
 768			/*
 769			 * ptl mostly unnecessary, but preempt has to
 770			 * be disabled to update the per-cpu stats
 771			 * inside page_remove_rmap().
 772			 */
 773			spin_lock(ptl);
 774			/*
 775			 * paravirt calls inside pte_clear here are
 776			 * superfluous.
 777			 */
 778			pte_clear(vma->vm_mm, address, _pte);
 779			page_remove_rmap(src_page, false);
 780			spin_unlock(ptl);
 781			free_page_and_swap_cache(src_page);
 782		}
 783	}
 784
 785	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
 786		list_del(&src_page->lru);
 787		release_pte_page(src_page);
 788	}
 789}
 790
 791static void khugepaged_alloc_sleep(void)
 792{
 793	DEFINE_WAIT(wait);
 794
 795	add_wait_queue(&khugepaged_wait, &wait);
 796	freezable_schedule_timeout_interruptible(
 797		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 798	remove_wait_queue(&khugepaged_wait, &wait);
 799}
 800
 801static int khugepaged_node_load[MAX_NUMNODES];
 802
 803static bool khugepaged_scan_abort(int nid)
 804{
 805	int i;
 806
 807	/*
 808	 * If node_reclaim_mode is disabled, then no extra effort is made to
 809	 * allocate memory locally.
 810	 */
 811	if (!node_reclaim_enabled())
 812		return false;
 813
 814	/* If there is a count for this node already, it must be acceptable */
 815	if (khugepaged_node_load[nid])
 816		return false;
 817
 818	for (i = 0; i < MAX_NUMNODES; i++) {
 819		if (!khugepaged_node_load[i])
 820			continue;
 821		if (node_distance(nid, i) > node_reclaim_distance)
 822			return true;
 823	}
 824	return false;
 825}
 826
 827/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 828static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 829{
 830	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 831}
 832
 833#ifdef CONFIG_NUMA
 834static int khugepaged_find_target_node(void)
 835{
 836	static int last_khugepaged_target_node = NUMA_NO_NODE;
 837	int nid, target_node = 0, max_value = 0;
 838
 839	/* find first node with max normal pages hit */
 840	for (nid = 0; nid < MAX_NUMNODES; nid++)
 841		if (khugepaged_node_load[nid] > max_value) {
 842			max_value = khugepaged_node_load[nid];
 843			target_node = nid;
 844		}
 845
 846	/* do some balance if several nodes have the same hit record */
 847	if (target_node <= last_khugepaged_target_node)
 848		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 849				nid++)
 850			if (max_value == khugepaged_node_load[nid]) {
 851				target_node = nid;
 852				break;
 853			}
 854
 855	last_khugepaged_target_node = target_node;
 856	return target_node;
 857}
 858
 859static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 860{
 861	if (IS_ERR(*hpage)) {
 862		if (!*wait)
 863			return false;
 864
 865		*wait = false;
 866		*hpage = NULL;
 867		khugepaged_alloc_sleep();
 868	} else if (*hpage) {
 869		put_page(*hpage);
 870		*hpage = NULL;
 871	}
 872
 873	return true;
 874}
 875
 876static struct page *
 877khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 878{
 879	VM_BUG_ON_PAGE(*hpage, *hpage);
 880
 881	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 882	if (unlikely(!*hpage)) {
 883		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 884		*hpage = ERR_PTR(-ENOMEM);
 885		return NULL;
 886	}
 887
 888	prep_transhuge_page(*hpage);
 889	count_vm_event(THP_COLLAPSE_ALLOC);
 890	return *hpage;
 891}
 892#else
 893static int khugepaged_find_target_node(void)
 894{
 895	return 0;
 896}
 897
 898static inline struct page *alloc_khugepaged_hugepage(void)
 899{
 900	struct page *page;
 901
 902	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 903			   HPAGE_PMD_ORDER);
 904	if (page)
 905		prep_transhuge_page(page);
 906	return page;
 907}
 908
 909static struct page *khugepaged_alloc_hugepage(bool *wait)
 910{
 911	struct page *hpage;
 912
 913	do {
 914		hpage = alloc_khugepaged_hugepage();
 915		if (!hpage) {
 916			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 917			if (!*wait)
 918				return NULL;
 919
 920			*wait = false;
 921			khugepaged_alloc_sleep();
 922		} else
 923			count_vm_event(THP_COLLAPSE_ALLOC);
 924	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
 925
 926	return hpage;
 927}
 928
 929static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 930{
 931	/*
 932	 * If the hpage allocated earlier was briefly exposed in page cache
 933	 * before collapse_file() failed, it is possible that racing lookups
 934	 * have not yet completed, and would then be unpleasantly surprised by
 935	 * finding the hpage reused for the same mapping at a different offset.
 936	 * Just release the previous allocation if there is any danger of that.
 937	 */
 938	if (*hpage && page_count(*hpage) > 1) {
 939		put_page(*hpage);
 940		*hpage = NULL;
 941	}
 942
 943	if (!*hpage)
 944		*hpage = khugepaged_alloc_hugepage(wait);
 945
 946	if (unlikely(!*hpage))
 947		return false;
 948
 949	return true;
 950}
 951
 952static struct page *
 953khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 954{
 955	VM_BUG_ON(!*hpage);
 956
 957	return  *hpage;
 958}
 959#endif
 960
 961/*
 962 * If mmap_lock temporarily dropped, revalidate vma
 963 * before taking mmap_lock.
 964 * Return 0 if succeeds, otherwise return none-zero
 965 * value (scan code).
 966 */
 967
 968static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 969		struct vm_area_struct **vmap)
 970{
 971	struct vm_area_struct *vma;
 972	unsigned long hstart, hend;
 973
 974	if (unlikely(khugepaged_test_exit(mm)))
 975		return SCAN_ANY_PROCESS;
 976
 977	*vmap = vma = find_vma(mm, address);
 978	if (!vma)
 979		return SCAN_VMA_NULL;
 980
 981	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 982	hend = vma->vm_end & HPAGE_PMD_MASK;
 983	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 984		return SCAN_ADDRESS_RANGE;
 985	if (!hugepage_vma_check(vma, vma->vm_flags))
 986		return SCAN_VMA_CHECK;
 987	/* Anon VMA expected */
 988	if (!vma->anon_vma || vma->vm_ops)
 989		return SCAN_VMA_CHECK;
 990	return 0;
 991}
 992
 993/*
 994 * Bring missing pages in from swap, to complete THP collapse.
 995 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 996 *
 997 * Called and returns without pte mapped or spinlocks held,
 998 * but with mmap_lock held to protect against vma changes.
 999 */
1000
1001static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1002					struct vm_area_struct *vma,
1003					unsigned long haddr, pmd_t *pmd,
1004					int referenced)
1005{
1006	int swapped_in = 0;
1007	vm_fault_t ret = 0;
1008	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1009
1010	for (address = haddr; address < end; address += PAGE_SIZE) {
1011		struct vm_fault vmf = {
1012			.vma = vma,
1013			.address = address,
1014			.pgoff = linear_page_index(vma, haddr),
1015			.flags = FAULT_FLAG_ALLOW_RETRY,
1016			.pmd = pmd,
1017		};
1018
1019		vmf.pte = pte_offset_map(pmd, address);
1020		vmf.orig_pte = *vmf.pte;
1021		if (!is_swap_pte(vmf.orig_pte)) {
1022			pte_unmap(vmf.pte);
1023			continue;
1024		}
1025		swapped_in++;
1026		ret = do_swap_page(&vmf);
1027
1028		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1029		if (ret & VM_FAULT_RETRY) {
1030			mmap_read_lock(mm);
1031			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1032				/* vma is no longer available, don't continue to swapin */
1033				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1034				return false;
1035			}
1036			/* check if the pmd is still valid */
1037			if (mm_find_pmd(mm, haddr) != pmd) {
1038				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1039				return false;
1040			}
1041		}
1042		if (ret & VM_FAULT_ERROR) {
1043			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1044			return false;
1045		}
1046	}
1047
1048	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1049	if (swapped_in)
1050		lru_add_drain();
1051
1052	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1053	return true;
1054}
1055
1056static void collapse_huge_page(struct mm_struct *mm,
1057				   unsigned long address,
1058				   struct page **hpage,
1059				   int node, int referenced, int unmapped)
1060{
1061	LIST_HEAD(compound_pagelist);
1062	pmd_t *pmd, _pmd;
1063	pte_t *pte;
1064	pgtable_t pgtable;
1065	struct page *new_page;
1066	spinlock_t *pmd_ptl, *pte_ptl;
1067	int isolated = 0, result = 0;
1068	struct vm_area_struct *vma;
1069	struct mmu_notifier_range range;
1070	gfp_t gfp;
1071
1072	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1073
1074	/* Only allocate from the target node */
1075	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1076
1077	/*
1078	 * Before allocating the hugepage, release the mmap_lock read lock.
1079	 * The allocation can take potentially a long time if it involves
1080	 * sync compaction, and we do not need to hold the mmap_lock during
1081	 * that. We will recheck the vma after taking it again in write mode.
1082	 */
1083	mmap_read_unlock(mm);
1084	new_page = khugepaged_alloc_page(hpage, gfp, node);
1085	if (!new_page) {
1086		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1087		goto out_nolock;
1088	}
1089
1090	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1091		result = SCAN_CGROUP_CHARGE_FAIL;
1092		goto out_nolock;
1093	}
1094	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1095
1096	mmap_read_lock(mm);
1097	result = hugepage_vma_revalidate(mm, address, &vma);
1098	if (result) {
1099		mmap_read_unlock(mm);
1100		goto out_nolock;
1101	}
1102
1103	pmd = mm_find_pmd(mm, address);
1104	if (!pmd) {
1105		result = SCAN_PMD_NULL;
1106		mmap_read_unlock(mm);
1107		goto out_nolock;
1108	}
1109
1110	/*
1111	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1112	 * If it fails, we release mmap_lock and jump out_nolock.
1113	 * Continuing to collapse causes inconsistency.
1114	 */
1115	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1116						     pmd, referenced)) {
1117		mmap_read_unlock(mm);
1118		goto out_nolock;
1119	}
1120
1121	mmap_read_unlock(mm);
1122	/*
1123	 * Prevent all access to pagetables with the exception of
1124	 * gup_fast later handled by the ptep_clear_flush and the VM
1125	 * handled by the anon_vma lock + PG_lock.
1126	 */
1127	mmap_write_lock(mm);
1128	result = hugepage_vma_revalidate(mm, address, &vma);
1129	if (result)
1130		goto out_up_write;
1131	/* check if the pmd is still valid */
1132	if (mm_find_pmd(mm, address) != pmd)
1133		goto out_up_write;
1134
1135	anon_vma_lock_write(vma->anon_vma);
1136
1137	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1138				address, address + HPAGE_PMD_SIZE);
1139	mmu_notifier_invalidate_range_start(&range);
1140
1141	pte = pte_offset_map(pmd, address);
1142	pte_ptl = pte_lockptr(mm, pmd);
1143
1144	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1145	/*
1146	 * After this gup_fast can't run anymore. This also removes
1147	 * any huge TLB entry from the CPU so we won't allow
1148	 * huge and small TLB entries for the same virtual address
1149	 * to avoid the risk of CPU bugs in that area.
1150	 */
1151	_pmd = pmdp_collapse_flush(vma, address, pmd);
1152	spin_unlock(pmd_ptl);
1153	mmu_notifier_invalidate_range_end(&range);
1154
1155	spin_lock(pte_ptl);
1156	isolated = __collapse_huge_page_isolate(vma, address, pte,
1157			&compound_pagelist);
1158	spin_unlock(pte_ptl);
1159
1160	if (unlikely(!isolated)) {
1161		pte_unmap(pte);
1162		spin_lock(pmd_ptl);
1163		BUG_ON(!pmd_none(*pmd));
1164		/*
1165		 * We can only use set_pmd_at when establishing
1166		 * hugepmds and never for establishing regular pmds that
1167		 * points to regular pagetables. Use pmd_populate for that
1168		 */
1169		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1170		spin_unlock(pmd_ptl);
1171		anon_vma_unlock_write(vma->anon_vma);
1172		result = SCAN_FAIL;
1173		goto out_up_write;
1174	}
1175
1176	/*
1177	 * All pages are isolated and locked so anon_vma rmap
1178	 * can't run anymore.
1179	 */
1180	anon_vma_unlock_write(vma->anon_vma);
1181
1182	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1183			&compound_pagelist);
1184	pte_unmap(pte);
1185	/*
1186	 * spin_lock() below is not the equivalent of smp_wmb(), but
1187	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1188	 * avoid the copy_huge_page writes to become visible after
1189	 * the set_pmd_at() write.
1190	 */
1191	__SetPageUptodate(new_page);
1192	pgtable = pmd_pgtable(_pmd);
1193
1194	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1195	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1196
1197	spin_lock(pmd_ptl);
1198	BUG_ON(!pmd_none(*pmd));
1199	page_add_new_anon_rmap(new_page, vma, address, true);
1200	lru_cache_add_inactive_or_unevictable(new_page, vma);
1201	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1202	set_pmd_at(mm, address, pmd, _pmd);
1203	update_mmu_cache_pmd(vma, address, pmd);
1204	spin_unlock(pmd_ptl);
1205
1206	*hpage = NULL;
1207
1208	khugepaged_pages_collapsed++;
1209	result = SCAN_SUCCEED;
1210out_up_write:
1211	mmap_write_unlock(mm);
1212out_nolock:
1213	if (!IS_ERR_OR_NULL(*hpage))
1214		mem_cgroup_uncharge(*hpage);
1215	trace_mm_collapse_huge_page(mm, isolated, result);
1216	return;
1217}
1218
1219static int khugepaged_scan_pmd(struct mm_struct *mm,
1220			       struct vm_area_struct *vma,
1221			       unsigned long address,
1222			       struct page **hpage)
1223{
1224	pmd_t *pmd;
1225	pte_t *pte, *_pte;
1226	int ret = 0, result = 0, referenced = 0;
1227	int none_or_zero = 0, shared = 0;
1228	struct page *page = NULL;
1229	unsigned long _address;
1230	spinlock_t *ptl;
1231	int node = NUMA_NO_NODE, unmapped = 0;
1232	bool writable = false;
1233
1234	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1235
1236	pmd = mm_find_pmd(mm, address);
1237	if (!pmd) {
1238		result = SCAN_PMD_NULL;
1239		goto out;
1240	}
1241
1242	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1243	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1244	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1245	     _pte++, _address += PAGE_SIZE) {
1246		pte_t pteval = *_pte;
1247		if (is_swap_pte(pteval)) {
1248			if (++unmapped <= khugepaged_max_ptes_swap) {
1249				/*
1250				 * Always be strict with uffd-wp
1251				 * enabled swap entries.  Please see
1252				 * comment below for pte_uffd_wp().
1253				 */
1254				if (pte_swp_uffd_wp(pteval)) {
1255					result = SCAN_PTE_UFFD_WP;
1256					goto out_unmap;
1257				}
1258				continue;
1259			} else {
1260				result = SCAN_EXCEED_SWAP_PTE;
1261				goto out_unmap;
1262			}
1263		}
1264		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1265			if (!userfaultfd_armed(vma) &&
1266			    ++none_or_zero <= khugepaged_max_ptes_none) {
1267				continue;
1268			} else {
1269				result = SCAN_EXCEED_NONE_PTE;
1270				goto out_unmap;
1271			}
1272		}
1273		if (pte_uffd_wp(pteval)) {
1274			/*
1275			 * Don't collapse the page if any of the small
1276			 * PTEs are armed with uffd write protection.
1277			 * Here we can also mark the new huge pmd as
1278			 * write protected if any of the small ones is
1279			 * marked but that could bring unknown
1280			 * userfault messages that falls outside of
1281			 * the registered range.  So, just be simple.
1282			 */
1283			result = SCAN_PTE_UFFD_WP;
1284			goto out_unmap;
1285		}
1286		if (pte_write(pteval))
1287			writable = true;
1288
1289		page = vm_normal_page(vma, _address, pteval);
1290		if (unlikely(!page)) {
1291			result = SCAN_PAGE_NULL;
1292			goto out_unmap;
1293		}
1294
1295		if (page_mapcount(page) > 1 &&
1296				++shared > khugepaged_max_ptes_shared) {
1297			result = SCAN_EXCEED_SHARED_PTE;
1298			goto out_unmap;
1299		}
1300
1301		page = compound_head(page);
1302
1303		/*
1304		 * Record which node the original page is from and save this
1305		 * information to khugepaged_node_load[].
1306		 * Khupaged will allocate hugepage from the node has the max
1307		 * hit record.
1308		 */
1309		node = page_to_nid(page);
1310		if (khugepaged_scan_abort(node)) {
1311			result = SCAN_SCAN_ABORT;
1312			goto out_unmap;
1313		}
1314		khugepaged_node_load[node]++;
1315		if (!PageLRU(page)) {
1316			result = SCAN_PAGE_LRU;
1317			goto out_unmap;
1318		}
1319		if (PageLocked(page)) {
1320			result = SCAN_PAGE_LOCK;
1321			goto out_unmap;
1322		}
1323		if (!PageAnon(page)) {
1324			result = SCAN_PAGE_ANON;
1325			goto out_unmap;
1326		}
1327
1328		/*
1329		 * Check if the page has any GUP (or other external) pins.
1330		 *
1331		 * Here the check is racy it may see totmal_mapcount > refcount
1332		 * in some cases.
1333		 * For example, one process with one forked child process.
1334		 * The parent has the PMD split due to MADV_DONTNEED, then
1335		 * the child is trying unmap the whole PMD, but khugepaged
1336		 * may be scanning the parent between the child has
1337		 * PageDoubleMap flag cleared and dec the mapcount.  So
1338		 * khugepaged may see total_mapcount > refcount.
1339		 *
1340		 * But such case is ephemeral we could always retry collapse
1341		 * later.  However it may report false positive if the page
1342		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1343		 * will be done again later the risk seems low.
1344		 */
1345		if (!is_refcount_suitable(page)) {
1346			result = SCAN_PAGE_COUNT;
1347			goto out_unmap;
1348		}
1349		if (pte_young(pteval) ||
1350		    page_is_young(page) || PageReferenced(page) ||
1351		    mmu_notifier_test_young(vma->vm_mm, address))
1352			referenced++;
1353	}
1354	if (!writable) {
1355		result = SCAN_PAGE_RO;
1356	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1357		result = SCAN_LACK_REFERENCED_PAGE;
1358	} else {
1359		result = SCAN_SUCCEED;
1360		ret = 1;
1361	}
1362out_unmap:
1363	pte_unmap_unlock(pte, ptl);
1364	if (ret) {
1365		node = khugepaged_find_target_node();
1366		/* collapse_huge_page will return with the mmap_lock released */
1367		collapse_huge_page(mm, address, hpage, node,
1368				referenced, unmapped);
1369	}
1370out:
1371	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1372				     none_or_zero, result, unmapped);
1373	return ret;
1374}
1375
1376static void collect_mm_slot(struct mm_slot *mm_slot)
1377{
1378	struct mm_struct *mm = mm_slot->mm;
1379
1380	lockdep_assert_held(&khugepaged_mm_lock);
1381
1382	if (khugepaged_test_exit(mm)) {
1383		/* free mm_slot */
1384		hash_del(&mm_slot->hash);
1385		list_del(&mm_slot->mm_node);
1386
1387		/*
1388		 * Not strictly needed because the mm exited already.
1389		 *
1390		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1391		 */
1392
1393		/* khugepaged_mm_lock actually not necessary for the below */
1394		free_mm_slot(mm_slot);
1395		mmdrop(mm);
1396	}
1397}
1398
1399#ifdef CONFIG_SHMEM
1400/*
1401 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1402 * khugepaged should try to collapse the page table.
1403 */
1404static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1405					 unsigned long addr)
1406{
1407	struct mm_slot *mm_slot;
1408
1409	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1410
1411	spin_lock(&khugepaged_mm_lock);
1412	mm_slot = get_mm_slot(mm);
1413	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1414		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1415	spin_unlock(&khugepaged_mm_lock);
1416	return 0;
1417}
1418
1419/**
1420 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1421 * address haddr.
1422 *
1423 * @mm: process address space where collapse happens
1424 * @addr: THP collapse address
1425 *
1426 * This function checks whether all the PTEs in the PMD are pointing to the
1427 * right THP. If so, retract the page table so the THP can refault in with
1428 * as pmd-mapped.
1429 */
1430void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1431{
1432	unsigned long haddr = addr & HPAGE_PMD_MASK;
1433	struct vm_area_struct *vma = find_vma(mm, haddr);
1434	struct page *hpage;
1435	pte_t *start_pte, *pte;
1436	pmd_t *pmd, _pmd;
1437	spinlock_t *ptl;
1438	int count = 0;
1439	int i;
1440
1441	if (!vma || !vma->vm_file ||
1442	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1443		return;
1444
1445	/*
1446	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1447	 * collapsed by this mm. But we can still collapse if the page is
1448	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1449	 * will not fail the vma for missing VM_HUGEPAGE
1450	 */
1451	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1452		return;
1453
1454	hpage = find_lock_page(vma->vm_file->f_mapping,
1455			       linear_page_index(vma, haddr));
1456	if (!hpage)
1457		return;
1458
1459	if (!PageHead(hpage))
1460		goto drop_hpage;
1461
1462	pmd = mm_find_pmd(mm, haddr);
1463	if (!pmd)
1464		goto drop_hpage;
1465
1466	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1467
1468	/* step 1: check all mapped PTEs are to the right huge page */
1469	for (i = 0, addr = haddr, pte = start_pte;
1470	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1471		struct page *page;
1472
1473		/* empty pte, skip */
1474		if (pte_none(*pte))
1475			continue;
1476
1477		/* page swapped out, abort */
1478		if (!pte_present(*pte))
1479			goto abort;
1480
1481		page = vm_normal_page(vma, addr, *pte);
1482
1483		/*
1484		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1485		 * page table, but the new page will not be a subpage of hpage.
1486		 */
1487		if (hpage + i != page)
1488			goto abort;
1489		count++;
1490	}
1491
1492	/* step 2: adjust rmap */
1493	for (i = 0, addr = haddr, pte = start_pte;
1494	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1495		struct page *page;
1496
1497		if (pte_none(*pte))
1498			continue;
1499		page = vm_normal_page(vma, addr, *pte);
1500		page_remove_rmap(page, false);
1501	}
1502
1503	pte_unmap_unlock(start_pte, ptl);
1504
1505	/* step 3: set proper refcount and mm_counters. */
1506	if (count) {
1507		page_ref_sub(hpage, count);
1508		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1509	}
1510
1511	/* step 4: collapse pmd */
1512	ptl = pmd_lock(vma->vm_mm, pmd);
1513	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1514	spin_unlock(ptl);
1515	mm_dec_nr_ptes(mm);
1516	pte_free(mm, pmd_pgtable(_pmd));
1517
1518drop_hpage:
1519	unlock_page(hpage);
1520	put_page(hpage);
1521	return;
1522
1523abort:
1524	pte_unmap_unlock(start_pte, ptl);
1525	goto drop_hpage;
1526}
1527
1528static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1529{
1530	struct mm_struct *mm = mm_slot->mm;
1531	int i;
1532
1533	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1534		return;
1535
1536	if (!mmap_write_trylock(mm))
1537		return;
1538
1539	if (unlikely(khugepaged_test_exit(mm)))
1540		goto out;
1541
1542	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1543		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1544
1545out:
1546	mm_slot->nr_pte_mapped_thp = 0;
1547	mmap_write_unlock(mm);
1548}
1549
1550static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1551{
1552	struct vm_area_struct *vma;
1553	struct mm_struct *mm;
1554	unsigned long addr;
1555	pmd_t *pmd, _pmd;
1556
1557	i_mmap_lock_write(mapping);
1558	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1559		/*
1560		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561		 * got written to. These VMAs are likely not worth investing
1562		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563		 * later.
1564		 *
1565		 * Not that vma->anon_vma check is racy: it can be set up after
1566		 * the check but before we took mmap_lock by the fault path.
1567		 * But page lock would prevent establishing any new ptes of the
1568		 * page, so we are safe.
1569		 *
1570		 * An alternative would be drop the check, but check that page
1571		 * table is clear before calling pmdp_collapse_flush() under
1572		 * ptl. It has higher chance to recover THP for the VMA, but
1573		 * has higher cost too.
1574		 */
1575		if (vma->anon_vma)
1576			continue;
1577		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578		if (addr & ~HPAGE_PMD_MASK)
1579			continue;
1580		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581			continue;
1582		mm = vma->vm_mm;
1583		pmd = mm_find_pmd(mm, addr);
1584		if (!pmd)
1585			continue;
1586		/*
1587		 * We need exclusive mmap_lock to retract page table.
1588		 *
1589		 * We use trylock due to lock inversion: we need to acquire
1590		 * mmap_lock while holding page lock. Fault path does it in
1591		 * reverse order. Trylock is a way to avoid deadlock.
1592		 */
1593		if (mmap_write_trylock(mm)) {
1594			if (!khugepaged_test_exit(mm)) {
1595				spinlock_t *ptl = pmd_lock(mm, pmd);
1596				/* assume page table is clear */
1597				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1598				spin_unlock(ptl);
1599				mm_dec_nr_ptes(mm);
1600				pte_free(mm, pmd_pgtable(_pmd));
1601			}
1602			mmap_write_unlock(mm);
1603		} else {
1604			/* Try again later */
1605			khugepaged_add_pte_mapped_thp(mm, addr);
1606		}
1607	}
1608	i_mmap_unlock_write(mapping);
1609}
1610
1611/**
1612 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1613 *
1614 * @mm: process address space where collapse happens
1615 * @file: file that collapse on
1616 * @start: collapse start address
1617 * @hpage: new allocated huge page for collapse
1618 * @node: appointed node the new huge page allocate from
1619 *
1620 * Basic scheme is simple, details are more complex:
1621 *  - allocate and lock a new huge page;
1622 *  - scan page cache replacing old pages with the new one
1623 *    + swap/gup in pages if necessary;
1624 *    + fill in gaps;
1625 *    + keep old pages around in case rollback is required;
1626 *  - if replacing succeeds:
1627 *    + copy data over;
1628 *    + free old pages;
1629 *    + unlock huge page;
1630 *  - if replacing failed;
1631 *    + put all pages back and unfreeze them;
1632 *    + restore gaps in the page cache;
1633 *    + unlock and free huge page;
1634 */
1635static void collapse_file(struct mm_struct *mm,
1636		struct file *file, pgoff_t start,
1637		struct page **hpage, int node)
1638{
1639	struct address_space *mapping = file->f_mapping;
1640	gfp_t gfp;
1641	struct page *new_page;
1642	pgoff_t index, end = start + HPAGE_PMD_NR;
1643	LIST_HEAD(pagelist);
1644	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645	int nr_none = 0, result = SCAN_SUCCEED;
1646	bool is_shmem = shmem_file(file);
1647	int nr;
1648
1649	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1650	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1651
1652	/* Only allocate from the target node */
1653	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1654
1655	new_page = khugepaged_alloc_page(hpage, gfp, node);
1656	if (!new_page) {
1657		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1658		goto out;
1659	}
1660
1661	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1662		result = SCAN_CGROUP_CHARGE_FAIL;
1663		goto out;
1664	}
1665	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1666
1667	/* This will be less messy when we use multi-index entries */
1668	do {
1669		xas_lock_irq(&xas);
1670		xas_create_range(&xas);
1671		if (!xas_error(&xas))
1672			break;
1673		xas_unlock_irq(&xas);
1674		if (!xas_nomem(&xas, GFP_KERNEL)) {
1675			result = SCAN_FAIL;
1676			goto out;
1677		}
1678	} while (1);
1679
1680	__SetPageLocked(new_page);
1681	if (is_shmem)
1682		__SetPageSwapBacked(new_page);
1683	new_page->index = start;
1684	new_page->mapping = mapping;
1685
1686	/*
1687	 * At this point the new_page is locked and not up-to-date.
1688	 * It's safe to insert it into the page cache, because nobody would
1689	 * be able to map it or use it in another way until we unlock it.
1690	 */
1691
1692	xas_set(&xas, start);
1693	for (index = start; index < end; index++) {
1694		struct page *page = xas_next(&xas);
1695
1696		VM_BUG_ON(index != xas.xa_index);
1697		if (is_shmem) {
1698			if (!page) {
1699				/*
1700				 * Stop if extent has been truncated or
1701				 * hole-punched, and is now completely
1702				 * empty.
1703				 */
1704				if (index == start) {
1705					if (!xas_next_entry(&xas, end - 1)) {
1706						result = SCAN_TRUNCATED;
1707						goto xa_locked;
1708					}
1709					xas_set(&xas, index);
1710				}
1711				if (!shmem_charge(mapping->host, 1)) {
1712					result = SCAN_FAIL;
1713					goto xa_locked;
1714				}
1715				xas_store(&xas, new_page);
1716				nr_none++;
1717				continue;
1718			}
1719
1720			if (xa_is_value(page) || !PageUptodate(page)) {
1721				xas_unlock_irq(&xas);
1722				/* swap in or instantiate fallocated page */
1723				if (shmem_getpage(mapping->host, index, &page,
1724						  SGP_NOHUGE)) {
1725					result = SCAN_FAIL;
1726					goto xa_unlocked;
1727				}
1728			} else if (trylock_page(page)) {
1729				get_page(page);
1730				xas_unlock_irq(&xas);
1731			} else {
1732				result = SCAN_PAGE_LOCK;
1733				goto xa_locked;
1734			}
1735		} else {	/* !is_shmem */
1736			if (!page || xa_is_value(page)) {
1737				xas_unlock_irq(&xas);
1738				page_cache_sync_readahead(mapping, &file->f_ra,
1739							  file, index,
1740							  end - index);
1741				/* drain pagevecs to help isolate_lru_page() */
1742				lru_add_drain();
1743				page = find_lock_page(mapping, index);
1744				if (unlikely(page == NULL)) {
1745					result = SCAN_FAIL;
1746					goto xa_unlocked;
1747				}
1748			} else if (PageDirty(page)) {
1749				/*
1750				 * khugepaged only works on read-only fd,
1751				 * so this page is dirty because it hasn't
1752				 * been flushed since first write. There
1753				 * won't be new dirty pages.
1754				 *
1755				 * Trigger async flush here and hope the
1756				 * writeback is done when khugepaged
1757				 * revisits this page.
1758				 *
1759				 * This is a one-off situation. We are not
1760				 * forcing writeback in loop.
1761				 */
1762				xas_unlock_irq(&xas);
1763				filemap_flush(mapping);
1764				result = SCAN_FAIL;
1765				goto xa_unlocked;
1766			} else if (trylock_page(page)) {
1767				get_page(page);
1768				xas_unlock_irq(&xas);
1769			} else {
1770				result = SCAN_PAGE_LOCK;
1771				goto xa_locked;
1772			}
1773		}
1774
1775		/*
1776		 * The page must be locked, so we can drop the i_pages lock
1777		 * without racing with truncate.
1778		 */
1779		VM_BUG_ON_PAGE(!PageLocked(page), page);
1780
1781		/* make sure the page is up to date */
1782		if (unlikely(!PageUptodate(page))) {
1783			result = SCAN_FAIL;
1784			goto out_unlock;
1785		}
1786
1787		/*
1788		 * If file was truncated then extended, or hole-punched, before
1789		 * we locked the first page, then a THP might be there already.
1790		 */
1791		if (PageTransCompound(page)) {
1792			result = SCAN_PAGE_COMPOUND;
1793			goto out_unlock;
1794		}
1795
1796		if (page_mapping(page) != mapping) {
1797			result = SCAN_TRUNCATED;
1798			goto out_unlock;
1799		}
1800
1801		if (!is_shmem && PageDirty(page)) {
1802			/*
1803			 * khugepaged only works on read-only fd, so this
1804			 * page is dirty because it hasn't been flushed
1805			 * since first write.
1806			 */
1807			result = SCAN_FAIL;
1808			goto out_unlock;
1809		}
1810
1811		if (isolate_lru_page(page)) {
1812			result = SCAN_DEL_PAGE_LRU;
1813			goto out_unlock;
1814		}
1815
1816		if (page_has_private(page) &&
1817		    !try_to_release_page(page, GFP_KERNEL)) {
1818			result = SCAN_PAGE_HAS_PRIVATE;
1819			putback_lru_page(page);
1820			goto out_unlock;
1821		}
1822
1823		if (page_mapped(page))
1824			unmap_mapping_pages(mapping, index, 1, false);
1825
1826		xas_lock_irq(&xas);
1827		xas_set(&xas, index);
1828
1829		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1830		VM_BUG_ON_PAGE(page_mapped(page), page);
1831
1832		/*
1833		 * The page is expected to have page_count() == 3:
1834		 *  - we hold a pin on it;
1835		 *  - one reference from page cache;
1836		 *  - one from isolate_lru_page;
1837		 */
1838		if (!page_ref_freeze(page, 3)) {
1839			result = SCAN_PAGE_COUNT;
1840			xas_unlock_irq(&xas);
1841			putback_lru_page(page);
1842			goto out_unlock;
1843		}
1844
1845		/*
1846		 * Add the page to the list to be able to undo the collapse if
1847		 * something go wrong.
1848		 */
1849		list_add_tail(&page->lru, &pagelist);
1850
1851		/* Finally, replace with the new page. */
1852		xas_store(&xas, new_page);
1853		continue;
1854out_unlock:
1855		unlock_page(page);
1856		put_page(page);
1857		goto xa_unlocked;
1858	}
1859	nr = thp_nr_pages(new_page);
1860
1861	if (is_shmem)
1862		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1863	else {
1864		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1865		filemap_nr_thps_inc(mapping);
1866		/*
1867		 * Paired with smp_mb() in do_dentry_open() to ensure
1868		 * i_writecount is up to date and the update to nr_thps is
1869		 * visible. Ensures the page cache will be truncated if the
1870		 * file is opened writable.
1871		 */
1872		smp_mb();
1873		if (inode_is_open_for_write(mapping->host)) {
1874			result = SCAN_FAIL;
1875			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1876			filemap_nr_thps_dec(mapping);
1877			goto xa_locked;
1878		}
1879	}
1880
1881	if (nr_none) {
1882		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1883		if (is_shmem)
1884			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1885	}
1886
1887xa_locked:
1888	xas_unlock_irq(&xas);
1889xa_unlocked:
1890
1891	if (result == SCAN_SUCCEED) {
1892		struct page *page, *tmp;
1893
1894		/*
1895		 * Replacing old pages with new one has succeeded, now we
1896		 * need to copy the content and free the old pages.
1897		 */
1898		index = start;
1899		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1900			while (index < page->index) {
1901				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1902				index++;
1903			}
1904			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1905					page);
1906			list_del(&page->lru);
1907			page->mapping = NULL;
1908			page_ref_unfreeze(page, 1);
1909			ClearPageActive(page);
1910			ClearPageUnevictable(page);
1911			unlock_page(page);
1912			put_page(page);
1913			index++;
1914		}
1915		while (index < end) {
1916			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1917			index++;
1918		}
1919
1920		SetPageUptodate(new_page);
1921		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1922		if (is_shmem)
1923			set_page_dirty(new_page);
1924		lru_cache_add(new_page);
1925
1926		/*
1927		 * Remove pte page tables, so we can re-fault the page as huge.
1928		 */
1929		retract_page_tables(mapping, start);
1930		*hpage = NULL;
1931
1932		khugepaged_pages_collapsed++;
1933	} else {
1934		struct page *page;
1935
1936		/* Something went wrong: roll back page cache changes */
1937		xas_lock_irq(&xas);
1938		mapping->nrpages -= nr_none;
1939
1940		if (is_shmem)
1941			shmem_uncharge(mapping->host, nr_none);
1942
1943		xas_set(&xas, start);
1944		xas_for_each(&xas, page, end - 1) {
1945			page = list_first_entry_or_null(&pagelist,
1946					struct page, lru);
1947			if (!page || xas.xa_index < page->index) {
1948				if (!nr_none)
1949					break;
1950				nr_none--;
1951				/* Put holes back where they were */
1952				xas_store(&xas, NULL);
1953				continue;
1954			}
1955
1956			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1957
1958			/* Unfreeze the page. */
1959			list_del(&page->lru);
1960			page_ref_unfreeze(page, 2);
1961			xas_store(&xas, page);
1962			xas_pause(&xas);
1963			xas_unlock_irq(&xas);
1964			unlock_page(page);
1965			putback_lru_page(page);
1966			xas_lock_irq(&xas);
1967		}
1968		VM_BUG_ON(nr_none);
1969		xas_unlock_irq(&xas);
1970
1971		new_page->mapping = NULL;
1972	}
1973
1974	unlock_page(new_page);
1975out:
1976	VM_BUG_ON(!list_empty(&pagelist));
1977	if (!IS_ERR_OR_NULL(*hpage))
1978		mem_cgroup_uncharge(*hpage);
1979	/* TODO: tracepoints */
1980}
1981
1982static void khugepaged_scan_file(struct mm_struct *mm,
1983		struct file *file, pgoff_t start, struct page **hpage)
1984{
1985	struct page *page = NULL;
1986	struct address_space *mapping = file->f_mapping;
1987	XA_STATE(xas, &mapping->i_pages, start);
1988	int present, swap;
1989	int node = NUMA_NO_NODE;
1990	int result = SCAN_SUCCEED;
1991
1992	present = 0;
1993	swap = 0;
1994	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1995	rcu_read_lock();
1996	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1997		if (xas_retry(&xas, page))
1998			continue;
1999
2000		if (xa_is_value(page)) {
2001			if (++swap > khugepaged_max_ptes_swap) {
2002				result = SCAN_EXCEED_SWAP_PTE;
2003				break;
2004			}
2005			continue;
2006		}
2007
2008		if (PageTransCompound(page)) {
2009			result = SCAN_PAGE_COMPOUND;
2010			break;
2011		}
2012
2013		node = page_to_nid(page);
2014		if (khugepaged_scan_abort(node)) {
2015			result = SCAN_SCAN_ABORT;
2016			break;
2017		}
2018		khugepaged_node_load[node]++;
2019
2020		if (!PageLRU(page)) {
2021			result = SCAN_PAGE_LRU;
2022			break;
2023		}
2024
2025		if (page_count(page) !=
2026		    1 + page_mapcount(page) + page_has_private(page)) {
2027			result = SCAN_PAGE_COUNT;
2028			break;
2029		}
2030
2031		/*
2032		 * We probably should check if the page is referenced here, but
2033		 * nobody would transfer pte_young() to PageReferenced() for us.
2034		 * And rmap walk here is just too costly...
2035		 */
2036
2037		present++;
2038
2039		if (need_resched()) {
2040			xas_pause(&xas);
2041			cond_resched_rcu();
2042		}
2043	}
2044	rcu_read_unlock();
2045
2046	if (result == SCAN_SUCCEED) {
2047		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2048			result = SCAN_EXCEED_NONE_PTE;
2049		} else {
2050			node = khugepaged_find_target_node();
2051			collapse_file(mm, file, start, hpage, node);
2052		}
2053	}
2054
2055	/* TODO: tracepoints */
2056}
2057#else
2058static void khugepaged_scan_file(struct mm_struct *mm,
2059		struct file *file, pgoff_t start, struct page **hpage)
2060{
2061	BUILD_BUG();
2062}
2063
2064static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2065{
2066}
2067#endif
2068
2069static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2070					    struct page **hpage)
2071	__releases(&khugepaged_mm_lock)
2072	__acquires(&khugepaged_mm_lock)
2073{
2074	struct mm_slot *mm_slot;
2075	struct mm_struct *mm;
2076	struct vm_area_struct *vma;
2077	int progress = 0;
2078
2079	VM_BUG_ON(!pages);
2080	lockdep_assert_held(&khugepaged_mm_lock);
2081
2082	if (khugepaged_scan.mm_slot)
2083		mm_slot = khugepaged_scan.mm_slot;
2084	else {
2085		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2086				     struct mm_slot, mm_node);
2087		khugepaged_scan.address = 0;
2088		khugepaged_scan.mm_slot = mm_slot;
2089	}
2090	spin_unlock(&khugepaged_mm_lock);
2091	khugepaged_collapse_pte_mapped_thps(mm_slot);
2092
2093	mm = mm_slot->mm;
2094	/*
2095	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2096	 * the next mm on the list.
2097	 */
2098	vma = NULL;
2099	if (unlikely(!mmap_read_trylock(mm)))
2100		goto breakouterloop_mmap_lock;
2101	if (likely(!khugepaged_test_exit(mm)))
2102		vma = find_vma(mm, khugepaged_scan.address);
2103
2104	progress++;
2105	for (; vma; vma = vma->vm_next) {
2106		unsigned long hstart, hend;
2107
2108		cond_resched();
2109		if (unlikely(khugepaged_test_exit(mm))) {
2110			progress++;
2111			break;
2112		}
2113		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2114skip:
2115			progress++;
2116			continue;
2117		}
2118		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2119		hend = vma->vm_end & HPAGE_PMD_MASK;
2120		if (hstart >= hend)
2121			goto skip;
2122		if (khugepaged_scan.address > hend)
2123			goto skip;
2124		if (khugepaged_scan.address < hstart)
2125			khugepaged_scan.address = hstart;
2126		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2127		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2128			goto skip;
2129
2130		while (khugepaged_scan.address < hend) {
2131			int ret;
2132			cond_resched();
2133			if (unlikely(khugepaged_test_exit(mm)))
2134				goto breakouterloop;
2135
2136			VM_BUG_ON(khugepaged_scan.address < hstart ||
2137				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2138				  hend);
2139			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2140				struct file *file = get_file(vma->vm_file);
2141				pgoff_t pgoff = linear_page_index(vma,
2142						khugepaged_scan.address);
2143
2144				mmap_read_unlock(mm);
2145				ret = 1;
2146				khugepaged_scan_file(mm, file, pgoff, hpage);
2147				fput(file);
2148			} else {
2149				ret = khugepaged_scan_pmd(mm, vma,
2150						khugepaged_scan.address,
2151						hpage);
2152			}
2153			/* move to next address */
2154			khugepaged_scan.address += HPAGE_PMD_SIZE;
2155			progress += HPAGE_PMD_NR;
2156			if (ret)
2157				/* we released mmap_lock so break loop */
2158				goto breakouterloop_mmap_lock;
2159			if (progress >= pages)
2160				goto breakouterloop;
2161		}
2162	}
2163breakouterloop:
2164	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2165breakouterloop_mmap_lock:
2166
2167	spin_lock(&khugepaged_mm_lock);
2168	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2169	/*
2170	 * Release the current mm_slot if this mm is about to die, or
2171	 * if we scanned all vmas of this mm.
2172	 */
2173	if (khugepaged_test_exit(mm) || !vma) {
2174		/*
2175		 * Make sure that if mm_users is reaching zero while
2176		 * khugepaged runs here, khugepaged_exit will find
2177		 * mm_slot not pointing to the exiting mm.
2178		 */
2179		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2180			khugepaged_scan.mm_slot = list_entry(
2181				mm_slot->mm_node.next,
2182				struct mm_slot, mm_node);
2183			khugepaged_scan.address = 0;
2184		} else {
2185			khugepaged_scan.mm_slot = NULL;
2186			khugepaged_full_scans++;
2187		}
2188
2189		collect_mm_slot(mm_slot);
2190	}
2191
2192	return progress;
2193}
2194
2195static int khugepaged_has_work(void)
2196{
2197	return !list_empty(&khugepaged_scan.mm_head) &&
2198		khugepaged_enabled();
2199}
2200
2201static int khugepaged_wait_event(void)
2202{
2203	return !list_empty(&khugepaged_scan.mm_head) ||
2204		kthread_should_stop();
2205}
2206
2207static void khugepaged_do_scan(void)
2208{
2209	struct page *hpage = NULL;
2210	unsigned int progress = 0, pass_through_head = 0;
2211	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2212	bool wait = true;
2213
2214	lru_add_drain_all();
2215
2216	while (progress < pages) {
2217		if (!khugepaged_prealloc_page(&hpage, &wait))
2218			break;
2219
2220		cond_resched();
2221
2222		if (unlikely(kthread_should_stop() || try_to_freeze()))
2223			break;
2224
2225		spin_lock(&khugepaged_mm_lock);
2226		if (!khugepaged_scan.mm_slot)
2227			pass_through_head++;
2228		if (khugepaged_has_work() &&
2229		    pass_through_head < 2)
2230			progress += khugepaged_scan_mm_slot(pages - progress,
2231							    &hpage);
2232		else
2233			progress = pages;
2234		spin_unlock(&khugepaged_mm_lock);
2235	}
2236
2237	if (!IS_ERR_OR_NULL(hpage))
2238		put_page(hpage);
2239}
2240
2241static bool khugepaged_should_wakeup(void)
2242{
2243	return kthread_should_stop() ||
2244	       time_after_eq(jiffies, khugepaged_sleep_expire);
2245}
2246
2247static void khugepaged_wait_work(void)
2248{
2249	if (khugepaged_has_work()) {
2250		const unsigned long scan_sleep_jiffies =
2251			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2252
2253		if (!scan_sleep_jiffies)
2254			return;
2255
2256		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2257		wait_event_freezable_timeout(khugepaged_wait,
2258					     khugepaged_should_wakeup(),
2259					     scan_sleep_jiffies);
2260		return;
2261	}
2262
2263	if (khugepaged_enabled())
2264		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, MAX_NICE);
2273
2274	while (!kthread_should_stop()) {
2275		khugepaged_do_scan();
2276		khugepaged_wait_work();
2277	}
2278
2279	spin_lock(&khugepaged_mm_lock);
2280	mm_slot = khugepaged_scan.mm_slot;
2281	khugepaged_scan.mm_slot = NULL;
2282	if (mm_slot)
2283		collect_mm_slot(mm_slot);
2284	spin_unlock(&khugepaged_mm_lock);
2285	return 0;
2286}
2287
2288static void set_recommended_min_free_kbytes(void)
2289{
2290	struct zone *zone;
2291	int nr_zones = 0;
2292	unsigned long recommended_min;
2293
2294	for_each_populated_zone(zone) {
2295		/*
2296		 * We don't need to worry about fragmentation of
2297		 * ZONE_MOVABLE since it only has movable pages.
2298		 */
2299		if (zone_idx(zone) > gfp_zone(GFP_USER))
2300			continue;
2301
2302		nr_zones++;
2303	}
2304
2305	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2306	recommended_min = pageblock_nr_pages * nr_zones * 2;
2307
2308	/*
2309	 * Make sure that on average at least two pageblocks are almost free
2310	 * of another type, one for a migratetype to fall back to and a
2311	 * second to avoid subsequent fallbacks of other types There are 3
2312	 * MIGRATE_TYPES we care about.
2313	 */
2314	recommended_min += pageblock_nr_pages * nr_zones *
2315			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2316
2317	/* don't ever allow to reserve more than 5% of the lowmem */
2318	recommended_min = min(recommended_min,
2319			      (unsigned long) nr_free_buffer_pages() / 20);
2320	recommended_min <<= (PAGE_SHIFT-10);
2321
2322	if (recommended_min > min_free_kbytes) {
2323		if (user_min_free_kbytes >= 0)
2324			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2325				min_free_kbytes, recommended_min);
2326
2327		min_free_kbytes = recommended_min;
2328	}
2329	setup_per_zone_wmarks();
2330}
2331
2332int start_stop_khugepaged(void)
2333{
2334	int err = 0;
2335
2336	mutex_lock(&khugepaged_mutex);
2337	if (khugepaged_enabled()) {
2338		if (!khugepaged_thread)
2339			khugepaged_thread = kthread_run(khugepaged, NULL,
2340							"khugepaged");
2341		if (IS_ERR(khugepaged_thread)) {
2342			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2343			err = PTR_ERR(khugepaged_thread);
2344			khugepaged_thread = NULL;
2345			goto fail;
2346		}
2347
2348		if (!list_empty(&khugepaged_scan.mm_head))
2349			wake_up_interruptible(&khugepaged_wait);
2350
2351		set_recommended_min_free_kbytes();
2352	} else if (khugepaged_thread) {
2353		kthread_stop(khugepaged_thread);
2354		khugepaged_thread = NULL;
2355	}
2356fail:
2357	mutex_unlock(&khugepaged_mutex);
2358	return err;
2359}
2360
2361void khugepaged_min_free_kbytes_update(void)
2362{
2363	mutex_lock(&khugepaged_mutex);
2364	if (khugepaged_enabled() && khugepaged_thread)
2365		set_recommended_min_free_kbytes();
2366	mutex_unlock(&khugepaged_mutex);
2367}