Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Mellanox boot control driver
  4 *
  5 * This driver provides a sysfs interface for systems management
  6 * software to manage reset-time actions.
  7 *
  8 * Copyright (C) 2019 Mellanox Technologies
  9 */
 10
 11#include <linux/acpi.h>
 12#include <linux/arm-smccc.h>
 13#include <linux/module.h>
 14#include <linux/platform_device.h>
 15
 16#include "mlxbf-bootctl.h"
 17
 18#define MLXBF_BOOTCTL_SB_SECURE_MASK		0x03
 19#define MLXBF_BOOTCTL_SB_TEST_MASK		0x0c
 20
 21#define MLXBF_SB_KEY_NUM			4
 22
 23/* UUID used to probe ATF service. */
 24static const char *mlxbf_bootctl_svc_uuid_str =
 25	"89c036b4-e7d7-11e6-8797-001aca00bfc4";
 26
 27struct mlxbf_bootctl_name {
 28	u32 value;
 29	const char *name;
 30};
 31
 32static struct mlxbf_bootctl_name boot_names[] = {
 33	{ MLXBF_BOOTCTL_EXTERNAL, "external" },
 34	{ MLXBF_BOOTCTL_EMMC, "emmc" },
 35	{ MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
 36	{ MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
 37	{ MLXBF_BOOTCTL_NONE, "none" },
 38};
 39
 40static const char * const mlxbf_bootctl_lifecycle_states[] = {
 41	[0] = "Production",
 42	[1] = "GA Secured",
 43	[2] = "GA Non-Secured",
 44	[3] = "RMA",
 45};
 46
 47/* ARM SMC call which is atomic and no need for lock. */
 48static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
 49{
 50	struct arm_smccc_res res;
 51
 52	arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
 53
 54	return res.a0;
 55}
 56
 57/* Return the action in integer or an error code. */
 58static int mlxbf_bootctl_reset_action_to_val(const char *action)
 59{
 60	int i;
 61
 62	for (i = 0; i < ARRAY_SIZE(boot_names); i++)
 63		if (sysfs_streq(boot_names[i].name, action))
 64			return boot_names[i].value;
 65
 66	return -EINVAL;
 67}
 68
 69/* Return the action in string. */
 70static const char *mlxbf_bootctl_action_to_string(int action)
 71{
 72	int i;
 73
 74	for (i = 0; i < ARRAY_SIZE(boot_names); i++)
 75		if (boot_names[i].value == action)
 76			return boot_names[i].name;
 77
 78	return "invalid action";
 79}
 80
 81static ssize_t post_reset_wdog_show(struct device *dev,
 82				    struct device_attribute *attr, char *buf)
 83{
 84	int ret;
 85
 86	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
 87	if (ret < 0)
 88		return ret;
 89
 90	return sprintf(buf, "%d\n", ret);
 91}
 92
 93static ssize_t post_reset_wdog_store(struct device *dev,
 94				     struct device_attribute *attr,
 95				     const char *buf, size_t count)
 96{
 97	unsigned long value;
 98	int ret;
 99
100	ret = kstrtoul(buf, 10, &value);
101	if (ret)
102		return ret;
103
104	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
105	if (ret < 0)
106		return ret;
107
108	return count;
109}
110
111static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
112{
113	int action;
114
115	action = mlxbf_bootctl_smc(smc_op, 0);
116	if (action < 0)
117		return action;
118
119	return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
120}
121
122static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
123{
124	int ret, action;
125
126	action = mlxbf_bootctl_reset_action_to_val(buf);
127	if (action < 0)
128		return action;
129
130	ret = mlxbf_bootctl_smc(smc_op, action);
131	if (ret < 0)
132		return ret;
133
134	return count;
135}
136
137static ssize_t reset_action_show(struct device *dev,
138				 struct device_attribute *attr, char *buf)
139{
140	return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
141}
142
143static ssize_t reset_action_store(struct device *dev,
144				  struct device_attribute *attr,
145				  const char *buf, size_t count)
146{
147	return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
148}
149
150static ssize_t second_reset_action_show(struct device *dev,
151					struct device_attribute *attr,
152					char *buf)
153{
154	return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
155}
156
157static ssize_t second_reset_action_store(struct device *dev,
158					 struct device_attribute *attr,
159					 const char *buf, size_t count)
160{
161	return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
162				   count);
163}
164
165static ssize_t lifecycle_state_show(struct device *dev,
166				    struct device_attribute *attr, char *buf)
167{
168	int lc_state;
169
170	lc_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
171				     MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
172	if (lc_state < 0)
173		return lc_state;
174
175	lc_state &=
176		MLXBF_BOOTCTL_SB_TEST_MASK | MLXBF_BOOTCTL_SB_SECURE_MASK;
177
178	/*
179	 * If the test bits are set, we specify that the current state may be
180	 * due to using the test bits.
181	 */
182	if (lc_state & MLXBF_BOOTCTL_SB_TEST_MASK) {
183		lc_state &= MLXBF_BOOTCTL_SB_SECURE_MASK;
184
185		return sprintf(buf, "%s(test)\n",
186			       mlxbf_bootctl_lifecycle_states[lc_state]);
187	}
188
189	return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
190}
191
192static ssize_t secure_boot_fuse_state_show(struct device *dev,
193					   struct device_attribute *attr,
194					   char *buf)
195{
196	int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
197	const char *status;
198
199	key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
200				      MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
201	if (key_state < 0)
202		return key_state;
203
204	/*
205	 * key_state contains the bits for 4 Key versions, loaded from eFuses
206	 * after a hard reset. Lower 4 bits are a thermometer code indicating
207	 * key programming has started for key n (0000 = none, 0001 = version 0,
208	 * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
209	 * are a thermometer code indicating key programming has completed for
210	 * key n (same encodings as the start bits). This allows for detection
211	 * of an interruption in the programming process which has left the key
212	 * partially programmed (and thus invalid). The process is to burn the
213	 * eFuse for the new key start bit, burn the key eFuses, then burn the
214	 * eFuse for the new key complete bit.
215	 *
216	 * For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
217	 * 0011_0011: key 1 version valid, 0011_0111: key version 2 started
218	 * programming but did not complete, etc. The most recent key for which
219	 * both start and complete bit is set is loaded. On soft reset, this
220	 * register is not modified.
221	 */
222	for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
223		burnt = key_state & BIT(key);
224		valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
225
226		if (burnt && valid)
227			upper_key_used = 1;
228
229		if (upper_key_used) {
230			if (burnt)
231				status = valid ? "Used" : "Wasted";
232			else
233				status = valid ? "Invalid" : "Skipped";
234		} else {
235			if (burnt)
236				status = valid ? "InUse" : "Incomplete";
237			else
238				status = valid ? "Invalid" : "Free";
239		}
240		buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
241	}
242	buf_len += sprintf(buf + buf_len, "\n");
243
244	return buf_len;
245}
246
247static DEVICE_ATTR_RW(post_reset_wdog);
248static DEVICE_ATTR_RW(reset_action);
249static DEVICE_ATTR_RW(second_reset_action);
250static DEVICE_ATTR_RO(lifecycle_state);
251static DEVICE_ATTR_RO(secure_boot_fuse_state);
252
253static struct attribute *mlxbf_bootctl_attrs[] = {
254	&dev_attr_post_reset_wdog.attr,
255	&dev_attr_reset_action.attr,
256	&dev_attr_second_reset_action.attr,
257	&dev_attr_lifecycle_state.attr,
258	&dev_attr_secure_boot_fuse_state.attr,
259	NULL
260};
261
262ATTRIBUTE_GROUPS(mlxbf_bootctl);
263
264static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
265	{"MLNXBF04", 0},
266	{}
267};
268
269MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
270
271static bool mlxbf_bootctl_guid_match(const guid_t *guid,
272				     const struct arm_smccc_res *res)
273{
274	guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
275			      res->a2, res->a2 >> 8, res->a2 >> 16,
276			      res->a2 >> 24, res->a3, res->a3 >> 8,
277			      res->a3 >> 16, res->a3 >> 24);
278
279	return guid_equal(guid, &id);
280}
281
282static int mlxbf_bootctl_probe(struct platform_device *pdev)
283{
284	struct arm_smccc_res res = { 0 };
285	guid_t guid;
286	int ret;
287
288	/* Ensure we have the UUID we expect for this service. */
289	arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
290	guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
291	if (!mlxbf_bootctl_guid_match(&guid, &res))
292		return -ENODEV;
293
294	/*
295	 * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
296	 * in case of boot failures. However it doesn't clear the state if there
297	 * is no failure. Restore the default boot mode here to avoid any
298	 * unnecessary boot partition swapping.
299	 */
300	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
301				MLXBF_BOOTCTL_EMMC);
302	if (ret < 0)
303		dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
304
305	return 0;
306}
307
308static struct platform_driver mlxbf_bootctl_driver = {
309	.probe = mlxbf_bootctl_probe,
310	.driver = {
311		.name = "mlxbf-bootctl",
312		.dev_groups = mlxbf_bootctl_groups,
313		.acpi_match_table = mlxbf_bootctl_acpi_ids,
314	}
315};
316
317module_platform_driver(mlxbf_bootctl_driver);
318
319MODULE_DESCRIPTION("Mellanox boot control driver");
320MODULE_LICENSE("GPL v2");
321MODULE_AUTHOR("Mellanox Technologies");