Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "misc.h"
  17#include "ctree.h"
  18#include "disk-io.h"
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "async-thread.h"
  22
  23/* set when additional merges to this rbio are not allowed */
  24#define RBIO_RMW_LOCKED_BIT	1
  25
  26/*
  27 * set when this rbio is sitting in the hash, but it is just a cache
  28 * of past RMW
  29 */
  30#define RBIO_CACHE_BIT		2
  31
  32/*
  33 * set when it is safe to trust the stripe_pages for caching
  34 */
  35#define RBIO_CACHE_READY_BIT	3
  36
  37#define RBIO_CACHE_SIZE 1024
  38
  39#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  40
  41/* Used by the raid56 code to lock stripes for read/modify/write */
  42struct btrfs_stripe_hash {
  43	struct list_head hash_list;
  44	spinlock_t lock;
  45};
  46
  47/* Used by the raid56 code to lock stripes for read/modify/write */
  48struct btrfs_stripe_hash_table {
  49	struct list_head stripe_cache;
  50	spinlock_t cache_lock;
  51	int cache_size;
  52	struct btrfs_stripe_hash table[];
  53};
  54
  55enum btrfs_rbio_ops {
  56	BTRFS_RBIO_WRITE,
  57	BTRFS_RBIO_READ_REBUILD,
  58	BTRFS_RBIO_PARITY_SCRUB,
  59	BTRFS_RBIO_REBUILD_MISSING,
  60};
  61
  62struct btrfs_raid_bio {
  63	struct btrfs_fs_info *fs_info;
  64	struct btrfs_bio *bbio;
  65
  66	/* while we're doing rmw on a stripe
  67	 * we put it into a hash table so we can
  68	 * lock the stripe and merge more rbios
  69	 * into it.
  70	 */
  71	struct list_head hash_list;
  72
  73	/*
  74	 * LRU list for the stripe cache
  75	 */
  76	struct list_head stripe_cache;
  77
  78	/*
  79	 * for scheduling work in the helper threads
  80	 */
  81	struct btrfs_work work;
  82
  83	/*
  84	 * bio list and bio_list_lock are used
  85	 * to add more bios into the stripe
  86	 * in hopes of avoiding the full rmw
  87	 */
  88	struct bio_list bio_list;
  89	spinlock_t bio_list_lock;
  90
  91	/* also protected by the bio_list_lock, the
  92	 * plug list is used by the plugging code
  93	 * to collect partial bios while plugged.  The
  94	 * stripe locking code also uses it to hand off
  95	 * the stripe lock to the next pending IO
  96	 */
  97	struct list_head plug_list;
  98
  99	/*
 100	 * flags that tell us if it is safe to
 101	 * merge with this bio
 102	 */
 103	unsigned long flags;
 104
 105	/* size of each individual stripe on disk */
 106	int stripe_len;
 107
 108	/* number of data stripes (no p/q) */
 109	int nr_data;
 110
 111	int real_stripes;
 112
 113	int stripe_npages;
 114	/*
 115	 * set if we're doing a parity rebuild
 116	 * for a read from higher up, which is handled
 117	 * differently from a parity rebuild as part of
 118	 * rmw
 119	 */
 120	enum btrfs_rbio_ops operation;
 121
 122	/* first bad stripe */
 123	int faila;
 124
 125	/* second bad stripe (for raid6 use) */
 126	int failb;
 127
 128	int scrubp;
 129	/*
 130	 * number of pages needed to represent the full
 131	 * stripe
 132	 */
 133	int nr_pages;
 134
 135	/*
 136	 * size of all the bios in the bio_list.  This
 137	 * helps us decide if the rbio maps to a full
 138	 * stripe or not
 139	 */
 140	int bio_list_bytes;
 141
 142	int generic_bio_cnt;
 143
 144	refcount_t refs;
 145
 146	atomic_t stripes_pending;
 147
 148	atomic_t error;
 149	/*
 150	 * these are two arrays of pointers.  We allocate the
 151	 * rbio big enough to hold them both and setup their
 152	 * locations when the rbio is allocated
 153	 */
 154
 155	/* pointers to pages that we allocated for
 156	 * reading/writing stripes directly from the disk (including P/Q)
 157	 */
 158	struct page **stripe_pages;
 159
 160	/*
 161	 * pointers to the pages in the bio_list.  Stored
 162	 * here for faster lookup
 163	 */
 164	struct page **bio_pages;
 165
 166	/*
 167	 * bitmap to record which horizontal stripe has data
 168	 */
 169	unsigned long *dbitmap;
 170
 171	/* allocated with real_stripes-many pointers for finish_*() calls */
 172	void **finish_pointers;
 173
 174	/* allocated with stripe_npages-many bits for finish_*() calls */
 175	unsigned long *finish_pbitmap;
 176};
 177
 178static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 179static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 180static void rmw_work(struct btrfs_work *work);
 181static void read_rebuild_work(struct btrfs_work *work);
 182static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 183static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 184static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 185static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 186static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 187
 188static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 189					 int need_check);
 190static void scrub_parity_work(struct btrfs_work *work);
 191
 192static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 193{
 194	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 195	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 196}
 197
 198/*
 199 * the stripe hash table is used for locking, and to collect
 200 * bios in hopes of making a full stripe
 201 */
 202int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 203{
 204	struct btrfs_stripe_hash_table *table;
 205	struct btrfs_stripe_hash_table *x;
 206	struct btrfs_stripe_hash *cur;
 207	struct btrfs_stripe_hash *h;
 208	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 209	int i;
 210
 211	if (info->stripe_hash_table)
 212		return 0;
 213
 214	/*
 215	 * The table is large, starting with order 4 and can go as high as
 216	 * order 7 in case lock debugging is turned on.
 217	 *
 218	 * Try harder to allocate and fallback to vmalloc to lower the chance
 219	 * of a failing mount.
 220	 */
 221	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 222	if (!table)
 223		return -ENOMEM;
 224
 225	spin_lock_init(&table->cache_lock);
 226	INIT_LIST_HEAD(&table->stripe_cache);
 227
 228	h = table->table;
 229
 230	for (i = 0; i < num_entries; i++) {
 231		cur = h + i;
 232		INIT_LIST_HEAD(&cur->hash_list);
 233		spin_lock_init(&cur->lock);
 234	}
 235
 236	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 237	kvfree(x);
 238	return 0;
 239}
 240
 241/*
 242 * caching an rbio means to copy anything from the
 243 * bio_pages array into the stripe_pages array.  We
 244 * use the page uptodate bit in the stripe cache array
 245 * to indicate if it has valid data
 246 *
 247 * once the caching is done, we set the cache ready
 248 * bit.
 249 */
 250static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 251{
 252	int i;
 253	int ret;
 254
 255	ret = alloc_rbio_pages(rbio);
 256	if (ret)
 257		return;
 258
 259	for (i = 0; i < rbio->nr_pages; i++) {
 260		if (!rbio->bio_pages[i])
 261			continue;
 262
 263		copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]);
 264		SetPageUptodate(rbio->stripe_pages[i]);
 265	}
 266	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 267}
 268
 269/*
 270 * we hash on the first logical address of the stripe
 271 */
 272static int rbio_bucket(struct btrfs_raid_bio *rbio)
 273{
 274	u64 num = rbio->bbio->raid_map[0];
 275
 276	/*
 277	 * we shift down quite a bit.  We're using byte
 278	 * addressing, and most of the lower bits are zeros.
 279	 * This tends to upset hash_64, and it consistently
 280	 * returns just one or two different values.
 281	 *
 282	 * shifting off the lower bits fixes things.
 283	 */
 284	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 285}
 286
 287/*
 288 * stealing an rbio means taking all the uptodate pages from the stripe
 289 * array in the source rbio and putting them into the destination rbio
 290 */
 291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 292{
 293	int i;
 294	struct page *s;
 295	struct page *d;
 296
 297	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 298		return;
 299
 300	for (i = 0; i < dest->nr_pages; i++) {
 301		s = src->stripe_pages[i];
 302		if (!s || !PageUptodate(s)) {
 303			continue;
 304		}
 305
 306		d = dest->stripe_pages[i];
 307		if (d)
 308			__free_page(d);
 309
 310		dest->stripe_pages[i] = s;
 311		src->stripe_pages[i] = NULL;
 312	}
 313}
 314
 315/*
 316 * merging means we take the bio_list from the victim and
 317 * splice it into the destination.  The victim should
 318 * be discarded afterwards.
 319 *
 320 * must be called with dest->rbio_list_lock held
 321 */
 322static void merge_rbio(struct btrfs_raid_bio *dest,
 323		       struct btrfs_raid_bio *victim)
 324{
 325	bio_list_merge(&dest->bio_list, &victim->bio_list);
 326	dest->bio_list_bytes += victim->bio_list_bytes;
 327	dest->generic_bio_cnt += victim->generic_bio_cnt;
 328	bio_list_init(&victim->bio_list);
 329}
 330
 331/*
 332 * used to prune items that are in the cache.  The caller
 333 * must hold the hash table lock.
 334 */
 335static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 336{
 337	int bucket = rbio_bucket(rbio);
 338	struct btrfs_stripe_hash_table *table;
 339	struct btrfs_stripe_hash *h;
 340	int freeit = 0;
 341
 342	/*
 343	 * check the bit again under the hash table lock.
 344	 */
 345	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 346		return;
 347
 348	table = rbio->fs_info->stripe_hash_table;
 349	h = table->table + bucket;
 350
 351	/* hold the lock for the bucket because we may be
 352	 * removing it from the hash table
 353	 */
 354	spin_lock(&h->lock);
 355
 356	/*
 357	 * hold the lock for the bio list because we need
 358	 * to make sure the bio list is empty
 359	 */
 360	spin_lock(&rbio->bio_list_lock);
 361
 362	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 363		list_del_init(&rbio->stripe_cache);
 364		table->cache_size -= 1;
 365		freeit = 1;
 366
 367		/* if the bio list isn't empty, this rbio is
 368		 * still involved in an IO.  We take it out
 369		 * of the cache list, and drop the ref that
 370		 * was held for the list.
 371		 *
 372		 * If the bio_list was empty, we also remove
 373		 * the rbio from the hash_table, and drop
 374		 * the corresponding ref
 375		 */
 376		if (bio_list_empty(&rbio->bio_list)) {
 377			if (!list_empty(&rbio->hash_list)) {
 378				list_del_init(&rbio->hash_list);
 379				refcount_dec(&rbio->refs);
 380				BUG_ON(!list_empty(&rbio->plug_list));
 381			}
 382		}
 383	}
 384
 385	spin_unlock(&rbio->bio_list_lock);
 386	spin_unlock(&h->lock);
 387
 388	if (freeit)
 389		__free_raid_bio(rbio);
 390}
 391
 392/*
 393 * prune a given rbio from the cache
 394 */
 395static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 396{
 397	struct btrfs_stripe_hash_table *table;
 398	unsigned long flags;
 399
 400	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 401		return;
 402
 403	table = rbio->fs_info->stripe_hash_table;
 404
 405	spin_lock_irqsave(&table->cache_lock, flags);
 406	__remove_rbio_from_cache(rbio);
 407	spin_unlock_irqrestore(&table->cache_lock, flags);
 408}
 409
 410/*
 411 * remove everything in the cache
 412 */
 413static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 414{
 415	struct btrfs_stripe_hash_table *table;
 416	unsigned long flags;
 417	struct btrfs_raid_bio *rbio;
 418
 419	table = info->stripe_hash_table;
 420
 421	spin_lock_irqsave(&table->cache_lock, flags);
 422	while (!list_empty(&table->stripe_cache)) {
 423		rbio = list_entry(table->stripe_cache.next,
 424				  struct btrfs_raid_bio,
 425				  stripe_cache);
 426		__remove_rbio_from_cache(rbio);
 427	}
 428	spin_unlock_irqrestore(&table->cache_lock, flags);
 429}
 430
 431/*
 432 * remove all cached entries and free the hash table
 433 * used by unmount
 434 */
 435void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 436{
 437	if (!info->stripe_hash_table)
 438		return;
 439	btrfs_clear_rbio_cache(info);
 440	kvfree(info->stripe_hash_table);
 441	info->stripe_hash_table = NULL;
 442}
 443
 444/*
 445 * insert an rbio into the stripe cache.  It
 446 * must have already been prepared by calling
 447 * cache_rbio_pages
 448 *
 449 * If this rbio was already cached, it gets
 450 * moved to the front of the lru.
 451 *
 452 * If the size of the rbio cache is too big, we
 453 * prune an item.
 454 */
 455static void cache_rbio(struct btrfs_raid_bio *rbio)
 456{
 457	struct btrfs_stripe_hash_table *table;
 458	unsigned long flags;
 459
 460	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 461		return;
 462
 463	table = rbio->fs_info->stripe_hash_table;
 464
 465	spin_lock_irqsave(&table->cache_lock, flags);
 466	spin_lock(&rbio->bio_list_lock);
 467
 468	/* bump our ref if we were not in the list before */
 469	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 470		refcount_inc(&rbio->refs);
 471
 472	if (!list_empty(&rbio->stripe_cache)){
 473		list_move(&rbio->stripe_cache, &table->stripe_cache);
 474	} else {
 475		list_add(&rbio->stripe_cache, &table->stripe_cache);
 476		table->cache_size += 1;
 477	}
 478
 479	spin_unlock(&rbio->bio_list_lock);
 480
 481	if (table->cache_size > RBIO_CACHE_SIZE) {
 482		struct btrfs_raid_bio *found;
 483
 484		found = list_entry(table->stripe_cache.prev,
 485				  struct btrfs_raid_bio,
 486				  stripe_cache);
 487
 488		if (found != rbio)
 489			__remove_rbio_from_cache(found);
 490	}
 491
 492	spin_unlock_irqrestore(&table->cache_lock, flags);
 493}
 494
 495/*
 496 * helper function to run the xor_blocks api.  It is only
 497 * able to do MAX_XOR_BLOCKS at a time, so we need to
 498 * loop through.
 499 */
 500static void run_xor(void **pages, int src_cnt, ssize_t len)
 501{
 502	int src_off = 0;
 503	int xor_src_cnt = 0;
 504	void *dest = pages[src_cnt];
 505
 506	while(src_cnt > 0) {
 507		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 508		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 509
 510		src_cnt -= xor_src_cnt;
 511		src_off += xor_src_cnt;
 512	}
 513}
 514
 515/*
 516 * Returns true if the bio list inside this rbio covers an entire stripe (no
 517 * rmw required).
 518 */
 519static int rbio_is_full(struct btrfs_raid_bio *rbio)
 520{
 521	unsigned long flags;
 522	unsigned long size = rbio->bio_list_bytes;
 523	int ret = 1;
 524
 525	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 526	if (size != rbio->nr_data * rbio->stripe_len)
 527		ret = 0;
 528	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 529	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 530
 531	return ret;
 532}
 533
 534/*
 535 * returns 1 if it is safe to merge two rbios together.
 536 * The merging is safe if the two rbios correspond to
 537 * the same stripe and if they are both going in the same
 538 * direction (read vs write), and if neither one is
 539 * locked for final IO
 540 *
 541 * The caller is responsible for locking such that
 542 * rmw_locked is safe to test
 543 */
 544static int rbio_can_merge(struct btrfs_raid_bio *last,
 545			  struct btrfs_raid_bio *cur)
 546{
 547	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 548	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 549		return 0;
 550
 551	/*
 552	 * we can't merge with cached rbios, since the
 553	 * idea is that when we merge the destination
 554	 * rbio is going to run our IO for us.  We can
 555	 * steal from cached rbios though, other functions
 556	 * handle that.
 557	 */
 558	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 559	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 560		return 0;
 561
 562	if (last->bbio->raid_map[0] !=
 563	    cur->bbio->raid_map[0])
 564		return 0;
 565
 566	/* we can't merge with different operations */
 567	if (last->operation != cur->operation)
 568		return 0;
 569	/*
 570	 * We've need read the full stripe from the drive.
 571	 * check and repair the parity and write the new results.
 572	 *
 573	 * We're not allowed to add any new bios to the
 574	 * bio list here, anyone else that wants to
 575	 * change this stripe needs to do their own rmw.
 576	 */
 577	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 578		return 0;
 579
 580	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 581		return 0;
 582
 583	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 584		int fa = last->faila;
 585		int fb = last->failb;
 586		int cur_fa = cur->faila;
 587		int cur_fb = cur->failb;
 588
 589		if (last->faila >= last->failb) {
 590			fa = last->failb;
 591			fb = last->faila;
 592		}
 593
 594		if (cur->faila >= cur->failb) {
 595			cur_fa = cur->failb;
 596			cur_fb = cur->faila;
 597		}
 598
 599		if (fa != cur_fa || fb != cur_fb)
 600			return 0;
 601	}
 602	return 1;
 603}
 604
 605static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 606				  int index)
 607{
 608	return stripe * rbio->stripe_npages + index;
 609}
 610
 611/*
 612 * these are just the pages from the rbio array, not from anything
 613 * the FS sent down to us
 614 */
 615static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 616				     int index)
 617{
 618	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 619}
 620
 621/*
 622 * helper to index into the pstripe
 623 */
 624static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 625{
 626	return rbio_stripe_page(rbio, rbio->nr_data, index);
 627}
 628
 629/*
 630 * helper to index into the qstripe, returns null
 631 * if there is no qstripe
 632 */
 633static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 634{
 635	if (rbio->nr_data + 1 == rbio->real_stripes)
 636		return NULL;
 637	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 638}
 639
 640/*
 641 * The first stripe in the table for a logical address
 642 * has the lock.  rbios are added in one of three ways:
 643 *
 644 * 1) Nobody has the stripe locked yet.  The rbio is given
 645 * the lock and 0 is returned.  The caller must start the IO
 646 * themselves.
 647 *
 648 * 2) Someone has the stripe locked, but we're able to merge
 649 * with the lock owner.  The rbio is freed and the IO will
 650 * start automatically along with the existing rbio.  1 is returned.
 651 *
 652 * 3) Someone has the stripe locked, but we're not able to merge.
 653 * The rbio is added to the lock owner's plug list, or merged into
 654 * an rbio already on the plug list.  When the lock owner unlocks,
 655 * the next rbio on the list is run and the IO is started automatically.
 656 * 1 is returned
 657 *
 658 * If we return 0, the caller still owns the rbio and must continue with
 659 * IO submission.  If we return 1, the caller must assume the rbio has
 660 * already been freed.
 661 */
 662static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 663{
 664	struct btrfs_stripe_hash *h;
 665	struct btrfs_raid_bio *cur;
 666	struct btrfs_raid_bio *pending;
 667	unsigned long flags;
 668	struct btrfs_raid_bio *freeit = NULL;
 669	struct btrfs_raid_bio *cache_drop = NULL;
 670	int ret = 0;
 671
 672	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 673
 674	spin_lock_irqsave(&h->lock, flags);
 675	list_for_each_entry(cur, &h->hash_list, hash_list) {
 676		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
 677			continue;
 678
 679		spin_lock(&cur->bio_list_lock);
 680
 681		/* Can we steal this cached rbio's pages? */
 682		if (bio_list_empty(&cur->bio_list) &&
 683		    list_empty(&cur->plug_list) &&
 684		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 685		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 686			list_del_init(&cur->hash_list);
 687			refcount_dec(&cur->refs);
 688
 689			steal_rbio(cur, rbio);
 690			cache_drop = cur;
 691			spin_unlock(&cur->bio_list_lock);
 692
 693			goto lockit;
 694		}
 695
 696		/* Can we merge into the lock owner? */
 697		if (rbio_can_merge(cur, rbio)) {
 698			merge_rbio(cur, rbio);
 699			spin_unlock(&cur->bio_list_lock);
 700			freeit = rbio;
 701			ret = 1;
 702			goto out;
 703		}
 704
 705
 706		/*
 707		 * We couldn't merge with the running rbio, see if we can merge
 708		 * with the pending ones.  We don't have to check for rmw_locked
 709		 * because there is no way they are inside finish_rmw right now
 710		 */
 711		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 712			if (rbio_can_merge(pending, rbio)) {
 713				merge_rbio(pending, rbio);
 714				spin_unlock(&cur->bio_list_lock);
 715				freeit = rbio;
 716				ret = 1;
 717				goto out;
 718			}
 719		}
 720
 721		/*
 722		 * No merging, put us on the tail of the plug list, our rbio
 723		 * will be started with the currently running rbio unlocks
 724		 */
 725		list_add_tail(&rbio->plug_list, &cur->plug_list);
 726		spin_unlock(&cur->bio_list_lock);
 727		ret = 1;
 728		goto out;
 729	}
 730lockit:
 731	refcount_inc(&rbio->refs);
 732	list_add(&rbio->hash_list, &h->hash_list);
 733out:
 734	spin_unlock_irqrestore(&h->lock, flags);
 735	if (cache_drop)
 736		remove_rbio_from_cache(cache_drop);
 737	if (freeit)
 738		__free_raid_bio(freeit);
 739	return ret;
 740}
 741
 742/*
 743 * called as rmw or parity rebuild is completed.  If the plug list has more
 744 * rbios waiting for this stripe, the next one on the list will be started
 745 */
 746static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 747{
 748	int bucket;
 749	struct btrfs_stripe_hash *h;
 750	unsigned long flags;
 751	int keep_cache = 0;
 752
 753	bucket = rbio_bucket(rbio);
 754	h = rbio->fs_info->stripe_hash_table->table + bucket;
 755
 756	if (list_empty(&rbio->plug_list))
 757		cache_rbio(rbio);
 758
 759	spin_lock_irqsave(&h->lock, flags);
 760	spin_lock(&rbio->bio_list_lock);
 761
 762	if (!list_empty(&rbio->hash_list)) {
 763		/*
 764		 * if we're still cached and there is no other IO
 765		 * to perform, just leave this rbio here for others
 766		 * to steal from later
 767		 */
 768		if (list_empty(&rbio->plug_list) &&
 769		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 770			keep_cache = 1;
 771			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 772			BUG_ON(!bio_list_empty(&rbio->bio_list));
 773			goto done;
 774		}
 775
 776		list_del_init(&rbio->hash_list);
 777		refcount_dec(&rbio->refs);
 778
 779		/*
 780		 * we use the plug list to hold all the rbios
 781		 * waiting for the chance to lock this stripe.
 782		 * hand the lock over to one of them.
 783		 */
 784		if (!list_empty(&rbio->plug_list)) {
 785			struct btrfs_raid_bio *next;
 786			struct list_head *head = rbio->plug_list.next;
 787
 788			next = list_entry(head, struct btrfs_raid_bio,
 789					  plug_list);
 790
 791			list_del_init(&rbio->plug_list);
 792
 793			list_add(&next->hash_list, &h->hash_list);
 794			refcount_inc(&next->refs);
 795			spin_unlock(&rbio->bio_list_lock);
 796			spin_unlock_irqrestore(&h->lock, flags);
 797
 798			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 799				start_async_work(next, read_rebuild_work);
 800			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 801				steal_rbio(rbio, next);
 802				start_async_work(next, read_rebuild_work);
 803			} else if (next->operation == BTRFS_RBIO_WRITE) {
 804				steal_rbio(rbio, next);
 805				start_async_work(next, rmw_work);
 806			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 807				steal_rbio(rbio, next);
 808				start_async_work(next, scrub_parity_work);
 809			}
 810
 811			goto done_nolock;
 812		}
 813	}
 814done:
 815	spin_unlock(&rbio->bio_list_lock);
 816	spin_unlock_irqrestore(&h->lock, flags);
 817
 818done_nolock:
 819	if (!keep_cache)
 820		remove_rbio_from_cache(rbio);
 821}
 822
 823static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 824{
 825	int i;
 826
 827	if (!refcount_dec_and_test(&rbio->refs))
 828		return;
 829
 830	WARN_ON(!list_empty(&rbio->stripe_cache));
 831	WARN_ON(!list_empty(&rbio->hash_list));
 832	WARN_ON(!bio_list_empty(&rbio->bio_list));
 833
 834	for (i = 0; i < rbio->nr_pages; i++) {
 835		if (rbio->stripe_pages[i]) {
 836			__free_page(rbio->stripe_pages[i]);
 837			rbio->stripe_pages[i] = NULL;
 838		}
 839	}
 840
 841	btrfs_put_bbio(rbio->bbio);
 842	kfree(rbio);
 843}
 844
 845static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 846{
 847	struct bio *next;
 848
 849	while (cur) {
 850		next = cur->bi_next;
 851		cur->bi_next = NULL;
 852		cur->bi_status = err;
 853		bio_endio(cur);
 854		cur = next;
 855	}
 856}
 857
 858/*
 859 * this frees the rbio and runs through all the bios in the
 860 * bio_list and calls end_io on them
 861 */
 862static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 863{
 864	struct bio *cur = bio_list_get(&rbio->bio_list);
 865	struct bio *extra;
 866
 867	if (rbio->generic_bio_cnt)
 868		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 869
 870	/*
 871	 * At this moment, rbio->bio_list is empty, however since rbio does not
 872	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 873	 * hash list, rbio may be merged with others so that rbio->bio_list
 874	 * becomes non-empty.
 875	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 876	 * more and we can call bio_endio() on all queued bios.
 877	 */
 878	unlock_stripe(rbio);
 879	extra = bio_list_get(&rbio->bio_list);
 880	__free_raid_bio(rbio);
 881
 882	rbio_endio_bio_list(cur, err);
 883	if (extra)
 884		rbio_endio_bio_list(extra, err);
 885}
 886
 887/*
 888 * end io function used by finish_rmw.  When we finally
 889 * get here, we've written a full stripe
 890 */
 891static void raid_write_end_io(struct bio *bio)
 892{
 893	struct btrfs_raid_bio *rbio = bio->bi_private;
 894	blk_status_t err = bio->bi_status;
 895	int max_errors;
 896
 897	if (err)
 898		fail_bio_stripe(rbio, bio);
 899
 900	bio_put(bio);
 901
 902	if (!atomic_dec_and_test(&rbio->stripes_pending))
 903		return;
 904
 905	err = BLK_STS_OK;
 906
 907	/* OK, we have read all the stripes we need to. */
 908	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 909		     0 : rbio->bbio->max_errors;
 910	if (atomic_read(&rbio->error) > max_errors)
 911		err = BLK_STS_IOERR;
 912
 913	rbio_orig_end_io(rbio, err);
 914}
 915
 916/*
 917 * the read/modify/write code wants to use the original bio for
 918 * any pages it included, and then use the rbio for everything
 919 * else.  This function decides if a given index (stripe number)
 920 * and page number in that stripe fall inside the original bio
 921 * or the rbio.
 922 *
 923 * if you set bio_list_only, you'll get a NULL back for any ranges
 924 * that are outside the bio_list
 925 *
 926 * This doesn't take any refs on anything, you get a bare page pointer
 927 * and the caller must bump refs as required.
 928 *
 929 * You must call index_rbio_pages once before you can trust
 930 * the answers from this function.
 931 */
 932static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 933				 int index, int pagenr, int bio_list_only)
 934{
 935	int chunk_page;
 936	struct page *p = NULL;
 937
 938	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 939
 940	spin_lock_irq(&rbio->bio_list_lock);
 941	p = rbio->bio_pages[chunk_page];
 942	spin_unlock_irq(&rbio->bio_list_lock);
 943
 944	if (p || bio_list_only)
 945		return p;
 946
 947	return rbio->stripe_pages[chunk_page];
 948}
 949
 950/*
 951 * number of pages we need for the entire stripe across all the
 952 * drives
 953 */
 954static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 955{
 956	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 957}
 958
 959/*
 960 * allocation and initial setup for the btrfs_raid_bio.  Not
 961 * this does not allocate any pages for rbio->pages.
 962 */
 963static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 964					 struct btrfs_bio *bbio,
 965					 u64 stripe_len)
 966{
 967	struct btrfs_raid_bio *rbio;
 968	int nr_data = 0;
 969	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 970	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 971	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 972	void *p;
 973
 974	rbio = kzalloc(sizeof(*rbio) +
 975		       sizeof(*rbio->stripe_pages) * num_pages +
 976		       sizeof(*rbio->bio_pages) * num_pages +
 977		       sizeof(*rbio->finish_pointers) * real_stripes +
 978		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 979		       sizeof(*rbio->finish_pbitmap) *
 980				BITS_TO_LONGS(stripe_npages),
 981		       GFP_NOFS);
 982	if (!rbio)
 983		return ERR_PTR(-ENOMEM);
 984
 985	bio_list_init(&rbio->bio_list);
 986	INIT_LIST_HEAD(&rbio->plug_list);
 987	spin_lock_init(&rbio->bio_list_lock);
 988	INIT_LIST_HEAD(&rbio->stripe_cache);
 989	INIT_LIST_HEAD(&rbio->hash_list);
 990	rbio->bbio = bbio;
 991	rbio->fs_info = fs_info;
 992	rbio->stripe_len = stripe_len;
 993	rbio->nr_pages = num_pages;
 994	rbio->real_stripes = real_stripes;
 995	rbio->stripe_npages = stripe_npages;
 996	rbio->faila = -1;
 997	rbio->failb = -1;
 998	refcount_set(&rbio->refs, 1);
 999	atomic_set(&rbio->error, 0);
1000	atomic_set(&rbio->stripes_pending, 0);
1001
1002	/*
1003	 * the stripe_pages, bio_pages, etc arrays point to the extra
1004	 * memory we allocated past the end of the rbio
1005	 */
1006	p = rbio + 1;
1007#define CONSUME_ALLOC(ptr, count)	do {				\
1008		ptr = p;						\
1009		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1010	} while (0)
1011	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1012	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1013	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1014	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1015	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1016#undef  CONSUME_ALLOC
1017
1018	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1019		nr_data = real_stripes - 1;
1020	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1021		nr_data = real_stripes - 2;
1022	else
1023		BUG();
1024
1025	rbio->nr_data = nr_data;
1026	return rbio;
1027}
1028
1029/* allocate pages for all the stripes in the bio, including parity */
1030static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1031{
1032	int i;
1033	struct page *page;
1034
1035	for (i = 0; i < rbio->nr_pages; i++) {
1036		if (rbio->stripe_pages[i])
1037			continue;
1038		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1039		if (!page)
1040			return -ENOMEM;
1041		rbio->stripe_pages[i] = page;
1042	}
1043	return 0;
1044}
1045
1046/* only allocate pages for p/q stripes */
1047static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1048{
1049	int i;
1050	struct page *page;
1051
1052	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1053
1054	for (; i < rbio->nr_pages; i++) {
1055		if (rbio->stripe_pages[i])
1056			continue;
1057		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1058		if (!page)
1059			return -ENOMEM;
1060		rbio->stripe_pages[i] = page;
1061	}
1062	return 0;
1063}
1064
1065/*
1066 * add a single page from a specific stripe into our list of bios for IO
1067 * this will try to merge into existing bios if possible, and returns
1068 * zero if all went well.
1069 */
1070static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1071			    struct bio_list *bio_list,
1072			    struct page *page,
1073			    int stripe_nr,
1074			    unsigned long page_index,
1075			    unsigned long bio_max_len)
1076{
1077	struct bio *last = bio_list->tail;
1078	int ret;
1079	struct bio *bio;
1080	struct btrfs_bio_stripe *stripe;
1081	u64 disk_start;
1082
1083	stripe = &rbio->bbio->stripes[stripe_nr];
1084	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1085
1086	/* if the device is missing, just fail this stripe */
1087	if (!stripe->dev->bdev)
1088		return fail_rbio_index(rbio, stripe_nr);
1089
1090	/* see if we can add this page onto our existing bio */
1091	if (last) {
1092		u64 last_end = last->bi_iter.bi_sector << 9;
1093		last_end += last->bi_iter.bi_size;
1094
1095		/*
1096		 * we can't merge these if they are from different
1097		 * devices or if they are not contiguous
1098		 */
1099		if (last_end == disk_start && !last->bi_status &&
1100		    last->bi_bdev == stripe->dev->bdev) {
1101			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1102			if (ret == PAGE_SIZE)
1103				return 0;
1104		}
1105	}
1106
1107	/* put a new bio on the list */
1108	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1109	btrfs_io_bio(bio)->device = stripe->dev;
1110	bio->bi_iter.bi_size = 0;
1111	bio_set_dev(bio, stripe->dev->bdev);
1112	bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114	bio_add_page(bio, page, PAGE_SIZE, 0);
1115	bio_list_add(bio_list, bio);
1116	return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130		__raid56_parity_recover(rbio);
1131	} else {
1132		finish_rmw(rbio);
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
1147	u64 start;
1148	unsigned long stripe_offset;
1149	unsigned long page_index;
1150
1151	spin_lock_irq(&rbio->bio_list_lock);
1152	bio_list_for_each(bio, &rbio->bio_list) {
1153		struct bio_vec bvec;
1154		struct bvec_iter iter;
1155		int i = 0;
1156
1157		start = bio->bi_iter.bi_sector << 9;
1158		stripe_offset = start - rbio->bbio->raid_map[0];
1159		page_index = stripe_offset >> PAGE_SHIFT;
1160
1161		if (bio_flagged(bio, BIO_CLONED))
1162			bio->bi_iter = btrfs_io_bio(bio)->iter;
1163
1164		bio_for_each_segment(bvec, bio, iter) {
1165			rbio->bio_pages[page_index + i] = bvec.bv_page;
1166			i++;
1167		}
1168	}
1169	spin_unlock_irq(&rbio->bio_list_lock);
1170}
1171
1172/*
1173 * this is called from one of two situations.  We either
1174 * have a full stripe from the higher layers, or we've read all
1175 * the missing bits off disk.
1176 *
1177 * This will calculate the parity and then send down any
1178 * changed blocks.
1179 */
1180static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1181{
1182	struct btrfs_bio *bbio = rbio->bbio;
1183	void **pointers = rbio->finish_pointers;
1184	int nr_data = rbio->nr_data;
1185	int stripe;
1186	int pagenr;
1187	bool has_qstripe;
1188	struct bio_list bio_list;
1189	struct bio *bio;
1190	int ret;
1191
1192	bio_list_init(&bio_list);
1193
1194	if (rbio->real_stripes - rbio->nr_data == 1)
1195		has_qstripe = false;
1196	else if (rbio->real_stripes - rbio->nr_data == 2)
1197		has_qstripe = true;
1198	else
1199		BUG();
1200
1201	/* at this point we either have a full stripe,
1202	 * or we've read the full stripe from the drive.
1203	 * recalculate the parity and write the new results.
1204	 *
1205	 * We're not allowed to add any new bios to the
1206	 * bio list here, anyone else that wants to
1207	 * change this stripe needs to do their own rmw.
1208	 */
1209	spin_lock_irq(&rbio->bio_list_lock);
1210	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1211	spin_unlock_irq(&rbio->bio_list_lock);
1212
1213	atomic_set(&rbio->error, 0);
1214
1215	/*
1216	 * now that we've set rmw_locked, run through the
1217	 * bio list one last time and map the page pointers
1218	 *
1219	 * We don't cache full rbios because we're assuming
1220	 * the higher layers are unlikely to use this area of
1221	 * the disk again soon.  If they do use it again,
1222	 * hopefully they will send another full bio.
1223	 */
1224	index_rbio_pages(rbio);
1225	if (!rbio_is_full(rbio))
1226		cache_rbio_pages(rbio);
1227	else
1228		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1229
1230	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1231		struct page *p;
1232		/* first collect one page from each data stripe */
1233		for (stripe = 0; stripe < nr_data; stripe++) {
1234			p = page_in_rbio(rbio, stripe, pagenr, 0);
1235			pointers[stripe] = kmap_local_page(p);
1236		}
1237
1238		/* then add the parity stripe */
1239		p = rbio_pstripe_page(rbio, pagenr);
1240		SetPageUptodate(p);
1241		pointers[stripe++] = kmap_local_page(p);
1242
1243		if (has_qstripe) {
1244
1245			/*
1246			 * raid6, add the qstripe and call the
1247			 * library function to fill in our p/q
1248			 */
1249			p = rbio_qstripe_page(rbio, pagenr);
1250			SetPageUptodate(p);
1251			pointers[stripe++] = kmap_local_page(p);
1252
1253			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1254						pointers);
1255		} else {
1256			/* raid5 */
1257			copy_page(pointers[nr_data], pointers[0]);
1258			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1259		}
1260		for (stripe = stripe - 1; stripe >= 0; stripe--)
1261			kunmap_local(pointers[stripe]);
1262	}
1263
1264	/*
1265	 * time to start writing.  Make bios for everything from the
1266	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267	 * everything else.
1268	 */
1269	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271			struct page *page;
1272			if (stripe < rbio->nr_data) {
1273				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274				if (!page)
1275					continue;
1276			} else {
1277			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278			}
1279
1280			ret = rbio_add_io_page(rbio, &bio_list,
1281				       page, stripe, pagenr, rbio->stripe_len);
1282			if (ret)
1283				goto cleanup;
1284		}
1285	}
1286
1287	if (likely(!bbio->num_tgtdevs))
1288		goto write_data;
1289
1290	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291		if (!bbio->tgtdev_map[stripe])
1292			continue;
1293
1294		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295			struct page *page;
1296			if (stripe < rbio->nr_data) {
1297				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298				if (!page)
1299					continue;
1300			} else {
1301			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302			}
1303
1304			ret = rbio_add_io_page(rbio, &bio_list, page,
1305					       rbio->bbio->tgtdev_map[stripe],
1306					       pagenr, rbio->stripe_len);
1307			if (ret)
1308				goto cleanup;
1309		}
1310	}
1311
1312write_data:
1313	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316	while ((bio = bio_list_pop(&bio_list))) {
1317		bio->bi_private = rbio;
1318		bio->bi_end_io = raid_write_end_io;
1319		bio->bi_opf = REQ_OP_WRITE;
1320
1321		submit_bio(bio);
1322	}
1323	return;
1324
1325cleanup:
1326	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1327
1328	while ((bio = bio_list_pop(&bio_list)))
1329		bio_put(bio);
1330}
1331
1332/*
1333 * helper to find the stripe number for a given bio.  Used to figure out which
1334 * stripe has failed.  This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1336 */
1337static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338			   struct bio *bio)
1339{
1340	u64 physical = bio->bi_iter.bi_sector;
1341	int i;
1342	struct btrfs_bio_stripe *stripe;
1343
1344	physical <<= 9;
1345
1346	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347		stripe = &rbio->bbio->stripes[i];
1348		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1349		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
1350			return i;
1351		}
1352	}
1353	return -1;
1354}
1355
1356/*
1357 * helper to find the stripe number for a given
1358 * bio (before mapping).  Used to figure out which stripe has
1359 * failed.  This looks up based on logical block numbers.
1360 */
1361static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362				   struct bio *bio)
1363{
1364	u64 logical = bio->bi_iter.bi_sector << 9;
1365	int i;
1366
1367	for (i = 0; i < rbio->nr_data; i++) {
1368		u64 stripe_start = rbio->bbio->raid_map[i];
1369
1370		if (in_range(logical, stripe_start, rbio->stripe_len))
1371			return i;
1372	}
1373	return -1;
1374}
1375
1376/*
1377 * returns -EIO if we had too many failures
1378 */
1379static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1380{
1381	unsigned long flags;
1382	int ret = 0;
1383
1384	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1385
1386	/* we already know this stripe is bad, move on */
1387	if (rbio->faila == failed || rbio->failb == failed)
1388		goto out;
1389
1390	if (rbio->faila == -1) {
1391		/* first failure on this rbio */
1392		rbio->faila = failed;
1393		atomic_inc(&rbio->error);
1394	} else if (rbio->failb == -1) {
1395		/* second failure on this rbio */
1396		rbio->failb = failed;
1397		atomic_inc(&rbio->error);
1398	} else {
1399		ret = -EIO;
1400	}
1401out:
1402	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1403
1404	return ret;
1405}
1406
1407/*
1408 * helper to fail a stripe based on a physical disk
1409 * bio.
1410 */
1411static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1412			   struct bio *bio)
1413{
1414	int failed = find_bio_stripe(rbio, bio);
1415
1416	if (failed < 0)
1417		return -EIO;
1418
1419	return fail_rbio_index(rbio, failed);
1420}
1421
1422/*
1423 * this sets each page in the bio uptodate.  It should only be used on private
1424 * rbio pages, nothing that comes in from the higher layers
1425 */
1426static void set_bio_pages_uptodate(struct bio *bio)
1427{
1428	struct bio_vec *bvec;
1429	struct bvec_iter_all iter_all;
1430
1431	ASSERT(!bio_flagged(bio, BIO_CLONED));
1432
1433	bio_for_each_segment_all(bvec, bio, iter_all)
1434		SetPageUptodate(bvec->bv_page);
1435}
1436
1437/*
1438 * end io for the read phase of the rmw cycle.  All the bios here are physical
1439 * stripe bios we've read from the disk so we can recalculate the parity of the
1440 * stripe.
1441 *
1442 * This will usually kick off finish_rmw once all the bios are read in, but it
1443 * may trigger parity reconstruction if we had any errors along the way
1444 */
1445static void raid_rmw_end_io(struct bio *bio)
1446{
1447	struct btrfs_raid_bio *rbio = bio->bi_private;
1448
1449	if (bio->bi_status)
1450		fail_bio_stripe(rbio, bio);
1451	else
1452		set_bio_pages_uptodate(bio);
1453
1454	bio_put(bio);
1455
1456	if (!atomic_dec_and_test(&rbio->stripes_pending))
1457		return;
1458
1459	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1460		goto cleanup;
1461
1462	/*
1463	 * this will normally call finish_rmw to start our write
1464	 * but if there are any failed stripes we'll reconstruct
1465	 * from parity first
1466	 */
1467	validate_rbio_for_rmw(rbio);
1468	return;
1469
1470cleanup:
1471
1472	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1473}
1474
1475/*
1476 * the stripe must be locked by the caller.  It will
1477 * unlock after all the writes are done
1478 */
1479static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1480{
1481	int bios_to_read = 0;
1482	struct bio_list bio_list;
1483	int ret;
1484	int pagenr;
1485	int stripe;
1486	struct bio *bio;
1487
1488	bio_list_init(&bio_list);
1489
1490	ret = alloc_rbio_pages(rbio);
1491	if (ret)
1492		goto cleanup;
1493
1494	index_rbio_pages(rbio);
1495
1496	atomic_set(&rbio->error, 0);
1497	/*
1498	 * build a list of bios to read all the missing parts of this
1499	 * stripe
1500	 */
1501	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1502		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1503			struct page *page;
1504			/*
1505			 * we want to find all the pages missing from
1506			 * the rbio and read them from the disk.  If
1507			 * page_in_rbio finds a page in the bio list
1508			 * we don't need to read it off the stripe.
1509			 */
1510			page = page_in_rbio(rbio, stripe, pagenr, 1);
1511			if (page)
1512				continue;
1513
1514			page = rbio_stripe_page(rbio, stripe, pagenr);
1515			/*
1516			 * the bio cache may have handed us an uptodate
1517			 * page.  If so, be happy and use it
1518			 */
1519			if (PageUptodate(page))
1520				continue;
1521
1522			ret = rbio_add_io_page(rbio, &bio_list, page,
1523				       stripe, pagenr, rbio->stripe_len);
1524			if (ret)
1525				goto cleanup;
1526		}
1527	}
1528
1529	bios_to_read = bio_list_size(&bio_list);
1530	if (!bios_to_read) {
1531		/*
1532		 * this can happen if others have merged with
1533		 * us, it means there is nothing left to read.
1534		 * But if there are missing devices it may not be
1535		 * safe to do the full stripe write yet.
1536		 */
1537		goto finish;
1538	}
1539
1540	/*
1541	 * the bbio may be freed once we submit the last bio.  Make sure
1542	 * not to touch it after that
1543	 */
1544	atomic_set(&rbio->stripes_pending, bios_to_read);
1545	while ((bio = bio_list_pop(&bio_list))) {
1546		bio->bi_private = rbio;
1547		bio->bi_end_io = raid_rmw_end_io;
1548		bio->bi_opf = REQ_OP_READ;
1549
1550		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1551
1552		submit_bio(bio);
1553	}
1554	/* the actual write will happen once the reads are done */
1555	return 0;
1556
1557cleanup:
1558	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1559
1560	while ((bio = bio_list_pop(&bio_list)))
1561		bio_put(bio);
1562
1563	return -EIO;
1564
1565finish:
1566	validate_rbio_for_rmw(rbio);
1567	return 0;
1568}
1569
1570/*
1571 * if the upper layers pass in a full stripe, we thank them by only allocating
1572 * enough pages to hold the parity, and sending it all down quickly.
1573 */
1574static int full_stripe_write(struct btrfs_raid_bio *rbio)
1575{
1576	int ret;
1577
1578	ret = alloc_rbio_parity_pages(rbio);
1579	if (ret) {
1580		__free_raid_bio(rbio);
1581		return ret;
1582	}
1583
1584	ret = lock_stripe_add(rbio);
1585	if (ret == 0)
1586		finish_rmw(rbio);
1587	return 0;
1588}
1589
1590/*
1591 * partial stripe writes get handed over to async helpers.
1592 * We're really hoping to merge a few more writes into this
1593 * rbio before calculating new parity
1594 */
1595static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1596{
1597	int ret;
1598
1599	ret = lock_stripe_add(rbio);
1600	if (ret == 0)
1601		start_async_work(rbio, rmw_work);
1602	return 0;
1603}
1604
1605/*
1606 * sometimes while we were reading from the drive to
1607 * recalculate parity, enough new bios come into create
1608 * a full stripe.  So we do a check here to see if we can
1609 * go directly to finish_rmw
1610 */
1611static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1612{
1613	/* head off into rmw land if we don't have a full stripe */
1614	if (!rbio_is_full(rbio))
1615		return partial_stripe_write(rbio);
1616	return full_stripe_write(rbio);
1617}
1618
1619/*
1620 * We use plugging call backs to collect full stripes.
1621 * Any time we get a partial stripe write while plugged
1622 * we collect it into a list.  When the unplug comes down,
1623 * we sort the list by logical block number and merge
1624 * everything we can into the same rbios
1625 */
1626struct btrfs_plug_cb {
1627	struct blk_plug_cb cb;
1628	struct btrfs_fs_info *info;
1629	struct list_head rbio_list;
1630	struct btrfs_work work;
1631};
1632
1633/*
1634 * rbios on the plug list are sorted for easier merging.
1635 */
1636static int plug_cmp(void *priv, const struct list_head *a,
1637		    const struct list_head *b)
1638{
1639	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1640						 plug_list);
1641	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1642						 plug_list);
1643	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1644	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1645
1646	if (a_sector < b_sector)
1647		return -1;
1648	if (a_sector > b_sector)
1649		return 1;
1650	return 0;
1651}
1652
1653static void run_plug(struct btrfs_plug_cb *plug)
1654{
1655	struct btrfs_raid_bio *cur;
1656	struct btrfs_raid_bio *last = NULL;
1657
1658	/*
1659	 * sort our plug list then try to merge
1660	 * everything we can in hopes of creating full
1661	 * stripes.
1662	 */
1663	list_sort(NULL, &plug->rbio_list, plug_cmp);
1664	while (!list_empty(&plug->rbio_list)) {
1665		cur = list_entry(plug->rbio_list.next,
1666				 struct btrfs_raid_bio, plug_list);
1667		list_del_init(&cur->plug_list);
1668
1669		if (rbio_is_full(cur)) {
1670			int ret;
1671
1672			/* we have a full stripe, send it down */
1673			ret = full_stripe_write(cur);
1674			BUG_ON(ret);
1675			continue;
1676		}
1677		if (last) {
1678			if (rbio_can_merge(last, cur)) {
1679				merge_rbio(last, cur);
1680				__free_raid_bio(cur);
1681				continue;
1682
1683			}
1684			__raid56_parity_write(last);
1685		}
1686		last = cur;
1687	}
1688	if (last) {
1689		__raid56_parity_write(last);
1690	}
1691	kfree(plug);
1692}
1693
1694/*
1695 * if the unplug comes from schedule, we have to push the
1696 * work off to a helper thread
1697 */
1698static void unplug_work(struct btrfs_work *work)
1699{
1700	struct btrfs_plug_cb *plug;
1701	plug = container_of(work, struct btrfs_plug_cb, work);
1702	run_plug(plug);
1703}
1704
1705static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1706{
1707	struct btrfs_plug_cb *plug;
1708	plug = container_of(cb, struct btrfs_plug_cb, cb);
1709
1710	if (from_schedule) {
1711		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1712		btrfs_queue_work(plug->info->rmw_workers,
1713				 &plug->work);
1714		return;
1715	}
1716	run_plug(plug);
1717}
1718
1719/*
1720 * our main entry point for writes from the rest of the FS.
1721 */
1722int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1723			struct btrfs_bio *bbio, u64 stripe_len)
1724{
1725	struct btrfs_raid_bio *rbio;
1726	struct btrfs_plug_cb *plug = NULL;
1727	struct blk_plug_cb *cb;
1728	int ret;
1729
1730	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1731	if (IS_ERR(rbio)) {
1732		btrfs_put_bbio(bbio);
1733		return PTR_ERR(rbio);
1734	}
1735	bio_list_add(&rbio->bio_list, bio);
1736	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1737	rbio->operation = BTRFS_RBIO_WRITE;
1738
1739	btrfs_bio_counter_inc_noblocked(fs_info);
1740	rbio->generic_bio_cnt = 1;
1741
1742	/*
1743	 * don't plug on full rbios, just get them out the door
1744	 * as quickly as we can
1745	 */
1746	if (rbio_is_full(rbio)) {
1747		ret = full_stripe_write(rbio);
1748		if (ret)
1749			btrfs_bio_counter_dec(fs_info);
1750		return ret;
1751	}
1752
1753	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1754	if (cb) {
1755		plug = container_of(cb, struct btrfs_plug_cb, cb);
1756		if (!plug->info) {
1757			plug->info = fs_info;
1758			INIT_LIST_HEAD(&plug->rbio_list);
1759		}
1760		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1761		ret = 0;
1762	} else {
1763		ret = __raid56_parity_write(rbio);
1764		if (ret)
1765			btrfs_bio_counter_dec(fs_info);
1766	}
1767	return ret;
1768}
1769
1770/*
1771 * all parity reconstruction happens here.  We've read in everything
1772 * we can find from the drives and this does the heavy lifting of
1773 * sorting the good from the bad.
1774 */
1775static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1776{
1777	int pagenr, stripe;
1778	void **pointers;
1779	void **unmap_array;
1780	int faila = -1, failb = -1;
1781	struct page *page;
1782	blk_status_t err;
1783	int i;
1784
1785	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1786	if (!pointers) {
1787		err = BLK_STS_RESOURCE;
1788		goto cleanup_io;
1789	}
1790
1791	/*
1792	 * Store copy of pointers that does not get reordered during
1793	 * reconstruction so that kunmap_local works.
1794	 */
1795	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1796	if (!unmap_array) {
1797		err = BLK_STS_RESOURCE;
1798		goto cleanup_pointers;
1799	}
1800
1801	faila = rbio->faila;
1802	failb = rbio->failb;
1803
1804	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1805	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1806		spin_lock_irq(&rbio->bio_list_lock);
1807		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1808		spin_unlock_irq(&rbio->bio_list_lock);
1809	}
1810
1811	index_rbio_pages(rbio);
1812
1813	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1814		/*
1815		 * Now we just use bitmap to mark the horizontal stripes in
1816		 * which we have data when doing parity scrub.
1817		 */
1818		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1819		    !test_bit(pagenr, rbio->dbitmap))
1820			continue;
1821
1822		/*
1823		 * Setup our array of pointers with pages from each stripe
1824		 *
1825		 * NOTE: store a duplicate array of pointers to preserve the
1826		 * pointer order
1827		 */
1828		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1829			/*
1830			 * if we're rebuilding a read, we have to use
1831			 * pages from the bio list
1832			 */
1833			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1835			    (stripe == faila || stripe == failb)) {
1836				page = page_in_rbio(rbio, stripe, pagenr, 0);
1837			} else {
1838				page = rbio_stripe_page(rbio, stripe, pagenr);
1839			}
1840			pointers[stripe] = kmap_local_page(page);
1841			unmap_array[stripe] = pointers[stripe];
1842		}
1843
1844		/* all raid6 handling here */
1845		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1846			/*
1847			 * single failure, rebuild from parity raid5
1848			 * style
1849			 */
1850			if (failb < 0) {
1851				if (faila == rbio->nr_data) {
1852					/*
1853					 * Just the P stripe has failed, without
1854					 * a bad data or Q stripe.
1855					 * TODO, we should redo the xor here.
1856					 */
1857					err = BLK_STS_IOERR;
1858					goto cleanup;
1859				}
1860				/*
1861				 * a single failure in raid6 is rebuilt
1862				 * in the pstripe code below
1863				 */
1864				goto pstripe;
1865			}
1866
1867			/* make sure our ps and qs are in order */
1868			if (faila > failb)
1869				swap(faila, failb);
1870
1871			/* if the q stripe is failed, do a pstripe reconstruction
1872			 * from the xors.
1873			 * If both the q stripe and the P stripe are failed, we're
1874			 * here due to a crc mismatch and we can't give them the
1875			 * data they want
1876			 */
1877			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1878				if (rbio->bbio->raid_map[faila] ==
1879				    RAID5_P_STRIPE) {
1880					err = BLK_STS_IOERR;
1881					goto cleanup;
1882				}
1883				/*
1884				 * otherwise we have one bad data stripe and
1885				 * a good P stripe.  raid5!
1886				 */
1887				goto pstripe;
1888			}
1889
1890			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1891				raid6_datap_recov(rbio->real_stripes,
1892						  PAGE_SIZE, faila, pointers);
1893			} else {
1894				raid6_2data_recov(rbio->real_stripes,
1895						  PAGE_SIZE, faila, failb,
1896						  pointers);
1897			}
1898		} else {
1899			void *p;
1900
1901			/* rebuild from P stripe here (raid5 or raid6) */
1902			BUG_ON(failb != -1);
1903pstripe:
1904			/* Copy parity block into failed block to start with */
1905			copy_page(pointers[faila], pointers[rbio->nr_data]);
1906
1907			/* rearrange the pointer array */
1908			p = pointers[faila];
1909			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1910				pointers[stripe] = pointers[stripe + 1];
1911			pointers[rbio->nr_data - 1] = p;
1912
1913			/* xor in the rest */
1914			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1915		}
1916		/* if we're doing this rebuild as part of an rmw, go through
1917		 * and set all of our private rbio pages in the
1918		 * failed stripes as uptodate.  This way finish_rmw will
1919		 * know they can be trusted.  If this was a read reconstruction,
1920		 * other endio functions will fiddle the uptodate bits
1921		 */
1922		if (rbio->operation == BTRFS_RBIO_WRITE) {
1923			for (i = 0;  i < rbio->stripe_npages; i++) {
1924				if (faila != -1) {
1925					page = rbio_stripe_page(rbio, faila, i);
1926					SetPageUptodate(page);
1927				}
1928				if (failb != -1) {
1929					page = rbio_stripe_page(rbio, failb, i);
1930					SetPageUptodate(page);
1931				}
1932			}
1933		}
1934		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
1935			kunmap_local(unmap_array[stripe]);
1936	}
1937
1938	err = BLK_STS_OK;
1939cleanup:
1940	kfree(unmap_array);
1941cleanup_pointers:
1942	kfree(pointers);
1943
1944cleanup_io:
1945	/*
1946	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1947	 * valid rbio which is consistent with ondisk content, thus such a
1948	 * valid rbio can be cached to avoid further disk reads.
1949	 */
1950	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1951	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1952		/*
1953		 * - In case of two failures, where rbio->failb != -1:
1954		 *
1955		 *   Do not cache this rbio since the above read reconstruction
1956		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1957		 *   changed some content of stripes which are not identical to
1958		 *   on-disk content any more, otherwise, a later write/recover
1959		 *   may steal stripe_pages from this rbio and end up with
1960		 *   corruptions or rebuild failures.
1961		 *
1962		 * - In case of single failure, where rbio->failb == -1:
1963		 *
1964		 *   Cache this rbio iff the above read reconstruction is
1965		 *   executed without problems.
1966		 */
1967		if (err == BLK_STS_OK && rbio->failb < 0)
1968			cache_rbio_pages(rbio);
1969		else
1970			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1971
1972		rbio_orig_end_io(rbio, err);
1973	} else if (err == BLK_STS_OK) {
1974		rbio->faila = -1;
1975		rbio->failb = -1;
1976
1977		if (rbio->operation == BTRFS_RBIO_WRITE)
1978			finish_rmw(rbio);
1979		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1980			finish_parity_scrub(rbio, 0);
1981		else
1982			BUG();
1983	} else {
1984		rbio_orig_end_io(rbio, err);
1985	}
1986}
1987
1988/*
1989 * This is called only for stripes we've read from disk to
1990 * reconstruct the parity.
1991 */
1992static void raid_recover_end_io(struct bio *bio)
1993{
1994	struct btrfs_raid_bio *rbio = bio->bi_private;
1995
1996	/*
1997	 * we only read stripe pages off the disk, set them
1998	 * up to date if there were no errors
1999	 */
2000	if (bio->bi_status)
2001		fail_bio_stripe(rbio, bio);
2002	else
2003		set_bio_pages_uptodate(bio);
2004	bio_put(bio);
2005
2006	if (!atomic_dec_and_test(&rbio->stripes_pending))
2007		return;
2008
2009	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2010		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2011	else
2012		__raid_recover_end_io(rbio);
2013}
2014
2015/*
2016 * reads everything we need off the disk to reconstruct
2017 * the parity. endio handlers trigger final reconstruction
2018 * when the IO is done.
2019 *
2020 * This is used both for reads from the higher layers and for
2021 * parity construction required to finish a rmw cycle.
2022 */
2023static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2024{
2025	int bios_to_read = 0;
2026	struct bio_list bio_list;
2027	int ret;
2028	int pagenr;
2029	int stripe;
2030	struct bio *bio;
2031
2032	bio_list_init(&bio_list);
2033
2034	ret = alloc_rbio_pages(rbio);
2035	if (ret)
2036		goto cleanup;
2037
2038	atomic_set(&rbio->error, 0);
2039
2040	/*
2041	 * read everything that hasn't failed.  Thanks to the
2042	 * stripe cache, it is possible that some or all of these
2043	 * pages are going to be uptodate.
2044	 */
2045	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2046		if (rbio->faila == stripe || rbio->failb == stripe) {
2047			atomic_inc(&rbio->error);
2048			continue;
2049		}
2050
2051		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2052			struct page *p;
2053
2054			/*
2055			 * the rmw code may have already read this
2056			 * page in
2057			 */
2058			p = rbio_stripe_page(rbio, stripe, pagenr);
2059			if (PageUptodate(p))
2060				continue;
2061
2062			ret = rbio_add_io_page(rbio, &bio_list,
2063				       rbio_stripe_page(rbio, stripe, pagenr),
2064				       stripe, pagenr, rbio->stripe_len);
2065			if (ret < 0)
2066				goto cleanup;
2067		}
2068	}
2069
2070	bios_to_read = bio_list_size(&bio_list);
2071	if (!bios_to_read) {
2072		/*
2073		 * we might have no bios to read just because the pages
2074		 * were up to date, or we might have no bios to read because
2075		 * the devices were gone.
2076		 */
2077		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2078			__raid_recover_end_io(rbio);
2079			return 0;
2080		} else {
2081			goto cleanup;
2082		}
2083	}
2084
2085	/*
2086	 * the bbio may be freed once we submit the last bio.  Make sure
2087	 * not to touch it after that
2088	 */
2089	atomic_set(&rbio->stripes_pending, bios_to_read);
2090	while ((bio = bio_list_pop(&bio_list))) {
2091		bio->bi_private = rbio;
2092		bio->bi_end_io = raid_recover_end_io;
2093		bio->bi_opf = REQ_OP_READ;
2094
2095		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2096
2097		submit_bio(bio);
2098	}
2099
2100	return 0;
2101
2102cleanup:
2103	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2104	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2105		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2106
2107	while ((bio = bio_list_pop(&bio_list)))
2108		bio_put(bio);
2109
2110	return -EIO;
2111}
2112
2113/*
2114 * the main entry point for reads from the higher layers.  This
2115 * is really only called when the normal read path had a failure,
2116 * so we assume the bio they send down corresponds to a failed part
2117 * of the drive.
2118 */
2119int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2120			  struct btrfs_bio *bbio, u64 stripe_len,
2121			  int mirror_num, int generic_io)
2122{
2123	struct btrfs_raid_bio *rbio;
2124	int ret;
2125
2126	if (generic_io) {
2127		ASSERT(bbio->mirror_num == mirror_num);
2128		btrfs_io_bio(bio)->mirror_num = mirror_num;
2129	}
2130
2131	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2132	if (IS_ERR(rbio)) {
2133		if (generic_io)
2134			btrfs_put_bbio(bbio);
2135		return PTR_ERR(rbio);
2136	}
2137
2138	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2139	bio_list_add(&rbio->bio_list, bio);
2140	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2141
2142	rbio->faila = find_logical_bio_stripe(rbio, bio);
2143	if (rbio->faila == -1) {
2144		btrfs_warn(fs_info,
2145	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146			   __func__, bio->bi_iter.bi_sector << 9,
2147			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2148		if (generic_io)
2149			btrfs_put_bbio(bbio);
2150		kfree(rbio);
2151		return -EIO;
2152	}
2153
2154	if (generic_io) {
2155		btrfs_bio_counter_inc_noblocked(fs_info);
2156		rbio->generic_bio_cnt = 1;
2157	} else {
2158		btrfs_get_bbio(bbio);
2159	}
2160
2161	/*
2162	 * Loop retry:
2163	 * for 'mirror == 2', reconstruct from all other stripes.
2164	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2165	 */
2166	if (mirror_num > 2) {
2167		/*
2168		 * 'mirror == 3' is to fail the p stripe and
2169		 * reconstruct from the q stripe.  'mirror > 3' is to
2170		 * fail a data stripe and reconstruct from p+q stripe.
2171		 */
2172		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2173		ASSERT(rbio->failb > 0);
2174		if (rbio->failb <= rbio->faila)
2175			rbio->failb--;
2176	}
2177
2178	ret = lock_stripe_add(rbio);
2179
2180	/*
2181	 * __raid56_parity_recover will end the bio with
2182	 * any errors it hits.  We don't want to return
2183	 * its error value up the stack because our caller
2184	 * will end up calling bio_endio with any nonzero
2185	 * return
2186	 */
2187	if (ret == 0)
2188		__raid56_parity_recover(rbio);
2189	/*
2190	 * our rbio has been added to the list of
2191	 * rbios that will be handled after the
2192	 * currently lock owner is done
2193	 */
2194	return 0;
2195
2196}
2197
2198static void rmw_work(struct btrfs_work *work)
2199{
2200	struct btrfs_raid_bio *rbio;
2201
2202	rbio = container_of(work, struct btrfs_raid_bio, work);
2203	raid56_rmw_stripe(rbio);
2204}
2205
2206static void read_rebuild_work(struct btrfs_work *work)
2207{
2208	struct btrfs_raid_bio *rbio;
2209
2210	rbio = container_of(work, struct btrfs_raid_bio, work);
2211	__raid56_parity_recover(rbio);
2212}
2213
2214/*
2215 * The following code is used to scrub/replace the parity stripe
2216 *
2217 * Caller must have already increased bio_counter for getting @bbio.
2218 *
2219 * Note: We need make sure all the pages that add into the scrub/replace
2220 * raid bio are correct and not be changed during the scrub/replace. That
2221 * is those pages just hold metadata or file data with checksum.
2222 */
2223
2224struct btrfs_raid_bio *
2225raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2226			       struct btrfs_bio *bbio, u64 stripe_len,
2227			       struct btrfs_device *scrub_dev,
2228			       unsigned long *dbitmap, int stripe_nsectors)
2229{
2230	struct btrfs_raid_bio *rbio;
2231	int i;
2232
2233	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2234	if (IS_ERR(rbio))
2235		return NULL;
2236	bio_list_add(&rbio->bio_list, bio);
2237	/*
2238	 * This is a special bio which is used to hold the completion handler
2239	 * and make the scrub rbio is similar to the other types
2240	 */
2241	ASSERT(!bio->bi_iter.bi_size);
2242	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2243
2244	/*
2245	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2246	 * to the end position, so this search can start from the first parity
2247	 * stripe.
2248	 */
2249	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2250		if (bbio->stripes[i].dev == scrub_dev) {
2251			rbio->scrubp = i;
2252			break;
2253		}
2254	}
2255	ASSERT(i < rbio->real_stripes);
2256
2257	/* Now we just support the sectorsize equals to page size */
2258	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2259	ASSERT(rbio->stripe_npages == stripe_nsectors);
2260	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2261
2262	/*
2263	 * We have already increased bio_counter when getting bbio, record it
2264	 * so we can free it at rbio_orig_end_io().
2265	 */
2266	rbio->generic_bio_cnt = 1;
2267
2268	return rbio;
2269}
2270
2271/* Used for both parity scrub and missing. */
2272void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2273			    u64 logical)
2274{
2275	int stripe_offset;
2276	int index;
2277
2278	ASSERT(logical >= rbio->bbio->raid_map[0]);
2279	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2280				rbio->stripe_len * rbio->nr_data);
2281	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2282	index = stripe_offset >> PAGE_SHIFT;
2283	rbio->bio_pages[index] = page;
2284}
2285
2286/*
2287 * We just scrub the parity that we have correct data on the same horizontal,
2288 * so we needn't allocate all pages for all the stripes.
2289 */
2290static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2291{
2292	int i;
2293	int bit;
2294	int index;
2295	struct page *page;
2296
2297	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2298		for (i = 0; i < rbio->real_stripes; i++) {
2299			index = i * rbio->stripe_npages + bit;
2300			if (rbio->stripe_pages[index])
2301				continue;
2302
2303			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2304			if (!page)
2305				return -ENOMEM;
2306			rbio->stripe_pages[index] = page;
2307		}
2308	}
2309	return 0;
2310}
2311
2312static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2313					 int need_check)
2314{
2315	struct btrfs_bio *bbio = rbio->bbio;
2316	void **pointers = rbio->finish_pointers;
2317	unsigned long *pbitmap = rbio->finish_pbitmap;
2318	int nr_data = rbio->nr_data;
2319	int stripe;
2320	int pagenr;
2321	bool has_qstripe;
2322	struct page *p_page = NULL;
2323	struct page *q_page = NULL;
2324	struct bio_list bio_list;
2325	struct bio *bio;
2326	int is_replace = 0;
2327	int ret;
2328
2329	bio_list_init(&bio_list);
2330
2331	if (rbio->real_stripes - rbio->nr_data == 1)
2332		has_qstripe = false;
2333	else if (rbio->real_stripes - rbio->nr_data == 2)
2334		has_qstripe = true;
2335	else
2336		BUG();
2337
2338	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2339		is_replace = 1;
2340		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2341	}
2342
2343	/*
2344	 * Because the higher layers(scrubber) are unlikely to
2345	 * use this area of the disk again soon, so don't cache
2346	 * it.
2347	 */
2348	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2349
2350	if (!need_check)
2351		goto writeback;
2352
2353	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2354	if (!p_page)
2355		goto cleanup;
2356	SetPageUptodate(p_page);
2357
2358	if (has_qstripe) {
2359		/* RAID6, allocate and map temp space for the Q stripe */
2360		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2361		if (!q_page) {
2362			__free_page(p_page);
2363			goto cleanup;
2364		}
2365		SetPageUptodate(q_page);
2366		pointers[rbio->real_stripes - 1] = kmap_local_page(q_page);
2367	}
2368
2369	atomic_set(&rbio->error, 0);
2370
2371	/* Map the parity stripe just once */
2372	pointers[nr_data] = kmap_local_page(p_page);
2373
2374	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2375		struct page *p;
2376		void *parity;
2377		/* first collect one page from each data stripe */
2378		for (stripe = 0; stripe < nr_data; stripe++) {
2379			p = page_in_rbio(rbio, stripe, pagenr, 0);
2380			pointers[stripe] = kmap_local_page(p);
2381		}
2382
2383		if (has_qstripe) {
2384			/* RAID6, call the library function to fill in our P/Q */
2385			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2386						pointers);
2387		} else {
2388			/* raid5 */
2389			copy_page(pointers[nr_data], pointers[0]);
2390			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2391		}
2392
2393		/* Check scrubbing parity and repair it */
2394		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2395		parity = kmap_local_page(p);
2396		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2397			copy_page(parity, pointers[rbio->scrubp]);
2398		else
2399			/* Parity is right, needn't writeback */
2400			bitmap_clear(rbio->dbitmap, pagenr, 1);
2401		kunmap_local(parity);
2402
2403		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2404			kunmap_local(pointers[stripe]);
2405	}
2406
2407	kunmap_local(pointers[nr_data]);
2408	__free_page(p_page);
2409	if (q_page) {
2410		kunmap_local(pointers[rbio->real_stripes - 1]);
2411		__free_page(q_page);
2412	}
2413
2414writeback:
2415	/*
2416	 * time to start writing.  Make bios for everything from the
2417	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2418	 * everything else.
2419	 */
2420	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2421		struct page *page;
2422
2423		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2424		ret = rbio_add_io_page(rbio, &bio_list,
2425			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2426		if (ret)
2427			goto cleanup;
2428	}
2429
2430	if (!is_replace)
2431		goto submit_write;
2432
2433	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2434		struct page *page;
2435
2436		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437		ret = rbio_add_io_page(rbio, &bio_list, page,
2438				       bbio->tgtdev_map[rbio->scrubp],
2439				       pagenr, rbio->stripe_len);
2440		if (ret)
2441			goto cleanup;
2442	}
2443
2444submit_write:
2445	nr_data = bio_list_size(&bio_list);
2446	if (!nr_data) {
2447		/* Every parity is right */
2448		rbio_orig_end_io(rbio, BLK_STS_OK);
2449		return;
2450	}
2451
2452	atomic_set(&rbio->stripes_pending, nr_data);
2453
2454	while ((bio = bio_list_pop(&bio_list))) {
2455		bio->bi_private = rbio;
2456		bio->bi_end_io = raid_write_end_io;
2457		bio->bi_opf = REQ_OP_WRITE;
2458
2459		submit_bio(bio);
2460	}
2461	return;
2462
2463cleanup:
2464	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2465
2466	while ((bio = bio_list_pop(&bio_list)))
2467		bio_put(bio);
2468}
2469
2470static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2471{
2472	if (stripe >= 0 && stripe < rbio->nr_data)
2473		return 1;
2474	return 0;
2475}
2476
2477/*
2478 * While we're doing the parity check and repair, we could have errors
2479 * in reading pages off the disk.  This checks for errors and if we're
2480 * not able to read the page it'll trigger parity reconstruction.  The
2481 * parity scrub will be finished after we've reconstructed the failed
2482 * stripes
2483 */
2484static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2485{
2486	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2487		goto cleanup;
2488
2489	if (rbio->faila >= 0 || rbio->failb >= 0) {
2490		int dfail = 0, failp = -1;
2491
2492		if (is_data_stripe(rbio, rbio->faila))
2493			dfail++;
2494		else if (is_parity_stripe(rbio->faila))
2495			failp = rbio->faila;
2496
2497		if (is_data_stripe(rbio, rbio->failb))
2498			dfail++;
2499		else if (is_parity_stripe(rbio->failb))
2500			failp = rbio->failb;
2501
2502		/*
2503		 * Because we can not use a scrubbing parity to repair
2504		 * the data, so the capability of the repair is declined.
2505		 * (In the case of RAID5, we can not repair anything)
2506		 */
2507		if (dfail > rbio->bbio->max_errors - 1)
2508			goto cleanup;
2509
2510		/*
2511		 * If all data is good, only parity is correctly, just
2512		 * repair the parity.
2513		 */
2514		if (dfail == 0) {
2515			finish_parity_scrub(rbio, 0);
2516			return;
2517		}
2518
2519		/*
2520		 * Here means we got one corrupted data stripe and one
2521		 * corrupted parity on RAID6, if the corrupted parity
2522		 * is scrubbing parity, luckily, use the other one to repair
2523		 * the data, or we can not repair the data stripe.
2524		 */
2525		if (failp != rbio->scrubp)
2526			goto cleanup;
2527
2528		__raid_recover_end_io(rbio);
2529	} else {
2530		finish_parity_scrub(rbio, 1);
2531	}
2532	return;
2533
2534cleanup:
2535	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2536}
2537
2538/*
2539 * end io for the read phase of the rmw cycle.  All the bios here are physical
2540 * stripe bios we've read from the disk so we can recalculate the parity of the
2541 * stripe.
2542 *
2543 * This will usually kick off finish_rmw once all the bios are read in, but it
2544 * may trigger parity reconstruction if we had any errors along the way
2545 */
2546static void raid56_parity_scrub_end_io(struct bio *bio)
2547{
2548	struct btrfs_raid_bio *rbio = bio->bi_private;
2549
2550	if (bio->bi_status)
2551		fail_bio_stripe(rbio, bio);
2552	else
2553		set_bio_pages_uptodate(bio);
2554
2555	bio_put(bio);
2556
2557	if (!atomic_dec_and_test(&rbio->stripes_pending))
2558		return;
2559
2560	/*
2561	 * this will normally call finish_rmw to start our write
2562	 * but if there are any failed stripes we'll reconstruct
2563	 * from parity first
2564	 */
2565	validate_rbio_for_parity_scrub(rbio);
2566}
2567
2568static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2569{
2570	int bios_to_read = 0;
2571	struct bio_list bio_list;
2572	int ret;
2573	int pagenr;
2574	int stripe;
2575	struct bio *bio;
2576
2577	bio_list_init(&bio_list);
2578
2579	ret = alloc_rbio_essential_pages(rbio);
2580	if (ret)
2581		goto cleanup;
2582
2583	atomic_set(&rbio->error, 0);
2584	/*
2585	 * build a list of bios to read all the missing parts of this
2586	 * stripe
2587	 */
2588	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2589		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2590			struct page *page;
2591			/*
2592			 * we want to find all the pages missing from
2593			 * the rbio and read them from the disk.  If
2594			 * page_in_rbio finds a page in the bio list
2595			 * we don't need to read it off the stripe.
2596			 */
2597			page = page_in_rbio(rbio, stripe, pagenr, 1);
2598			if (page)
2599				continue;
2600
2601			page = rbio_stripe_page(rbio, stripe, pagenr);
2602			/*
2603			 * the bio cache may have handed us an uptodate
2604			 * page.  If so, be happy and use it
2605			 */
2606			if (PageUptodate(page))
2607				continue;
2608
2609			ret = rbio_add_io_page(rbio, &bio_list, page,
2610				       stripe, pagenr, rbio->stripe_len);
2611			if (ret)
2612				goto cleanup;
2613		}
2614	}
2615
2616	bios_to_read = bio_list_size(&bio_list);
2617	if (!bios_to_read) {
2618		/*
2619		 * this can happen if others have merged with
2620		 * us, it means there is nothing left to read.
2621		 * But if there are missing devices it may not be
2622		 * safe to do the full stripe write yet.
2623		 */
2624		goto finish;
2625	}
2626
2627	/*
2628	 * the bbio may be freed once we submit the last bio.  Make sure
2629	 * not to touch it after that
2630	 */
2631	atomic_set(&rbio->stripes_pending, bios_to_read);
2632	while ((bio = bio_list_pop(&bio_list))) {
2633		bio->bi_private = rbio;
2634		bio->bi_end_io = raid56_parity_scrub_end_io;
2635		bio->bi_opf = REQ_OP_READ;
2636
2637		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2638
2639		submit_bio(bio);
2640	}
2641	/* the actual write will happen once the reads are done */
2642	return;
2643
2644cleanup:
2645	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2646
2647	while ((bio = bio_list_pop(&bio_list)))
2648		bio_put(bio);
2649
2650	return;
2651
2652finish:
2653	validate_rbio_for_parity_scrub(rbio);
2654}
2655
2656static void scrub_parity_work(struct btrfs_work *work)
2657{
2658	struct btrfs_raid_bio *rbio;
2659
2660	rbio = container_of(work, struct btrfs_raid_bio, work);
2661	raid56_parity_scrub_stripe(rbio);
2662}
2663
2664void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2665{
2666	if (!lock_stripe_add(rbio))
2667		start_async_work(rbio, scrub_parity_work);
2668}
2669
2670/* The following code is used for dev replace of a missing RAID 5/6 device. */
2671
2672struct btrfs_raid_bio *
2673raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2674			  struct btrfs_bio *bbio, u64 length)
2675{
2676	struct btrfs_raid_bio *rbio;
2677
2678	rbio = alloc_rbio(fs_info, bbio, length);
2679	if (IS_ERR(rbio))
2680		return NULL;
2681
2682	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2683	bio_list_add(&rbio->bio_list, bio);
2684	/*
2685	 * This is a special bio which is used to hold the completion handler
2686	 * and make the scrub rbio is similar to the other types
2687	 */
2688	ASSERT(!bio->bi_iter.bi_size);
2689
2690	rbio->faila = find_logical_bio_stripe(rbio, bio);
2691	if (rbio->faila == -1) {
2692		BUG();
2693		kfree(rbio);
2694		return NULL;
2695	}
2696
2697	/*
2698	 * When we get bbio, we have already increased bio_counter, record it
2699	 * so we can free it at rbio_orig_end_io()
2700	 */
2701	rbio->generic_bio_cnt = 1;
2702
2703	return rbio;
2704}
2705
2706void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2707{
2708	if (!lock_stripe_add(rbio))
2709		start_async_work(rbio, read_rebuild_work);
2710}