Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Free some vmemmap pages of HugeTLB
  4 *
  5 * Copyright (c) 2020, Bytedance. All rights reserved.
  6 *
  7 *     Author: Muchun Song <songmuchun@bytedance.com>
  8 *
  9 * The struct page structures (page structs) are used to describe a physical
 10 * page frame. By default, there is a one-to-one mapping from a page frame to
 11 * it's corresponding page struct.
 12 *
 13 * HugeTLB pages consist of multiple base page size pages and is supported by
 14 * many architectures. See hugetlbpage.rst in the Documentation directory for
 15 * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
 16 * are currently supported. Since the base page size on x86 is 4KB, a 2MB
 17 * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
 18 * 4096 base pages. For each base page, there is a corresponding page struct.
 19 *
 20 * Within the HugeTLB subsystem, only the first 4 page structs are used to
 21 * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
 22 * this upper limit. The only 'useful' information in the remaining page structs
 23 * is the compound_head field, and this field is the same for all tail pages.
 24 *
 25 * By removing redundant page structs for HugeTLB pages, memory can be returned
 26 * to the buddy allocator for other uses.
 27 *
 28 * Different architectures support different HugeTLB pages. For example, the
 29 * following table is the HugeTLB page size supported by x86 and arm64
 30 * architectures. Because arm64 supports 4k, 16k, and 64k base pages and
 31 * supports contiguous entries, so it supports many kinds of sizes of HugeTLB
 32 * page.
 33 *
 34 * +--------------+-----------+-----------------------------------------------+
 35 * | Architecture | Page Size |                HugeTLB Page Size              |
 36 * +--------------+-----------+-----------+-----------+-----------+-----------+
 37 * |    x86-64    |    4KB    |    2MB    |    1GB    |           |           |
 38 * +--------------+-----------+-----------+-----------+-----------+-----------+
 39 * |              |    4KB    |   64KB    |    2MB    |    32MB   |    1GB    |
 40 * |              +-----------+-----------+-----------+-----------+-----------+
 41 * |    arm64     |   16KB    |    2MB    |   32MB    |     1GB   |           |
 42 * |              +-----------+-----------+-----------+-----------+-----------+
 43 * |              |   64KB    |    2MB    |  512MB    |    16GB   |           |
 44 * +--------------+-----------+-----------+-----------+-----------+-----------+
 45 *
 46 * When the system boot up, every HugeTLB page has more than one struct page
 47 * structs which size is (unit: pages):
 48 *
 49 *    struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
 50 *
 51 * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
 52 * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
 53 * relationship.
 54 *
 55 *    HugeTLB_Size = n * PAGE_SIZE
 56 *
 57 * Then,
 58 *
 59 *    struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
 60 *                = n * sizeof(struct page) / PAGE_SIZE
 61 *
 62 * We can use huge mapping at the pud/pmd level for the HugeTLB page.
 63 *
 64 * For the HugeTLB page of the pmd level mapping, then
 65 *
 66 *    struct_size = n * sizeof(struct page) / PAGE_SIZE
 67 *                = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
 68 *                = sizeof(struct page) / sizeof(pte_t)
 69 *                = 64 / 8
 70 *                = 8 (pages)
 71 *
 72 * Where n is how many pte entries which one page can contains. So the value of
 73 * n is (PAGE_SIZE / sizeof(pte_t)).
 74 *
 75 * This optimization only supports 64-bit system, so the value of sizeof(pte_t)
 76 * is 8. And this optimization also applicable only when the size of struct page
 77 * is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
 78 * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
 79 * size of struct page structs of it is 8 page frames which size depends on the
 80 * size of the base page.
 81 *
 82 * For the HugeTLB page of the pud level mapping, then
 83 *
 84 *    struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
 85 *                = PAGE_SIZE / 8 * 8 (pages)
 86 *                = PAGE_SIZE (pages)
 87 *
 88 * Where the struct_size(pmd) is the size of the struct page structs of a
 89 * HugeTLB page of the pmd level mapping.
 90 *
 91 * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
 92 * HugeTLB page consists in 4096.
 93 *
 94 * Next, we take the pmd level mapping of the HugeTLB page as an example to
 95 * show the internal implementation of this optimization. There are 8 pages
 96 * struct page structs associated with a HugeTLB page which is pmd mapped.
 97 *
 98 * Here is how things look before optimization.
 99 *
100 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
101 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
102 * |           |                     |     0     | -------------> |     0     |
103 * |           |                     +-----------+                +-----------+
104 * |           |                     |     1     | -------------> |     1     |
105 * |           |                     +-----------+                +-----------+
106 * |           |                     |     2     | -------------> |     2     |
107 * |           |                     +-----------+                +-----------+
108 * |           |                     |     3     | -------------> |     3     |
109 * |           |                     +-----------+                +-----------+
110 * |           |                     |     4     | -------------> |     4     |
111 * |    PMD    |                     +-----------+                +-----------+
112 * |   level   |                     |     5     | -------------> |     5     |
113 * |  mapping  |                     +-----------+                +-----------+
114 * |           |                     |     6     | -------------> |     6     |
115 * |           |                     +-----------+                +-----------+
116 * |           |                     |     7     | -------------> |     7     |
117 * |           |                     +-----------+                +-----------+
118 * |           |
119 * |           |
120 * |           |
121 * +-----------+
122 *
123 * The value of page->compound_head is the same for all tail pages. The first
124 * page of page structs (page 0) associated with the HugeTLB page contains the 4
125 * page structs necessary to describe the HugeTLB. The only use of the remaining
126 * pages of page structs (page 1 to page 7) is to point to page->compound_head.
127 * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
128 * will be used for each HugeTLB page. This will allow us to free the remaining
129 * 6 pages to the buddy allocator.
130 *
131 * Here is how things look after remapping.
132 *
133 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
134 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
135 * |           |                     |     0     | -------------> |     0     |
136 * |           |                     +-----------+                +-----------+
137 * |           |                     |     1     | -------------> |     1     |
138 * |           |                     +-----------+                +-----------+
139 * |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
140 * |           |                     +-----------+                   | | | | |
141 * |           |                     |     3     | ------------------+ | | | |
142 * |           |                     +-----------+                     | | | |
143 * |           |                     |     4     | --------------------+ | | |
144 * |    PMD    |                     +-----------+                       | | |
145 * |   level   |                     |     5     | ----------------------+ | |
146 * |  mapping  |                     +-----------+                         | |
147 * |           |                     |     6     | ------------------------+ |
148 * |           |                     +-----------+                           |
149 * |           |                     |     7     | --------------------------+
150 * |           |                     +-----------+
151 * |           |
152 * |           |
153 * |           |
154 * +-----------+
155 *
156 * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
157 * vmemmap pages and restore the previous mapping relationship.
158 *
159 * For the HugeTLB page of the pud level mapping. It is similar to the former.
160 * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
161 *
162 * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
163 * (e.g. aarch64) provides a contiguous bit in the translation table entries
164 * that hints to the MMU to indicate that it is one of a contiguous set of
165 * entries that can be cached in a single TLB entry.
166 *
167 * The contiguous bit is used to increase the mapping size at the pmd and pte
168 * (last) level. So this type of HugeTLB page can be optimized only when its
169 * size of the struct page structs is greater than 2 pages.
170 */
171#define pr_fmt(fmt)	"HugeTLB: " fmt
172
173#include "hugetlb_vmemmap.h"
174
175/*
176 * There are a lot of struct page structures associated with each HugeTLB page.
177 * For tail pages, the value of compound_head is the same. So we can reuse first
178 * page of tail page structures. We map the virtual addresses of the remaining
179 * pages of tail page structures to the first tail page struct, and then free
180 * these page frames. Therefore, we need to reserve two pages as vmemmap areas.
181 */
182#define RESERVE_VMEMMAP_NR		2U
183#define RESERVE_VMEMMAP_SIZE		(RESERVE_VMEMMAP_NR << PAGE_SHIFT)
184
185bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
186
187static int __init early_hugetlb_free_vmemmap_param(char *buf)
188{
189	/* We cannot optimize if a "struct page" crosses page boundaries. */
190	if ((!is_power_of_2(sizeof(struct page)))) {
191		pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
192		return 0;
193	}
194
195	if (!buf)
196		return -EINVAL;
197
198	if (!strcmp(buf, "on"))
199		hugetlb_free_vmemmap_enabled = true;
200	else if (!strcmp(buf, "off"))
201		hugetlb_free_vmemmap_enabled = false;
202	else
203		return -EINVAL;
204
205	return 0;
206}
207early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param);
208
209static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
210{
211	return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
212}
213
214/*
215 * Previously discarded vmemmap pages will be allocated and remapping
216 * after this function returns zero.
217 */
218int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
219{
220	int ret;
221	unsigned long vmemmap_addr = (unsigned long)head;
222	unsigned long vmemmap_end, vmemmap_reuse;
223
224	if (!HPageVmemmapOptimized(head))
225		return 0;
226
227	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
228	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
229	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
230	/*
231	 * The pages which the vmemmap virtual address range [@vmemmap_addr,
232	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
233	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
234	 * When a HugeTLB page is freed to the buddy allocator, previously
235	 * discarded vmemmap pages must be allocated and remapping.
236	 */
237	ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
238				  GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
239
240	if (!ret)
241		ClearHPageVmemmapOptimized(head);
242
243	return ret;
244}
245
246void free_huge_page_vmemmap(struct hstate *h, struct page *head)
247{
248	unsigned long vmemmap_addr = (unsigned long)head;
249	unsigned long vmemmap_end, vmemmap_reuse;
250
251	if (!free_vmemmap_pages_per_hpage(h))
252		return;
253
254	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
255	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
256	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
257
258	/*
259	 * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
260	 * to the page which @vmemmap_reuse is mapped to, then free the pages
261	 * which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
262	 */
263	if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
264		SetHPageVmemmapOptimized(head);
265}
266
267void __init hugetlb_vmemmap_init(struct hstate *h)
268{
269	unsigned int nr_pages = pages_per_huge_page(h);
270	unsigned int vmemmap_pages;
271
272	/*
273	 * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
274	 * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP,
275	 * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page.
276	 */
277	BUILD_BUG_ON(__NR_USED_SUBPAGE >=
278		     RESERVE_VMEMMAP_SIZE / sizeof(struct page));
279
280	if (!hugetlb_free_vmemmap_enabled)
281		return;
282
283	vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
284	/*
285	 * The head page and the first tail page are not to be freed to buddy
286	 * allocator, the other pages will map to the first tail page, so they
287	 * can be freed.
288	 *
289	 * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
290	 * on some architectures (e.g. aarch64). See Documentation/arm64/
291	 * hugetlbpage.rst for more details.
292	 */
293	if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
294		h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
295
296	pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages,
297		h->name);
298}