Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
  3
  4#include <linux/clk.h>
  5#include <linux/interrupt.h>
  6#include <linux/io.h>
  7#include <linux/log2.h>
  8#include <linux/module.h>
  9#include <linux/platform_device.h>
 10#include <linux/pm_opp.h>
 11#include <linux/pm_runtime.h>
 12#include <linux/qcom-geni-se.h>
 13#include <linux/spi/spi.h>
 14#include <linux/spinlock.h>
 15
 16/* SPI SE specific registers and respective register fields */
 17#define SE_SPI_CPHA		0x224
 18#define CPHA			BIT(0)
 19
 20#define SE_SPI_LOOPBACK		0x22c
 21#define LOOPBACK_ENABLE		0x1
 22#define NORMAL_MODE		0x0
 23#define LOOPBACK_MSK		GENMASK(1, 0)
 24
 25#define SE_SPI_CPOL		0x230
 26#define CPOL			BIT(2)
 27
 28#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
 29#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
 30
 31#define SE_SPI_DEMUX_SEL	0x250
 32#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
 33
 34#define SE_SPI_TRANS_CFG	0x25c
 35#define CS_TOGGLE		BIT(0)
 36
 37#define SE_SPI_WORD_LEN		0x268
 38#define WORD_LEN_MSK		GENMASK(9, 0)
 39#define MIN_WORD_LEN		4
 40
 41#define SE_SPI_TX_TRANS_LEN	0x26c
 42#define SE_SPI_RX_TRANS_LEN	0x270
 43#define TRANS_LEN_MSK		GENMASK(23, 0)
 44
 45#define SE_SPI_PRE_POST_CMD_DLY	0x274
 46
 47#define SE_SPI_DELAY_COUNTERS	0x278
 48#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
 49#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
 50#define SPI_CS_CLK_DELAY_SHFT		10
 51
 52/* M_CMD OP codes for SPI */
 53#define SPI_TX_ONLY		1
 54#define SPI_RX_ONLY		2
 55#define SPI_TX_RX		7
 56#define SPI_CS_ASSERT		8
 57#define SPI_CS_DEASSERT		9
 58#define SPI_SCK_ONLY		10
 59/* M_CMD params for SPI */
 60#define SPI_PRE_CMD_DELAY	BIT(0)
 61#define TIMESTAMP_BEFORE	BIT(1)
 62#define FRAGMENTATION		BIT(2)
 63#define TIMESTAMP_AFTER		BIT(3)
 64#define POST_CMD_DELAY		BIT(4)
 65
 66struct spi_geni_master {
 67	struct geni_se se;
 68	struct device *dev;
 69	u32 tx_fifo_depth;
 70	u32 fifo_width_bits;
 71	u32 tx_wm;
 72	u32 last_mode;
 73	unsigned long cur_speed_hz;
 74	unsigned long cur_sclk_hz;
 75	unsigned int cur_bits_per_word;
 76	unsigned int tx_rem_bytes;
 77	unsigned int rx_rem_bytes;
 78	const struct spi_transfer *cur_xfer;
 79	struct completion cs_done;
 80	struct completion cancel_done;
 81	struct completion abort_done;
 82	unsigned int oversampling;
 83	spinlock_t lock;
 84	int irq;
 85	bool cs_flag;
 86	bool abort_failed;
 87};
 88
 89static int get_spi_clk_cfg(unsigned int speed_hz,
 90			struct spi_geni_master *mas,
 91			unsigned int *clk_idx,
 92			unsigned int *clk_div)
 93{
 94	unsigned long sclk_freq;
 95	unsigned int actual_hz;
 96	int ret;
 97
 98	ret = geni_se_clk_freq_match(&mas->se,
 99				speed_hz * mas->oversampling,
100				clk_idx, &sclk_freq, false);
101	if (ret) {
102		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
103							ret, speed_hz);
104		return ret;
105	}
106
107	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
108	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
109
110	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
111				actual_hz, sclk_freq, *clk_idx, *clk_div);
112	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
113	if (ret)
114		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
115	else
116		mas->cur_sclk_hz = sclk_freq;
117
118	return ret;
119}
120
121static void handle_fifo_timeout(struct spi_master *spi,
122				struct spi_message *msg)
123{
124	struct spi_geni_master *mas = spi_master_get_devdata(spi);
125	unsigned long time_left;
126	struct geni_se *se = &mas->se;
127
128	spin_lock_irq(&mas->lock);
129	reinit_completion(&mas->cancel_done);
130	writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
131	mas->cur_xfer = NULL;
132	geni_se_cancel_m_cmd(se);
133	spin_unlock_irq(&mas->lock);
134
135	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
136	if (time_left)
137		return;
138
139	spin_lock_irq(&mas->lock);
140	reinit_completion(&mas->abort_done);
141	geni_se_abort_m_cmd(se);
142	spin_unlock_irq(&mas->lock);
143
144	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
145	if (!time_left) {
146		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
147
148		/*
149		 * No need for a lock since SPI core has a lock and we never
150		 * access this from an interrupt.
151		 */
152		mas->abort_failed = true;
153	}
154}
155
156static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
157{
158	struct geni_se *se = &mas->se;
159	u32 m_irq, m_irq_en;
160
161	if (!mas->abort_failed)
162		return false;
163
164	/*
165	 * The only known case where a transfer times out and then a cancel
166	 * times out then an abort times out is if something is blocking our
167	 * interrupt handler from running.  Avoid starting any new transfers
168	 * until that sorts itself out.
169	 */
170	spin_lock_irq(&mas->lock);
171	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
172	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
173	spin_unlock_irq(&mas->lock);
174
175	if (m_irq & m_irq_en) {
176		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
177			m_irq & m_irq_en);
178		return true;
179	}
180
181	/*
182	 * If we're here the problem resolved itself so no need to check more
183	 * on future transfers.
184	 */
185	mas->abort_failed = false;
186
187	return false;
188}
189
190static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
191{
192	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
193	struct spi_master *spi = dev_get_drvdata(mas->dev);
194	struct geni_se *se = &mas->se;
195	unsigned long time_left;
196
197	if (!(slv->mode & SPI_CS_HIGH))
198		set_flag = !set_flag;
199
200	if (set_flag == mas->cs_flag)
201		return;
202
203	pm_runtime_get_sync(mas->dev);
204
205	if (spi_geni_is_abort_still_pending(mas)) {
206		dev_err(mas->dev, "Can't set chip select\n");
207		goto exit;
208	}
209
210	spin_lock_irq(&mas->lock);
211	if (mas->cur_xfer) {
212		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
213		spin_unlock_irq(&mas->lock);
214		goto exit;
215	}
216
217	mas->cs_flag = set_flag;
218	reinit_completion(&mas->cs_done);
219	if (set_flag)
220		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
221	else
222		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
223	spin_unlock_irq(&mas->lock);
224
225	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
226	if (!time_left) {
227		dev_warn(mas->dev, "Timeout setting chip select\n");
228		handle_fifo_timeout(spi, NULL);
229	}
230
231exit:
232	pm_runtime_put(mas->dev);
233}
234
235static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
236					unsigned int bits_per_word)
237{
238	unsigned int pack_words;
239	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
240	struct geni_se *se = &mas->se;
241	u32 word_len;
242
243	/*
244	 * If bits_per_word isn't a byte aligned value, set the packing to be
245	 * 1 SPI word per FIFO word.
246	 */
247	if (!(mas->fifo_width_bits % bits_per_word))
248		pack_words = mas->fifo_width_bits / bits_per_word;
249	else
250		pack_words = 1;
251	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
252								true, true);
253	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
254	writel(word_len, se->base + SE_SPI_WORD_LEN);
255}
256
257static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
258					unsigned long clk_hz)
259{
260	u32 clk_sel, m_clk_cfg, idx, div;
261	struct geni_se *se = &mas->se;
262	int ret;
263
264	if (clk_hz == mas->cur_speed_hz)
265		return 0;
266
267	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
268	if (ret) {
269		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
270		return ret;
271	}
272
273	/*
274	 * SPI core clock gets configured with the requested frequency
275	 * or the frequency closer to the requested frequency.
276	 * For that reason requested frequency is stored in the
277	 * cur_speed_hz and referred in the consecutive transfer instead
278	 * of calling clk_get_rate() API.
279	 */
280	mas->cur_speed_hz = clk_hz;
281
282	clk_sel = idx & CLK_SEL_MSK;
283	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
284	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
285	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
286
287	/* Set BW quota for CPU as driver supports FIFO mode only. */
288	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
289	ret = geni_icc_set_bw(se);
290	if (ret)
291		return ret;
292
293	return 0;
294}
295
296static int setup_fifo_params(struct spi_device *spi_slv,
297					struct spi_master *spi)
298{
299	struct spi_geni_master *mas = spi_master_get_devdata(spi);
300	struct geni_se *se = &mas->se;
301	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
302	u32 demux_sel;
303
304	if (mas->last_mode != spi_slv->mode) {
305		if (spi_slv->mode & SPI_LOOP)
306			loopback_cfg = LOOPBACK_ENABLE;
307
308		if (spi_slv->mode & SPI_CPOL)
309			cpol = CPOL;
310
311		if (spi_slv->mode & SPI_CPHA)
312			cpha = CPHA;
313
314		if (spi_slv->mode & SPI_CS_HIGH)
315			demux_output_inv = BIT(spi_slv->chip_select);
316
317		demux_sel = spi_slv->chip_select;
318		mas->cur_bits_per_word = spi_slv->bits_per_word;
319
320		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
321		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
322		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
323		writel(cpha, se->base + SE_SPI_CPHA);
324		writel(cpol, se->base + SE_SPI_CPOL);
325		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
326
327		mas->last_mode = spi_slv->mode;
328	}
329
330	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
331}
332
333static int spi_geni_prepare_message(struct spi_master *spi,
334					struct spi_message *spi_msg)
335{
336	int ret;
337	struct spi_geni_master *mas = spi_master_get_devdata(spi);
338
339	if (spi_geni_is_abort_still_pending(mas))
340		return -EBUSY;
341
342	ret = setup_fifo_params(spi_msg->spi, spi);
343	if (ret)
344		dev_err(mas->dev, "Couldn't select mode %d\n", ret);
345	return ret;
346}
347
348static int spi_geni_init(struct spi_geni_master *mas)
349{
350	struct geni_se *se = &mas->se;
351	unsigned int proto, major, minor, ver;
352	u32 spi_tx_cfg;
353
354	pm_runtime_get_sync(mas->dev);
355
356	proto = geni_se_read_proto(se);
357	if (proto != GENI_SE_SPI) {
358		dev_err(mas->dev, "Invalid proto %d\n", proto);
359		pm_runtime_put(mas->dev);
360		return -ENXIO;
361	}
362	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
363
364	/* Width of Tx and Rx FIFO is same */
365	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
366
367	/*
368	 * Hardware programming guide suggests to configure
369	 * RX FIFO RFR level to fifo_depth-2.
370	 */
371	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
372	/* Transmit an entire FIFO worth of data per IRQ */
373	mas->tx_wm = 1;
374	ver = geni_se_get_qup_hw_version(se);
375	major = GENI_SE_VERSION_MAJOR(ver);
376	minor = GENI_SE_VERSION_MINOR(ver);
377
378	if (major == 1 && minor == 0)
379		mas->oversampling = 2;
380	else
381		mas->oversampling = 1;
382
383	geni_se_select_mode(se, GENI_SE_FIFO);
384
385	/* We always control CS manually */
386	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
387	spi_tx_cfg &= ~CS_TOGGLE;
388	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
389
390	pm_runtime_put(mas->dev);
391	return 0;
392}
393
394static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
395{
396	/*
397	 * Calculate how many bytes we'll put in each FIFO word.  If the
398	 * transfer words don't pack cleanly into a FIFO word we'll just put
399	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
400	 */
401	if (mas->fifo_width_bits % mas->cur_bits_per_word)
402		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
403						       BITS_PER_BYTE));
404
405	return mas->fifo_width_bits / BITS_PER_BYTE;
406}
407
408static bool geni_spi_handle_tx(struct spi_geni_master *mas)
409{
410	struct geni_se *se = &mas->se;
411	unsigned int max_bytes;
412	const u8 *tx_buf;
413	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
414	unsigned int i = 0;
415
416	/* Stop the watermark IRQ if nothing to send */
417	if (!mas->cur_xfer) {
418		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
419		return false;
420	}
421
422	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
423	if (mas->tx_rem_bytes < max_bytes)
424		max_bytes = mas->tx_rem_bytes;
425
426	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
427	while (i < max_bytes) {
428		unsigned int j;
429		unsigned int bytes_to_write;
430		u32 fifo_word = 0;
431		u8 *fifo_byte = (u8 *)&fifo_word;
432
433		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
434		for (j = 0; j < bytes_to_write; j++)
435			fifo_byte[j] = tx_buf[i++];
436		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
437	}
438	mas->tx_rem_bytes -= max_bytes;
439	if (!mas->tx_rem_bytes) {
440		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
441		return false;
442	}
443	return true;
444}
445
446static void geni_spi_handle_rx(struct spi_geni_master *mas)
447{
448	struct geni_se *se = &mas->se;
449	u32 rx_fifo_status;
450	unsigned int rx_bytes;
451	unsigned int rx_last_byte_valid;
452	u8 *rx_buf;
453	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
454	unsigned int i = 0;
455
456	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
457	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
458	if (rx_fifo_status & RX_LAST) {
459		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
460		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
461		if (rx_last_byte_valid && rx_last_byte_valid < 4)
462			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
463	}
464
465	/* Clear out the FIFO and bail if nowhere to put it */
466	if (!mas->cur_xfer) {
467		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
468			readl(se->base + SE_GENI_RX_FIFOn);
469		return;
470	}
471
472	if (mas->rx_rem_bytes < rx_bytes)
473		rx_bytes = mas->rx_rem_bytes;
474
475	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
476	while (i < rx_bytes) {
477		u32 fifo_word = 0;
478		u8 *fifo_byte = (u8 *)&fifo_word;
479		unsigned int bytes_to_read;
480		unsigned int j;
481
482		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
483		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
484		for (j = 0; j < bytes_to_read; j++)
485			rx_buf[i++] = fifo_byte[j];
486	}
487	mas->rx_rem_bytes -= rx_bytes;
488}
489
490static void setup_fifo_xfer(struct spi_transfer *xfer,
491				struct spi_geni_master *mas,
492				u16 mode, struct spi_master *spi)
493{
494	u32 m_cmd = 0;
495	u32 len;
496	struct geni_se *se = &mas->se;
497	int ret;
498
499	/*
500	 * Ensure that our interrupt handler isn't still running from some
501	 * prior command before we start messing with the hardware behind
502	 * its back.  We don't need to _keep_ the lock here since we're only
503	 * worried about racing with out interrupt handler.  The SPI core
504	 * already handles making sure that we're not trying to do two
505	 * transfers at once or setting a chip select and doing a transfer
506	 * concurrently.
507	 *
508	 * NOTE: we actually _can't_ hold the lock here because possibly we
509	 * might call clk_set_rate() which needs to be able to sleep.
510	 */
511	spin_lock_irq(&mas->lock);
512	spin_unlock_irq(&mas->lock);
513
514	if (xfer->bits_per_word != mas->cur_bits_per_word) {
515		spi_setup_word_len(mas, mode, xfer->bits_per_word);
516		mas->cur_bits_per_word = xfer->bits_per_word;
517	}
518
519	/* Speed and bits per word can be overridden per transfer */
520	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
521	if (ret)
522		return;
523
524	mas->tx_rem_bytes = 0;
525	mas->rx_rem_bytes = 0;
526
527	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
528		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
529	else
530		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
531	len &= TRANS_LEN_MSK;
532
533	mas->cur_xfer = xfer;
534	if (xfer->tx_buf) {
535		m_cmd |= SPI_TX_ONLY;
536		mas->tx_rem_bytes = xfer->len;
537		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
538	}
539
540	if (xfer->rx_buf) {
541		m_cmd |= SPI_RX_ONLY;
542		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
543		mas->rx_rem_bytes = xfer->len;
544	}
545
546	/*
547	 * Lock around right before we start the transfer since our
548	 * interrupt could come in at any time now.
549	 */
550	spin_lock_irq(&mas->lock);
551	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
552
553	/*
554	 * TX_WATERMARK_REG should be set after SPI configuration and
555	 * setting up GENI SE engine, as driver starts data transfer
556	 * for the watermark interrupt.
557	 */
558	if (m_cmd & SPI_TX_ONLY) {
559		if (geni_spi_handle_tx(mas))
560			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
561	}
562	spin_unlock_irq(&mas->lock);
563}
564
565static int spi_geni_transfer_one(struct spi_master *spi,
566				struct spi_device *slv,
567				struct spi_transfer *xfer)
568{
569	struct spi_geni_master *mas = spi_master_get_devdata(spi);
570
571	if (spi_geni_is_abort_still_pending(mas))
572		return -EBUSY;
573
574	/* Terminate and return success for 0 byte length transfer */
575	if (!xfer->len)
576		return 0;
577
578	setup_fifo_xfer(xfer, mas, slv->mode, spi);
579	return 1;
580}
581
582static irqreturn_t geni_spi_isr(int irq, void *data)
583{
584	struct spi_master *spi = data;
585	struct spi_geni_master *mas = spi_master_get_devdata(spi);
586	struct geni_se *se = &mas->se;
587	u32 m_irq;
588
589	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
590	if (!m_irq)
591		return IRQ_NONE;
592
593	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
594		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
595		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
596		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
597
598	spin_lock(&mas->lock);
599
600	if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
601		geni_spi_handle_rx(mas);
602
603	if (m_irq & M_TX_FIFO_WATERMARK_EN)
604		geni_spi_handle_tx(mas);
605
606	if (m_irq & M_CMD_DONE_EN) {
607		if (mas->cur_xfer) {
608			spi_finalize_current_transfer(spi);
609			mas->cur_xfer = NULL;
610			/*
611			 * If this happens, then a CMD_DONE came before all the
612			 * Tx buffer bytes were sent out. This is unusual, log
613			 * this condition and disable the WM interrupt to
614			 * prevent the system from stalling due an interrupt
615			 * storm.
616			 *
617			 * If this happens when all Rx bytes haven't been
618			 * received, log the condition. The only known time
619			 * this can happen is if bits_per_word != 8 and some
620			 * registers that expect xfer lengths in num spi_words
621			 * weren't written correctly.
622			 */
623			if (mas->tx_rem_bytes) {
624				writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
625				dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
626					mas->tx_rem_bytes, mas->cur_bits_per_word);
627			}
628			if (mas->rx_rem_bytes)
629				dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
630					mas->rx_rem_bytes, mas->cur_bits_per_word);
631		} else {
632			complete(&mas->cs_done);
633		}
634	}
635
636	if (m_irq & M_CMD_CANCEL_EN)
637		complete(&mas->cancel_done);
638	if (m_irq & M_CMD_ABORT_EN)
639		complete(&mas->abort_done);
640
641	/*
642	 * It's safe or a good idea to Ack all of our interrupts at the end
643	 * of the function. Specifically:
644	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
645	 *   clearing Acks. Clearing at the end relies on nobody else having
646	 *   started a new transfer yet or else we could be clearing _their_
647	 *   done bit, but everyone grabs the spinlock before starting a new
648	 *   transfer.
649	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
650	 *   to be "latched level" interrupts so it's important to clear them
651	 *   _after_ you've handled the condition and always safe to do so
652	 *   since they'll re-assert if they're still happening.
653	 */
654	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
655
656	spin_unlock(&mas->lock);
657
658	return IRQ_HANDLED;
659}
660
661static int spi_geni_probe(struct platform_device *pdev)
662{
663	int ret, irq;
664	struct spi_master *spi;
665	struct spi_geni_master *mas;
666	void __iomem *base;
667	struct clk *clk;
668	struct device *dev = &pdev->dev;
669
670	irq = platform_get_irq(pdev, 0);
671	if (irq < 0)
672		return irq;
673
674	base = devm_platform_ioremap_resource(pdev, 0);
675	if (IS_ERR(base))
676		return PTR_ERR(base);
677
678	clk = devm_clk_get(dev, "se");
679	if (IS_ERR(clk))
680		return PTR_ERR(clk);
681
682	spi = devm_spi_alloc_master(dev, sizeof(*mas));
683	if (!spi)
684		return -ENOMEM;
685
686	platform_set_drvdata(pdev, spi);
687	mas = spi_master_get_devdata(spi);
688	mas->irq = irq;
689	mas->dev = dev;
690	mas->se.dev = dev;
691	mas->se.wrapper = dev_get_drvdata(dev->parent);
692	mas->se.base = base;
693	mas->se.clk = clk;
694
695	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
696	if (ret)
697		return ret;
698	/* OPP table is optional */
699	ret = devm_pm_opp_of_add_table(&pdev->dev);
700	if (ret && ret != -ENODEV) {
701		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
702		return ret;
703	}
704
705	spi->bus_num = -1;
706	spi->dev.of_node = dev->of_node;
707	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
708	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
709	spi->num_chipselect = 4;
710	spi->max_speed_hz = 50000000;
711	spi->prepare_message = spi_geni_prepare_message;
712	spi->transfer_one = spi_geni_transfer_one;
713	spi->auto_runtime_pm = true;
714	spi->handle_err = handle_fifo_timeout;
715	spi->set_cs = spi_geni_set_cs;
716	spi->use_gpio_descriptors = true;
717
718	init_completion(&mas->cs_done);
719	init_completion(&mas->cancel_done);
720	init_completion(&mas->abort_done);
721	spin_lock_init(&mas->lock);
722	pm_runtime_use_autosuspend(&pdev->dev);
723	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
724	pm_runtime_enable(dev);
725
726	ret = geni_icc_get(&mas->se, NULL);
727	if (ret)
728		goto spi_geni_probe_runtime_disable;
729	/* Set the bus quota to a reasonable value for register access */
730	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
731	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
732
733	ret = geni_icc_set_bw(&mas->se);
734	if (ret)
735		goto spi_geni_probe_runtime_disable;
736
737	ret = spi_geni_init(mas);
738	if (ret)
739		goto spi_geni_probe_runtime_disable;
740
741	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
742	if (ret)
743		goto spi_geni_probe_runtime_disable;
744
745	ret = spi_register_master(spi);
746	if (ret)
747		goto spi_geni_probe_free_irq;
748
749	return 0;
750spi_geni_probe_free_irq:
751	free_irq(mas->irq, spi);
752spi_geni_probe_runtime_disable:
753	pm_runtime_disable(dev);
754	return ret;
755}
756
757static int spi_geni_remove(struct platform_device *pdev)
758{
759	struct spi_master *spi = platform_get_drvdata(pdev);
760	struct spi_geni_master *mas = spi_master_get_devdata(spi);
761
762	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
763	spi_unregister_master(spi);
764
765	free_irq(mas->irq, spi);
766	pm_runtime_disable(&pdev->dev);
767	return 0;
768}
769
770static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
771{
772	struct spi_master *spi = dev_get_drvdata(dev);
773	struct spi_geni_master *mas = spi_master_get_devdata(spi);
774	int ret;
775
776	/* Drop the performance state vote */
777	dev_pm_opp_set_rate(dev, 0);
778
779	ret = geni_se_resources_off(&mas->se);
780	if (ret)
781		return ret;
782
783	return geni_icc_disable(&mas->se);
784}
785
786static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
787{
788	struct spi_master *spi = dev_get_drvdata(dev);
789	struct spi_geni_master *mas = spi_master_get_devdata(spi);
790	int ret;
791
792	ret = geni_icc_enable(&mas->se);
793	if (ret)
794		return ret;
795
796	ret = geni_se_resources_on(&mas->se);
797	if (ret)
798		return ret;
799
800	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
801}
802
803static int __maybe_unused spi_geni_suspend(struct device *dev)
804{
805	struct spi_master *spi = dev_get_drvdata(dev);
806	int ret;
807
808	ret = spi_master_suspend(spi);
809	if (ret)
810		return ret;
811
812	ret = pm_runtime_force_suspend(dev);
813	if (ret)
814		spi_master_resume(spi);
815
816	return ret;
817}
818
819static int __maybe_unused spi_geni_resume(struct device *dev)
820{
821	struct spi_master *spi = dev_get_drvdata(dev);
822	int ret;
823
824	ret = pm_runtime_force_resume(dev);
825	if (ret)
826		return ret;
827
828	ret = spi_master_resume(spi);
829	if (ret)
830		pm_runtime_force_suspend(dev);
831
832	return ret;
833}
834
835static const struct dev_pm_ops spi_geni_pm_ops = {
836	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
837					spi_geni_runtime_resume, NULL)
838	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
839};
840
841static const struct of_device_id spi_geni_dt_match[] = {
842	{ .compatible = "qcom,geni-spi" },
843	{}
844};
845MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
846
847static struct platform_driver spi_geni_driver = {
848	.probe  = spi_geni_probe,
849	.remove = spi_geni_remove,
850	.driver = {
851		.name = "geni_spi",
852		.pm = &spi_geni_pm_ops,
853		.of_match_table = spi_geni_dt_match,
854	},
855};
856module_platform_driver(spi_geni_driver);
857
858MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
859MODULE_LICENSE("GPL v2");