Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 25
 
 
 
 
 
 
 
 26/*
 27 * delayed back reference update tracking.  For subvolume trees
 28 * we queue up extent allocations and backref maintenance for
 29 * delayed processing.   This avoids deep call chains where we
 30 * add extents in the middle of btrfs_search_slot, and it allows
 31 * us to buffer up frequently modified backrefs in an rb tree instead
 32 * of hammering updates on the extent allocation tree.
 33 */
 34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35/*
 36 * compare two delayed tree backrefs with same bytenr and type
 37 */
 38static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 39			  struct btrfs_delayed_tree_ref *ref1)
 40{
 41	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 42		if (ref1->root < ref2->root)
 43			return -1;
 44		if (ref1->root > ref2->root)
 45			return 1;
 46	} else {
 47		if (ref1->parent < ref2->parent)
 48			return -1;
 49		if (ref1->parent > ref2->parent)
 50			return 1;
 51	}
 52	return 0;
 53}
 54
 55/*
 56 * compare two delayed data backrefs with same bytenr and type
 57 */
 58static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 59			  struct btrfs_delayed_data_ref *ref1)
 60{
 61	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 62		if (ref1->root < ref2->root)
 63			return -1;
 64		if (ref1->root > ref2->root)
 65			return 1;
 66		if (ref1->objectid < ref2->objectid)
 67			return -1;
 68		if (ref1->objectid > ref2->objectid)
 69			return 1;
 70		if (ref1->offset < ref2->offset)
 71			return -1;
 72		if (ref1->offset > ref2->offset)
 73			return 1;
 74	} else {
 75		if (ref1->parent < ref2->parent)
 76			return -1;
 77		if (ref1->parent > ref2->parent)
 78			return 1;
 79	}
 80	return 0;
 81}
 82
 83/*
 84 * entries in the rb tree are ordered by the byte number of the extent,
 85 * type of the delayed backrefs and content of delayed backrefs.
 86 */
 87static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 88		      struct btrfs_delayed_ref_node *ref1)
 89{
 90	if (ref1->bytenr < ref2->bytenr)
 91		return -1;
 92	if (ref1->bytenr > ref2->bytenr)
 93		return 1;
 94	if (ref1->is_head && ref2->is_head)
 95		return 0;
 96	if (ref2->is_head)
 97		return -1;
 98	if (ref1->is_head)
 99		return 1;
100	if (ref1->type < ref2->type)
101		return -1;
102	if (ref1->type > ref2->type)
103		return 1;
104	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
105	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
106		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
107				      btrfs_delayed_node_to_tree_ref(ref1));
108	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
109		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
110		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
111				      btrfs_delayed_node_to_data_ref(ref1));
 
 
 
 
 
 
112	}
113	BUG();
114	return 0;
115}
116
117/*
118 * insert a new ref into the rbtree.  This returns any existing refs
119 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
120 * inserted.
121 */
122static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
123						  struct rb_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124{
125	struct rb_node **p = &root->rb_node;
 
126	struct rb_node *parent_node = NULL;
127	struct btrfs_delayed_ref_node *entry;
128	struct btrfs_delayed_ref_node *ins;
129	int cmp;
130
131	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132	while (*p) {
 
 
133		parent_node = *p;
134		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
135				 rb_node);
136
137		cmp = comp_entry(entry, ins);
138		if (cmp < 0)
139			p = &(*p)->rb_left;
140		else if (cmp > 0)
141			p = &(*p)->rb_right;
142		else
 
143			return entry;
 
144	}
145
146	rb_link_node(node, parent_node, p);
147	rb_insert_color(node, root);
148	return NULL;
149}
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151/*
152 * find an head entry based on bytenr. This returns the delayed ref
153 * head if it was able to find one, or NULL if nothing was in that spot
 
154 */
155static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
156				  u64 bytenr,
157				  struct btrfs_delayed_ref_node **last)
158{
159	struct rb_node *n = root->rb_node;
160	struct btrfs_delayed_ref_node *entry;
161	int cmp;
162
 
 
163	while (n) {
164		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
165		WARN_ON(!entry->in_tree);
166		if (last)
167			*last = entry;
168
169		if (bytenr < entry->bytenr)
170			cmp = -1;
171		else if (bytenr > entry->bytenr)
172			cmp = 1;
173		else if (!btrfs_delayed_ref_is_head(entry))
174			cmp = 1;
175		else
176			cmp = 0;
177
178		if (cmp < 0)
179			n = n->rb_left;
180		else if (cmp > 0)
181			n = n->rb_right;
182		else
183			return entry;
184	}
 
 
 
 
 
 
 
 
 
 
185	return NULL;
186}
187
188int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
189			   struct btrfs_delayed_ref_head *head)
190{
191	struct btrfs_delayed_ref_root *delayed_refs;
192
193	delayed_refs = &trans->transaction->delayed_refs;
194	assert_spin_locked(&delayed_refs->lock);
195	if (mutex_trylock(&head->mutex))
196		return 0;
197
198	atomic_inc(&head->node.refs);
199	spin_unlock(&delayed_refs->lock);
200
201	mutex_lock(&head->mutex);
202	spin_lock(&delayed_refs->lock);
203	if (!head->node.in_tree) {
204		mutex_unlock(&head->mutex);
205		btrfs_put_delayed_ref(&head->node);
206		return -EAGAIN;
207	}
208	btrfs_put_delayed_ref(&head->node);
209	return 0;
210}
211
212int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
213			   struct list_head *cluster, u64 start)
 
 
214{
215	int count = 0;
216	struct btrfs_delayed_ref_root *delayed_refs;
217	struct rb_node *node;
218	struct btrfs_delayed_ref_node *ref;
219	struct btrfs_delayed_ref_head *head;
 
 
 
 
220
221	delayed_refs = &trans->transaction->delayed_refs;
222	if (start == 0) {
223		node = rb_first(&delayed_refs->root);
224	} else {
225		ref = NULL;
226		find_ref_head(&delayed_refs->root, start, &ref);
227		if (ref) {
228			struct btrfs_delayed_ref_node *tmp;
229
230			node = rb_prev(&ref->rb_node);
231			while (node) {
232				tmp = rb_entry(node,
233					       struct btrfs_delayed_ref_node,
234					       rb_node);
235				if (tmp->bytenr < start)
236					break;
237				ref = tmp;
238				node = rb_prev(&ref->rb_node);
 
 
 
 
 
 
 
 
239			}
240			node = &ref->rb_node;
241		} else
242			node = rb_first(&delayed_refs->root);
 
 
 
 
 
 
 
 
 
 
 
 
243	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244again:
245	while (node && count < 32) {
246		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247		if (btrfs_delayed_ref_is_head(ref)) {
248			head = btrfs_delayed_node_to_head(ref);
249			if (list_empty(&head->cluster)) {
250				list_add_tail(&head->cluster, cluster);
251				delayed_refs->run_delayed_start =
252					head->node.bytenr;
253				count++;
254
255				WARN_ON(delayed_refs->num_heads_ready == 0);
256				delayed_refs->num_heads_ready--;
257			} else if (count) {
258				/* the goal of the clustering is to find extents
259				 * that are likely to end up in the same extent
260				 * leaf on disk.  So, we don't want them spread
261				 * all over the tree.  Stop now if we've hit
262				 * a head that was already in use
263				 */
264				break;
265			}
266		}
267		node = rb_next(node);
268	}
269	if (count) {
270		return 0;
271	} else if (start) {
272		/*
273		 * we've gone to the end of the rbtree without finding any
274		 * clusters.  start from the beginning and try again
275		 */
276		start = 0;
277		node = rb_first(&delayed_refs->root);
278		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279	}
280	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281}
282
283/*
284 * helper function to update an extent delayed ref in the
285 * rbtree.  existing and update must both have the same
286 * bytenr and parent
287 *
288 * This may free existing if the update cancels out whatever
289 * operation it was doing.
290 */
291static noinline void
292update_existing_ref(struct btrfs_trans_handle *trans,
293		    struct btrfs_delayed_ref_root *delayed_refs,
294		    struct btrfs_delayed_ref_node *existing,
295		    struct btrfs_delayed_ref_node *update)
296{
297	if (update->action != existing->action) {
298		/*
299		 * this is effectively undoing either an add or a
300		 * drop.  We decrement the ref_mod, and if it goes
301		 * down to zero we just delete the entry without
302		 * every changing the extent allocation tree.
303		 */
304		existing->ref_mod--;
305		if (existing->ref_mod == 0) {
306			rb_erase(&existing->rb_node,
307				 &delayed_refs->root);
308			existing->in_tree = 0;
309			btrfs_put_delayed_ref(existing);
310			delayed_refs->num_entries--;
311			if (trans->delayed_ref_updates)
312				trans->delayed_ref_updates--;
313		} else {
314			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
315				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
316		}
317	} else {
318		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
319			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
320		/*
321		 * the action on the existing ref matches
322		 * the action on the ref we're trying to add.
323		 * Bump the ref_mod by one so the backref that
324		 * is eventually added/removed has the correct
325		 * reference count
326		 */
327		existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
328	}
 
 
 
 
 
 
 
 
 
 
 
 
 
329}
330
331/*
332 * helper function to update the accounting in the head ref
333 * existing and update must have the same bytenr
334 */
335static noinline void
336update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
337			 struct btrfs_delayed_ref_node *update)
338{
339	struct btrfs_delayed_ref_head *existing_ref;
340	struct btrfs_delayed_ref_head *ref;
341
342	existing_ref = btrfs_delayed_node_to_head(existing);
343	ref = btrfs_delayed_node_to_head(update);
344	BUG_ON(existing_ref->is_data != ref->is_data);
345
346	if (ref->must_insert_reserved) {
 
347		/* if the extent was freed and then
348		 * reallocated before the delayed ref
349		 * entries were processed, we can end up
350		 * with an existing head ref without
351		 * the must_insert_reserved flag set.
352		 * Set it again here
353		 */
354		existing_ref->must_insert_reserved = ref->must_insert_reserved;
355
356		/*
357		 * update the num_bytes so we make sure the accounting
358		 * is done correctly
359		 */
360		existing->num_bytes = update->num_bytes;
361
362	}
363
364	if (ref->extent_op) {
365		if (!existing_ref->extent_op) {
366			existing_ref->extent_op = ref->extent_op;
367		} else {
368			if (ref->extent_op->update_key) {
369				memcpy(&existing_ref->extent_op->key,
370				       &ref->extent_op->key,
371				       sizeof(ref->extent_op->key));
372				existing_ref->extent_op->update_key = 1;
373			}
374			if (ref->extent_op->update_flags) {
375				existing_ref->extent_op->flags_to_set |=
376					ref->extent_op->flags_to_set;
377				existing_ref->extent_op->update_flags = 1;
378			}
379			kfree(ref->extent_op);
380		}
381	}
382	/*
383	 * update the reference mod on the head to reflect this new operation
 
 
384	 */
 
385	existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386}
387
388/*
389 * helper function to actually insert a head node into the rbtree.
390 * this does all the dirty work in terms of maintaining the correct
391 * overall modification count.
392 */
393static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
394					struct btrfs_delayed_ref_node *ref,
395					u64 bytenr, u64 num_bytes,
396					int action, int is_data)
397{
398	struct btrfs_delayed_ref_node *existing;
399	struct btrfs_delayed_ref_head *head_ref = NULL;
400	struct btrfs_delayed_ref_root *delayed_refs;
401	int count_mod = 1;
402	int must_insert_reserved = 0;
403
 
 
 
404	/*
405	 * the head node stores the sum of all the mods, so dropping a ref
406	 * should drop the sum in the head node by one.
407	 */
408	if (action == BTRFS_UPDATE_DELAYED_HEAD)
409		count_mod = 0;
410	else if (action == BTRFS_DROP_DELAYED_REF)
411		count_mod = -1;
412
413	/*
414	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
415	 * the reserved accounting when the extent is finally added, or
416	 * if a later modification deletes the delayed ref without ever
417	 * inserting the extent into the extent allocation tree.
418	 * ref->must_insert_reserved is the flag used to record
419	 * that accounting mods are required.
420	 *
421	 * Once we record must_insert_reserved, switch the action to
422	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
423	 */
424	if (action == BTRFS_ADD_DELAYED_EXTENT)
425		must_insert_reserved = 1;
426	else
427		must_insert_reserved = 0;
428
429	delayed_refs = &trans->transaction->delayed_refs;
430
431	/* first set the basic ref node struct up */
432	atomic_set(&ref->refs, 1);
433	ref->bytenr = bytenr;
434	ref->num_bytes = num_bytes;
435	ref->ref_mod = count_mod;
436	ref->type  = 0;
437	ref->action  = 0;
438	ref->is_head = 1;
439	ref->in_tree = 1;
440
441	head_ref = btrfs_delayed_node_to_head(ref);
442	head_ref->must_insert_reserved = must_insert_reserved;
443	head_ref->is_data = is_data;
444
445	INIT_LIST_HEAD(&head_ref->cluster);
 
 
 
 
 
446	mutex_init(&head_ref->mutex);
447
448	trace_btrfs_delayed_ref_head(ref, head_ref, action);
449
450	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
451
452	if (existing) {
453		update_existing_head_ref(existing, ref);
454		/*
455		 * we've updated the existing ref, free the newly
456		 * allocated ref
457		 */
458		kfree(ref);
459	} else {
460		delayed_refs->num_heads++;
461		delayed_refs->num_heads_ready++;
462		delayed_refs->num_entries++;
463		trans->delayed_ref_updates++;
464	}
465	return 0;
466}
467
468/*
469 * helper to insert a delayed tree ref into the rbtree.
 
 
470 */
471static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
472					 struct btrfs_delayed_ref_node *ref,
473					 u64 bytenr, u64 num_bytes, u64 parent,
474					 u64 ref_root, int level, int action)
 
475{
476	struct btrfs_delayed_ref_node *existing;
477	struct btrfs_delayed_tree_ref *full_ref;
478	struct btrfs_delayed_ref_root *delayed_refs;
479
480	if (action == BTRFS_ADD_DELAYED_EXTENT)
481		action = BTRFS_ADD_DELAYED_REF;
482
483	delayed_refs = &trans->transaction->delayed_refs;
484
485	/* first set the basic ref node struct up */
486	atomic_set(&ref->refs, 1);
487	ref->bytenr = bytenr;
488	ref->num_bytes = num_bytes;
489	ref->ref_mod = 1;
490	ref->action = action;
491	ref->is_head = 0;
492	ref->in_tree = 1;
493
494	full_ref = btrfs_delayed_node_to_tree_ref(ref);
495	if (parent) {
496		full_ref->parent = parent;
497		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
498	} else {
499		full_ref->root = ref_root;
500		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
501	}
502	full_ref->level = level;
503
504	trace_btrfs_delayed_tree_ref(ref, full_ref, action);
505
506	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
507
 
 
508	if (existing) {
509		update_existing_ref(trans, delayed_refs, existing, ref);
510		/*
511		 * we've updated the existing ref, free the newly
512		 * allocated ref
513		 */
514		kfree(ref);
 
515	} else {
516		delayed_refs->num_entries++;
 
 
 
 
 
 
 
 
517		trans->delayed_ref_updates++;
518	}
519	return 0;
 
 
 
520}
521
522/*
523 * helper to insert a delayed data ref into the rbtree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524 */
525static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
526					 struct btrfs_delayed_ref_node *ref,
527					 u64 bytenr, u64 num_bytes, u64 parent,
528					 u64 ref_root, u64 owner, u64 offset,
529					 int action)
530{
531	struct btrfs_delayed_ref_node *existing;
532	struct btrfs_delayed_data_ref *full_ref;
533	struct btrfs_delayed_ref_root *delayed_refs;
534
535	if (action == BTRFS_ADD_DELAYED_EXTENT)
536		action = BTRFS_ADD_DELAYED_REF;
537
538	delayed_refs = &trans->transaction->delayed_refs;
 
539
540	/* first set the basic ref node struct up */
541	atomic_set(&ref->refs, 1);
542	ref->bytenr = bytenr;
543	ref->num_bytes = num_bytes;
544	ref->ref_mod = 1;
545	ref->action = action;
546	ref->is_head = 0;
547	ref->in_tree = 1;
548
549	full_ref = btrfs_delayed_node_to_data_ref(ref);
550	if (parent) {
551		full_ref->parent = parent;
552		ref->type = BTRFS_SHARED_DATA_REF_KEY;
553	} else {
554		full_ref->root = ref_root;
555		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
556	}
557	full_ref->objectid = owner;
558	full_ref->offset = offset;
559
560	trace_btrfs_delayed_data_ref(ref, full_ref, action);
561
562	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
563
564	if (existing) {
565		update_existing_ref(trans, delayed_refs, existing, ref);
566		/*
567		 * we've updated the existing ref, free the newly
568		 * allocated ref
569		 */
570		kfree(ref);
571	} else {
572		delayed_refs->num_entries++;
573		trans->delayed_ref_updates++;
574	}
575	return 0;
576}
577
578/*
579 * add a delayed tree ref.  This does all of the accounting required
580 * to make sure the delayed ref is eventually processed before this
581 * transaction commits.
582 */
583int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
584			       u64 bytenr, u64 num_bytes, u64 parent,
585			       u64 ref_root,  int level, int action,
586			       struct btrfs_delayed_extent_op *extent_op)
587{
 
588	struct btrfs_delayed_tree_ref *ref;
589	struct btrfs_delayed_ref_head *head_ref;
590	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
591	int ret;
 
 
 
 
 
 
592
 
593	BUG_ON(extent_op && extent_op->is_data);
594	ref = kmalloc(sizeof(*ref), GFP_NOFS);
595	if (!ref)
596		return -ENOMEM;
597
598	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
599	if (!head_ref) {
600		kfree(ref);
601		return -ENOMEM;
602	}
603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604	head_ref->extent_op = extent_op;
605
606	delayed_refs = &trans->transaction->delayed_refs;
607	spin_lock(&delayed_refs->lock);
608
609	/*
610	 * insert both the head node and the new ref without dropping
611	 * the spin lock
612	 */
613	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
614				   action, 0);
615	BUG_ON(ret);
616
617	ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
618				   parent, ref_root, level, action);
619	BUG_ON(ret);
620	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621	return 0;
622}
623
624/*
625 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
626 */
627int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
628			       u64 bytenr, u64 num_bytes,
629			       u64 parent, u64 ref_root,
630			       u64 owner, u64 offset, int action,
631			       struct btrfs_delayed_extent_op *extent_op)
632{
 
633	struct btrfs_delayed_data_ref *ref;
634	struct btrfs_delayed_ref_head *head_ref;
635	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
636	int ret;
 
 
 
 
 
 
 
637
638	BUG_ON(extent_op && !extent_op->is_data);
639	ref = kmalloc(sizeof(*ref), GFP_NOFS);
640	if (!ref)
641		return -ENOMEM;
642
643	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
644	if (!head_ref) {
645		kfree(ref);
646		return -ENOMEM;
647	}
648
649	head_ref->extent_op = extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650
651	delayed_refs = &trans->transaction->delayed_refs;
652	spin_lock(&delayed_refs->lock);
653
654	/*
655	 * insert both the head node and the new ref without dropping
656	 * the spin lock
657	 */
658	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
659				   action, 1);
660	BUG_ON(ret);
661
662	ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
663				   parent, ref_root, owner, offset, action);
664	BUG_ON(ret);
665	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666	return 0;
667}
668
669int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
670				u64 bytenr, u64 num_bytes,
671				struct btrfs_delayed_extent_op *extent_op)
672{
673	struct btrfs_delayed_ref_head *head_ref;
674	struct btrfs_delayed_ref_root *delayed_refs;
675	int ret;
676
677	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
678	if (!head_ref)
679		return -ENOMEM;
680
 
 
 
681	head_ref->extent_op = extent_op;
682
683	delayed_refs = &trans->transaction->delayed_refs;
684	spin_lock(&delayed_refs->lock);
685
686	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
687				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
688				   extent_op->is_data);
689	BUG_ON(ret);
690
691	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
692	return 0;
693}
694
695/*
696 * this does a simple search for the head node for a given extent.
697 * It must be called with the delayed ref spinlock held, and it returns
698 * the head node if any where found, or NULL if not.
699 */
700struct btrfs_delayed_ref_head *
701btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
702{
703	struct btrfs_delayed_ref_node *ref;
704	struct btrfs_delayed_ref_root *delayed_refs;
705
706	delayed_refs = &trans->transaction->delayed_refs;
707	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
708	if (ref)
709		return btrfs_delayed_node_to_head(ref);
710	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
  14#include "tree-mod-log.h"
  15
  16struct kmem_cache *btrfs_delayed_ref_head_cachep;
  17struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  18struct kmem_cache *btrfs_delayed_data_ref_cachep;
  19struct kmem_cache *btrfs_delayed_extent_op_cachep;
  20/*
  21 * delayed back reference update tracking.  For subvolume trees
  22 * we queue up extent allocations and backref maintenance for
  23 * delayed processing.   This avoids deep call chains where we
  24 * add extents in the middle of btrfs_search_slot, and it allows
  25 * us to buffer up frequently modified backrefs in an rb tree instead
  26 * of hammering updates on the extent allocation tree.
  27 */
  28
  29bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  30{
  31	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  32	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  33	bool ret = false;
  34	u64 reserved;
  35
  36	spin_lock(&global_rsv->lock);
  37	reserved = global_rsv->reserved;
  38	spin_unlock(&global_rsv->lock);
  39
  40	/*
  41	 * Since the global reserve is just kind of magic we don't really want
  42	 * to rely on it to save our bacon, so if our size is more than the
  43	 * delayed_refs_rsv and the global rsv then it's time to think about
  44	 * bailing.
  45	 */
  46	spin_lock(&delayed_refs_rsv->lock);
  47	reserved += delayed_refs_rsv->reserved;
  48	if (delayed_refs_rsv->size >= reserved)
  49		ret = true;
  50	spin_unlock(&delayed_refs_rsv->lock);
  51	return ret;
  52}
  53
  54int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  55{
  56	u64 num_entries =
  57		atomic_read(&trans->transaction->delayed_refs.num_entries);
  58	u64 avg_runtime;
  59	u64 val;
  60
  61	smp_mb();
  62	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  63	val = num_entries * avg_runtime;
  64	if (val >= NSEC_PER_SEC)
  65		return 1;
  66	if (val >= NSEC_PER_SEC / 2)
  67		return 2;
  68
  69	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  70}
  71
  72/**
  73 * Release a ref head's reservation
  74 *
  75 * @fs_info:  the filesystem
  76 * @nr:       number of items to drop
  77 *
  78 * This drops the delayed ref head's count from the delayed refs rsv and frees
  79 * any excess reservation we had.
  80 */
  81void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  82{
  83	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  84	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  85	u64 released = 0;
  86
  87	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  88	if (released)
  89		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  90					      0, released, 0);
  91}
  92
  93/*
  94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  95 * @trans - the trans that may have generated delayed refs
  96 *
  97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  98 * it'll calculate the additional size and add it to the delayed_refs_rsv.
  99 */
 100void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 101{
 102	struct btrfs_fs_info *fs_info = trans->fs_info;
 103	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 104	u64 num_bytes;
 105
 106	if (!trans->delayed_ref_updates)
 107		return;
 108
 109	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 110						    trans->delayed_ref_updates);
 111	spin_lock(&delayed_rsv->lock);
 112	delayed_rsv->size += num_bytes;
 113	delayed_rsv->full = 0;
 114	spin_unlock(&delayed_rsv->lock);
 115	trans->delayed_ref_updates = 0;
 116}
 117
 118/**
 119 * Transfer bytes to our delayed refs rsv
 120 *
 121 * @fs_info:   the filesystem
 122 * @src:       source block rsv to transfer from
 123 * @num_bytes: number of bytes to transfer
 124 *
 125 * This transfers up to the num_bytes amount from the src rsv to the
 126 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 127 */
 128void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 129				       struct btrfs_block_rsv *src,
 130				       u64 num_bytes)
 131{
 132	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 133	u64 to_free = 0;
 134
 135	spin_lock(&src->lock);
 136	src->reserved -= num_bytes;
 137	src->size -= num_bytes;
 138	spin_unlock(&src->lock);
 139
 140	spin_lock(&delayed_refs_rsv->lock);
 141	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 142		u64 delta = delayed_refs_rsv->size -
 143			delayed_refs_rsv->reserved;
 144		if (num_bytes > delta) {
 145			to_free = num_bytes - delta;
 146			num_bytes = delta;
 147		}
 148	} else {
 149		to_free = num_bytes;
 150		num_bytes = 0;
 151	}
 152
 153	if (num_bytes)
 154		delayed_refs_rsv->reserved += num_bytes;
 155	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 156		delayed_refs_rsv->full = 1;
 157	spin_unlock(&delayed_refs_rsv->lock);
 158
 159	if (num_bytes)
 160		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 161					      0, num_bytes, 1);
 162	if (to_free)
 163		btrfs_space_info_free_bytes_may_use(fs_info,
 164				delayed_refs_rsv->space_info, to_free);
 165}
 166
 167/**
 168 * Refill based on our delayed refs usage
 169 *
 170 * @fs_info: the filesystem
 171 * @flush:   control how we can flush for this reservation.
 172 *
 173 * This will refill the delayed block_rsv up to 1 items size worth of space and
 174 * will return -ENOSPC if we can't make the reservation.
 175 */
 176int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 177				  enum btrfs_reserve_flush_enum flush)
 178{
 179	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 180	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 181	u64 num_bytes = 0;
 182	int ret = -ENOSPC;
 183
 184	spin_lock(&block_rsv->lock);
 185	if (block_rsv->reserved < block_rsv->size) {
 186		num_bytes = block_rsv->size - block_rsv->reserved;
 187		num_bytes = min(num_bytes, limit);
 188	}
 189	spin_unlock(&block_rsv->lock);
 190
 191	if (!num_bytes)
 192		return 0;
 193
 194	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 195					   num_bytes, flush);
 196	if (ret)
 197		return ret;
 198	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 199	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 200				      0, num_bytes, 1);
 201	return 0;
 202}
 203
 204/*
 205 * compare two delayed tree backrefs with same bytenr and type
 206 */
 207static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 208			  struct btrfs_delayed_tree_ref *ref2)
 209{
 210	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 211		if (ref1->root < ref2->root)
 212			return -1;
 213		if (ref1->root > ref2->root)
 214			return 1;
 215	} else {
 216		if (ref1->parent < ref2->parent)
 217			return -1;
 218		if (ref1->parent > ref2->parent)
 219			return 1;
 220	}
 221	return 0;
 222}
 223
 224/*
 225 * compare two delayed data backrefs with same bytenr and type
 226 */
 227static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 228			  struct btrfs_delayed_data_ref *ref2)
 229{
 230	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 231		if (ref1->root < ref2->root)
 232			return -1;
 233		if (ref1->root > ref2->root)
 234			return 1;
 235		if (ref1->objectid < ref2->objectid)
 236			return -1;
 237		if (ref1->objectid > ref2->objectid)
 238			return 1;
 239		if (ref1->offset < ref2->offset)
 240			return -1;
 241		if (ref1->offset > ref2->offset)
 242			return 1;
 243	} else {
 244		if (ref1->parent < ref2->parent)
 245			return -1;
 246		if (ref1->parent > ref2->parent)
 247			return 1;
 248	}
 249	return 0;
 250}
 251
 252static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 253		     struct btrfs_delayed_ref_node *ref2,
 254		     bool check_seq)
 
 
 
 255{
 256	int ret = 0;
 257
 
 
 
 
 
 
 
 
 258	if (ref1->type < ref2->type)
 259		return -1;
 260	if (ref1->type > ref2->type)
 261		return 1;
 262	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 263	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 264		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 265				     btrfs_delayed_node_to_tree_ref(ref2));
 266	else
 267		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 268				     btrfs_delayed_node_to_data_ref(ref2));
 269	if (ret)
 270		return ret;
 271	if (check_seq) {
 272		if (ref1->seq < ref2->seq)
 273			return -1;
 274		if (ref1->seq > ref2->seq)
 275			return 1;
 276	}
 
 277	return 0;
 278}
 279
 280/* insert a new ref to head ref rbtree */
 281static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 282						   struct rb_node *node)
 283{
 284	struct rb_node **p = &root->rb_root.rb_node;
 285	struct rb_node *parent_node = NULL;
 286	struct btrfs_delayed_ref_head *entry;
 287	struct btrfs_delayed_ref_head *ins;
 288	u64 bytenr;
 289	bool leftmost = true;
 290
 291	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 292	bytenr = ins->bytenr;
 293	while (*p) {
 294		parent_node = *p;
 295		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 296				 href_node);
 297
 298		if (bytenr < entry->bytenr) {
 299			p = &(*p)->rb_left;
 300		} else if (bytenr > entry->bytenr) {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		} else {
 304			return entry;
 305		}
 306	}
 307
 308	rb_link_node(node, parent_node, p);
 309	rb_insert_color_cached(node, root, leftmost);
 310	return NULL;
 311}
 312
 313static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 314		struct btrfs_delayed_ref_node *ins)
 315{
 316	struct rb_node **p = &root->rb_root.rb_node;
 317	struct rb_node *node = &ins->ref_node;
 318	struct rb_node *parent_node = NULL;
 319	struct btrfs_delayed_ref_node *entry;
 320	bool leftmost = true;
 
 321
 
 322	while (*p) {
 323		int comp;
 324
 325		parent_node = *p;
 326		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 327				 ref_node);
 328		comp = comp_refs(ins, entry, true);
 329		if (comp < 0) {
 
 330			p = &(*p)->rb_left;
 331		} else if (comp > 0) {
 332			p = &(*p)->rb_right;
 333			leftmost = false;
 334		} else {
 335			return entry;
 336		}
 337	}
 338
 339	rb_link_node(node, parent_node, p);
 340	rb_insert_color_cached(node, root, leftmost);
 341	return NULL;
 342}
 343
 344static struct btrfs_delayed_ref_head *find_first_ref_head(
 345		struct btrfs_delayed_ref_root *dr)
 346{
 347	struct rb_node *n;
 348	struct btrfs_delayed_ref_head *entry;
 349
 350	n = rb_first_cached(&dr->href_root);
 351	if (!n)
 352		return NULL;
 353
 354	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 355
 356	return entry;
 357}
 358
 359/*
 360 * Find a head entry based on bytenr. This returns the delayed ref head if it
 361 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 362 * is given, the next bigger entry is returned if no exact match is found.
 363 */
 364static struct btrfs_delayed_ref_head *find_ref_head(
 365		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 366		bool return_bigger)
 367{
 368	struct rb_root *root = &dr->href_root.rb_root;
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = root->rb_node;
 373	entry = NULL;
 374	while (n) {
 375		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 
 
 
 376
 377		if (bytenr < entry->bytenr)
 
 
 
 
 
 
 
 
 
 378			n = n->rb_left;
 379		else if (bytenr > entry->bytenr)
 380			n = n->rb_right;
 381		else
 382			return entry;
 383	}
 384	if (entry && return_bigger) {
 385		if (bytenr > entry->bytenr) {
 386			n = rb_next(&entry->href_node);
 387			if (!n)
 388				return NULL;
 389			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 390					 href_node);
 391		}
 392		return entry;
 393	}
 394	return NULL;
 395}
 396
 397int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 398			   struct btrfs_delayed_ref_head *head)
 399{
 400	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 401	if (mutex_trylock(&head->mutex))
 402		return 0;
 403
 404	refcount_inc(&head->refs);
 405	spin_unlock(&delayed_refs->lock);
 406
 407	mutex_lock(&head->mutex);
 408	spin_lock(&delayed_refs->lock);
 409	if (RB_EMPTY_NODE(&head->href_node)) {
 410		mutex_unlock(&head->mutex);
 411		btrfs_put_delayed_ref_head(head);
 412		return -EAGAIN;
 413	}
 414	btrfs_put_delayed_ref_head(head);
 415	return 0;
 416}
 417
 418static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 419				    struct btrfs_delayed_ref_root *delayed_refs,
 420				    struct btrfs_delayed_ref_head *head,
 421				    struct btrfs_delayed_ref_node *ref)
 422{
 423	lockdep_assert_held(&head->lock);
 424	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 425	RB_CLEAR_NODE(&ref->ref_node);
 426	if (!list_empty(&ref->add_list))
 427		list_del(&ref->add_list);
 428	ref->in_tree = 0;
 429	btrfs_put_delayed_ref(ref);
 430	atomic_dec(&delayed_refs->num_entries);
 431}
 432
 433static bool merge_ref(struct btrfs_trans_handle *trans,
 434		      struct btrfs_delayed_ref_root *delayed_refs,
 435		      struct btrfs_delayed_ref_head *head,
 436		      struct btrfs_delayed_ref_node *ref,
 437		      u64 seq)
 438{
 439	struct btrfs_delayed_ref_node *next;
 440	struct rb_node *node = rb_next(&ref->ref_node);
 441	bool done = false;
 442
 443	while (!done && node) {
 444		int mod;
 445
 446		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 447		node = rb_next(node);
 448		if (seq && next->seq >= seq)
 449			break;
 450		if (comp_refs(ref, next, false))
 451			break;
 452
 453		if (ref->action == next->action) {
 454			mod = next->ref_mod;
 455		} else {
 456			if (ref->ref_mod < next->ref_mod) {
 457				swap(ref, next);
 458				done = true;
 459			}
 460			mod = -next->ref_mod;
 461		}
 462
 463		drop_delayed_ref(trans, delayed_refs, head, next);
 464		ref->ref_mod += mod;
 465		if (ref->ref_mod == 0) {
 466			drop_delayed_ref(trans, delayed_refs, head, ref);
 467			done = true;
 468		} else {
 469			/*
 470			 * Can't have multiples of the same ref on a tree block.
 471			 */
 472			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 473				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 474		}
 475	}
 476
 477	return done;
 478}
 479
 480void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 481			      struct btrfs_delayed_ref_root *delayed_refs,
 482			      struct btrfs_delayed_ref_head *head)
 483{
 484	struct btrfs_fs_info *fs_info = trans->fs_info;
 485	struct btrfs_delayed_ref_node *ref;
 486	struct rb_node *node;
 487	u64 seq = 0;
 488
 489	lockdep_assert_held(&head->lock);
 490
 491	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 492		return;
 493
 494	/* We don't have too many refs to merge for data. */
 495	if (head->is_data)
 496		return;
 497
 498	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 499again:
 500	for (node = rb_first_cached(&head->ref_tree); node;
 501	     node = rb_next(node)) {
 502		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 503		if (seq && ref->seq >= seq)
 504			continue;
 505		if (merge_ref(trans, delayed_refs, head, ref, seq))
 506			goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507	}
 508}
 509
 510int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 511{
 512	int ret = 0;
 513	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 514
 515	if (min_seq != 0 && seq >= min_seq) {
 516		btrfs_debug(fs_info,
 517			    "holding back delayed_ref %llu, lowest is %llu",
 518			    seq, min_seq);
 519		ret = 1;
 520	}
 521
 522	return ret;
 523}
 524
 525struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 526		struct btrfs_delayed_ref_root *delayed_refs)
 527{
 528	struct btrfs_delayed_ref_head *head;
 529
 530again:
 531	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 532			     true);
 533	if (!head && delayed_refs->run_delayed_start != 0) {
 534		delayed_refs->run_delayed_start = 0;
 535		head = find_first_ref_head(delayed_refs);
 536	}
 537	if (!head)
 538		return NULL;
 539
 540	while (head->processing) {
 541		struct rb_node *node;
 542
 543		node = rb_next(&head->href_node);
 544		if (!node) {
 545			if (delayed_refs->run_delayed_start == 0)
 546				return NULL;
 547			delayed_refs->run_delayed_start = 0;
 548			goto again;
 549		}
 550		head = rb_entry(node, struct btrfs_delayed_ref_head,
 551				href_node);
 552	}
 553
 554	head->processing = 1;
 555	WARN_ON(delayed_refs->num_heads_ready == 0);
 556	delayed_refs->num_heads_ready--;
 557	delayed_refs->run_delayed_start = head->bytenr +
 558		head->num_bytes;
 559	return head;
 560}
 561
 562void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 563			   struct btrfs_delayed_ref_head *head)
 564{
 565	lockdep_assert_held(&delayed_refs->lock);
 566	lockdep_assert_held(&head->lock);
 567
 568	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 569	RB_CLEAR_NODE(&head->href_node);
 570	atomic_dec(&delayed_refs->num_entries);
 571	delayed_refs->num_heads--;
 572	if (head->processing == 0)
 573		delayed_refs->num_heads_ready--;
 574}
 575
 576/*
 577 * Helper to insert the ref_node to the tail or merge with tail.
 
 
 578 *
 579 * Return 0 for insert.
 580 * Return >0 for merge.
 581 */
 582static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 583			      struct btrfs_delayed_ref_root *root,
 584			      struct btrfs_delayed_ref_head *href,
 585			      struct btrfs_delayed_ref_node *ref)
 
 586{
 587	struct btrfs_delayed_ref_node *exist;
 588	int mod;
 589	int ret = 0;
 590
 591	spin_lock(&href->lock);
 592	exist = tree_insert(&href->ref_tree, ref);
 593	if (!exist)
 594		goto inserted;
 595
 596	/* Now we are sure we can merge */
 597	ret = 1;
 598	if (exist->action == ref->action) {
 599		mod = ref->ref_mod;
 
 
 
 
 
 
 
 600	} else {
 601		/* Need to change action */
 602		if (exist->ref_mod < ref->ref_mod) {
 603			exist->action = ref->action;
 604			mod = -exist->ref_mod;
 605			exist->ref_mod = ref->ref_mod;
 606			if (ref->action == BTRFS_ADD_DELAYED_REF)
 607				list_add_tail(&exist->add_list,
 608					      &href->ref_add_list);
 609			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 610				ASSERT(!list_empty(&exist->add_list));
 611				list_del(&exist->add_list);
 612			} else {
 613				ASSERT(0);
 614			}
 615		} else
 616			mod = -ref->ref_mod;
 617	}
 618	exist->ref_mod += mod;
 619
 620	/* remove existing tail if its ref_mod is zero */
 621	if (exist->ref_mod == 0)
 622		drop_delayed_ref(trans, root, href, exist);
 623	spin_unlock(&href->lock);
 624	return ret;
 625inserted:
 626	if (ref->action == BTRFS_ADD_DELAYED_REF)
 627		list_add_tail(&ref->add_list, &href->ref_add_list);
 628	atomic_inc(&root->num_entries);
 629	spin_unlock(&href->lock);
 630	return ret;
 631}
 632
 633/*
 634 * helper function to update the accounting in the head ref
 635 * existing and update must have the same bytenr
 636 */
 637static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 638			 struct btrfs_delayed_ref_head *existing,
 639			 struct btrfs_delayed_ref_head *update)
 640{
 641	struct btrfs_delayed_ref_root *delayed_refs =
 642		&trans->transaction->delayed_refs;
 643	struct btrfs_fs_info *fs_info = trans->fs_info;
 644	int old_ref_mod;
 645
 646	BUG_ON(existing->is_data != update->is_data);
 647
 648	spin_lock(&existing->lock);
 649	if (update->must_insert_reserved) {
 650		/* if the extent was freed and then
 651		 * reallocated before the delayed ref
 652		 * entries were processed, we can end up
 653		 * with an existing head ref without
 654		 * the must_insert_reserved flag set.
 655		 * Set it again here
 656		 */
 657		existing->must_insert_reserved = update->must_insert_reserved;
 658
 659		/*
 660		 * update the num_bytes so we make sure the accounting
 661		 * is done correctly
 662		 */
 663		existing->num_bytes = update->num_bytes;
 664
 665	}
 666
 667	if (update->extent_op) {
 668		if (!existing->extent_op) {
 669			existing->extent_op = update->extent_op;
 670		} else {
 671			if (update->extent_op->update_key) {
 672				memcpy(&existing->extent_op->key,
 673				       &update->extent_op->key,
 674				       sizeof(update->extent_op->key));
 675				existing->extent_op->update_key = true;
 676			}
 677			if (update->extent_op->update_flags) {
 678				existing->extent_op->flags_to_set |=
 679					update->extent_op->flags_to_set;
 680				existing->extent_op->update_flags = true;
 681			}
 682			btrfs_free_delayed_extent_op(update->extent_op);
 683		}
 684	}
 685	/*
 686	 * update the reference mod on the head to reflect this new operation,
 687	 * only need the lock for this case cause we could be processing it
 688	 * currently, for refs we just added we know we're a-ok.
 689	 */
 690	old_ref_mod = existing->total_ref_mod;
 691	existing->ref_mod += update->ref_mod;
 692	existing->total_ref_mod += update->ref_mod;
 693
 694	/*
 695	 * If we are going to from a positive ref mod to a negative or vice
 696	 * versa we need to make sure to adjust pending_csums accordingly.
 697	 */
 698	if (existing->is_data) {
 699		u64 csum_leaves =
 700			btrfs_csum_bytes_to_leaves(fs_info,
 701						   existing->num_bytes);
 702
 703		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 704			delayed_refs->pending_csums -= existing->num_bytes;
 705			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 706		}
 707		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 708			delayed_refs->pending_csums += existing->num_bytes;
 709			trans->delayed_ref_updates += csum_leaves;
 710		}
 711	}
 712
 713	spin_unlock(&existing->lock);
 714}
 715
 716static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 717				  struct btrfs_qgroup_extent_record *qrecord,
 718				  u64 bytenr, u64 num_bytes, u64 ref_root,
 719				  u64 reserved, int action, bool is_data,
 720				  bool is_system)
 
 
 
 
 721{
 
 
 
 722	int count_mod = 1;
 723	int must_insert_reserved = 0;
 724
 725	/* If reserved is provided, it must be a data extent. */
 726	BUG_ON(!is_data && reserved);
 727
 728	/*
 729	 * The head node stores the sum of all the mods, so dropping a ref
 730	 * should drop the sum in the head node by one.
 731	 */
 732	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 733		count_mod = 0;
 734	else if (action == BTRFS_DROP_DELAYED_REF)
 735		count_mod = -1;
 736
 737	/*
 738	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 739	 * accounting when the extent is finally added, or if a later
 740	 * modification deletes the delayed ref without ever inserting the
 741	 * extent into the extent allocation tree.  ref->must_insert_reserved
 742	 * is the flag used to record that accounting mods are required.
 
 743	 *
 744	 * Once we record must_insert_reserved, switch the action to
 745	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 746	 */
 747	if (action == BTRFS_ADD_DELAYED_EXTENT)
 748		must_insert_reserved = 1;
 749	else
 750		must_insert_reserved = 0;
 751
 752	refcount_set(&head_ref->refs, 1);
 753	head_ref->bytenr = bytenr;
 754	head_ref->num_bytes = num_bytes;
 755	head_ref->ref_mod = count_mod;
 
 
 
 
 
 
 
 
 
 756	head_ref->must_insert_reserved = must_insert_reserved;
 757	head_ref->is_data = is_data;
 758	head_ref->is_system = is_system;
 759	head_ref->ref_tree = RB_ROOT_CACHED;
 760	INIT_LIST_HEAD(&head_ref->ref_add_list);
 761	RB_CLEAR_NODE(&head_ref->href_node);
 762	head_ref->processing = 0;
 763	head_ref->total_ref_mod = count_mod;
 764	spin_lock_init(&head_ref->lock);
 765	mutex_init(&head_ref->mutex);
 766
 767	if (qrecord) {
 768		if (ref_root && reserved) {
 769			qrecord->data_rsv = reserved;
 770			qrecord->data_rsv_refroot = ref_root;
 771		}
 772		qrecord->bytenr = bytenr;
 773		qrecord->num_bytes = num_bytes;
 774		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 775	}
 
 776}
 777
 778/*
 779 * helper function to actually insert a head node into the rbtree.
 780 * this does all the dirty work in terms of maintaining the correct
 781 * overall modification count.
 782 */
 783static noinline struct btrfs_delayed_ref_head *
 784add_delayed_ref_head(struct btrfs_trans_handle *trans,
 785		     struct btrfs_delayed_ref_head *head_ref,
 786		     struct btrfs_qgroup_extent_record *qrecord,
 787		     int action, int *qrecord_inserted_ret)
 788{
 789	struct btrfs_delayed_ref_head *existing;
 
 790	struct btrfs_delayed_ref_root *delayed_refs;
 791	int qrecord_inserted = 0;
 
 
 792
 793	delayed_refs = &trans->transaction->delayed_refs;
 794
 795	/* Record qgroup extent info if provided */
 796	if (qrecord) {
 797		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 798					delayed_refs, qrecord))
 799			kfree(qrecord);
 800		else
 801			qrecord_inserted = 1;
 
 
 
 
 
 
 
 
 
 802	}
 
 803
 804	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 
 
 805
 806	existing = htree_insert(&delayed_refs->href_root,
 807				&head_ref->href_node);
 808	if (existing) {
 809		update_existing_head_ref(trans, existing, head_ref);
 810		/*
 811		 * we've updated the existing ref, free the newly
 812		 * allocated ref
 813		 */
 814		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 815		head_ref = existing;
 816	} else {
 817		if (head_ref->is_data && head_ref->ref_mod < 0) {
 818			delayed_refs->pending_csums += head_ref->num_bytes;
 819			trans->delayed_ref_updates +=
 820				btrfs_csum_bytes_to_leaves(trans->fs_info,
 821							   head_ref->num_bytes);
 822		}
 823		delayed_refs->num_heads++;
 824		delayed_refs->num_heads_ready++;
 825		atomic_inc(&delayed_refs->num_entries);
 826		trans->delayed_ref_updates++;
 827	}
 828	if (qrecord_inserted_ret)
 829		*qrecord_inserted_ret = qrecord_inserted;
 830
 831	return head_ref;
 832}
 833
 834/*
 835 * init_delayed_ref_common - Initialize the structure which represents a
 836 *			     modification to a an extent.
 837 *
 838 * @fs_info:    Internal to the mounted filesystem mount structure.
 839 *
 840 * @ref:	The structure which is going to be initialized.
 841 *
 842 * @bytenr:	The logical address of the extent for which a modification is
 843 *		going to be recorded.
 844 *
 845 * @num_bytes:  Size of the extent whose modification is being recorded.
 846 *
 847 * @ref_root:	The id of the root where this modification has originated, this
 848 *		can be either one of the well-known metadata trees or the
 849 *		subvolume id which references this extent.
 850 *
 851 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 852 *		BTRFS_ADD_DELAYED_EXTENT
 853 *
 854 * @ref_type:	Holds the type of the extent which is being recorded, can be
 855 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 856 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 857 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 858 */
 859static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 860				    struct btrfs_delayed_ref_node *ref,
 861				    u64 bytenr, u64 num_bytes, u64 ref_root,
 862				    int action, u8 ref_type)
 
 863{
 864	u64 seq = 0;
 
 
 865
 866	if (action == BTRFS_ADD_DELAYED_EXTENT)
 867		action = BTRFS_ADD_DELAYED_REF;
 868
 869	if (is_fstree(ref_root))
 870		seq = atomic64_read(&fs_info->tree_mod_seq);
 871
 872	refcount_set(&ref->refs, 1);
 
 873	ref->bytenr = bytenr;
 874	ref->num_bytes = num_bytes;
 875	ref->ref_mod = 1;
 876	ref->action = action;
 877	ref->is_head = 0;
 878	ref->in_tree = 1;
 879	ref->seq = seq;
 880	ref->type = ref_type;
 881	RB_CLEAR_NODE(&ref->ref_node);
 882	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 885/*
 886 * add a delayed tree ref.  This does all of the accounting required
 887 * to make sure the delayed ref is eventually processed before this
 888 * transaction commits.
 889 */
 890int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 891			       struct btrfs_ref *generic_ref,
 
 892			       struct btrfs_delayed_extent_op *extent_op)
 893{
 894	struct btrfs_fs_info *fs_info = trans->fs_info;
 895	struct btrfs_delayed_tree_ref *ref;
 896	struct btrfs_delayed_ref_head *head_ref;
 897	struct btrfs_delayed_ref_root *delayed_refs;
 898	struct btrfs_qgroup_extent_record *record = NULL;
 899	int qrecord_inserted;
 900	bool is_system;
 901	int action = generic_ref->action;
 902	int level = generic_ref->tree_ref.level;
 903	int ret;
 904	u64 bytenr = generic_ref->bytenr;
 905	u64 num_bytes = generic_ref->len;
 906	u64 parent = generic_ref->parent;
 907	u8 ref_type;
 908
 909	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 910
 911	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 912	BUG_ON(extent_op && extent_op->is_data);
 913	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 914	if (!ref)
 915		return -ENOMEM;
 916
 917	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 918	if (!head_ref) {
 919		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 920		return -ENOMEM;
 921	}
 922
 923	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 924	    is_fstree(generic_ref->real_root) &&
 925	    is_fstree(generic_ref->tree_ref.root) &&
 926	    !generic_ref->skip_qgroup) {
 927		record = kzalloc(sizeof(*record), GFP_NOFS);
 928		if (!record) {
 929			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 930			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 931			return -ENOMEM;
 932		}
 933	}
 934
 935	if (parent)
 936		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 937	else
 938		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 939
 940	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 941				generic_ref->tree_ref.root, action, ref_type);
 942	ref->root = generic_ref->tree_ref.root;
 943	ref->parent = parent;
 944	ref->level = level;
 945
 946	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 947			      generic_ref->tree_ref.root, 0, action, false,
 948			      is_system);
 949	head_ref->extent_op = extent_op;
 950
 951	delayed_refs = &trans->transaction->delayed_refs;
 952	spin_lock(&delayed_refs->lock);
 953
 954	/*
 955	 * insert both the head node and the new ref without dropping
 956	 * the spin lock
 957	 */
 958	head_ref = add_delayed_ref_head(trans, head_ref, record,
 959					action, &qrecord_inserted);
 960
 961	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
 962	spin_unlock(&delayed_refs->lock);
 963
 964	/*
 965	 * Need to update the delayed_refs_rsv with any changes we may have
 966	 * made.
 967	 */
 968	btrfs_update_delayed_refs_rsv(trans);
 969
 970	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 971				   action == BTRFS_ADD_DELAYED_EXTENT ?
 972				   BTRFS_ADD_DELAYED_REF : action);
 973	if (ret > 0)
 974		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 975
 976	if (qrecord_inserted)
 977		btrfs_qgroup_trace_extent_post(trans, record);
 978
 979	return 0;
 980}
 981
 982/*
 983 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
 984 */
 985int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
 986			       struct btrfs_ref *generic_ref,
 987			       u64 reserved)
 
 
 988{
 989	struct btrfs_fs_info *fs_info = trans->fs_info;
 990	struct btrfs_delayed_data_ref *ref;
 991	struct btrfs_delayed_ref_head *head_ref;
 992	struct btrfs_delayed_ref_root *delayed_refs;
 993	struct btrfs_qgroup_extent_record *record = NULL;
 994	int qrecord_inserted;
 995	int action = generic_ref->action;
 996	int ret;
 997	u64 bytenr = generic_ref->bytenr;
 998	u64 num_bytes = generic_ref->len;
 999	u64 parent = generic_ref->parent;
1000	u64 ref_root = generic_ref->data_ref.ref_root;
1001	u64 owner = generic_ref->data_ref.ino;
1002	u64 offset = generic_ref->data_ref.offset;
1003	u8 ref_type;
1004
1005	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1006	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1007	if (!ref)
1008		return -ENOMEM;
1009
1010	if (parent)
1011	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1012	else
1013	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1014	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1015				ref_root, action, ref_type);
1016	ref->root = ref_root;
1017	ref->parent = parent;
1018	ref->objectid = owner;
1019	ref->offset = offset;
1020
1021
1022	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1023	if (!head_ref) {
1024		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1025		return -ENOMEM;
1026	}
1027
1028	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1029	    is_fstree(ref_root) &&
1030	    is_fstree(generic_ref->real_root) &&
1031	    !generic_ref->skip_qgroup) {
1032		record = kzalloc(sizeof(*record), GFP_NOFS);
1033		if (!record) {
1034			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1035			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1036					head_ref);
1037			return -ENOMEM;
1038		}
1039	}
1040
1041	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1042			      reserved, action, true, false);
1043	head_ref->extent_op = NULL;
1044
1045	delayed_refs = &trans->transaction->delayed_refs;
1046	spin_lock(&delayed_refs->lock);
1047
1048	/*
1049	 * insert both the head node and the new ref without dropping
1050	 * the spin lock
1051	 */
1052	head_ref = add_delayed_ref_head(trans, head_ref, record,
1053					action, &qrecord_inserted);
1054
1055	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
1056	spin_unlock(&delayed_refs->lock);
1057
1058	/*
1059	 * Need to update the delayed_refs_rsv with any changes we may have
1060	 * made.
1061	 */
1062	btrfs_update_delayed_refs_rsv(trans);
1063
1064	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1065				   action == BTRFS_ADD_DELAYED_EXTENT ?
1066				   BTRFS_ADD_DELAYED_REF : action);
1067	if (ret > 0)
1068		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1069
1070
1071	if (qrecord_inserted)
1072		return btrfs_qgroup_trace_extent_post(trans, record);
1073	return 0;
1074}
1075
1076int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1077				u64 bytenr, u64 num_bytes,
1078				struct btrfs_delayed_extent_op *extent_op)
1079{
1080	struct btrfs_delayed_ref_head *head_ref;
1081	struct btrfs_delayed_ref_root *delayed_refs;
 
1082
1083	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1084	if (!head_ref)
1085		return -ENOMEM;
1086
1087	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1088			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1089			      false);
1090	head_ref->extent_op = extent_op;
1091
1092	delayed_refs = &trans->transaction->delayed_refs;
1093	spin_lock(&delayed_refs->lock);
1094
1095	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1096			     NULL);
 
 
1097
1098	spin_unlock(&delayed_refs->lock);
1099
1100	/*
1101	 * Need to update the delayed_refs_rsv with any changes we may have
1102	 * made.
1103	 */
1104	btrfs_update_delayed_refs_rsv(trans);
1105	return 0;
1106}
1107
1108/*
1109 * This does a simple search for the head node for a given extent.  Returns the
1110 * head node if found, or NULL if not.
 
1111 */
1112struct btrfs_delayed_ref_head *
1113btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1114{
1115	lockdep_assert_held(&delayed_refs->lock);
 
1116
1117	return find_ref_head(delayed_refs, bytenr, false);
1118}
1119
1120void __cold btrfs_delayed_ref_exit(void)
1121{
1122	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1123	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1124	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1125	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1126}
1127
1128int __init btrfs_delayed_ref_init(void)
1129{
1130	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1131				"btrfs_delayed_ref_head",
1132				sizeof(struct btrfs_delayed_ref_head), 0,
1133				SLAB_MEM_SPREAD, NULL);
1134	if (!btrfs_delayed_ref_head_cachep)
1135		goto fail;
1136
1137	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1138				"btrfs_delayed_tree_ref",
1139				sizeof(struct btrfs_delayed_tree_ref), 0,
1140				SLAB_MEM_SPREAD, NULL);
1141	if (!btrfs_delayed_tree_ref_cachep)
1142		goto fail;
1143
1144	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1145				"btrfs_delayed_data_ref",
1146				sizeof(struct btrfs_delayed_data_ref), 0,
1147				SLAB_MEM_SPREAD, NULL);
1148	if (!btrfs_delayed_data_ref_cachep)
1149		goto fail;
1150
1151	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1152				"btrfs_delayed_extent_op",
1153				sizeof(struct btrfs_delayed_extent_op), 0,
1154				SLAB_MEM_SPREAD, NULL);
1155	if (!btrfs_delayed_extent_op_cachep)
1156		goto fail;
1157
1158	return 0;
1159fail:
1160	btrfs_delayed_ref_exit();
1161	return -ENOMEM;
1162}