Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include <trace/events/f2fs.h>
  24
  25#define __reverse_ffz(x) __reverse_ffs(~(x))
  26
  27static struct kmem_cache *discard_entry_slab;
  28static struct kmem_cache *discard_cmd_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34	unsigned long tmp = 0;
  35	int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38	shift = 56;
  39#endif
  40	while (shift >= 0) {
  41		tmp |= (unsigned long)str[idx++] << shift;
  42		shift -= BITS_PER_BYTE;
  43	}
  44	return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53	int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56	if ((word & 0xffffffff00000000UL) == 0)
  57		num += 32;
  58	else
  59		word >>= 32;
  60#endif
  61	if ((word & 0xffff0000) == 0)
  62		num += 16;
  63	else
  64		word >>= 16;
  65
  66	if ((word & 0xff00) == 0)
  67		num += 8;
  68	else
  69		word >>= 8;
  70
  71	if ((word & 0xf0) == 0)
  72		num += 4;
  73	else
  74		word >>= 4;
  75
  76	if ((word & 0xc) == 0)
  77		num += 2;
  78	else
  79		word >>= 2;
  80
  81	if ((word & 0x2) == 0)
  82		num += 1;
  83	return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96			unsigned long size, unsigned long offset)
  97{
  98	const unsigned long *p = addr + BIT_WORD(offset);
  99	unsigned long result = size;
 100	unsigned long tmp;
 101
 102	if (offset >= size)
 103		return size;
 104
 105	size -= (offset & ~(BITS_PER_LONG - 1));
 106	offset %= BITS_PER_LONG;
 107
 108	while (1) {
 109		if (*p == 0)
 110			goto pass;
 111
 112		tmp = __reverse_ulong((unsigned char *)p);
 113
 114		tmp &= ~0UL >> offset;
 115		if (size < BITS_PER_LONG)
 116			tmp &= (~0UL << (BITS_PER_LONG - size));
 117		if (tmp)
 118			goto found;
 119pass:
 120		if (size <= BITS_PER_LONG)
 121			break;
 122		size -= BITS_PER_LONG;
 123		offset = 0;
 124		p++;
 125	}
 126	return result;
 127found:
 128	return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132			unsigned long size, unsigned long offset)
 133{
 134	const unsigned long *p = addr + BIT_WORD(offset);
 135	unsigned long result = size;
 136	unsigned long tmp;
 137
 138	if (offset >= size)
 139		return size;
 140
 141	size -= (offset & ~(BITS_PER_LONG - 1));
 142	offset %= BITS_PER_LONG;
 143
 144	while (1) {
 145		if (*p == ~0UL)
 146			goto pass;
 147
 148		tmp = __reverse_ulong((unsigned char *)p);
 149
 150		if (offset)
 151			tmp |= ~0UL << (BITS_PER_LONG - offset);
 152		if (size < BITS_PER_LONG)
 153			tmp |= ~0UL >> size;
 154		if (tmp != ~0UL)
 155			goto found;
 156pass:
 157		if (size <= BITS_PER_LONG)
 158			break;
 159		size -= BITS_PER_LONG;
 160		offset = 0;
 161		p++;
 162	}
 163	return result;
 164found:
 165	return result - size + __reverse_ffz(tmp);
 166}
 167
 168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 169{
 170	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 171	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 172	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 173
 174	if (f2fs_lfs_mode(sbi))
 175		return false;
 176	if (sbi->gc_mode == GC_URGENT_HIGH)
 177		return true;
 178	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 179		return true;
 180
 181	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 182			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 183}
 184
 185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 186{
 187	struct inmem_pages *new;
 188
 189	set_page_private_atomic(page);
 190
 191	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 192
 193	/* add atomic page indices to the list */
 194	new->page = page;
 195	INIT_LIST_HEAD(&new->list);
 196
 197	/* increase reference count with clean state */
 198	get_page(page);
 199	mutex_lock(&F2FS_I(inode)->inmem_lock);
 200	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 201	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 202	mutex_unlock(&F2FS_I(inode)->inmem_lock);
 203
 204	trace_f2fs_register_inmem_page(page, INMEM);
 205}
 206
 207static int __revoke_inmem_pages(struct inode *inode,
 208				struct list_head *head, bool drop, bool recover,
 209				bool trylock)
 210{
 211	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 212	struct inmem_pages *cur, *tmp;
 213	int err = 0;
 214
 215	list_for_each_entry_safe(cur, tmp, head, list) {
 216		struct page *page = cur->page;
 217
 218		if (drop)
 219			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 220
 221		if (trylock) {
 222			/*
 223			 * to avoid deadlock in between page lock and
 224			 * inmem_lock.
 225			 */
 226			if (!trylock_page(page))
 227				continue;
 228		} else {
 229			lock_page(page);
 230		}
 231
 232		f2fs_wait_on_page_writeback(page, DATA, true, true);
 233
 234		if (recover) {
 235			struct dnode_of_data dn;
 236			struct node_info ni;
 237
 238			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 239retry:
 240			set_new_dnode(&dn, inode, NULL, NULL, 0);
 241			err = f2fs_get_dnode_of_data(&dn, page->index,
 242								LOOKUP_NODE);
 243			if (err) {
 244				if (err == -ENOMEM) {
 245					congestion_wait(BLK_RW_ASYNC,
 246							DEFAULT_IO_TIMEOUT);
 247					cond_resched();
 248					goto retry;
 249				}
 250				err = -EAGAIN;
 251				goto next;
 252			}
 253
 254			err = f2fs_get_node_info(sbi, dn.nid, &ni);
 255			if (err) {
 256				f2fs_put_dnode(&dn);
 257				return err;
 258			}
 259
 260			if (cur->old_addr == NEW_ADDR) {
 261				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 262				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 263			} else
 264				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 265					cur->old_addr, ni.version, true, true);
 266			f2fs_put_dnode(&dn);
 267		}
 268next:
 269		/* we don't need to invalidate this in the sccessful status */
 270		if (drop || recover) {
 271			ClearPageUptodate(page);
 272			clear_page_private_gcing(page);
 273		}
 274		detach_page_private(page);
 275		set_page_private(page, 0);
 276		f2fs_put_page(page, 1);
 277
 278		list_del(&cur->list);
 279		kmem_cache_free(inmem_entry_slab, cur);
 280		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 281	}
 282	return err;
 283}
 284
 285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 286{
 287	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 288	struct inode *inode;
 289	struct f2fs_inode_info *fi;
 290	unsigned int count = sbi->atomic_files;
 291	unsigned int looped = 0;
 292next:
 293	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 294	if (list_empty(head)) {
 295		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 296		return;
 297	}
 298	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 299	inode = igrab(&fi->vfs_inode);
 300	if (inode)
 301		list_move_tail(&fi->inmem_ilist, head);
 302	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 303
 304	if (inode) {
 305		if (gc_failure) {
 306			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 307				goto skip;
 308		}
 309		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 310		f2fs_drop_inmem_pages(inode);
 311skip:
 312		iput(inode);
 313	}
 314	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 315	cond_resched();
 316	if (gc_failure) {
 317		if (++looped >= count)
 318			return;
 319	}
 320	goto next;
 321}
 322
 323void f2fs_drop_inmem_pages(struct inode *inode)
 324{
 325	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 326	struct f2fs_inode_info *fi = F2FS_I(inode);
 327
 328	do {
 329		mutex_lock(&fi->inmem_lock);
 330		if (list_empty(&fi->inmem_pages)) {
 331			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 332
 333			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 334			if (!list_empty(&fi->inmem_ilist))
 335				list_del_init(&fi->inmem_ilist);
 336			if (f2fs_is_atomic_file(inode)) {
 337				clear_inode_flag(inode, FI_ATOMIC_FILE);
 338				sbi->atomic_files--;
 339			}
 340			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 341
 342			mutex_unlock(&fi->inmem_lock);
 343			break;
 344		}
 345		__revoke_inmem_pages(inode, &fi->inmem_pages,
 346						true, false, true);
 347		mutex_unlock(&fi->inmem_lock);
 348	} while (1);
 349}
 350
 351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 352{
 353	struct f2fs_inode_info *fi = F2FS_I(inode);
 354	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 355	struct list_head *head = &fi->inmem_pages;
 356	struct inmem_pages *cur = NULL;
 357
 358	f2fs_bug_on(sbi, !page_private_atomic(page));
 359
 360	mutex_lock(&fi->inmem_lock);
 361	list_for_each_entry(cur, head, list) {
 362		if (cur->page == page)
 363			break;
 364	}
 365
 366	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 367	list_del(&cur->list);
 368	mutex_unlock(&fi->inmem_lock);
 369
 370	dec_page_count(sbi, F2FS_INMEM_PAGES);
 371	kmem_cache_free(inmem_entry_slab, cur);
 372
 373	ClearPageUptodate(page);
 374	clear_page_private_atomic(page);
 375	f2fs_put_page(page, 0);
 376
 377	detach_page_private(page);
 378	set_page_private(page, 0);
 379
 380	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 381}
 382
 383static int __f2fs_commit_inmem_pages(struct inode *inode)
 384{
 385	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 386	struct f2fs_inode_info *fi = F2FS_I(inode);
 387	struct inmem_pages *cur, *tmp;
 388	struct f2fs_io_info fio = {
 389		.sbi = sbi,
 390		.ino = inode->i_ino,
 391		.type = DATA,
 392		.op = REQ_OP_WRITE,
 393		.op_flags = REQ_SYNC | REQ_PRIO,
 394		.io_type = FS_DATA_IO,
 395	};
 396	struct list_head revoke_list;
 397	bool submit_bio = false;
 398	int err = 0;
 399
 400	INIT_LIST_HEAD(&revoke_list);
 401
 402	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 403		struct page *page = cur->page;
 404
 405		lock_page(page);
 406		if (page->mapping == inode->i_mapping) {
 407			trace_f2fs_commit_inmem_page(page, INMEM);
 408
 409			f2fs_wait_on_page_writeback(page, DATA, true, true);
 410
 411			set_page_dirty(page);
 412			if (clear_page_dirty_for_io(page)) {
 413				inode_dec_dirty_pages(inode);
 414				f2fs_remove_dirty_inode(inode);
 415			}
 416retry:
 417			fio.page = page;
 418			fio.old_blkaddr = NULL_ADDR;
 419			fio.encrypted_page = NULL;
 420			fio.need_lock = LOCK_DONE;
 421			err = f2fs_do_write_data_page(&fio);
 422			if (err) {
 423				if (err == -ENOMEM) {
 424					congestion_wait(BLK_RW_ASYNC,
 425							DEFAULT_IO_TIMEOUT);
 426					cond_resched();
 427					goto retry;
 428				}
 429				unlock_page(page);
 430				break;
 431			}
 432			/* record old blkaddr for revoking */
 433			cur->old_addr = fio.old_blkaddr;
 434			submit_bio = true;
 435		}
 436		unlock_page(page);
 437		list_move_tail(&cur->list, &revoke_list);
 438	}
 439
 440	if (submit_bio)
 441		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 442
 443	if (err) {
 444		/*
 445		 * try to revoke all committed pages, but still we could fail
 446		 * due to no memory or other reason, if that happened, EAGAIN
 447		 * will be returned, which means in such case, transaction is
 448		 * already not integrity, caller should use journal to do the
 449		 * recovery or rewrite & commit last transaction. For other
 450		 * error number, revoking was done by filesystem itself.
 451		 */
 452		err = __revoke_inmem_pages(inode, &revoke_list,
 453						false, true, false);
 454
 455		/* drop all uncommitted pages */
 456		__revoke_inmem_pages(inode, &fi->inmem_pages,
 457						true, false, false);
 458	} else {
 459		__revoke_inmem_pages(inode, &revoke_list,
 460						false, false, false);
 461	}
 462
 463	return err;
 464}
 465
 466int f2fs_commit_inmem_pages(struct inode *inode)
 467{
 468	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 469	struct f2fs_inode_info *fi = F2FS_I(inode);
 470	int err;
 471
 472	f2fs_balance_fs(sbi, true);
 473
 474	down_write(&fi->i_gc_rwsem[WRITE]);
 475
 476	f2fs_lock_op(sbi);
 477	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 478
 479	mutex_lock(&fi->inmem_lock);
 480	err = __f2fs_commit_inmem_pages(inode);
 481	mutex_unlock(&fi->inmem_lock);
 482
 483	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 484
 485	f2fs_unlock_op(sbi);
 486	up_write(&fi->i_gc_rwsem[WRITE]);
 487
 488	return err;
 489}
 490
 491/*
 492 * This function balances dirty node and dentry pages.
 493 * In addition, it controls garbage collection.
 494 */
 495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 496{
 497	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 498		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 499		f2fs_stop_checkpoint(sbi, false);
 500	}
 501
 502	/* balance_fs_bg is able to be pending */
 503	if (need && excess_cached_nats(sbi))
 504		f2fs_balance_fs_bg(sbi, false);
 505
 506	if (!f2fs_is_checkpoint_ready(sbi))
 507		return;
 508
 509	/*
 510	 * We should do GC or end up with checkpoint, if there are so many dirty
 511	 * dir/node pages without enough free segments.
 512	 */
 513	if (has_not_enough_free_secs(sbi, 0, 0)) {
 514		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 515					sbi->gc_thread->f2fs_gc_task) {
 516			DEFINE_WAIT(wait);
 517
 518			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 519						TASK_UNINTERRUPTIBLE);
 520			wake_up(&sbi->gc_thread->gc_wait_queue_head);
 521			io_schedule();
 522			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 523		} else {
 524			down_write(&sbi->gc_lock);
 525			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 526		}
 527	}
 528}
 529
 530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 531{
 532	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 533		return;
 534
 535	/* try to shrink extent cache when there is no enough memory */
 536	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 537		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 538
 539	/* check the # of cached NAT entries */
 540	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 541		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 542
 543	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 544		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 545	else
 546		f2fs_build_free_nids(sbi, false, false);
 547
 548	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
 549		excess_prefree_segs(sbi))
 550		goto do_sync;
 551
 552	/* there is background inflight IO or foreground operation recently */
 553	if (is_inflight_io(sbi, REQ_TIME) ||
 554		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 555		return;
 556
 557	/* exceed periodical checkpoint timeout threshold */
 558	if (f2fs_time_over(sbi, CP_TIME))
 559		goto do_sync;
 560
 561	/* checkpoint is the only way to shrink partial cached entries */
 562	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 563		f2fs_available_free_memory(sbi, INO_ENTRIES))
 564		return;
 565
 566do_sync:
 567	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 568		struct blk_plug plug;
 569
 570		mutex_lock(&sbi->flush_lock);
 571
 572		blk_start_plug(&plug);
 573		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 574		blk_finish_plug(&plug);
 575
 576		mutex_unlock(&sbi->flush_lock);
 577	}
 578	f2fs_sync_fs(sbi->sb, true);
 579	stat_inc_bg_cp_count(sbi->stat_info);
 580}
 581
 582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 583				struct block_device *bdev)
 584{
 585	int ret = blkdev_issue_flush(bdev);
 586
 587	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 588				test_opt(sbi, FLUSH_MERGE), ret);
 589	return ret;
 590}
 591
 592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 593{
 594	int ret = 0;
 595	int i;
 596
 597	if (!f2fs_is_multi_device(sbi))
 598		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 599
 600	for (i = 0; i < sbi->s_ndevs; i++) {
 601		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 602			continue;
 603		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 604		if (ret)
 605			break;
 606	}
 607	return ret;
 608}
 609
 610static int issue_flush_thread(void *data)
 611{
 612	struct f2fs_sb_info *sbi = data;
 613	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 614	wait_queue_head_t *q = &fcc->flush_wait_queue;
 615repeat:
 616	if (kthread_should_stop())
 617		return 0;
 618
 619	if (!llist_empty(&fcc->issue_list)) {
 620		struct flush_cmd *cmd, *next;
 621		int ret;
 622
 623		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 624		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 625
 626		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 627
 628		ret = submit_flush_wait(sbi, cmd->ino);
 629		atomic_inc(&fcc->issued_flush);
 630
 631		llist_for_each_entry_safe(cmd, next,
 632					  fcc->dispatch_list, llnode) {
 633			cmd->ret = ret;
 634			complete(&cmd->wait);
 635		}
 636		fcc->dispatch_list = NULL;
 637	}
 638
 639	wait_event_interruptible(*q,
 640		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 641	goto repeat;
 642}
 643
 644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 645{
 646	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 647	struct flush_cmd cmd;
 648	int ret;
 649
 650	if (test_opt(sbi, NOBARRIER))
 651		return 0;
 652
 653	if (!test_opt(sbi, FLUSH_MERGE)) {
 654		atomic_inc(&fcc->queued_flush);
 655		ret = submit_flush_wait(sbi, ino);
 656		atomic_dec(&fcc->queued_flush);
 657		atomic_inc(&fcc->issued_flush);
 658		return ret;
 659	}
 660
 661	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 662	    f2fs_is_multi_device(sbi)) {
 663		ret = submit_flush_wait(sbi, ino);
 664		atomic_dec(&fcc->queued_flush);
 665
 666		atomic_inc(&fcc->issued_flush);
 667		return ret;
 668	}
 669
 670	cmd.ino = ino;
 671	init_completion(&cmd.wait);
 672
 673	llist_add(&cmd.llnode, &fcc->issue_list);
 674
 675	/*
 676	 * update issue_list before we wake up issue_flush thread, this
 677	 * smp_mb() pairs with another barrier in ___wait_event(), see
 678	 * more details in comments of waitqueue_active().
 679	 */
 680	smp_mb();
 681
 682	if (waitqueue_active(&fcc->flush_wait_queue))
 683		wake_up(&fcc->flush_wait_queue);
 684
 685	if (fcc->f2fs_issue_flush) {
 686		wait_for_completion(&cmd.wait);
 687		atomic_dec(&fcc->queued_flush);
 688	} else {
 689		struct llist_node *list;
 690
 691		list = llist_del_all(&fcc->issue_list);
 692		if (!list) {
 693			wait_for_completion(&cmd.wait);
 694			atomic_dec(&fcc->queued_flush);
 695		} else {
 696			struct flush_cmd *tmp, *next;
 697
 698			ret = submit_flush_wait(sbi, ino);
 699
 700			llist_for_each_entry_safe(tmp, next, list, llnode) {
 701				if (tmp == &cmd) {
 702					cmd.ret = ret;
 703					atomic_dec(&fcc->queued_flush);
 704					continue;
 705				}
 706				tmp->ret = ret;
 707				complete(&tmp->wait);
 708			}
 709		}
 710	}
 711
 712	return cmd.ret;
 713}
 714
 715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 716{
 717	dev_t dev = sbi->sb->s_bdev->bd_dev;
 718	struct flush_cmd_control *fcc;
 719	int err = 0;
 720
 721	if (SM_I(sbi)->fcc_info) {
 722		fcc = SM_I(sbi)->fcc_info;
 723		if (fcc->f2fs_issue_flush)
 724			return err;
 725		goto init_thread;
 726	}
 727
 728	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 729	if (!fcc)
 730		return -ENOMEM;
 731	atomic_set(&fcc->issued_flush, 0);
 732	atomic_set(&fcc->queued_flush, 0);
 733	init_waitqueue_head(&fcc->flush_wait_queue);
 734	init_llist_head(&fcc->issue_list);
 735	SM_I(sbi)->fcc_info = fcc;
 736	if (!test_opt(sbi, FLUSH_MERGE))
 737		return err;
 738
 739init_thread:
 740	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 741				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 742	if (IS_ERR(fcc->f2fs_issue_flush)) {
 743		err = PTR_ERR(fcc->f2fs_issue_flush);
 744		kfree(fcc);
 745		SM_I(sbi)->fcc_info = NULL;
 746		return err;
 747	}
 748
 749	return err;
 750}
 751
 752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 753{
 754	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 755
 756	if (fcc && fcc->f2fs_issue_flush) {
 757		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 758
 759		fcc->f2fs_issue_flush = NULL;
 760		kthread_stop(flush_thread);
 761	}
 762	if (free) {
 763		kfree(fcc);
 764		SM_I(sbi)->fcc_info = NULL;
 765	}
 766}
 767
 768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 769{
 770	int ret = 0, i;
 771
 772	if (!f2fs_is_multi_device(sbi))
 773		return 0;
 774
 775	if (test_opt(sbi, NOBARRIER))
 776		return 0;
 777
 778	for (i = 1; i < sbi->s_ndevs; i++) {
 779		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 780			continue;
 781		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 782		if (ret)
 783			break;
 784
 785		spin_lock(&sbi->dev_lock);
 786		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 787		spin_unlock(&sbi->dev_lock);
 788	}
 789
 790	return ret;
 791}
 792
 793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 794		enum dirty_type dirty_type)
 795{
 796	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 797
 798	/* need not be added */
 799	if (IS_CURSEG(sbi, segno))
 800		return;
 801
 802	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 803		dirty_i->nr_dirty[dirty_type]++;
 804
 805	if (dirty_type == DIRTY) {
 806		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 807		enum dirty_type t = sentry->type;
 808
 809		if (unlikely(t >= DIRTY)) {
 810			f2fs_bug_on(sbi, 1);
 811			return;
 812		}
 813		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 814			dirty_i->nr_dirty[t]++;
 815
 816		if (__is_large_section(sbi)) {
 817			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 818			block_t valid_blocks =
 819				get_valid_blocks(sbi, segno, true);
 820
 821			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 822					valid_blocks == BLKS_PER_SEC(sbi)));
 823
 824			if (!IS_CURSEC(sbi, secno))
 825				set_bit(secno, dirty_i->dirty_secmap);
 826		}
 827	}
 828}
 829
 830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 831		enum dirty_type dirty_type)
 832{
 833	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 834	block_t valid_blocks;
 835
 836	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 837		dirty_i->nr_dirty[dirty_type]--;
 838
 839	if (dirty_type == DIRTY) {
 840		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 841		enum dirty_type t = sentry->type;
 842
 843		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 844			dirty_i->nr_dirty[t]--;
 845
 846		valid_blocks = get_valid_blocks(sbi, segno, true);
 847		if (valid_blocks == 0) {
 848			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 849						dirty_i->victim_secmap);
 850#ifdef CONFIG_F2FS_CHECK_FS
 851			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 852#endif
 853		}
 854		if (__is_large_section(sbi)) {
 855			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 856
 857			if (!valid_blocks ||
 858					valid_blocks == BLKS_PER_SEC(sbi)) {
 859				clear_bit(secno, dirty_i->dirty_secmap);
 860				return;
 861			}
 862
 863			if (!IS_CURSEC(sbi, secno))
 864				set_bit(secno, dirty_i->dirty_secmap);
 865		}
 866	}
 867}
 868
 869/*
 870 * Should not occur error such as -ENOMEM.
 871 * Adding dirty entry into seglist is not critical operation.
 872 * If a given segment is one of current working segments, it won't be added.
 873 */
 874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 875{
 876	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 877	unsigned short valid_blocks, ckpt_valid_blocks;
 878	unsigned int usable_blocks;
 879
 880	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 881		return;
 882
 883	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 884	mutex_lock(&dirty_i->seglist_lock);
 885
 886	valid_blocks = get_valid_blocks(sbi, segno, false);
 887	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 888
 889	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 890		ckpt_valid_blocks == usable_blocks)) {
 891		__locate_dirty_segment(sbi, segno, PRE);
 892		__remove_dirty_segment(sbi, segno, DIRTY);
 893	} else if (valid_blocks < usable_blocks) {
 894		__locate_dirty_segment(sbi, segno, DIRTY);
 895	} else {
 896		/* Recovery routine with SSR needs this */
 897		__remove_dirty_segment(sbi, segno, DIRTY);
 898	}
 899
 900	mutex_unlock(&dirty_i->seglist_lock);
 901}
 902
 903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 905{
 906	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 907	unsigned int segno;
 908
 909	mutex_lock(&dirty_i->seglist_lock);
 910	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 911		if (get_valid_blocks(sbi, segno, false))
 912			continue;
 913		if (IS_CURSEG(sbi, segno))
 914			continue;
 915		__locate_dirty_segment(sbi, segno, PRE);
 916		__remove_dirty_segment(sbi, segno, DIRTY);
 917	}
 918	mutex_unlock(&dirty_i->seglist_lock);
 919}
 920
 921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 922{
 923	int ovp_hole_segs =
 924		(overprovision_segments(sbi) - reserved_segments(sbi));
 925	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 926	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 927	block_t holes[2] = {0, 0};	/* DATA and NODE */
 928	block_t unusable;
 929	struct seg_entry *se;
 930	unsigned int segno;
 931
 932	mutex_lock(&dirty_i->seglist_lock);
 933	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 934		se = get_seg_entry(sbi, segno);
 935		if (IS_NODESEG(se->type))
 936			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 937							se->valid_blocks;
 938		else
 939			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 940							se->valid_blocks;
 941	}
 942	mutex_unlock(&dirty_i->seglist_lock);
 943
 944	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 945	if (unusable > ovp_holes)
 946		return unusable - ovp_holes;
 947	return 0;
 948}
 949
 950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 951{
 952	int ovp_hole_segs =
 953		(overprovision_segments(sbi) - reserved_segments(sbi));
 954	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 955		return -EAGAIN;
 956	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 957		dirty_segments(sbi) > ovp_hole_segs)
 958		return -EAGAIN;
 959	return 0;
 960}
 961
 962/* This is only used by SBI_CP_DISABLED */
 963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 964{
 965	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 966	unsigned int segno = 0;
 967
 968	mutex_lock(&dirty_i->seglist_lock);
 969	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 970		if (get_valid_blocks(sbi, segno, false))
 971			continue;
 972		if (get_ckpt_valid_blocks(sbi, segno, false))
 973			continue;
 974		mutex_unlock(&dirty_i->seglist_lock);
 975		return segno;
 976	}
 977	mutex_unlock(&dirty_i->seglist_lock);
 978	return NULL_SEGNO;
 979}
 980
 981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 982		struct block_device *bdev, block_t lstart,
 983		block_t start, block_t len)
 984{
 985	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 986	struct list_head *pend_list;
 987	struct discard_cmd *dc;
 988
 989	f2fs_bug_on(sbi, !len);
 990
 991	pend_list = &dcc->pend_list[plist_idx(len)];
 992
 993	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 994	INIT_LIST_HEAD(&dc->list);
 995	dc->bdev = bdev;
 996	dc->lstart = lstart;
 997	dc->start = start;
 998	dc->len = len;
 999	dc->ref = 0;
1000	dc->state = D_PREP;
1001	dc->queued = 0;
1002	dc->error = 0;
1003	init_completion(&dc->wait);
1004	list_add_tail(&dc->list, pend_list);
1005	spin_lock_init(&dc->lock);
1006	dc->bio_ref = 0;
1007	atomic_inc(&dcc->discard_cmd_cnt);
1008	dcc->undiscard_blks += len;
1009
1010	return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014				struct block_device *bdev, block_t lstart,
1015				block_t start, block_t len,
1016				struct rb_node *parent, struct rb_node **p,
1017				bool leftmost)
1018{
1019	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020	struct discard_cmd *dc;
1021
1022	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023
1024	rb_link_node(&dc->rb_node, parent, p);
1025	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026
1027	return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031							struct discard_cmd *dc)
1032{
1033	if (dc->state == D_DONE)
1034		atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036	list_del(&dc->list);
1037	rb_erase_cached(&dc->rb_node, &dcc->root);
1038	dcc->undiscard_blks -= dc->len;
1039
1040	kmem_cache_free(discard_cmd_slab, dc);
1041
1042	atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046							struct discard_cmd *dc)
1047{
1048	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049	unsigned long flags;
1050
1051	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053	spin_lock_irqsave(&dc->lock, flags);
1054	if (dc->bio_ref) {
1055		spin_unlock_irqrestore(&dc->lock, flags);
1056		return;
1057	}
1058	spin_unlock_irqrestore(&dc->lock, flags);
1059
1060	f2fs_bug_on(sbi, dc->ref);
1061
1062	if (dc->error == -EOPNOTSUPP)
1063		dc->error = 0;
1064
1065	if (dc->error)
1066		printk_ratelimited(
1067			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068			KERN_INFO, sbi->sb->s_id,
1069			dc->lstart, dc->start, dc->len, dc->error);
1070	__detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076	unsigned long flags;
1077
1078	spin_lock_irqsave(&dc->lock, flags);
1079	if (!dc->error)
1080		dc->error = blk_status_to_errno(bio->bi_status);
1081	dc->bio_ref--;
1082	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083		dc->state = D_DONE;
1084		complete_all(&dc->wait);
1085	}
1086	spin_unlock_irqrestore(&dc->lock, flags);
1087	bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091				block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094	struct seg_entry *sentry;
1095	unsigned int segno;
1096	block_t blk = start;
1097	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098	unsigned long *map;
1099
1100	while (blk < end) {
1101		segno = GET_SEGNO(sbi, blk);
1102		sentry = get_seg_entry(sbi, segno);
1103		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105		if (end < START_BLOCK(sbi, segno + 1))
1106			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107		else
1108			size = max_blocks;
1109		map = (unsigned long *)(sentry->cur_valid_map);
1110		offset = __find_rev_next_bit(map, size, offset);
1111		f2fs_bug_on(sbi, offset != size);
1112		blk = START_BLOCK(sbi, segno + 1);
1113	}
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118				struct discard_policy *dpolicy,
1119				int discard_type, unsigned int granularity)
1120{
1121	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123	/* common policy */
1124	dpolicy->type = discard_type;
1125	dpolicy->sync = true;
1126	dpolicy->ordered = false;
1127	dpolicy->granularity = granularity;
1128
1129	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131	dpolicy->timeout = false;
1132
1133	if (discard_type == DPOLICY_BG) {
1134		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137		dpolicy->io_aware = true;
1138		dpolicy->sync = false;
1139		dpolicy->ordered = true;
1140		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141			dpolicy->granularity = 1;
1142			if (atomic_read(&dcc->discard_cmd_cnt))
1143				dpolicy->max_interval =
1144					DEF_MIN_DISCARD_ISSUE_TIME;
1145		}
1146	} else if (discard_type == DPOLICY_FORCE) {
1147		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150		dpolicy->io_aware = false;
1151	} else if (discard_type == DPOLICY_FSTRIM) {
1152		dpolicy->io_aware = false;
1153	} else if (discard_type == DPOLICY_UMOUNT) {
1154		dpolicy->io_aware = false;
1155		/* we need to issue all to keep CP_TRIMMED_FLAG */
1156		dpolicy->granularity = 1;
1157		dpolicy->timeout = true;
1158	}
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162				struct block_device *bdev, block_t lstart,
1163				block_t start, block_t len);
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166						struct discard_policy *dpolicy,
1167						struct discard_cmd *dc,
1168						unsigned int *issued)
1169{
1170	struct block_device *bdev = dc->bdev;
1171	struct request_queue *q = bdev_get_queue(bdev);
1172	unsigned int max_discard_blocks =
1173			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176					&(dcc->fstrim_list) : &(dcc->wait_list);
1177	int flag = dpolicy->sync ? REQ_SYNC : 0;
1178	block_t lstart, start, len, total_len;
1179	int err = 0;
1180
1181	if (dc->state != D_PREP)
1182		return 0;
1183
1184	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185		return 0;
1186
1187	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188
1189	lstart = dc->lstart;
1190	start = dc->start;
1191	len = dc->len;
1192	total_len = len;
1193
1194	dc->len = 0;
1195
1196	while (total_len && *issued < dpolicy->max_requests && !err) {
1197		struct bio *bio = NULL;
1198		unsigned long flags;
1199		bool last = true;
1200
1201		if (len > max_discard_blocks) {
1202			len = max_discard_blocks;
1203			last = false;
1204		}
1205
1206		(*issued)++;
1207		if (*issued == dpolicy->max_requests)
1208			last = true;
1209
1210		dc->len += len;
1211
1212		if (time_to_inject(sbi, FAULT_DISCARD)) {
1213			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214			err = -EIO;
1215			goto submit;
1216		}
1217		err = __blkdev_issue_discard(bdev,
1218					SECTOR_FROM_BLOCK(start),
1219					SECTOR_FROM_BLOCK(len),
1220					GFP_NOFS, 0, &bio);
1221submit:
1222		if (err) {
1223			spin_lock_irqsave(&dc->lock, flags);
1224			if (dc->state == D_PARTIAL)
1225				dc->state = D_SUBMIT;
1226			spin_unlock_irqrestore(&dc->lock, flags);
1227
1228			break;
1229		}
1230
1231		f2fs_bug_on(sbi, !bio);
1232
1233		/*
1234		 * should keep before submission to avoid D_DONE
1235		 * right away
1236		 */
1237		spin_lock_irqsave(&dc->lock, flags);
1238		if (last)
1239			dc->state = D_SUBMIT;
1240		else
1241			dc->state = D_PARTIAL;
1242		dc->bio_ref++;
1243		spin_unlock_irqrestore(&dc->lock, flags);
1244
1245		atomic_inc(&dcc->queued_discard);
1246		dc->queued++;
1247		list_move_tail(&dc->list, wait_list);
1248
1249		/* sanity check on discard range */
1250		__check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252		bio->bi_private = dc;
1253		bio->bi_end_io = f2fs_submit_discard_endio;
1254		bio->bi_opf |= flag;
1255		submit_bio(bio);
1256
1257		atomic_inc(&dcc->issued_discard);
1258
1259		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261		lstart += len;
1262		start += len;
1263		total_len -= len;
1264		len = total_len;
1265	}
1266
1267	if (!err && len) {
1268		dcc->undiscard_blks -= len;
1269		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1270	}
1271	return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275				struct block_device *bdev, block_t lstart,
1276				block_t start, block_t len,
1277				struct rb_node **insert_p,
1278				struct rb_node *insert_parent)
1279{
1280	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281	struct rb_node **p;
1282	struct rb_node *parent = NULL;
1283	bool leftmost = true;
1284
1285	if (insert_p && insert_parent) {
1286		parent = insert_parent;
1287		p = insert_p;
1288		goto do_insert;
1289	}
1290
1291	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292							lstart, &leftmost);
1293do_insert:
1294	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295								p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299						struct discard_cmd *dc)
1300{
1301	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305				struct discard_cmd *dc, block_t blkaddr)
1306{
1307	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308	struct discard_info di = dc->di;
1309	bool modified = false;
1310
1311	if (dc->state == D_DONE || dc->len == 1) {
1312		__remove_discard_cmd(sbi, dc);
1313		return;
1314	}
1315
1316	dcc->undiscard_blks -= di.len;
1317
1318	if (blkaddr > di.lstart) {
1319		dc->len = blkaddr - dc->lstart;
1320		dcc->undiscard_blks += dc->len;
1321		__relocate_discard_cmd(dcc, dc);
1322		modified = true;
1323	}
1324
1325	if (blkaddr < di.lstart + di.len - 1) {
1326		if (modified) {
1327			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328					di.start + blkaddr + 1 - di.lstart,
1329					di.lstart + di.len - 1 - blkaddr,
1330					NULL, NULL);
1331		} else {
1332			dc->lstart++;
1333			dc->len--;
1334			dc->start++;
1335			dcc->undiscard_blks += dc->len;
1336			__relocate_discard_cmd(dcc, dc);
1337		}
1338	}
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342				struct block_device *bdev, block_t lstart,
1343				block_t start, block_t len)
1344{
1345	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347	struct discard_cmd *dc;
1348	struct discard_info di = {0};
1349	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350	struct request_queue *q = bdev_get_queue(bdev);
1351	unsigned int max_discard_blocks =
1352			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353	block_t end = lstart + len;
1354
1355	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356					NULL, lstart,
1357					(struct rb_entry **)&prev_dc,
1358					(struct rb_entry **)&next_dc,
1359					&insert_p, &insert_parent, true, NULL);
1360	if (dc)
1361		prev_dc = dc;
1362
1363	if (!prev_dc) {
1364		di.lstart = lstart;
1365		di.len = next_dc ? next_dc->lstart - lstart : len;
1366		di.len = min(di.len, len);
1367		di.start = start;
1368	}
1369
1370	while (1) {
1371		struct rb_node *node;
1372		bool merged = false;
1373		struct discard_cmd *tdc = NULL;
1374
1375		if (prev_dc) {
1376			di.lstart = prev_dc->lstart + prev_dc->len;
1377			if (di.lstart < lstart)
1378				di.lstart = lstart;
1379			if (di.lstart >= end)
1380				break;
1381
1382			if (!next_dc || next_dc->lstart > end)
1383				di.len = end - di.lstart;
1384			else
1385				di.len = next_dc->lstart - di.lstart;
1386			di.start = start + di.lstart - lstart;
1387		}
1388
1389		if (!di.len)
1390			goto next;
1391
1392		if (prev_dc && prev_dc->state == D_PREP &&
1393			prev_dc->bdev == bdev &&
1394			__is_discard_back_mergeable(&di, &prev_dc->di,
1395							max_discard_blocks)) {
1396			prev_dc->di.len += di.len;
1397			dcc->undiscard_blks += di.len;
1398			__relocate_discard_cmd(dcc, prev_dc);
1399			di = prev_dc->di;
1400			tdc = prev_dc;
1401			merged = true;
1402		}
1403
1404		if (next_dc && next_dc->state == D_PREP &&
1405			next_dc->bdev == bdev &&
1406			__is_discard_front_mergeable(&di, &next_dc->di,
1407							max_discard_blocks)) {
1408			next_dc->di.lstart = di.lstart;
1409			next_dc->di.len += di.len;
1410			next_dc->di.start = di.start;
1411			dcc->undiscard_blks += di.len;
1412			__relocate_discard_cmd(dcc, next_dc);
1413			if (tdc)
1414				__remove_discard_cmd(sbi, tdc);
1415			merged = true;
1416		}
1417
1418		if (!merged) {
1419			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420							di.len, NULL, NULL);
1421		}
1422 next:
1423		prev_dc = next_dc;
1424		if (!prev_dc)
1425			break;
1426
1427		node = rb_next(&prev_dc->rb_node);
1428		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429	}
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433		struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435	block_t lblkstart = blkstart;
1436
1437	if (!f2fs_bdev_support_discard(bdev))
1438		return 0;
1439
1440	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442	if (f2fs_is_multi_device(sbi)) {
1443		int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445		blkstart -= FDEV(devi).start_blk;
1446	}
1447	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450	return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454					struct discard_policy *dpolicy)
1455{
1456	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459	struct discard_cmd *dc;
1460	struct blk_plug plug;
1461	unsigned int pos = dcc->next_pos;
1462	unsigned int issued = 0;
1463	bool io_interrupted = false;
1464
1465	mutex_lock(&dcc->cmd_lock);
1466	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467					NULL, pos,
1468					(struct rb_entry **)&prev_dc,
1469					(struct rb_entry **)&next_dc,
1470					&insert_p, &insert_parent, true, NULL);
1471	if (!dc)
1472		dc = next_dc;
1473
1474	blk_start_plug(&plug);
1475
1476	while (dc) {
1477		struct rb_node *node;
1478		int err = 0;
1479
1480		if (dc->state != D_PREP)
1481			goto next;
1482
1483		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484			io_interrupted = true;
1485			break;
1486		}
1487
1488		dcc->next_pos = dc->lstart + dc->len;
1489		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491		if (issued >= dpolicy->max_requests)
1492			break;
1493next:
1494		node = rb_next(&dc->rb_node);
1495		if (err)
1496			__remove_discard_cmd(sbi, dc);
1497		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498	}
1499
1500	blk_finish_plug(&plug);
1501
1502	if (!dc)
1503		dcc->next_pos = 0;
1504
1505	mutex_unlock(&dcc->cmd_lock);
1506
1507	if (!issued && io_interrupted)
1508		issued = -1;
1509
1510	return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513					struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516					struct discard_policy *dpolicy)
1517{
1518	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519	struct list_head *pend_list;
1520	struct discard_cmd *dc, *tmp;
1521	struct blk_plug plug;
1522	int i, issued;
1523	bool io_interrupted = false;
1524
1525	if (dpolicy->timeout)
1526		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529	issued = 0;
1530	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531		if (dpolicy->timeout &&
1532				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533			break;
1534
1535		if (i + 1 < dpolicy->granularity)
1536			break;
1537
1538		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539			return __issue_discard_cmd_orderly(sbi, dpolicy);
1540
1541		pend_list = &dcc->pend_list[i];
1542
1543		mutex_lock(&dcc->cmd_lock);
1544		if (list_empty(pend_list))
1545			goto next;
1546		if (unlikely(dcc->rbtree_check))
1547			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548							&dcc->root, false));
1549		blk_start_plug(&plug);
1550		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551			f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553			if (dpolicy->timeout &&
1554				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555				break;
1556
1557			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558						!is_idle(sbi, DISCARD_TIME)) {
1559				io_interrupted = true;
1560				break;
1561			}
1562
1563			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565			if (issued >= dpolicy->max_requests)
1566				break;
1567		}
1568		blk_finish_plug(&plug);
1569next:
1570		mutex_unlock(&dcc->cmd_lock);
1571
1572		if (issued >= dpolicy->max_requests || io_interrupted)
1573			break;
1574	}
1575
1576	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577		__wait_all_discard_cmd(sbi, dpolicy);
1578		goto retry;
1579	}
1580
1581	if (!issued && io_interrupted)
1582		issued = -1;
1583
1584	return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590	struct list_head *pend_list;
1591	struct discard_cmd *dc, *tmp;
1592	int i;
1593	bool dropped = false;
1594
1595	mutex_lock(&dcc->cmd_lock);
1596	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597		pend_list = &dcc->pend_list[i];
1598		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599			f2fs_bug_on(sbi, dc->state != D_PREP);
1600			__remove_discard_cmd(sbi, dc);
1601			dropped = true;
1602		}
1603	}
1604	mutex_unlock(&dcc->cmd_lock);
1605
1606	return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611	__drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615							struct discard_cmd *dc)
1616{
1617	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618	unsigned int len = 0;
1619
1620	wait_for_completion_io(&dc->wait);
1621	mutex_lock(&dcc->cmd_lock);
1622	f2fs_bug_on(sbi, dc->state != D_DONE);
1623	dc->ref--;
1624	if (!dc->ref) {
1625		if (!dc->error)
1626			len = dc->len;
1627		__remove_discard_cmd(sbi, dc);
1628	}
1629	mutex_unlock(&dcc->cmd_lock);
1630
1631	return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635						struct discard_policy *dpolicy,
1636						block_t start, block_t end)
1637{
1638	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640					&(dcc->fstrim_list) : &(dcc->wait_list);
1641	struct discard_cmd *dc, *tmp;
1642	bool need_wait;
1643	unsigned int trimmed = 0;
1644
1645next:
1646	need_wait = false;
1647
1648	mutex_lock(&dcc->cmd_lock);
1649	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651			continue;
1652		if (dc->len < dpolicy->granularity)
1653			continue;
1654		if (dc->state == D_DONE && !dc->ref) {
1655			wait_for_completion_io(&dc->wait);
1656			if (!dc->error)
1657				trimmed += dc->len;
1658			__remove_discard_cmd(sbi, dc);
1659		} else {
1660			dc->ref++;
1661			need_wait = true;
1662			break;
1663		}
1664	}
1665	mutex_unlock(&dcc->cmd_lock);
1666
1667	if (need_wait) {
1668		trimmed += __wait_one_discard_bio(sbi, dc);
1669		goto next;
1670	}
1671
1672	return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676						struct discard_policy *dpolicy)
1677{
1678	struct discard_policy dp;
1679	unsigned int discard_blks;
1680
1681	if (dpolicy)
1682		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684	/* wait all */
1685	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690	return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697	struct discard_cmd *dc;
1698	bool need_wait = false;
1699
1700	mutex_lock(&dcc->cmd_lock);
1701	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702							NULL, blkaddr);
1703	if (dc) {
1704		if (dc->state == D_PREP) {
1705			__punch_discard_cmd(sbi, dc, blkaddr);
1706		} else {
1707			dc->ref++;
1708			need_wait = true;
1709		}
1710	}
1711	mutex_unlock(&dcc->cmd_lock);
1712
1713	if (need_wait)
1714		__wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721	if (dcc && dcc->f2fs_issue_discard) {
1722		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724		dcc->f2fs_issue_discard = NULL;
1725		kthread_stop(discard_thread);
1726	}
1727}
1728
1729/* This comes from f2fs_put_super */
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733	struct discard_policy dpolicy;
1734	bool dropped;
1735
1736	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737					dcc->discard_granularity);
1738	__issue_discard_cmd(sbi, &dpolicy);
1739	dropped = __drop_discard_cmd(sbi);
1740
1741	/* just to make sure there is no pending discard commands */
1742	__wait_all_discard_cmd(sbi, NULL);
1743
1744	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745	return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750	struct f2fs_sb_info *sbi = data;
1751	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752	wait_queue_head_t *q = &dcc->discard_wait_queue;
1753	struct discard_policy dpolicy;
1754	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755	int issued;
1756
1757	set_freezable();
1758
1759	do {
1760		if (sbi->gc_mode == GC_URGENT_HIGH ||
1761			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763		else
1764			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765						dcc->discard_granularity);
1766
1767		if (!atomic_read(&dcc->discard_cmd_cnt))
1768		       wait_ms = dpolicy.max_interval;
1769
1770		wait_event_interruptible_timeout(*q,
1771				kthread_should_stop() || freezing(current) ||
1772				dcc->discard_wake,
1773				msecs_to_jiffies(wait_ms));
1774
1775		if (dcc->discard_wake)
1776			dcc->discard_wake = 0;
1777
1778		/* clean up pending candidates before going to sleep */
1779		if (atomic_read(&dcc->queued_discard))
1780			__wait_all_discard_cmd(sbi, NULL);
1781
1782		if (try_to_freeze())
1783			continue;
1784		if (f2fs_readonly(sbi->sb))
1785			continue;
1786		if (kthread_should_stop())
1787			return 0;
1788		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789			wait_ms = dpolicy.max_interval;
1790			continue;
1791		}
1792		if (!atomic_read(&dcc->discard_cmd_cnt))
1793			continue;
1794
1795		sb_start_intwrite(sbi->sb);
1796
1797		issued = __issue_discard_cmd(sbi, &dpolicy);
1798		if (issued > 0) {
1799			__wait_all_discard_cmd(sbi, &dpolicy);
1800			wait_ms = dpolicy.min_interval;
1801		} else if (issued == -1) {
1802			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803			if (!wait_ms)
1804				wait_ms = dpolicy.mid_interval;
1805		} else {
1806			wait_ms = dpolicy.max_interval;
1807		}
1808
1809		sb_end_intwrite(sbi->sb);
1810
1811	} while (!kthread_should_stop());
1812	return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817		struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819	sector_t sector, nr_sects;
1820	block_t lblkstart = blkstart;
1821	int devi = 0;
1822
1823	if (f2fs_is_multi_device(sbi)) {
1824		devi = f2fs_target_device_index(sbi, blkstart);
1825		if (blkstart < FDEV(devi).start_blk ||
1826		    blkstart > FDEV(devi).end_blk) {
1827			f2fs_err(sbi, "Invalid block %x", blkstart);
1828			return -EIO;
1829		}
1830		blkstart -= FDEV(devi).start_blk;
1831	}
1832
1833	/* For sequential zones, reset the zone write pointer */
1834	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835		sector = SECTOR_FROM_BLOCK(blkstart);
1836		nr_sects = SECTOR_FROM_BLOCK(blklen);
1837
1838		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839				nr_sects != bdev_zone_sectors(bdev)) {
1840			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842				 blkstart, blklen);
1843			return -EIO;
1844		}
1845		trace_f2fs_issue_reset_zone(bdev, blkstart);
1846		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847					sector, nr_sects, GFP_NOFS);
1848	}
1849
1850	/* For conventional zones, use regular discard if supported */
1851	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856		struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866				block_t blkstart, block_t blklen)
1867{
1868	sector_t start = blkstart, len = 0;
1869	struct block_device *bdev;
1870	struct seg_entry *se;
1871	unsigned int offset;
1872	block_t i;
1873	int err = 0;
1874
1875	bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878		if (i != start) {
1879			struct block_device *bdev2 =
1880				f2fs_target_device(sbi, i, NULL);
1881
1882			if (bdev2 != bdev) {
1883				err = __issue_discard_async(sbi, bdev,
1884						start, len);
1885				if (err)
1886					return err;
1887				bdev = bdev2;
1888				start = i;
1889				len = 0;
1890			}
1891		}
1892
1893		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897			sbi->discard_blks--;
1898	}
1899
1900	if (len)
1901		err = __issue_discard_async(sbi, bdev, start, len);
1902	return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906							bool check_only)
1907{
1908	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909	int max_blocks = sbi->blocks_per_seg;
1910	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913	unsigned long *discard_map = (unsigned long *)se->discard_map;
1914	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915	unsigned int start = 0, end = -1;
1916	bool force = (cpc->reason & CP_DISCARD);
1917	struct discard_entry *de = NULL;
1918	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919	int i;
1920
1921	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922		return false;
1923
1924	if (!force) {
1925		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926			SM_I(sbi)->dcc_info->nr_discards >=
1927				SM_I(sbi)->dcc_info->max_discards)
1928			return false;
1929	}
1930
1931	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932	for (i = 0; i < entries; i++)
1933		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937				SM_I(sbi)->dcc_info->max_discards) {
1938		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939		if (start >= max_blocks)
1940			break;
1941
1942		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943		if (force && start && end != max_blocks
1944					&& (end - start) < cpc->trim_minlen)
1945			continue;
1946
1947		if (check_only)
1948			return true;
1949
1950		if (!de) {
1951			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952								GFP_F2FS_ZERO);
1953			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954			list_add_tail(&de->list, head);
1955		}
1956
1957		for (i = start; i < end; i++)
1958			__set_bit_le(i, (void *)de->discard_map);
1959
1960		SM_I(sbi)->dcc_info->nr_discards += end - start;
1961	}
1962	return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967	list_del(&entry->list);
1968	kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974	struct discard_entry *entry, *this;
1975
1976	/* drop caches */
1977	list_for_each_entry_safe(entry, this, head, list)
1978		release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987	unsigned int segno;
1988
1989	mutex_lock(&dirty_i->seglist_lock);
1990	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991		__set_test_and_free(sbi, segno, false);
1992	mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996						struct cp_control *cpc)
1997{
1998	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999	struct list_head *head = &dcc->entry_list;
2000	struct discard_entry *entry, *this;
2001	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003	unsigned int start = 0, end = -1;
2004	unsigned int secno, start_segno;
2005	bool force = (cpc->reason & CP_DISCARD);
2006	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007
2008	mutex_lock(&dirty_i->seglist_lock);
2009
2010	while (1) {
2011		int i;
2012
2013		if (need_align && end != -1)
2014			end--;
2015		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016		if (start >= MAIN_SEGS(sbi))
2017			break;
2018		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019								start + 1);
2020
2021		if (need_align) {
2022			start = rounddown(start, sbi->segs_per_sec);
2023			end = roundup(end, sbi->segs_per_sec);
2024		}
2025
2026		for (i = start; i < end; i++) {
2027			if (test_and_clear_bit(i, prefree_map))
2028				dirty_i->nr_dirty[PRE]--;
2029		}
2030
2031		if (!f2fs_realtime_discard_enable(sbi))
2032			continue;
2033
2034		if (force && start >= cpc->trim_start &&
2035					(end - 1) <= cpc->trim_end)
2036				continue;
2037
2038		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040				(end - start) << sbi->log_blocks_per_seg);
2041			continue;
2042		}
2043next:
2044		secno = GET_SEC_FROM_SEG(sbi, start);
2045		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046		if (!IS_CURSEC(sbi, secno) &&
2047			!get_valid_blocks(sbi, start, true))
2048			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051		start = start_segno + sbi->segs_per_sec;
2052		if (start < end)
2053			goto next;
2054		else
2055			end = start - 1;
2056	}
2057	mutex_unlock(&dirty_i->seglist_lock);
2058
2059	/* send small discards */
2060	list_for_each_entry_safe(entry, this, head, list) {
2061		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062		bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065		if (is_valid) {
2066			next_pos = find_next_zero_bit_le(entry->discard_map,
2067					sbi->blocks_per_seg, cur_pos);
2068			len = next_pos - cur_pos;
2069
2070			if (f2fs_sb_has_blkzoned(sbi) ||
2071			    (force && len < cpc->trim_minlen))
2072				goto skip;
2073
2074			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075									len);
2076			total_len += len;
2077		} else {
2078			next_pos = find_next_bit_le(entry->discard_map,
2079					sbi->blocks_per_seg, cur_pos);
2080		}
2081skip:
2082		cur_pos = next_pos;
2083		is_valid = !is_valid;
2084
2085		if (cur_pos < sbi->blocks_per_seg)
2086			goto find_next;
2087
2088		release_discard_addr(entry);
2089		dcc->nr_discards -= total_len;
2090	}
2091
2092	wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097	dev_t dev = sbi->sb->s_bdev->bd_dev;
2098	struct discard_cmd_control *dcc;
2099	int err = 0, i;
2100
2101	if (SM_I(sbi)->dcc_info) {
2102		dcc = SM_I(sbi)->dcc_info;
2103		goto init_thread;
2104	}
2105
2106	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107	if (!dcc)
2108		return -ENOMEM;
2109
2110	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111	INIT_LIST_HEAD(&dcc->entry_list);
2112	for (i = 0; i < MAX_PLIST_NUM; i++)
2113		INIT_LIST_HEAD(&dcc->pend_list[i]);
2114	INIT_LIST_HEAD(&dcc->wait_list);
2115	INIT_LIST_HEAD(&dcc->fstrim_list);
2116	mutex_init(&dcc->cmd_lock);
2117	atomic_set(&dcc->issued_discard, 0);
2118	atomic_set(&dcc->queued_discard, 0);
2119	atomic_set(&dcc->discard_cmd_cnt, 0);
2120	dcc->nr_discards = 0;
2121	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122	dcc->undiscard_blks = 0;
2123	dcc->next_pos = 0;
2124	dcc->root = RB_ROOT_CACHED;
2125	dcc->rbtree_check = false;
2126
2127	init_waitqueue_head(&dcc->discard_wait_queue);
2128	SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132	if (IS_ERR(dcc->f2fs_issue_discard)) {
2133		err = PTR_ERR(dcc->f2fs_issue_discard);
2134		kfree(dcc);
2135		SM_I(sbi)->dcc_info = NULL;
2136		return err;
2137	}
2138
2139	return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146	if (!dcc)
2147		return;
2148
2149	f2fs_stop_discard_thread(sbi);
2150
2151	/*
2152	 * Recovery can cache discard commands, so in error path of
2153	 * fill_super(), it needs to give a chance to handle them.
2154	 */
2155	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156		f2fs_issue_discard_timeout(sbi);
2157
2158	kfree(dcc);
2159	SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164	struct sit_info *sit_i = SIT_I(sbi);
2165
2166	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167		sit_i->dirty_sentries++;
2168		return false;
2169	}
2170
2171	return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175					unsigned int segno, int modified)
2176{
2177	struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179	se->type = type;
2180	if (modified)
2181		__mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185								block_t blkaddr)
2186{
2187	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189	if (segno == NULL_SEGNO)
2190		return 0;
2191	return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195						unsigned long long old_mtime)
2196{
2197	struct seg_entry *se;
2198	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199	unsigned long long ctime = get_mtime(sbi, false);
2200	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202	if (segno == NULL_SEGNO)
2203		return;
2204
2205	se = get_seg_entry(sbi, segno);
2206
2207	if (!se->mtime)
2208		se->mtime = mtime;
2209	else
2210		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211						se->valid_blocks + 1);
2212
2213	if (ctime > SIT_I(sbi)->max_mtime)
2214		SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219	struct seg_entry *se;
2220	unsigned int segno, offset;
2221	long int new_vblocks;
2222	bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224	bool mir_exist;
2225#endif
2226
2227	segno = GET_SEGNO(sbi, blkaddr);
2228
2229	se = get_seg_entry(sbi, segno);
2230	new_vblocks = se->valid_blocks + del;
2231	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236	se->valid_blocks = new_vblocks;
2237
2238	/* Update valid block bitmap */
2239	if (del > 0) {
2240		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242		mir_exist = f2fs_test_and_set_bit(offset,
2243						se->cur_valid_map_mir);
2244		if (unlikely(exist != mir_exist)) {
2245			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246				 blkaddr, exist);
2247			f2fs_bug_on(sbi, 1);
2248		}
2249#endif
2250		if (unlikely(exist)) {
2251			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252				 blkaddr);
2253			f2fs_bug_on(sbi, 1);
2254			se->valid_blocks--;
2255			del = 0;
2256		}
2257
2258		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259			sbi->discard_blks--;
2260
2261		/*
2262		 * SSR should never reuse block which is checkpointed
2263		 * or newly invalidated.
2264		 */
2265		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267				se->ckpt_valid_blocks++;
2268		}
2269	} else {
2270		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272		mir_exist = f2fs_test_and_clear_bit(offset,
2273						se->cur_valid_map_mir);
2274		if (unlikely(exist != mir_exist)) {
2275			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276				 blkaddr, exist);
2277			f2fs_bug_on(sbi, 1);
2278		}
2279#endif
2280		if (unlikely(!exist)) {
2281			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282				 blkaddr);
2283			f2fs_bug_on(sbi, 1);
2284			se->valid_blocks++;
2285			del = 0;
2286		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287			/*
2288			 * If checkpoints are off, we must not reuse data that
2289			 * was used in the previous checkpoint. If it was used
2290			 * before, we must track that to know how much space we
2291			 * really have.
2292			 */
2293			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294				spin_lock(&sbi->stat_lock);
2295				sbi->unusable_block_count++;
2296				spin_unlock(&sbi->stat_lock);
2297			}
2298		}
2299
2300		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301			sbi->discard_blks++;
2302	}
2303	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304		se->ckpt_valid_blocks += del;
2305
2306	__mark_sit_entry_dirty(sbi, segno);
2307
2308	/* update total number of valid blocks to be written in ckpt area */
2309	SIT_I(sbi)->written_valid_blocks += del;
2310
2311	if (__is_large_section(sbi))
2312		get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317	unsigned int segno = GET_SEGNO(sbi, addr);
2318	struct sit_info *sit_i = SIT_I(sbi);
2319
2320	f2fs_bug_on(sbi, addr == NULL_ADDR);
2321	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322		return;
2323
2324	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325	f2fs_invalidate_compress_page(sbi, addr);
2326
2327	/* add it into sit main buffer */
2328	down_write(&sit_i->sentry_lock);
2329
2330	update_segment_mtime(sbi, addr, 0);
2331	update_sit_entry(sbi, addr, -1);
2332
2333	/* add it into dirty seglist */
2334	locate_dirty_segment(sbi, segno);
2335
2336	up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341	struct sit_info *sit_i = SIT_I(sbi);
2342	unsigned int segno, offset;
2343	struct seg_entry *se;
2344	bool is_cp = false;
2345
2346	if (!__is_valid_data_blkaddr(blkaddr))
2347		return true;
2348
2349	down_read(&sit_i->sentry_lock);
2350
2351	segno = GET_SEGNO(sbi, blkaddr);
2352	se = get_seg_entry(sbi, segno);
2353	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356		is_cp = true;
2357
2358	up_read(&sit_i->sentry_lock);
2359
2360	return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367					struct f2fs_summary *sum)
2368{
2369	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370	void *addr = curseg->sum_blk;
2371
2372	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373	memcpy(addr, sum, sizeof(struct f2fs_summary));
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381	int valid_sum_count = 0;
2382	int i, sum_in_page;
2383
2384	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385		if (sbi->ckpt->alloc_type[i] == SSR)
2386			valid_sum_count += sbi->blocks_per_seg;
2387		else {
2388			if (for_ra)
2389				valid_sum_count += le16_to_cpu(
2390					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391			else
2392				valid_sum_count += curseg_blkoff(sbi, i);
2393		}
2394	}
2395
2396	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398	if (valid_sum_count <= sum_in_page)
2399		return 1;
2400	else if ((valid_sum_count - sum_in_page) <=
2401		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402		return 2;
2403	return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411	if (unlikely(f2fs_cp_error(sbi)))
2412		return ERR_PTR(-EIO);
2413	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417					void *src, block_t blk_addr)
2418{
2419	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421	memcpy(page_address(page), src, PAGE_SIZE);
2422	set_page_dirty(page);
2423	f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433						int type, block_t blk_addr)
2434{
2435	struct curseg_info *curseg = CURSEG_I(sbi, type);
2436	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437	struct f2fs_summary_block *src = curseg->sum_blk;
2438	struct f2fs_summary_block *dst;
2439
2440	dst = (struct f2fs_summary_block *)page_address(page);
2441	memset(dst, 0, PAGE_SIZE);
2442
2443	mutex_lock(&curseg->curseg_mutex);
2444
2445	down_read(&curseg->journal_rwsem);
2446	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447	up_read(&curseg->journal_rwsem);
2448
2449	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452	mutex_unlock(&curseg->curseg_mutex);
2453
2454	set_page_dirty(page);
2455	f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459				struct curseg_info *curseg, int type)
2460{
2461	unsigned int segno = curseg->segno + 1;
2462	struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465		return !test_bit(segno, free_i->free_segmap);
2466	return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474			unsigned int *newseg, bool new_sec, int dir)
2475{
2476	struct free_segmap_info *free_i = FREE_I(sbi);
2477	unsigned int segno, secno, zoneno;
2478	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481	unsigned int left_start = hint;
2482	bool init = true;
2483	int go_left = 0;
2484	int i;
2485
2486	spin_lock(&free_i->segmap_lock);
2487
2488	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489		segno = find_next_zero_bit(free_i->free_segmap,
2490			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492			goto got_it;
2493	}
2494find_other_zone:
2495	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496	if (secno >= MAIN_SECS(sbi)) {
2497		if (dir == ALLOC_RIGHT) {
2498			secno = find_next_zero_bit(free_i->free_secmap,
2499							MAIN_SECS(sbi), 0);
2500			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501		} else {
2502			go_left = 1;
2503			left_start = hint - 1;
2504		}
2505	}
2506	if (go_left == 0)
2507		goto skip_left;
2508
2509	while (test_bit(left_start, free_i->free_secmap)) {
2510		if (left_start > 0) {
2511			left_start--;
2512			continue;
2513		}
2514		left_start = find_next_zero_bit(free_i->free_secmap,
2515							MAIN_SECS(sbi), 0);
2516		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517		break;
2518	}
2519	secno = left_start;
2520skip_left:
2521	segno = GET_SEG_FROM_SEC(sbi, secno);
2522	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524	/* give up on finding another zone */
2525	if (!init)
2526		goto got_it;
2527	if (sbi->secs_per_zone == 1)
2528		goto got_it;
2529	if (zoneno == old_zoneno)
2530		goto got_it;
2531	if (dir == ALLOC_LEFT) {
2532		if (!go_left && zoneno + 1 >= total_zones)
2533			goto got_it;
2534		if (go_left && zoneno == 0)
2535			goto got_it;
2536	}
2537	for (i = 0; i < NR_CURSEG_TYPE; i++)
2538		if (CURSEG_I(sbi, i)->zone == zoneno)
2539			break;
2540
2541	if (i < NR_CURSEG_TYPE) {
2542		/* zone is in user, try another */
2543		if (go_left)
2544			hint = zoneno * sbi->secs_per_zone - 1;
2545		else if (zoneno + 1 >= total_zones)
2546			hint = 0;
2547		else
2548			hint = (zoneno + 1) * sbi->secs_per_zone;
2549		init = false;
2550		goto find_other_zone;
2551	}
2552got_it:
2553	/* set it as dirty segment in free segmap */
2554	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555	__set_inuse(sbi, segno);
2556	*newseg = segno;
2557	spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562	struct curseg_info *curseg = CURSEG_I(sbi, type);
2563	struct summary_footer *sum_footer;
2564	unsigned short seg_type = curseg->seg_type;
2565
2566	curseg->inited = true;
2567	curseg->segno = curseg->next_segno;
2568	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569	curseg->next_blkoff = 0;
2570	curseg->next_segno = NULL_SEGNO;
2571
2572	sum_footer = &(curseg->sum_blk->footer);
2573	memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575	sanity_check_seg_type(sbi, seg_type);
2576
2577	if (IS_DATASEG(seg_type))
2578		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579	if (IS_NODESEG(seg_type))
2580		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586	struct curseg_info *curseg = CURSEG_I(sbi, type);
2587	unsigned short seg_type = curseg->seg_type;
2588
2589	sanity_check_seg_type(sbi, seg_type);
2590
2591	/* if segs_per_sec is large than 1, we need to keep original policy. */
2592	if (__is_large_section(sbi))
2593		return curseg->segno;
2594
2595	/* inmem log may not locate on any segment after mount */
2596	if (!curseg->inited)
2597		return 0;
2598
2599	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600		return 0;
2601
2602	if (test_opt(sbi, NOHEAP) &&
2603		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604		return 0;
2605
2606	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609	/* find segments from 0 to reuse freed segments */
2610	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611		return 0;
2612
2613	return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623	unsigned short seg_type = curseg->seg_type;
2624	unsigned int segno = curseg->segno;
2625	int dir = ALLOC_LEFT;
2626
2627	if (curseg->inited)
2628		write_sum_page(sbi, curseg->sum_blk,
2629				GET_SUM_BLOCK(sbi, segno));
2630	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631		dir = ALLOC_RIGHT;
2632
2633	if (test_opt(sbi, NOHEAP))
2634		dir = ALLOC_RIGHT;
2635
2636	segno = __get_next_segno(sbi, type);
2637	get_new_segment(sbi, &segno, new_sec, dir);
2638	curseg->next_segno = segno;
2639	reset_curseg(sbi, type, 1);
2640	curseg->alloc_type = LFS;
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644					int segno, block_t start)
2645{
2646	struct seg_entry *se = get_seg_entry(sbi, segno);
2647	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651	int i;
2652
2653	for (i = 0; i < entries; i++)
2654		target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665				struct curseg_info *seg)
2666{
2667	if (seg->alloc_type == SSR)
2668		seg->next_blkoff =
2669			__next_free_blkoff(sbi, seg->segno,
2670						seg->next_blkoff + 1);
2671	else
2672		seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687	struct curseg_info *curseg = CURSEG_I(sbi, type);
2688	unsigned int new_segno = curseg->next_segno;
2689	struct f2fs_summary_block *sum_node;
2690	struct page *sum_page;
2691
2692	if (flush)
2693		write_sum_page(sbi, curseg->sum_blk,
2694					GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696	__set_test_and_inuse(sbi, new_segno);
2697
2698	mutex_lock(&dirty_i->seglist_lock);
2699	__remove_dirty_segment(sbi, new_segno, PRE);
2700	__remove_dirty_segment(sbi, new_segno, DIRTY);
2701	mutex_unlock(&dirty_i->seglist_lock);
2702
2703	reset_curseg(sbi, type, 1);
2704	curseg->alloc_type = SSR;
2705	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707	sum_page = f2fs_get_sum_page(sbi, new_segno);
2708	if (IS_ERR(sum_page)) {
2709		/* GC won't be able to use stale summary pages by cp_error */
2710		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711		return;
2712	}
2713	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715	f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719				int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722					int target_type, int alloc_mode,
2723					unsigned long long age)
2724{
2725	struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727	curseg->seg_type = target_type;
2728
2729	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732		curseg->seg_type = se->type;
2733		change_curseg(sbi, type, true);
2734	} else {
2735		/* allocate cold segment by default */
2736		curseg->seg_type = CURSEG_COLD_DATA;
2737		new_curseg(sbi, type, true);
2738	}
2739	stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746	if (!sbi->am.atgc_enabled)
2747		return;
2748
2749	down_read(&SM_I(sbi)->curseg_lock);
2750
2751	mutex_lock(&curseg->curseg_mutex);
2752	down_write(&SIT_I(sbi)->sentry_lock);
2753
2754	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756	up_write(&SIT_I(sbi)->sentry_lock);
2757	mutex_unlock(&curseg->curseg_mutex);
2758
2759	up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764	__f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769	struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771	mutex_lock(&curseg->curseg_mutex);
2772	if (!curseg->inited)
2773		goto out;
2774
2775	if (get_valid_blocks(sbi, curseg->segno, false)) {
2776		write_sum_page(sbi, curseg->sum_blk,
2777				GET_SUM_BLOCK(sbi, curseg->segno));
2778	} else {
2779		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780		__set_test_and_free(sbi, curseg->segno, true);
2781		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782	}
2783out:
2784	mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791	if (sbi->am.atgc_enabled)
2792		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799	mutex_lock(&curseg->curseg_mutex);
2800	if (!curseg->inited)
2801		goto out;
2802	if (get_valid_blocks(sbi, curseg->segno, false))
2803		goto out;
2804
2805	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806	__set_test_and_inuse(sbi, curseg->segno);
2807	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809	mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816	if (sbi->am.atgc_enabled)
2817		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821				int alloc_mode, unsigned long long age)
2822{
2823	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825	unsigned segno = NULL_SEGNO;
2826	unsigned short seg_type = curseg->seg_type;
2827	int i, cnt;
2828	bool reversed = false;
2829
2830	sanity_check_seg_type(sbi, seg_type);
2831
2832	/* f2fs_need_SSR() already forces to do this */
2833	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834		curseg->next_segno = segno;
2835		return 1;
2836	}
2837
2838	/* For node segments, let's do SSR more intensively */
2839	if (IS_NODESEG(seg_type)) {
2840		if (seg_type >= CURSEG_WARM_NODE) {
2841			reversed = true;
2842			i = CURSEG_COLD_NODE;
2843		} else {
2844			i = CURSEG_HOT_NODE;
2845		}
2846		cnt = NR_CURSEG_NODE_TYPE;
2847	} else {
2848		if (seg_type >= CURSEG_WARM_DATA) {
2849			reversed = true;
2850			i = CURSEG_COLD_DATA;
2851		} else {
2852			i = CURSEG_HOT_DATA;
2853		}
2854		cnt = NR_CURSEG_DATA_TYPE;
2855	}
2856
2857	for (; cnt-- > 0; reversed ? i-- : i++) {
2858		if (i == seg_type)
2859			continue;
2860		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861			curseg->next_segno = segno;
2862			return 1;
2863		}
2864	}
2865
2866	/* find valid_blocks=0 in dirty list */
2867	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868		segno = get_free_segment(sbi);
2869		if (segno != NULL_SEGNO) {
2870			curseg->next_segno = segno;
2871			return 1;
2872		}
2873	}
2874	return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882						int type, bool force)
2883{
2884	struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886	if (force)
2887		new_curseg(sbi, type, true);
2888	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889					curseg->seg_type == CURSEG_WARM_NODE)
2890		new_curseg(sbi, type, false);
2891	else if (curseg->alloc_type == LFS &&
2892			is_next_segment_free(sbi, curseg, type) &&
2893			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894		new_curseg(sbi, type, false);
2895	else if (f2fs_need_SSR(sbi) &&
2896			get_ssr_segment(sbi, type, SSR, 0))
2897		change_curseg(sbi, type, true);
2898	else
2899		new_curseg(sbi, type, false);
2900
2901	stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905					unsigned int start, unsigned int end)
2906{
2907	struct curseg_info *curseg = CURSEG_I(sbi, type);
2908	unsigned int segno;
2909
2910	down_read(&SM_I(sbi)->curseg_lock);
2911	mutex_lock(&curseg->curseg_mutex);
2912	down_write(&SIT_I(sbi)->sentry_lock);
2913
2914	segno = CURSEG_I(sbi, type)->segno;
2915	if (segno < start || segno > end)
2916		goto unlock;
2917
2918	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919		change_curseg(sbi, type, true);
2920	else
2921		new_curseg(sbi, type, true);
2922
2923	stat_inc_seg_type(sbi, curseg);
2924
2925	locate_dirty_segment(sbi, segno);
2926unlock:
2927	up_write(&SIT_I(sbi)->sentry_lock);
2928
2929	if (segno != curseg->segno)
2930		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931			    type, segno, curseg->segno);
2932
2933	mutex_unlock(&curseg->curseg_mutex);
2934	up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938						bool new_sec, bool force)
2939{
2940	struct curseg_info *curseg = CURSEG_I(sbi, type);
2941	unsigned int old_segno;
2942
2943	if (!curseg->inited)
2944		goto alloc;
2945
2946	if (force || curseg->next_blkoff ||
2947		get_valid_blocks(sbi, curseg->segno, new_sec))
2948		goto alloc;
2949
2950	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951		return;
2952alloc:
2953	old_segno = curseg->segno;
2954	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955	locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959						int type, bool force)
2960{
2961	__allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966	down_read(&SM_I(sbi)->curseg_lock);
2967	down_write(&SIT_I(sbi)->sentry_lock);
2968	__allocate_new_section(sbi, type, force);
2969	up_write(&SIT_I(sbi)->sentry_lock);
2970	up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975	int i;
2976
2977	down_read(&SM_I(sbi)->curseg_lock);
2978	down_write(&SIT_I(sbi)->sentry_lock);
2979	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980		__allocate_new_segment(sbi, i, false, false);
2981	up_write(&SIT_I(sbi)->sentry_lock);
2982	up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986	.allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990						struct cp_control *cpc)
2991{
2992	__u64 trim_start = cpc->trim_start;
2993	bool has_candidate = false;
2994
2995	down_write(&SIT_I(sbi)->sentry_lock);
2996	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997		if (add_discard_addrs(sbi, cpc, true)) {
2998			has_candidate = true;
2999			break;
3000		}
3001	}
3002	up_write(&SIT_I(sbi)->sentry_lock);
3003
3004	cpc->trim_start = trim_start;
3005	return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009					struct discard_policy *dpolicy,
3010					unsigned int start, unsigned int end)
3011{
3012	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015	struct discard_cmd *dc;
3016	struct blk_plug plug;
3017	int issued;
3018	unsigned int trimmed = 0;
3019
3020next:
3021	issued = 0;
3022
3023	mutex_lock(&dcc->cmd_lock);
3024	if (unlikely(dcc->rbtree_check))
3025		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026							&dcc->root, false));
3027
3028	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029					NULL, start,
3030					(struct rb_entry **)&prev_dc,
3031					(struct rb_entry **)&next_dc,
3032					&insert_p, &insert_parent, true, NULL);
3033	if (!dc)
3034		dc = next_dc;
3035
3036	blk_start_plug(&plug);
3037
3038	while (dc && dc->lstart <= end) {
3039		struct rb_node *node;
3040		int err = 0;
3041
3042		if (dc->len < dpolicy->granularity)
3043			goto skip;
3044
3045		if (dc->state != D_PREP) {
3046			list_move_tail(&dc->list, &dcc->fstrim_list);
3047			goto skip;
3048		}
3049
3050		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052		if (issued >= dpolicy->max_requests) {
3053			start = dc->lstart + dc->len;
3054
3055			if (err)
3056				__remove_discard_cmd(sbi, dc);
3057
3058			blk_finish_plug(&plug);
3059			mutex_unlock(&dcc->cmd_lock);
3060			trimmed += __wait_all_discard_cmd(sbi, NULL);
3061			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062			goto next;
3063		}
3064skip:
3065		node = rb_next(&dc->rb_node);
3066		if (err)
3067			__remove_discard_cmd(sbi, dc);
3068		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070		if (fatal_signal_pending(current))
3071			break;
3072	}
3073
3074	blk_finish_plug(&plug);
3075	mutex_unlock(&dcc->cmd_lock);
3076
3077	return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3083	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084	unsigned int start_segno, end_segno;
3085	block_t start_block, end_block;
3086	struct cp_control cpc;
3087	struct discard_policy dpolicy;
3088	unsigned long long trimmed = 0;
3089	int err = 0;
3090	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093		return -EINVAL;
3094
3095	if (end < MAIN_BLKADDR(sbi))
3096		goto out;
3097
3098	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100		return -EFSCORRUPTED;
3101	}
3102
3103	/* start/end segment number in main_area */
3104	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106						GET_SEGNO(sbi, end);
3107	if (need_align) {
3108		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110	}
3111
3112	cpc.reason = CP_DISCARD;
3113	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114	cpc.trim_start = start_segno;
3115	cpc.trim_end = end_segno;
3116
3117	if (sbi->discard_blks == 0)
3118		goto out;
3119
3120	down_write(&sbi->gc_lock);
3121	err = f2fs_write_checkpoint(sbi, &cpc);
3122	up_write(&sbi->gc_lock);
3123	if (err)
3124		goto out;
3125
3126	/*
3127	 * We filed discard candidates, but actually we don't need to wait for
3128	 * all of them, since they'll be issued in idle time along with runtime
3129	 * discard option. User configuration looks like using runtime discard
3130	 * or periodic fstrim instead of it.
3131	 */
3132	if (f2fs_realtime_discard_enable(sbi))
3133		goto out;
3134
3135	start_block = START_BLOCK(sbi, start_segno);
3136	end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140					start_block, end_block);
3141
3142	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143					start_block, end_block);
3144out:
3145	if (!err)
3146		range->len = F2FS_BLK_TO_BYTES(trimmed);
3147	return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151					struct curseg_info *curseg)
3152{
3153	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154							curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159	switch (hint) {
3160	case WRITE_LIFE_SHORT:
3161		return CURSEG_HOT_DATA;
3162	case WRITE_LIFE_EXTREME:
3163		return CURSEG_COLD_DATA;
3164	default:
3165		return CURSEG_WARM_DATA;
3166	}
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User                  F2FS                     Block
3178 * ----                  ----                     -----
3179 *                       META                     WRITE_LIFE_NOT_SET
3180 *                       HOT_NODE                 "
3181 *                       WARM_NODE                "
3182 *                       COLD_NODE                "
3183 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3184 * extension list        "                        "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE       "                        "
3191 * WRITE_LIFE_MEDIUM     "                        "
3192 * WRITE_LIFE_LONG       "                        "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User                  F2FS                     Block
3205 * ----                  ----                     -----
3206 *                       META                     WRITE_LIFE_MEDIUM;
3207 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3208 *                       WARM_NODE                "
3209 *                       COLD_NODE                WRITE_LIFE_NONE
3210 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3211 * extension list        "                        "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE       "                        "
3218 * WRITE_LIFE_MEDIUM     "                        "
3219 * WRITE_LIFE_LONG       "                        "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231				enum page_type type, enum temp_type temp)
3232{
3233	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234		if (type == DATA) {
3235			if (temp == WARM)
3236				return WRITE_LIFE_NOT_SET;
3237			else if (temp == HOT)
3238				return WRITE_LIFE_SHORT;
3239			else if (temp == COLD)
3240				return WRITE_LIFE_EXTREME;
3241		} else {
3242			return WRITE_LIFE_NOT_SET;
3243		}
3244	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245		if (type == DATA) {
3246			if (temp == WARM)
3247				return WRITE_LIFE_LONG;
3248			else if (temp == HOT)
3249				return WRITE_LIFE_SHORT;
3250			else if (temp == COLD)
3251				return WRITE_LIFE_EXTREME;
3252		} else if (type == NODE) {
3253			if (temp == WARM || temp == HOT)
3254				return WRITE_LIFE_NOT_SET;
3255			else if (temp == COLD)
3256				return WRITE_LIFE_NONE;
3257		} else if (type == META) {
3258			return WRITE_LIFE_MEDIUM;
3259		}
3260	}
3261	return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266	if (fio->type == DATA)
3267		return CURSEG_HOT_DATA;
3268	else
3269		return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274	if (fio->type == DATA) {
3275		struct inode *inode = fio->page->mapping->host;
3276
3277		if (S_ISDIR(inode->i_mode))
3278			return CURSEG_HOT_DATA;
3279		else
3280			return CURSEG_COLD_DATA;
3281	} else {
3282		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283			return CURSEG_WARM_NODE;
3284		else
3285			return CURSEG_COLD_NODE;
3286	}
3287}
3288
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291	if (fio->type == DATA) {
3292		struct inode *inode = fio->page->mapping->host;
3293
3294		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295			return CURSEG_COLD_DATA_PINNED;
3296
3297		if (page_private_gcing(fio->page)) {
3298			if (fio->sbi->am.atgc_enabled &&
3299				(fio->io_type == FS_DATA_IO) &&
3300				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3301				return CURSEG_ALL_DATA_ATGC;
3302			else
3303				return CURSEG_COLD_DATA;
3304		}
3305		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306			return CURSEG_COLD_DATA;
3307		if (file_is_hot(inode) ||
3308				is_inode_flag_set(inode, FI_HOT_DATA) ||
3309				f2fs_is_atomic_file(inode) ||
3310				f2fs_is_volatile_file(inode))
3311			return CURSEG_HOT_DATA;
3312		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313	} else {
3314		if (IS_DNODE(fio->page))
3315			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316						CURSEG_HOT_NODE;
3317		return CURSEG_COLD_NODE;
3318	}
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323	int type = 0;
3324
3325	switch (F2FS_OPTION(fio->sbi).active_logs) {
3326	case 2:
3327		type = __get_segment_type_2(fio);
3328		break;
3329	case 4:
3330		type = __get_segment_type_4(fio);
3331		break;
3332	case 6:
3333		type = __get_segment_type_6(fio);
3334		break;
3335	default:
3336		f2fs_bug_on(fio->sbi, true);
3337	}
3338
3339	if (IS_HOT(type))
3340		fio->temp = HOT;
3341	else if (IS_WARM(type))
3342		fio->temp = WARM;
3343	else
3344		fio->temp = COLD;
3345	return type;
3346}
3347
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349		block_t old_blkaddr, block_t *new_blkaddr,
3350		struct f2fs_summary *sum, int type,
3351		struct f2fs_io_info *fio)
3352{
3353	struct sit_info *sit_i = SIT_I(sbi);
3354	struct curseg_info *curseg = CURSEG_I(sbi, type);
3355	unsigned long long old_mtime;
3356	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357	struct seg_entry *se = NULL;
3358
3359	down_read(&SM_I(sbi)->curseg_lock);
3360
3361	mutex_lock(&curseg->curseg_mutex);
3362	down_write(&sit_i->sentry_lock);
3363
3364	if (from_gc) {
3365		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367		sanity_check_seg_type(sbi, se->type);
3368		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369	}
3370	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376	/*
3377	 * __add_sum_entry should be resided under the curseg_mutex
3378	 * because, this function updates a summary entry in the
3379	 * current summary block.
3380	 */
3381	__add_sum_entry(sbi, type, sum);
3382
3383	__refresh_next_blkoff(sbi, curseg);
3384
3385	stat_inc_block_count(sbi, curseg);
3386
3387	if (from_gc) {
3388		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389	} else {
3390		update_segment_mtime(sbi, old_blkaddr, 0);
3391		old_mtime = 0;
3392	}
3393	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395	/*
3396	 * SIT information should be updated before segment allocation,
3397	 * since SSR needs latest valid block information.
3398	 */
3399	update_sit_entry(sbi, *new_blkaddr, 1);
3400	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401		update_sit_entry(sbi, old_blkaddr, -1);
3402
3403	if (!__has_curseg_space(sbi, curseg)) {
3404		if (from_gc)
3405			get_atssr_segment(sbi, type, se->type,
3406						AT_SSR, se->mtime);
3407		else
3408			sit_i->s_ops->allocate_segment(sbi, type, false);
3409	}
3410	/*
3411	 * segment dirty status should be updated after segment allocation,
3412	 * so we just need to update status only one time after previous
3413	 * segment being closed.
3414	 */
3415	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
3418	up_write(&sit_i->sentry_lock);
3419
3420	if (page && IS_NODESEG(type)) {
3421		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423		f2fs_inode_chksum_set(sbi, page);
3424	}
3425
3426	if (fio) {
3427		struct f2fs_bio_info *io;
3428
3429		if (F2FS_IO_ALIGNED(sbi))
3430			fio->retry = false;
3431
3432		INIT_LIST_HEAD(&fio->list);
3433		fio->in_list = true;
3434		io = sbi->write_io[fio->type] + fio->temp;
3435		spin_lock(&io->io_lock);
3436		list_add_tail(&fio->list, &io->io_list);
3437		spin_unlock(&io->io_lock);
3438	}
3439
3440	mutex_unlock(&curseg->curseg_mutex);
3441
3442	up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
3446{
3447	struct f2fs_sb_info *sbi = fio->sbi;
3448	unsigned int devidx;
3449
3450	if (!f2fs_is_multi_device(sbi))
3451		return;
3452
3453	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454
3455	/* update device state for fsync */
3456	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458	/* update device state for checkpoint */
3459	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460		spin_lock(&sbi->dev_lock);
3461		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462		spin_unlock(&sbi->dev_lock);
3463	}
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468	int type = __get_segment_type(fio);
3469	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471	if (keep_order)
3472		down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475			&fio->new_blkaddr, sum, type, fio);
3476	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478					fio->old_blkaddr, fio->old_blkaddr);
3479		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480	}
3481
3482	/* writeout dirty page into bdev */
3483	f2fs_submit_page_write(fio);
3484	if (fio->retry) {
3485		fio->old_blkaddr = fio->new_blkaddr;
3486		goto reallocate;
3487	}
3488
3489	update_device_state(fio);
3490
3491	if (keep_order)
3492		up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496					enum iostat_type io_type)
3497{
3498	struct f2fs_io_info fio = {
3499		.sbi = sbi,
3500		.type = META,
3501		.temp = HOT,
3502		.op = REQ_OP_WRITE,
3503		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504		.old_blkaddr = page->index,
3505		.new_blkaddr = page->index,
3506		.page = page,
3507		.encrypted_page = NULL,
3508		.in_list = false,
3509	};
3510
3511	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512		fio.op_flags &= ~REQ_META;
3513
3514	set_page_writeback(page);
3515	ClearPageError(page);
3516	f2fs_submit_page_write(&fio);
3517
3518	stat_inc_meta_count(sbi, page->index);
3519	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524	struct f2fs_summary sum;
3525
3526	set_summary(&sum, nid, 0, 0);
3527	do_write_page(&sum, fio);
3528
3529	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533					struct f2fs_io_info *fio)
3534{
3535	struct f2fs_sb_info *sbi = fio->sbi;
3536	struct f2fs_summary sum;
3537
3538	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540	do_write_page(&sum, fio);
3541	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548	int err;
3549	struct f2fs_sb_info *sbi = fio->sbi;
3550	unsigned int segno;
3551
3552	fio->new_blkaddr = fio->old_blkaddr;
3553	/* i/o temperature is needed for passing down write hints */
3554	__get_segment_type(fio);
3555
3556	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559		set_sbi_flag(sbi, SBI_NEED_FSCK);
3560		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561			  __func__, segno);
3562		err = -EFSCORRUPTED;
3563		goto drop_bio;
3564	}
3565
3566	if (f2fs_cp_error(sbi)) {
3567		err = -EIO;
3568		goto drop_bio;
3569	}
3570
3571	stat_inc_inplace_blocks(fio->sbi);
3572
3573	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574		err = f2fs_merge_page_bio(fio);
3575	else
3576		err = f2fs_submit_page_bio(fio);
3577	if (!err) {
3578		update_device_state(fio);
3579		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580	}
3581
3582	return err;
3583drop_bio:
3584	if (fio->bio && *(fio->bio)) {
3585		struct bio *bio = *(fio->bio);
3586
3587		bio->bi_status = BLK_STS_IOERR;
3588		bio_endio(bio);
3589		*(fio->bio) = NULL;
3590	}
3591	return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595						unsigned int segno)
3596{
3597	int i;
3598
3599	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600		if (CURSEG_I(sbi, i)->segno == segno)
3601			break;
3602	}
3603	return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607				block_t old_blkaddr, block_t new_blkaddr,
3608				bool recover_curseg, bool recover_newaddr,
3609				bool from_gc)
3610{
3611	struct sit_info *sit_i = SIT_I(sbi);
3612	struct curseg_info *curseg;
3613	unsigned int segno, old_cursegno;
3614	struct seg_entry *se;
3615	int type;
3616	unsigned short old_blkoff;
3617	unsigned char old_alloc_type;
3618
3619	segno = GET_SEGNO(sbi, new_blkaddr);
3620	se = get_seg_entry(sbi, segno);
3621	type = se->type;
3622
3623	down_write(&SM_I(sbi)->curseg_lock);
3624
3625	if (!recover_curseg) {
3626		/* for recovery flow */
3627		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628			if (old_blkaddr == NULL_ADDR)
3629				type = CURSEG_COLD_DATA;
3630			else
3631				type = CURSEG_WARM_DATA;
3632		}
3633	} else {
3634		if (IS_CURSEG(sbi, segno)) {
3635			/* se->type is volatile as SSR allocation */
3636			type = __f2fs_get_curseg(sbi, segno);
3637			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638		} else {
3639			type = CURSEG_WARM_DATA;
3640		}
3641	}
3642
3643	f2fs_bug_on(sbi, !IS_DATASEG(type));
3644	curseg = CURSEG_I(sbi, type);
3645
3646	mutex_lock(&curseg->curseg_mutex);
3647	down_write(&sit_i->sentry_lock);
3648
3649	old_cursegno = curseg->segno;
3650	old_blkoff = curseg->next_blkoff;
3651	old_alloc_type = curseg->alloc_type;
3652
3653	/* change the current segment */
3654	if (segno != curseg->segno) {
3655		curseg->next_segno = segno;
3656		change_curseg(sbi, type, true);
3657	}
3658
3659	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660	__add_sum_entry(sbi, type, sum);
3661
3662	if (!recover_curseg || recover_newaddr) {
3663		if (!from_gc)
3664			update_segment_mtime(sbi, new_blkaddr, 0);
3665		update_sit_entry(sbi, new_blkaddr, 1);
3666	}
3667	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668		invalidate_mapping_pages(META_MAPPING(sbi),
3669					old_blkaddr, old_blkaddr);
3670		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671		if (!from_gc)
3672			update_segment_mtime(sbi, old_blkaddr, 0);
3673		update_sit_entry(sbi, old_blkaddr, -1);
3674	}
3675
3676	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679	locate_dirty_segment(sbi, old_cursegno);
3680
3681	if (recover_curseg) {
3682		if (old_cursegno != curseg->segno) {
3683			curseg->next_segno = old_cursegno;
3684			change_curseg(sbi, type, true);
3685		}
3686		curseg->next_blkoff = old_blkoff;
3687		curseg->alloc_type = old_alloc_type;
3688	}
3689
3690	up_write(&sit_i->sentry_lock);
3691	mutex_unlock(&curseg->curseg_mutex);
3692	up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696				block_t old_addr, block_t new_addr,
3697				unsigned char version, bool recover_curseg,
3698				bool recover_newaddr)
3699{
3700	struct f2fs_summary sum;
3701
3702	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705					recover_curseg, recover_newaddr, false);
3706
3707	f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711				enum page_type type, bool ordered, bool locked)
3712{
3713	if (PageWriteback(page)) {
3714		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716		/* submit cached LFS IO */
3717		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718		/* sbumit cached IPU IO */
3719		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720		if (ordered) {
3721			wait_on_page_writeback(page);
3722			f2fs_bug_on(sbi, locked && PageWriteback(page));
3723		} else {
3724			wait_for_stable_page(page);
3725		}
3726	}
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732	struct page *cpage;
3733
3734	if (!f2fs_post_read_required(inode))
3735		return;
3736
3737	if (!__is_valid_data_blkaddr(blkaddr))
3738		return;
3739
3740	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741	if (cpage) {
3742		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743		f2fs_put_page(cpage, 1);
3744	}
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748								block_t len)
3749{
3750	block_t i;
3751
3752	for (i = 0; i < len; i++)
3753		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759	struct curseg_info *seg_i;
3760	unsigned char *kaddr;
3761	struct page *page;
3762	block_t start;
3763	int i, j, offset;
3764
3765	start = start_sum_block(sbi);
3766
3767	page = f2fs_get_meta_page(sbi, start++);
3768	if (IS_ERR(page))
3769		return PTR_ERR(page);
3770	kaddr = (unsigned char *)page_address(page);
3771
3772	/* Step 1: restore nat cache */
3773	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776	/* Step 2: restore sit cache */
3777	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779	offset = 2 * SUM_JOURNAL_SIZE;
3780
3781	/* Step 3: restore summary entries */
3782	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783		unsigned short blk_off;
3784		unsigned int segno;
3785
3786		seg_i = CURSEG_I(sbi, i);
3787		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789		seg_i->next_segno = segno;
3790		reset_curseg(sbi, i, 0);
3791		seg_i->alloc_type = ckpt->alloc_type[i];
3792		seg_i->next_blkoff = blk_off;
3793
3794		if (seg_i->alloc_type == SSR)
3795			blk_off = sbi->blocks_per_seg;
3796
3797		for (j = 0; j < blk_off; j++) {
3798			struct f2fs_summary *s;
3799
3800			s = (struct f2fs_summary *)(kaddr + offset);
3801			seg_i->sum_blk->entries[j] = *s;
3802			offset += SUMMARY_SIZE;
3803			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804						SUM_FOOTER_SIZE)
3805				continue;
3806
3807			f2fs_put_page(page, 1);
3808			page = NULL;
3809
3810			page = f2fs_get_meta_page(sbi, start++);
3811			if (IS_ERR(page))
3812				return PTR_ERR(page);
3813			kaddr = (unsigned char *)page_address(page);
3814			offset = 0;
3815		}
3816	}
3817	f2fs_put_page(page, 1);
3818	return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824	struct f2fs_summary_block *sum;
3825	struct curseg_info *curseg;
3826	struct page *new;
3827	unsigned short blk_off;
3828	unsigned int segno = 0;
3829	block_t blk_addr = 0;
3830	int err = 0;
3831
3832	/* get segment number and block addr */
3833	if (IS_DATASEG(type)) {
3834		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836							CURSEG_HOT_DATA]);
3837		if (__exist_node_summaries(sbi))
3838			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839		else
3840			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841	} else {
3842		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843							CURSEG_HOT_NODE]);
3844		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845							CURSEG_HOT_NODE]);
3846		if (__exist_node_summaries(sbi))
3847			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848							type - CURSEG_HOT_NODE);
3849		else
3850			blk_addr = GET_SUM_BLOCK(sbi, segno);
3851	}
3852
3853	new = f2fs_get_meta_page(sbi, blk_addr);
3854	if (IS_ERR(new))
3855		return PTR_ERR(new);
3856	sum = (struct f2fs_summary_block *)page_address(new);
3857
3858	if (IS_NODESEG(type)) {
3859		if (__exist_node_summaries(sbi)) {
3860			struct f2fs_summary *ns = &sum->entries[0];
3861			int i;
3862
3863			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864				ns->version = 0;
3865				ns->ofs_in_node = 0;
3866			}
3867		} else {
3868			err = f2fs_restore_node_summary(sbi, segno, sum);
3869			if (err)
3870				goto out;
3871		}
3872	}
3873
3874	/* set uncompleted segment to curseg */
3875	curseg = CURSEG_I(sbi, type);
3876	mutex_lock(&curseg->curseg_mutex);
3877
3878	/* update journal info */
3879	down_write(&curseg->journal_rwsem);
3880	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881	up_write(&curseg->journal_rwsem);
3882
3883	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885	curseg->next_segno = segno;
3886	reset_curseg(sbi, type, 0);
3887	curseg->alloc_type = ckpt->alloc_type[type];
3888	curseg->next_blkoff = blk_off;
3889	mutex_unlock(&curseg->curseg_mutex);
3890out:
3891	f2fs_put_page(new, 1);
3892	return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899	int type = CURSEG_HOT_DATA;
3900	int err;
3901
3902	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903		int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905		if (npages >= 2)
3906			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907							META_CP, true);
3908
3909		/* restore for compacted data summary */
3910		err = read_compacted_summaries(sbi);
3911		if (err)
3912			return err;
3913		type = CURSEG_HOT_NODE;
3914	}
3915
3916	if (__exist_node_summaries(sbi))
3917		f2fs_ra_meta_pages(sbi,
3918				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921	for (; type <= CURSEG_COLD_NODE; type++) {
3922		err = read_normal_summaries(sbi, type);
3923		if (err)
3924			return err;
3925	}
3926
3927	/* sanity check for summary blocks */
3928	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932		return -EINVAL;
3933	}
3934
3935	return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940	struct page *page;
3941	unsigned char *kaddr;
3942	struct f2fs_summary *summary;
3943	struct curseg_info *seg_i;
3944	int written_size = 0;
3945	int i, j;
3946
3947	page = f2fs_grab_meta_page(sbi, blkaddr++);
3948	kaddr = (unsigned char *)page_address(page);
3949	memset(kaddr, 0, PAGE_SIZE);
3950
3951	/* Step 1: write nat cache */
3952	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954	written_size += SUM_JOURNAL_SIZE;
3955
3956	/* Step 2: write sit cache */
3957	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959	written_size += SUM_JOURNAL_SIZE;
3960
3961	/* Step 3: write summary entries */
3962	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963		unsigned short blkoff;
3964
3965		seg_i = CURSEG_I(sbi, i);
3966		if (sbi->ckpt->alloc_type[i] == SSR)
3967			blkoff = sbi->blocks_per_seg;
3968		else
3969			blkoff = curseg_blkoff(sbi, i);
3970
3971		for (j = 0; j < blkoff; j++) {
3972			if (!page) {
3973				page = f2fs_grab_meta_page(sbi, blkaddr++);
3974				kaddr = (unsigned char *)page_address(page);
3975				memset(kaddr, 0, PAGE_SIZE);
3976				written_size = 0;
3977			}
3978			summary = (struct f2fs_summary *)(kaddr + written_size);
3979			*summary = seg_i->sum_blk->entries[j];
3980			written_size += SUMMARY_SIZE;
3981
3982			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983							SUM_FOOTER_SIZE)
3984				continue;
3985
3986			set_page_dirty(page);
3987			f2fs_put_page(page, 1);
3988			page = NULL;
3989		}
3990	}
3991	if (page) {
3992		set_page_dirty(page);
3993		f2fs_put_page(page, 1);
3994	}
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998					block_t blkaddr, int type)
3999{
4000	int i, end;
4001
4002	if (IS_DATASEG(type))
4003		end = type + NR_CURSEG_DATA_TYPE;
4004	else
4005		end = type + NR_CURSEG_NODE_TYPE;
4006
4007	for (i = type; i < end; i++)
4008		write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014		write_compacted_summaries(sbi, start_blk);
4015	else
4016		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025					unsigned int val, int alloc)
4026{
4027	int i;
4028
4029	if (type == NAT_JOURNAL) {
4030		for (i = 0; i < nats_in_cursum(journal); i++) {
4031			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032				return i;
4033		}
4034		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035			return update_nats_in_cursum(journal, 1);
4036	} else if (type == SIT_JOURNAL) {
4037		for (i = 0; i < sits_in_cursum(journal); i++)
4038			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039				return i;
4040		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041			return update_sits_in_cursum(journal, 1);
4042	}
4043	return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047					unsigned int segno)
4048{
4049	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053					unsigned int start)
4054{
4055	struct sit_info *sit_i = SIT_I(sbi);
4056	struct page *page;
4057	pgoff_t src_off, dst_off;
4058
4059	src_off = current_sit_addr(sbi, start);
4060	dst_off = next_sit_addr(sbi, src_off);
4061
4062	page = f2fs_grab_meta_page(sbi, dst_off);
4063	seg_info_to_sit_page(sbi, page, start);
4064
4065	set_page_dirty(page);
4066	set_to_next_sit(sit_i, start);
4067
4068	return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073	struct sit_entry_set *ses =
4074			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075
4076	ses->entry_cnt = 0;
4077	INIT_LIST_HEAD(&ses->set_list);
4078	return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083	list_del(&ses->set_list);
4084	kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088						struct list_head *head)
4089{
4090	struct sit_entry_set *next = ses;
4091
4092	if (list_is_last(&ses->set_list, head))
4093		return;
4094
4095	list_for_each_entry_continue(next, head, set_list)
4096		if (ses->entry_cnt <= next->entry_cnt)
4097			break;
4098
4099	list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104	struct sit_entry_set *ses;
4105	unsigned int start_segno = START_SEGNO(segno);
4106
4107	list_for_each_entry(ses, head, set_list) {
4108		if (ses->start_segno == start_segno) {
4109			ses->entry_cnt++;
4110			adjust_sit_entry_set(ses, head);
4111			return;
4112		}
4113	}
4114
4115	ses = grab_sit_entry_set();
4116
4117	ses->start_segno = start_segno;
4118	ses->entry_cnt++;
4119	list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124	struct f2fs_sm_info *sm_info = SM_I(sbi);
4125	struct list_head *set_list = &sm_info->sit_entry_set;
4126	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127	unsigned int segno;
4128
4129	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130		add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136	struct f2fs_journal *journal = curseg->journal;
4137	int i;
4138
4139	down_write(&curseg->journal_rwsem);
4140	for (i = 0; i < sits_in_cursum(journal); i++) {
4141		unsigned int segno;
4142		bool dirtied;
4143
4144		segno = le32_to_cpu(segno_in_journal(journal, i));
4145		dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147		if (!dirtied)
4148			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149	}
4150	update_sits_in_cursum(journal, -i);
4151	up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160	struct sit_info *sit_i = SIT_I(sbi);
4161	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163	struct f2fs_journal *journal = curseg->journal;
4164	struct sit_entry_set *ses, *tmp;
4165	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167	struct seg_entry *se;
4168
4169	down_write(&sit_i->sentry_lock);
4170
4171	if (!sit_i->dirty_sentries)
4172		goto out;
4173
4174	/*
4175	 * add and account sit entries of dirty bitmap in sit entry
4176	 * set temporarily
4177	 */
4178	add_sits_in_set(sbi);
4179
4180	/*
4181	 * if there are no enough space in journal to store dirty sit
4182	 * entries, remove all entries from journal and add and account
4183	 * them in sit entry set.
4184	 */
4185	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186								!to_journal)
4187		remove_sits_in_journal(sbi);
4188
4189	/*
4190	 * there are two steps to flush sit entries:
4191	 * #1, flush sit entries to journal in current cold data summary block.
4192	 * #2, flush sit entries to sit page.
4193	 */
4194	list_for_each_entry_safe(ses, tmp, head, set_list) {
4195		struct page *page = NULL;
4196		struct f2fs_sit_block *raw_sit = NULL;
4197		unsigned int start_segno = ses->start_segno;
4198		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199						(unsigned long)MAIN_SEGS(sbi));
4200		unsigned int segno = start_segno;
4201
4202		if (to_journal &&
4203			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204			to_journal = false;
4205
4206		if (to_journal) {
4207			down_write(&curseg->journal_rwsem);
4208		} else {
4209			page = get_next_sit_page(sbi, start_segno);
4210			raw_sit = page_address(page);
4211		}
4212
4213		/* flush dirty sit entries in region of current sit set */
4214		for_each_set_bit_from(segno, bitmap, end) {
4215			int offset, sit_offset;
4216
4217			se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220						SIT_VBLOCK_MAP_SIZE))
4221				f2fs_bug_on(sbi, 1);
4222#endif
4223
4224			/* add discard candidates */
4225			if (!(cpc->reason & CP_DISCARD)) {
4226				cpc->trim_start = segno;
4227				add_discard_addrs(sbi, cpc, false);
4228			}
4229
4230			if (to_journal) {
4231				offset = f2fs_lookup_journal_in_cursum(journal,
4232							SIT_JOURNAL, segno, 1);
4233				f2fs_bug_on(sbi, offset < 0);
4234				segno_in_journal(journal, offset) =
4235							cpu_to_le32(segno);
4236				seg_info_to_raw_sit(se,
4237					&sit_in_journal(journal, offset));
4238				check_block_count(sbi, segno,
4239					&sit_in_journal(journal, offset));
4240			} else {
4241				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242				seg_info_to_raw_sit(se,
4243						&raw_sit->entries[sit_offset]);
4244				check_block_count(sbi, segno,
4245						&raw_sit->entries[sit_offset]);
4246			}
4247
4248			__clear_bit(segno, bitmap);
4249			sit_i->dirty_sentries--;
4250			ses->entry_cnt--;
4251		}
4252
4253		if (to_journal)
4254			up_write(&curseg->journal_rwsem);
4255		else
4256			f2fs_put_page(page, 1);
4257
4258		f2fs_bug_on(sbi, ses->entry_cnt);
4259		release_sit_entry_set(ses);
4260	}
4261
4262	f2fs_bug_on(sbi, !list_empty(head));
4263	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265	if (cpc->reason & CP_DISCARD) {
4266		__u64 trim_start = cpc->trim_start;
4267
4268		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269			add_discard_addrs(sbi, cpc, false);
4270
4271		cpc->trim_start = trim_start;
4272	}
4273	up_write(&sit_i->sentry_lock);
4274
4275	set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281	struct sit_info *sit_i;
4282	unsigned int sit_segs, start;
4283	char *src_bitmap, *bitmap;
4284	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285
4286	/* allocate memory for SIT information */
4287	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288	if (!sit_i)
4289		return -ENOMEM;
4290
4291	SM_I(sbi)->sit_info = sit_i;
4292
4293	sit_i->sentries =
4294		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295					      MAIN_SEGS(sbi)),
4296			      GFP_KERNEL);
4297	if (!sit_i->sentries)
4298		return -ENOMEM;
4299
4300	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302								GFP_KERNEL);
4303	if (!sit_i->dirty_sentries_bitmap)
4304		return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312	if (!sit_i->bitmap)
4313		return -ENOMEM;
4314
4315	bitmap = sit_i->bitmap;
4316
4317	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318		sit_i->sentries[start].cur_valid_map = bitmap;
4319		bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321		sit_i->sentries[start].ckpt_valid_map = bitmap;
4322		bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326		bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329		sit_i->sentries[start].discard_map = bitmap;
4330		bitmap += SIT_VBLOCK_MAP_SIZE;
4331	}
4332
4333	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334	if (!sit_i->tmp_map)
4335		return -ENOMEM;
4336
4337	if (__is_large_section(sbi)) {
4338		sit_i->sec_entries =
4339			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340						      MAIN_SECS(sbi)),
4341				      GFP_KERNEL);
4342		if (!sit_i->sec_entries)
4343			return -ENOMEM;
4344	}
4345
4346	/* get information related with SIT */
4347	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349	/* setup SIT bitmap from ckeckpoint pack */
4350	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354	if (!sit_i->sit_bitmap)
4355		return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359					sit_bitmap_size, GFP_KERNEL);
4360	if (!sit_i->sit_bitmap_mir)
4361		return -ENOMEM;
4362
4363	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364					main_bitmap_size, GFP_KERNEL);
4365	if (!sit_i->invalid_segmap)
4366		return -ENOMEM;
4367#endif
4368
4369	/* init SIT information */
4370	sit_i->s_ops = &default_salloc_ops;
4371
4372	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374	sit_i->written_valid_blocks = 0;
4375	sit_i->bitmap_size = sit_bitmap_size;
4376	sit_i->dirty_sentries = 0;
4377	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379	sit_i->mounted_time = ktime_get_boottime_seconds();
4380	init_rwsem(&sit_i->sentry_lock);
4381	return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386	struct free_segmap_info *free_i;
4387	unsigned int bitmap_size, sec_bitmap_size;
4388
4389	/* allocate memory for free segmap information */
4390	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391	if (!free_i)
4392		return -ENOMEM;
4393
4394	SM_I(sbi)->free_info = free_i;
4395
4396	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398	if (!free_i->free_segmap)
4399		return -ENOMEM;
4400
4401	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403	if (!free_i->free_secmap)
4404		return -ENOMEM;
4405
4406	/* set all segments as dirty temporarily */
4407	memset(free_i->free_segmap, 0xff, bitmap_size);
4408	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410	/* init free segmap information */
4411	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412	free_i->free_segments = 0;
4413	free_i->free_sections = 0;
4414	spin_lock_init(&free_i->segmap_lock);
4415	return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420	struct curseg_info *array;
4421	int i;
4422
4423	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424					sizeof(*array)), GFP_KERNEL);
4425	if (!array)
4426		return -ENOMEM;
4427
4428	SM_I(sbi)->curseg_array = array;
4429
4430	for (i = 0; i < NO_CHECK_TYPE; i++) {
4431		mutex_init(&array[i].curseg_mutex);
4432		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433		if (!array[i].sum_blk)
4434			return -ENOMEM;
4435		init_rwsem(&array[i].journal_rwsem);
4436		array[i].journal = f2fs_kzalloc(sbi,
4437				sizeof(struct f2fs_journal), GFP_KERNEL);
4438		if (!array[i].journal)
4439			return -ENOMEM;
4440		if (i < NR_PERSISTENT_LOG)
4441			array[i].seg_type = CURSEG_HOT_DATA + i;
4442		else if (i == CURSEG_COLD_DATA_PINNED)
4443			array[i].seg_type = CURSEG_COLD_DATA;
4444		else if (i == CURSEG_ALL_DATA_ATGC)
4445			array[i].seg_type = CURSEG_COLD_DATA;
4446		array[i].segno = NULL_SEGNO;
4447		array[i].next_blkoff = 0;
4448		array[i].inited = false;
4449	}
4450	return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455	struct sit_info *sit_i = SIT_I(sbi);
4456	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457	struct f2fs_journal *journal = curseg->journal;
4458	struct seg_entry *se;
4459	struct f2fs_sit_entry sit;
4460	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461	unsigned int i, start, end;
4462	unsigned int readed, start_blk = 0;
4463	int err = 0;
4464	block_t total_node_blocks = 0;
4465
4466	do {
4467		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468							META_SIT, true);
4469
4470		start = start_blk * sit_i->sents_per_block;
4471		end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474			struct f2fs_sit_block *sit_blk;
4475			struct page *page;
4476
4477			se = &sit_i->sentries[start];
4478			page = get_current_sit_page(sbi, start);
4479			if (IS_ERR(page))
4480				return PTR_ERR(page);
4481			sit_blk = (struct f2fs_sit_block *)page_address(page);
4482			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483			f2fs_put_page(page, 1);
4484
4485			err = check_block_count(sbi, start, &sit);
4486			if (err)
4487				return err;
4488			seg_info_from_raw_sit(se, &sit);
4489			if (IS_NODESEG(se->type))
4490				total_node_blocks += se->valid_blocks;
4491
4492			/* build discard map only one time */
4493			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494				memset(se->discard_map, 0xff,
4495					SIT_VBLOCK_MAP_SIZE);
4496			} else {
4497				memcpy(se->discard_map,
4498					se->cur_valid_map,
4499					SIT_VBLOCK_MAP_SIZE);
4500				sbi->discard_blks +=
4501					sbi->blocks_per_seg -
4502					se->valid_blocks;
4503			}
4504
4505			if (__is_large_section(sbi))
4506				get_sec_entry(sbi, start)->valid_blocks +=
4507							se->valid_blocks;
4508		}
4509		start_blk += readed;
4510	} while (start_blk < sit_blk_cnt);
4511
4512	down_read(&curseg->journal_rwsem);
4513	for (i = 0; i < sits_in_cursum(journal); i++) {
4514		unsigned int old_valid_blocks;
4515
4516		start = le32_to_cpu(segno_in_journal(journal, i));
4517		if (start >= MAIN_SEGS(sbi)) {
4518			f2fs_err(sbi, "Wrong journal entry on segno %u",
4519				 start);
4520			err = -EFSCORRUPTED;
4521			break;
4522		}
4523
4524		se = &sit_i->sentries[start];
4525		sit = sit_in_journal(journal, i);
4526
4527		old_valid_blocks = se->valid_blocks;
4528		if (IS_NODESEG(se->type))
4529			total_node_blocks -= old_valid_blocks;
4530
4531		err = check_block_count(sbi, start, &sit);
4532		if (err)
4533			break;
4534		seg_info_from_raw_sit(se, &sit);
4535		if (IS_NODESEG(se->type))
4536			total_node_blocks += se->valid_blocks;
4537
4538		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540		} else {
4541			memcpy(se->discard_map, se->cur_valid_map,
4542						SIT_VBLOCK_MAP_SIZE);
4543			sbi->discard_blks += old_valid_blocks;
4544			sbi->discard_blks -= se->valid_blocks;
4545		}
4546
4547		if (__is_large_section(sbi)) {
4548			get_sec_entry(sbi, start)->valid_blocks +=
4549							se->valid_blocks;
4550			get_sec_entry(sbi, start)->valid_blocks -=
4551							old_valid_blocks;
4552		}
4553	}
4554	up_read(&curseg->journal_rwsem);
4555
4556	if (!err && total_node_blocks != valid_node_count(sbi)) {
4557		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558			 total_node_blocks, valid_node_count(sbi));
4559		err = -EFSCORRUPTED;
4560	}
4561
4562	return err;
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567	unsigned int start;
4568	int type;
4569	struct seg_entry *sentry;
4570
4571	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573			continue;
4574		sentry = get_seg_entry(sbi, start);
4575		if (!sentry->valid_blocks)
4576			__set_free(sbi, start);
4577		else
4578			SIT_I(sbi)->written_valid_blocks +=
4579						sentry->valid_blocks;
4580	}
4581
4582	/* set use the current segments */
4583	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586		__set_test_and_inuse(sbi, curseg_t->segno);
4587	}
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593	struct free_segmap_info *free_i = FREE_I(sbi);
4594	unsigned int segno = 0, offset = 0, secno;
4595	block_t valid_blocks, usable_blks_in_seg;
4596	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598	while (1) {
4599		/* find dirty segment based on free segmap */
4600		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601		if (segno >= MAIN_SEGS(sbi))
4602			break;
4603		offset = segno + 1;
4604		valid_blocks = get_valid_blocks(sbi, segno, false);
4605		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607			continue;
4608		if (valid_blocks > usable_blks_in_seg) {
4609			f2fs_bug_on(sbi, 1);
4610			continue;
4611		}
4612		mutex_lock(&dirty_i->seglist_lock);
4613		__locate_dirty_segment(sbi, segno, DIRTY);
4614		mutex_unlock(&dirty_i->seglist_lock);
4615	}
4616
4617	if (!__is_large_section(sbi))
4618		return;
4619
4620	mutex_lock(&dirty_i->seglist_lock);
4621	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622		valid_blocks = get_valid_blocks(sbi, segno, true);
4623		secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625		if (!valid_blocks || valid_blocks == blks_per_sec)
4626			continue;
4627		if (IS_CURSEC(sbi, secno))
4628			continue;
4629		set_bit(secno, dirty_i->dirty_secmap);
4630	}
4631	mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640	if (!dirty_i->victim_secmap)
4641		return -ENOMEM;
4642	return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647	struct dirty_seglist_info *dirty_i;
4648	unsigned int bitmap_size, i;
4649
4650	/* allocate memory for dirty segments list information */
4651	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652								GFP_KERNEL);
4653	if (!dirty_i)
4654		return -ENOMEM;
4655
4656	SM_I(sbi)->dirty_info = dirty_i;
4657	mutex_init(&dirty_i->seglist_lock);
4658
4659	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663								GFP_KERNEL);
4664		if (!dirty_i->dirty_segmap[i])
4665			return -ENOMEM;
4666	}
4667
4668	if (__is_large_section(sbi)) {
4669		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671						bitmap_size, GFP_KERNEL);
4672		if (!dirty_i->dirty_secmap)
4673			return -ENOMEM;
4674	}
4675
4676	init_dirty_segmap(sbi);
4677	return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682	int i;
4683
4684	/*
4685	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687	 */
4688	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689		struct curseg_info *curseg = CURSEG_I(sbi, i);
4690		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691		unsigned int blkofs = curseg->next_blkoff;
4692
4693		if (f2fs_sb_has_readonly(sbi) &&
4694			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695			continue;
4696
4697		sanity_check_seg_type(sbi, curseg->seg_type);
4698
4699		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700			goto out;
4701
4702		if (curseg->alloc_type == SSR)
4703			continue;
4704
4705		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707				continue;
4708out:
4709			f2fs_err(sbi,
4710				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711				 i, curseg->segno, curseg->alloc_type,
4712				 curseg->next_blkoff, blkofs);
4713			return -EFSCORRUPTED;
4714		}
4715	}
4716	return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722				    struct f2fs_dev_info *fdev,
4723				    struct blk_zone *zone)
4724{
4725	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726	block_t zone_block, wp_block, last_valid_block;
4727	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728	int i, s, b, ret;
4729	struct seg_entry *se;
4730
4731	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732		return 0;
4733
4734	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735	wp_segno = GET_SEGNO(sbi, wp_block);
4736	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738	zone_segno = GET_SEGNO(sbi, zone_block);
4739	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741	if (zone_segno >= MAIN_SEGS(sbi))
4742		return 0;
4743
4744	/*
4745	 * Skip check of zones cursegs point to, since
4746	 * fix_curseg_write_pointer() checks them.
4747	 */
4748	for (i = 0; i < NO_CHECK_TYPE; i++)
4749		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750						   CURSEG_I(sbi, i)->segno))
4751			return 0;
4752
4753	/*
4754	 * Get last valid block of the zone.
4755	 */
4756	last_valid_block = zone_block - 1;
4757	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758		segno = zone_segno + s;
4759		se = get_seg_entry(sbi, segno);
4760		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761			if (f2fs_test_bit(b, se->cur_valid_map)) {
4762				last_valid_block = START_BLOCK(sbi, segno) + b;
4763				break;
4764			}
4765		if (last_valid_block >= zone_block)
4766			break;
4767	}
4768
4769	/*
4770	 * If last valid block is beyond the write pointer, report the
4771	 * inconsistency. This inconsistency does not cause write error
4772	 * because the zone will not be selected for write operation until
4773	 * it get discarded. Just report it.
4774	 */
4775	if (last_valid_block >= wp_block) {
4776		f2fs_notice(sbi, "Valid block beyond write pointer: "
4777			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778			    GET_SEGNO(sbi, last_valid_block),
4779			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780			    wp_segno, wp_blkoff);
4781		return 0;
4782	}
4783
4784	/*
4785	 * If there is no valid block in the zone and if write pointer is
4786	 * not at zone start, reset the write pointer.
4787	 */
4788	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789		f2fs_notice(sbi,
4790			    "Zone without valid block has non-zero write "
4791			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792			    wp_segno, wp_blkoff);
4793		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794					zone->len >> log_sectors_per_block);
4795		if (ret) {
4796			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797				 fdev->path, ret);
4798			return ret;
4799		}
4800	}
4801
4802	return 0;
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806						  block_t zone_blkaddr)
4807{
4808	int i;
4809
4810	for (i = 0; i < sbi->s_ndevs; i++) {
4811		if (!bdev_is_zoned(FDEV(i).bdev))
4812			continue;
4813		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814				zone_blkaddr <= FDEV(i).end_blk))
4815			return &FDEV(i);
4816	}
4817
4818	return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822			      void *data)
4823{
4824	memcpy(data, zone, sizeof(struct blk_zone));
4825	return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830	struct curseg_info *cs = CURSEG_I(sbi, type);
4831	struct f2fs_dev_info *zbd;
4832	struct blk_zone zone;
4833	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834	block_t cs_zone_block, wp_block;
4835	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836	sector_t zone_sector;
4837	int err;
4838
4839	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843	if (!zbd)
4844		return 0;
4845
4846	/* report zone for the sector the curseg points to */
4847	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848		<< log_sectors_per_block;
4849	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850				  report_one_zone_cb, &zone);
4851	if (err != 1) {
4852		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853			 zbd->path, err);
4854		return err;
4855	}
4856
4857	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858		return 0;
4859
4860	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861	wp_segno = GET_SEGNO(sbi, wp_block);
4862	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866		wp_sector_off == 0)
4867		return 0;
4868
4869	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875
4876	f2fs_allocate_new_section(sbi, type, true);
4877
4878	/* check consistency of the zone curseg pointed to */
4879	if (check_zone_write_pointer(sbi, zbd, &zone))
4880		return -EIO;
4881
4882	/* check newly assigned zone */
4883	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887	if (!zbd)
4888		return 0;
4889
4890	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891		<< log_sectors_per_block;
4892	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893				  report_one_zone_cb, &zone);
4894	if (err != 1) {
4895		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896			 zbd->path, err);
4897		return err;
4898	}
4899
4900	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901		return 0;
4902
4903	if (zone.wp != zone.start) {
4904		f2fs_notice(sbi,
4905			    "New zone for curseg[%d] is not yet discarded. "
4906			    "Reset the zone: curseg[0x%x,0x%x]",
4907			    type, cs->segno, cs->next_blkoff);
4908		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909				zone_sector >> log_sectors_per_block,
4910				zone.len >> log_sectors_per_block);
4911		if (err) {
4912			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913				 zbd->path, err);
4914			return err;
4915		}
4916	}
4917
4918	return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923	int i, ret;
4924
4925	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926		ret = fix_curseg_write_pointer(sbi, i);
4927		if (ret)
4928			return ret;
4929	}
4930
4931	return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935	struct f2fs_sb_info *sbi;
4936	struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940				      void *data)
4941{
4942	struct check_zone_write_pointer_args *args;
4943
4944	args = (struct check_zone_write_pointer_args *)data;
4945
4946	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951	int i, ret;
4952	struct check_zone_write_pointer_args args;
4953
4954	for (i = 0; i < sbi->s_ndevs; i++) {
4955		if (!bdev_is_zoned(FDEV(i).bdev))
4956			continue;
4957
4958		args.sbi = sbi;
4959		args.fdev = &FDEV(i);
4960		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961					  check_zone_write_pointer_cb, &args);
4962		if (ret < 0)
4963			return ret;
4964	}
4965
4966	return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970						unsigned int dev_idx)
4971{
4972	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973		return true;
4974	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979					int dev_idx)
4980{
4981	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984						sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992		struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999	/* Conventional zone's capacity is always equal to zone size */
5000	if (is_conv_zone(sbi, zone_idx, dev_idx))
5001		return sbi->segs_per_sec;
5002
5003	/*
5004	 * If the zone_capacity_blocks array is NULL, then zone capacity
5005	 * is equal to the zone size for all zones
5006	 */
5007	if (!FDEV(dev_idx).zone_capacity_blocks)
5008		return sbi->segs_per_sec;
5009
5010	/* Get the segment count beyond zone capacity block */
5011	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013				sbi->log_blocks_per_seg;
5014	return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026			struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029	unsigned int zone_idx, dev_idx, secno;
5030
5031	secno = GET_SEC_FROM_SEG(sbi, segno);
5032	seg_start = START_BLOCK(sbi, segno);
5033	dev_idx = f2fs_target_device_index(sbi, seg_start);
5034	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036	/*
5037	 * Conventional zone's capacity is always equal to zone size,
5038	 * so, blocks per segment is unchanged.
5039	 */
5040	if (is_conv_zone(sbi, zone_idx, dev_idx))
5041		return sbi->blocks_per_seg;
5042
5043	if (!FDEV(dev_idx).zone_capacity_blocks)
5044		return sbi->blocks_per_seg;
5045
5046	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047	sec_cap_blkaddr = sec_start_blkaddr +
5048				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050	/*
5051	 * If segment starts before zone capacity and spans beyond
5052	 * zone capacity, then usable blocks are from seg start to
5053	 * zone capacity. If the segment starts after the zone capacity,
5054	 * then there are no usable blocks.
5055	 */
5056	if (seg_start >= sec_cap_blkaddr)
5057		return 0;
5058	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059		return sec_cap_blkaddr - seg_start;
5060
5061	return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066	return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071	return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075							unsigned int segno)
5076{
5077	return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081							unsigned int segno)
5082{
5083	return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087					unsigned int segno)
5088{
5089	if (f2fs_sb_has_blkzoned(sbi))
5090		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092	return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096					unsigned int segno)
5097{
5098	if (f2fs_sb_has_blkzoned(sbi))
5099		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101	return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109	struct sit_info *sit_i = SIT_I(sbi);
5110	unsigned int segno;
5111
5112	down_write(&sit_i->sentry_lock);
5113
5114	sit_i->min_mtime = ULLONG_MAX;
5115
5116	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117		unsigned int i;
5118		unsigned long long mtime = 0;
5119
5120		for (i = 0; i < sbi->segs_per_sec; i++)
5121			mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123		mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125		if (sit_i->min_mtime > mtime)
5126			sit_i->min_mtime = mtime;
5127	}
5128	sit_i->max_mtime = get_mtime(sbi, false);
5129	sit_i->dirty_max_mtime = 0;
5130	up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137	struct f2fs_sm_info *sm_info;
5138	int err;
5139
5140	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141	if (!sm_info)
5142		return -ENOMEM;
5143
5144	/* init sm info */
5145	sbi->sm_info = sm_info;
5146	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153	sm_info->rec_prefree_segments = sm_info->main_segments *
5154					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158	if (!f2fs_lfs_mode(sbi))
5159		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164	sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168	init_rwsem(&sm_info->curseg_lock);
5169
5170	if (!f2fs_readonly(sbi->sb)) {
5171		err = f2fs_create_flush_cmd_control(sbi);
5172		if (err)
5173			return err;
5174	}
5175
5176	err = create_discard_cmd_control(sbi);
5177	if (err)
5178		return err;
5179
5180	err = build_sit_info(sbi);
5181	if (err)
5182		return err;
5183	err = build_free_segmap(sbi);
5184	if (err)
5185		return err;
5186	err = build_curseg(sbi);
5187	if (err)
5188		return err;
5189
5190	/* reinit free segmap based on SIT */
5191	err = build_sit_entries(sbi);
5192	if (err)
5193		return err;
5194
5195	init_free_segmap(sbi);
5196	err = build_dirty_segmap(sbi);
5197	if (err)
5198		return err;
5199
5200	err = sanity_check_curseg(sbi);
5201	if (err)
5202		return err;
5203
5204	init_min_max_mtime(sbi);
5205	return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209		enum dirty_type dirty_type)
5210{
5211	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213	mutex_lock(&dirty_i->seglist_lock);
5214	kvfree(dirty_i->dirty_segmap[dirty_type]);
5215	dirty_i->nr_dirty[dirty_type] = 0;
5216	mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
5223	kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229	int i;
5230
5231	if (!dirty_i)
5232		return;
5233
5234	/* discard pre-free/dirty segments list */
5235	for (i = 0; i < NR_DIRTY_TYPE; i++)
5236		discard_dirty_segmap(sbi, i);
5237
5238	if (__is_large_section(sbi)) {
5239		mutex_lock(&dirty_i->seglist_lock);
5240		kvfree(dirty_i->dirty_secmap);
5241		mutex_unlock(&dirty_i->seglist_lock);
5242	}
5243
5244	destroy_victim_secmap(sbi);
5245	SM_I(sbi)->dirty_info = NULL;
5246	kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251	struct curseg_info *array = SM_I(sbi)->curseg_array;
5252	int i;
5253
5254	if (!array)
5255		return;
5256	SM_I(sbi)->curseg_array = NULL;
5257	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258		kfree(array[i].sum_blk);
5259		kfree(array[i].journal);
5260	}
5261	kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268	if (!free_i)
5269		return;
5270	SM_I(sbi)->free_info = NULL;
5271	kvfree(free_i->free_segmap);
5272	kvfree(free_i->free_secmap);
5273	kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278	struct sit_info *sit_i = SIT_I(sbi);
5279
5280	if (!sit_i)
5281		return;
5282
5283	if (sit_i->sentries)
5284		kvfree(sit_i->bitmap);
5285	kfree(sit_i->tmp_map);
5286
5287	kvfree(sit_i->sentries);
5288	kvfree(sit_i->sec_entries);
5289	kvfree(sit_i->dirty_sentries_bitmap);
5290
5291	SM_I(sbi)->sit_info = NULL;
5292	kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294	kvfree(sit_i->sit_bitmap_mir);
5295	kvfree(sit_i->invalid_segmap);
5296#endif
5297	kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302	struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304	if (!sm_info)
5305		return;
5306	f2fs_destroy_flush_cmd_control(sbi, true);
5307	destroy_discard_cmd_control(sbi);
5308	destroy_dirty_segmap(sbi);
5309	destroy_curseg(sbi);
5310	destroy_free_segmap(sbi);
5311	destroy_sit_info(sbi);
5312	sbi->sm_info = NULL;
5313	kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319			sizeof(struct discard_entry));
5320	if (!discard_entry_slab)
5321		goto fail;
5322
5323	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324			sizeof(struct discard_cmd));
5325	if (!discard_cmd_slab)
5326		goto destroy_discard_entry;
5327
5328	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329			sizeof(struct sit_entry_set));
5330	if (!sit_entry_set_slab)
5331		goto destroy_discard_cmd;
5332
5333	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334			sizeof(struct inmem_pages));
5335	if (!inmem_entry_slab)
5336		goto destroy_sit_entry_set;
5337	return 0;
5338
5339destroy_sit_entry_set:
5340	kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342	kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344	kmem_cache_destroy(discard_entry_slab);
5345fail:
5346	return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351	kmem_cache_destroy(sit_entry_set_slab);
5352	kmem_cache_destroy(discard_cmd_slab);
5353	kmem_cache_destroy(discard_entry_slab);
5354	kmem_cache_destroy(inmem_entry_slab);
5355}