Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/debugfs.h>
   5#include <linux/delay.h>
   6#include <linux/gpio/consumer.h>
   7#include <linux/hwmon.h>
   8#include <linux/i2c.h>
   9#include <linux/interrupt.h>
  10#include <linux/jiffies.h>
  11#include <linux/mdio/mdio-i2c.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/of.h>
  15#include <linux/phy.h>
  16#include <linux/platform_device.h>
  17#include <linux/rtnetlink.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20
  21#include "sfp.h"
  22#include "swphy.h"
  23
  24enum {
  25	GPIO_MODDEF0,
  26	GPIO_LOS,
  27	GPIO_TX_FAULT,
  28	GPIO_TX_DISABLE,
  29	GPIO_RATE_SELECT,
  30	GPIO_MAX,
  31
  32	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  33	SFP_F_LOS = BIT(GPIO_LOS),
  34	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  35	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  36	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  37
  38	SFP_E_INSERT = 0,
  39	SFP_E_REMOVE,
  40	SFP_E_DEV_ATTACH,
  41	SFP_E_DEV_DETACH,
  42	SFP_E_DEV_DOWN,
  43	SFP_E_DEV_UP,
  44	SFP_E_TX_FAULT,
  45	SFP_E_TX_CLEAR,
  46	SFP_E_LOS_HIGH,
  47	SFP_E_LOS_LOW,
  48	SFP_E_TIMEOUT,
  49
  50	SFP_MOD_EMPTY = 0,
  51	SFP_MOD_ERROR,
  52	SFP_MOD_PROBE,
  53	SFP_MOD_WAITDEV,
  54	SFP_MOD_HPOWER,
  55	SFP_MOD_WAITPWR,
  56	SFP_MOD_PRESENT,
  57
  58	SFP_DEV_DETACHED = 0,
  59	SFP_DEV_DOWN,
  60	SFP_DEV_UP,
  61
  62	SFP_S_DOWN = 0,
  63	SFP_S_FAIL,
  64	SFP_S_WAIT,
  65	SFP_S_INIT,
  66	SFP_S_INIT_PHY,
  67	SFP_S_INIT_TX_FAULT,
  68	SFP_S_WAIT_LOS,
  69	SFP_S_LINK_UP,
  70	SFP_S_TX_FAULT,
  71	SFP_S_REINIT,
  72	SFP_S_TX_DISABLE,
  73};
  74
  75static const char  * const mod_state_strings[] = {
  76	[SFP_MOD_EMPTY] = "empty",
  77	[SFP_MOD_ERROR] = "error",
  78	[SFP_MOD_PROBE] = "probe",
  79	[SFP_MOD_WAITDEV] = "waitdev",
  80	[SFP_MOD_HPOWER] = "hpower",
  81	[SFP_MOD_WAITPWR] = "waitpwr",
  82	[SFP_MOD_PRESENT] = "present",
  83};
  84
  85static const char *mod_state_to_str(unsigned short mod_state)
  86{
  87	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  88		return "Unknown module state";
  89	return mod_state_strings[mod_state];
  90}
  91
  92static const char * const dev_state_strings[] = {
  93	[SFP_DEV_DETACHED] = "detached",
  94	[SFP_DEV_DOWN] = "down",
  95	[SFP_DEV_UP] = "up",
  96};
  97
  98static const char *dev_state_to_str(unsigned short dev_state)
  99{
 100	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 101		return "Unknown device state";
 102	return dev_state_strings[dev_state];
 103}
 104
 105static const char * const event_strings[] = {
 106	[SFP_E_INSERT] = "insert",
 107	[SFP_E_REMOVE] = "remove",
 108	[SFP_E_DEV_ATTACH] = "dev_attach",
 109	[SFP_E_DEV_DETACH] = "dev_detach",
 110	[SFP_E_DEV_DOWN] = "dev_down",
 111	[SFP_E_DEV_UP] = "dev_up",
 112	[SFP_E_TX_FAULT] = "tx_fault",
 113	[SFP_E_TX_CLEAR] = "tx_clear",
 114	[SFP_E_LOS_HIGH] = "los_high",
 115	[SFP_E_LOS_LOW] = "los_low",
 116	[SFP_E_TIMEOUT] = "timeout",
 117};
 118
 119static const char *event_to_str(unsigned short event)
 120{
 121	if (event >= ARRAY_SIZE(event_strings))
 122		return "Unknown event";
 123	return event_strings[event];
 124}
 125
 126static const char * const sm_state_strings[] = {
 127	[SFP_S_DOWN] = "down",
 128	[SFP_S_FAIL] = "fail",
 129	[SFP_S_WAIT] = "wait",
 130	[SFP_S_INIT] = "init",
 131	[SFP_S_INIT_PHY] = "init_phy",
 132	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 133	[SFP_S_WAIT_LOS] = "wait_los",
 134	[SFP_S_LINK_UP] = "link_up",
 135	[SFP_S_TX_FAULT] = "tx_fault",
 136	[SFP_S_REINIT] = "reinit",
 137	[SFP_S_TX_DISABLE] = "tx_disable",
 138};
 139
 140static const char *sm_state_to_str(unsigned short sm_state)
 141{
 142	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 143		return "Unknown state";
 144	return sm_state_strings[sm_state];
 145}
 146
 147static const char *gpio_of_names[] = {
 148	"mod-def0",
 149	"los",
 150	"tx-fault",
 151	"tx-disable",
 152	"rate-select0",
 153};
 154
 155static const enum gpiod_flags gpio_flags[] = {
 156	GPIOD_IN,
 157	GPIOD_IN,
 158	GPIOD_IN,
 159	GPIOD_ASIS,
 160	GPIOD_ASIS,
 161};
 162
 163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 164 * non-cooled module to initialise its laser safety circuitry. We wait
 165 * an initial T_WAIT period before we check the tx fault to give any PHY
 166 * on board (for a copper SFP) time to initialise.
 167 */
 168#define T_WAIT			msecs_to_jiffies(50)
 169#define T_START_UP		msecs_to_jiffies(300)
 170#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 171
 172/* t_reset is the time required to assert the TX_DISABLE signal to reset
 173 * an indicated TX_FAULT.
 174 */
 175#define T_RESET_US		10
 176#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 177
 178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 179 * time. If the TX_FAULT signal is not deasserted after this number of
 180 * attempts at clearing it, we decide that the module is faulty.
 181 * N_FAULT is the same but after the module has initialised.
 182 */
 183#define N_FAULT_INIT		5
 184#define N_FAULT			5
 185
 186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 187 * R_PHY_RETRY is the number of attempts.
 188 */
 189#define T_PHY_RETRY		msecs_to_jiffies(50)
 190#define R_PHY_RETRY		12
 191
 192/* SFP module presence detection is poor: the three MOD DEF signals are
 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 194 * connect before the I2C bus on MOD DEF 1/2.
 195 *
 196 * The SFF-8472 specifies t_serial ("Time from power on until module is
 197 * ready for data transmission over the two wire serial bus.") as 300ms.
 198 */
 199#define T_SERIAL		msecs_to_jiffies(300)
 200#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 201#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 202#define R_PROBE_RETRY_INIT	10
 203#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 204#define R_PROBE_RETRY_SLOW	12
 205
 206/* SFP modules appear to always have their PHY configured for bus address
 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 208 */
 209#define SFP_PHY_ADDR	22
 210
 211struct sff_data {
 212	unsigned int gpios;
 213	bool (*module_supported)(const struct sfp_eeprom_id *id);
 214};
 215
 216struct sfp {
 217	struct device *dev;
 218	struct i2c_adapter *i2c;
 219	struct mii_bus *i2c_mii;
 220	struct sfp_bus *sfp_bus;
 221	struct phy_device *mod_phy;
 222	const struct sff_data *type;
 223	size_t i2c_block_size;
 224	u32 max_power_mW;
 225
 226	unsigned int (*get_state)(struct sfp *);
 227	void (*set_state)(struct sfp *, unsigned int);
 228	int (*read)(struct sfp *, bool, u8, void *, size_t);
 229	int (*write)(struct sfp *, bool, u8, void *, size_t);
 230
 231	struct gpio_desc *gpio[GPIO_MAX];
 232	int gpio_irq[GPIO_MAX];
 233
 234	bool need_poll;
 235
 236	struct mutex st_mutex;			/* Protects state */
 237	unsigned int state_soft_mask;
 238	unsigned int state;
 239	struct delayed_work poll;
 240	struct delayed_work timeout;
 241	struct mutex sm_mutex;			/* Protects state machine */
 242	unsigned char sm_mod_state;
 243	unsigned char sm_mod_tries_init;
 244	unsigned char sm_mod_tries;
 245	unsigned char sm_dev_state;
 246	unsigned short sm_state;
 247	unsigned char sm_fault_retries;
 248	unsigned char sm_phy_retries;
 249
 250	struct sfp_eeprom_id id;
 251	unsigned int module_power_mW;
 252	unsigned int module_t_start_up;
 253
 254#if IS_ENABLED(CONFIG_HWMON)
 255	struct sfp_diag diag;
 256	struct delayed_work hwmon_probe;
 257	unsigned int hwmon_tries;
 258	struct device *hwmon_dev;
 259	char *hwmon_name;
 260#endif
 261
 262#if IS_ENABLED(CONFIG_DEBUG_FS)
 263	struct dentry *debugfs_dir;
 264#endif
 265};
 266
 267static bool sff_module_supported(const struct sfp_eeprom_id *id)
 268{
 269	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 270	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 271}
 272
 273static const struct sff_data sff_data = {
 274	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 275	.module_supported = sff_module_supported,
 276};
 277
 278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 279{
 280	if (id->base.phys_id == SFF8024_ID_SFP &&
 281	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 282		return true;
 283
 284	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 285	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 286	 * as supported based on vendor name and pn match.
 287	 */
 288	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 289	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 290	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 291	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 292		return true;
 293
 294	return false;
 295}
 296
 297static const struct sff_data sfp_data = {
 298	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 299		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 300	.module_supported = sfp_module_supported,
 301};
 302
 303static const struct of_device_id sfp_of_match[] = {
 304	{ .compatible = "sff,sff", .data = &sff_data, },
 305	{ .compatible = "sff,sfp", .data = &sfp_data, },
 306	{ },
 307};
 308MODULE_DEVICE_TABLE(of, sfp_of_match);
 309
 310static unsigned long poll_jiffies;
 311
 312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 313{
 314	unsigned int i, state, v;
 315
 316	for (i = state = 0; i < GPIO_MAX; i++) {
 317		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 318			continue;
 319
 320		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 321		if (v)
 322			state |= BIT(i);
 323	}
 324
 325	return state;
 326}
 327
 328static unsigned int sff_gpio_get_state(struct sfp *sfp)
 329{
 330	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 331}
 332
 333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 334{
 335	if (state & SFP_F_PRESENT) {
 336		/* If the module is present, drive the signals */
 337		if (sfp->gpio[GPIO_TX_DISABLE])
 338			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 339					       state & SFP_F_TX_DISABLE);
 340		if (state & SFP_F_RATE_SELECT)
 341			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 342					       state & SFP_F_RATE_SELECT);
 343	} else {
 344		/* Otherwise, let them float to the pull-ups */
 345		if (sfp->gpio[GPIO_TX_DISABLE])
 346			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 347		if (state & SFP_F_RATE_SELECT)
 348			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 349	}
 350}
 351
 352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 353			size_t len)
 354{
 355	struct i2c_msg msgs[2];
 356	u8 bus_addr = a2 ? 0x51 : 0x50;
 357	size_t block_size = sfp->i2c_block_size;
 358	size_t this_len;
 359	int ret;
 360
 361	msgs[0].addr = bus_addr;
 362	msgs[0].flags = 0;
 363	msgs[0].len = 1;
 364	msgs[0].buf = &dev_addr;
 365	msgs[1].addr = bus_addr;
 366	msgs[1].flags = I2C_M_RD;
 367	msgs[1].len = len;
 368	msgs[1].buf = buf;
 369
 370	while (len) {
 371		this_len = len;
 372		if (this_len > block_size)
 373			this_len = block_size;
 374
 375		msgs[1].len = this_len;
 376
 377		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 378		if (ret < 0)
 379			return ret;
 380
 381		if (ret != ARRAY_SIZE(msgs))
 382			break;
 383
 384		msgs[1].buf += this_len;
 385		dev_addr += this_len;
 386		len -= this_len;
 387	}
 388
 389	return msgs[1].buf - (u8 *)buf;
 390}
 391
 392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 393	size_t len)
 394{
 395	struct i2c_msg msgs[1];
 396	u8 bus_addr = a2 ? 0x51 : 0x50;
 397	int ret;
 398
 399	msgs[0].addr = bus_addr;
 400	msgs[0].flags = 0;
 401	msgs[0].len = 1 + len;
 402	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 403	if (!msgs[0].buf)
 404		return -ENOMEM;
 405
 406	msgs[0].buf[0] = dev_addr;
 407	memcpy(&msgs[0].buf[1], buf, len);
 408
 409	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 410
 411	kfree(msgs[0].buf);
 412
 413	if (ret < 0)
 414		return ret;
 415
 416	return ret == ARRAY_SIZE(msgs) ? len : 0;
 417}
 418
 419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 420{
 421	struct mii_bus *i2c_mii;
 422	int ret;
 423
 424	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 425		return -EINVAL;
 426
 427	sfp->i2c = i2c;
 428	sfp->read = sfp_i2c_read;
 429	sfp->write = sfp_i2c_write;
 430
 431	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 432	if (IS_ERR(i2c_mii))
 433		return PTR_ERR(i2c_mii);
 434
 435	i2c_mii->name = "SFP I2C Bus";
 436	i2c_mii->phy_mask = ~0;
 437
 438	ret = mdiobus_register(i2c_mii);
 439	if (ret < 0) {
 440		mdiobus_free(i2c_mii);
 441		return ret;
 442	}
 443
 444	sfp->i2c_mii = i2c_mii;
 445
 446	return 0;
 447}
 448
 449/* Interface */
 450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 451{
 452	return sfp->read(sfp, a2, addr, buf, len);
 453}
 454
 455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 456{
 457	return sfp->write(sfp, a2, addr, buf, len);
 458}
 459
 460static unsigned int sfp_soft_get_state(struct sfp *sfp)
 461{
 462	unsigned int state = 0;
 463	u8 status;
 464	int ret;
 465
 466	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 467	if (ret == sizeof(status)) {
 468		if (status & SFP_STATUS_RX_LOS)
 469			state |= SFP_F_LOS;
 470		if (status & SFP_STATUS_TX_FAULT)
 471			state |= SFP_F_TX_FAULT;
 472	} else {
 473		dev_err_ratelimited(sfp->dev,
 474				    "failed to read SFP soft status: %d\n",
 475				    ret);
 476		/* Preserve the current state */
 477		state = sfp->state;
 478	}
 479
 480	return state & sfp->state_soft_mask;
 481}
 482
 483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 484{
 485	u8 status;
 486
 487	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 488		     sizeof(status)) {
 489		if (state & SFP_F_TX_DISABLE)
 490			status |= SFP_STATUS_TX_DISABLE_FORCE;
 491		else
 492			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 493
 494		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 495	}
 496}
 497
 498static void sfp_soft_start_poll(struct sfp *sfp)
 499{
 500	const struct sfp_eeprom_id *id = &sfp->id;
 501
 502	sfp->state_soft_mask = 0;
 503	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 504	    !sfp->gpio[GPIO_TX_DISABLE])
 505		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 506	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 507	    !sfp->gpio[GPIO_TX_FAULT])
 508		sfp->state_soft_mask |= SFP_F_TX_FAULT;
 509	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 510	    !sfp->gpio[GPIO_LOS])
 511		sfp->state_soft_mask |= SFP_F_LOS;
 512
 513	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 514	    !sfp->need_poll)
 515		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 516}
 517
 518static void sfp_soft_stop_poll(struct sfp *sfp)
 519{
 520	sfp->state_soft_mask = 0;
 521}
 522
 523static unsigned int sfp_get_state(struct sfp *sfp)
 524{
 525	unsigned int state = sfp->get_state(sfp);
 526
 527	if (state & SFP_F_PRESENT &&
 528	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 529		state |= sfp_soft_get_state(sfp);
 530
 531	return state;
 532}
 533
 534static void sfp_set_state(struct sfp *sfp, unsigned int state)
 535{
 536	sfp->set_state(sfp, state);
 537
 538	if (state & SFP_F_PRESENT &&
 539	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
 540		sfp_soft_set_state(sfp, state);
 541}
 542
 543static unsigned int sfp_check(void *buf, size_t len)
 544{
 545	u8 *p, check;
 546
 547	for (p = buf, check = 0; len; p++, len--)
 548		check += *p;
 549
 550	return check;
 551}
 552
 553/* hwmon */
 554#if IS_ENABLED(CONFIG_HWMON)
 555static umode_t sfp_hwmon_is_visible(const void *data,
 556				    enum hwmon_sensor_types type,
 557				    u32 attr, int channel)
 558{
 559	const struct sfp *sfp = data;
 560
 561	switch (type) {
 562	case hwmon_temp:
 563		switch (attr) {
 564		case hwmon_temp_min_alarm:
 565		case hwmon_temp_max_alarm:
 566		case hwmon_temp_lcrit_alarm:
 567		case hwmon_temp_crit_alarm:
 568		case hwmon_temp_min:
 569		case hwmon_temp_max:
 570		case hwmon_temp_lcrit:
 571		case hwmon_temp_crit:
 572			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573				return 0;
 574			fallthrough;
 575		case hwmon_temp_input:
 576		case hwmon_temp_label:
 577			return 0444;
 578		default:
 579			return 0;
 580		}
 581	case hwmon_in:
 582		switch (attr) {
 583		case hwmon_in_min_alarm:
 584		case hwmon_in_max_alarm:
 585		case hwmon_in_lcrit_alarm:
 586		case hwmon_in_crit_alarm:
 587		case hwmon_in_min:
 588		case hwmon_in_max:
 589		case hwmon_in_lcrit:
 590		case hwmon_in_crit:
 591			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592				return 0;
 593			fallthrough;
 594		case hwmon_in_input:
 595		case hwmon_in_label:
 596			return 0444;
 597		default:
 598			return 0;
 599		}
 600	case hwmon_curr:
 601		switch (attr) {
 602		case hwmon_curr_min_alarm:
 603		case hwmon_curr_max_alarm:
 604		case hwmon_curr_lcrit_alarm:
 605		case hwmon_curr_crit_alarm:
 606		case hwmon_curr_min:
 607		case hwmon_curr_max:
 608		case hwmon_curr_lcrit:
 609		case hwmon_curr_crit:
 610			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 611				return 0;
 612			fallthrough;
 613		case hwmon_curr_input:
 614		case hwmon_curr_label:
 615			return 0444;
 616		default:
 617			return 0;
 618		}
 619	case hwmon_power:
 620		/* External calibration of receive power requires
 621		 * floating point arithmetic. Doing that in the kernel
 622		 * is not easy, so just skip it. If the module does
 623		 * not require external calibration, we can however
 624		 * show receiver power, since FP is then not needed.
 625		 */
 626		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 627		    channel == 1)
 628			return 0;
 629		switch (attr) {
 630		case hwmon_power_min_alarm:
 631		case hwmon_power_max_alarm:
 632		case hwmon_power_lcrit_alarm:
 633		case hwmon_power_crit_alarm:
 634		case hwmon_power_min:
 635		case hwmon_power_max:
 636		case hwmon_power_lcrit:
 637		case hwmon_power_crit:
 638			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 639				return 0;
 640			fallthrough;
 641		case hwmon_power_input:
 642		case hwmon_power_label:
 643			return 0444;
 644		default:
 645			return 0;
 646		}
 647	default:
 648		return 0;
 649	}
 650}
 651
 652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 653{
 654	__be16 val;
 655	int err;
 656
 657	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 658	if (err < 0)
 659		return err;
 660
 661	*value = be16_to_cpu(val);
 662
 663	return 0;
 664}
 665
 666static void sfp_hwmon_to_rx_power(long *value)
 667{
 668	*value = DIV_ROUND_CLOSEST(*value, 10);
 669}
 670
 671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 672				long *value)
 673{
 674	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 675		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 676}
 677
 678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 679{
 680	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 681			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 682
 683	if (*value >= 0x8000)
 684		*value -= 0x10000;
 685
 686	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 687}
 688
 689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 690{
 691	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 692			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 693
 694	*value = DIV_ROUND_CLOSEST(*value, 10);
 695}
 696
 697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 698{
 699	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 700			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 701
 702	*value = DIV_ROUND_CLOSEST(*value, 500);
 703}
 704
 705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 706{
 707	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 708			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 709
 710	*value = DIV_ROUND_CLOSEST(*value, 10);
 711}
 712
 713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 714{
 715	int err;
 716
 717	err = sfp_hwmon_read_sensor(sfp, reg, value);
 718	if (err < 0)
 719		return err;
 720
 721	sfp_hwmon_calibrate_temp(sfp, value);
 722
 723	return 0;
 724}
 725
 726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 727{
 728	int err;
 729
 730	err = sfp_hwmon_read_sensor(sfp, reg, value);
 731	if (err < 0)
 732		return err;
 733
 734	sfp_hwmon_calibrate_vcc(sfp, value);
 735
 736	return 0;
 737}
 738
 739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 740{
 741	int err;
 742
 743	err = sfp_hwmon_read_sensor(sfp, reg, value);
 744	if (err < 0)
 745		return err;
 746
 747	sfp_hwmon_calibrate_bias(sfp, value);
 748
 749	return 0;
 750}
 751
 752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 753{
 754	int err;
 755
 756	err = sfp_hwmon_read_sensor(sfp, reg, value);
 757	if (err < 0)
 758		return err;
 759
 760	sfp_hwmon_calibrate_tx_power(sfp, value);
 761
 762	return 0;
 763}
 764
 765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 766{
 767	int err;
 768
 769	err = sfp_hwmon_read_sensor(sfp, reg, value);
 770	if (err < 0)
 771		return err;
 772
 773	sfp_hwmon_to_rx_power(value);
 774
 775	return 0;
 776}
 777
 778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 779{
 780	u8 status;
 781	int err;
 782
 783	switch (attr) {
 784	case hwmon_temp_input:
 785		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 786
 787	case hwmon_temp_lcrit:
 788		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 789		sfp_hwmon_calibrate_temp(sfp, value);
 790		return 0;
 791
 792	case hwmon_temp_min:
 793		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 794		sfp_hwmon_calibrate_temp(sfp, value);
 795		return 0;
 796	case hwmon_temp_max:
 797		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 798		sfp_hwmon_calibrate_temp(sfp, value);
 799		return 0;
 800
 801	case hwmon_temp_crit:
 802		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 803		sfp_hwmon_calibrate_temp(sfp, value);
 804		return 0;
 805
 806	case hwmon_temp_lcrit_alarm:
 807		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 808		if (err < 0)
 809			return err;
 810
 811		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 812		return 0;
 813
 814	case hwmon_temp_min_alarm:
 815		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 816		if (err < 0)
 817			return err;
 818
 819		*value = !!(status & SFP_WARN0_TEMP_LOW);
 820		return 0;
 821
 822	case hwmon_temp_max_alarm:
 823		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 824		if (err < 0)
 825			return err;
 826
 827		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 828		return 0;
 829
 830	case hwmon_temp_crit_alarm:
 831		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 832		if (err < 0)
 833			return err;
 834
 835		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
 836		return 0;
 837	default:
 838		return -EOPNOTSUPP;
 839	}
 840
 841	return -EOPNOTSUPP;
 842}
 843
 844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 845{
 846	u8 status;
 847	int err;
 848
 849	switch (attr) {
 850	case hwmon_in_input:
 851		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 852
 853	case hwmon_in_lcrit:
 854		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
 855		sfp_hwmon_calibrate_vcc(sfp, value);
 856		return 0;
 857
 858	case hwmon_in_min:
 859		*value = be16_to_cpu(sfp->diag.volt_low_warn);
 860		sfp_hwmon_calibrate_vcc(sfp, value);
 861		return 0;
 862
 863	case hwmon_in_max:
 864		*value = be16_to_cpu(sfp->diag.volt_high_warn);
 865		sfp_hwmon_calibrate_vcc(sfp, value);
 866		return 0;
 867
 868	case hwmon_in_crit:
 869		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
 870		sfp_hwmon_calibrate_vcc(sfp, value);
 871		return 0;
 872
 873	case hwmon_in_lcrit_alarm:
 874		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 875		if (err < 0)
 876			return err;
 877
 878		*value = !!(status & SFP_ALARM0_VCC_LOW);
 879		return 0;
 880
 881	case hwmon_in_min_alarm:
 882		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 883		if (err < 0)
 884			return err;
 885
 886		*value = !!(status & SFP_WARN0_VCC_LOW);
 887		return 0;
 888
 889	case hwmon_in_max_alarm:
 890		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 891		if (err < 0)
 892			return err;
 893
 894		*value = !!(status & SFP_WARN0_VCC_HIGH);
 895		return 0;
 896
 897	case hwmon_in_crit_alarm:
 898		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 899		if (err < 0)
 900			return err;
 901
 902		*value = !!(status & SFP_ALARM0_VCC_HIGH);
 903		return 0;
 904	default:
 905		return -EOPNOTSUPP;
 906	}
 907
 908	return -EOPNOTSUPP;
 909}
 910
 911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 912{
 913	u8 status;
 914	int err;
 915
 916	switch (attr) {
 917	case hwmon_curr_input:
 918		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 919
 920	case hwmon_curr_lcrit:
 921		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
 922		sfp_hwmon_calibrate_bias(sfp, value);
 923		return 0;
 924
 925	case hwmon_curr_min:
 926		*value = be16_to_cpu(sfp->diag.bias_low_warn);
 927		sfp_hwmon_calibrate_bias(sfp, value);
 928		return 0;
 929
 930	case hwmon_curr_max:
 931		*value = be16_to_cpu(sfp->diag.bias_high_warn);
 932		sfp_hwmon_calibrate_bias(sfp, value);
 933		return 0;
 934
 935	case hwmon_curr_crit:
 936		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
 937		sfp_hwmon_calibrate_bias(sfp, value);
 938		return 0;
 939
 940	case hwmon_curr_lcrit_alarm:
 941		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 942		if (err < 0)
 943			return err;
 944
 945		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 946		return 0;
 947
 948	case hwmon_curr_min_alarm:
 949		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 950		if (err < 0)
 951			return err;
 952
 953		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 954		return 0;
 955
 956	case hwmon_curr_max_alarm:
 957		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 958		if (err < 0)
 959			return err;
 960
 961		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 962		return 0;
 963
 964	case hwmon_curr_crit_alarm:
 965		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 966		if (err < 0)
 967			return err;
 968
 969		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 970		return 0;
 971	default:
 972		return -EOPNOTSUPP;
 973	}
 974
 975	return -EOPNOTSUPP;
 976}
 977
 978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 979{
 980	u8 status;
 981	int err;
 982
 983	switch (attr) {
 984	case hwmon_power_input:
 985		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 986
 987	case hwmon_power_lcrit:
 988		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 989		sfp_hwmon_calibrate_tx_power(sfp, value);
 990		return 0;
 991
 992	case hwmon_power_min:
 993		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 994		sfp_hwmon_calibrate_tx_power(sfp, value);
 995		return 0;
 996
 997	case hwmon_power_max:
 998		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 999		sfp_hwmon_calibrate_tx_power(sfp, value);
1000		return 0;
1001
1002	case hwmon_power_crit:
1003		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004		sfp_hwmon_calibrate_tx_power(sfp, value);
1005		return 0;
1006
1007	case hwmon_power_lcrit_alarm:
1008		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009		if (err < 0)
1010			return err;
1011
1012		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013		return 0;
1014
1015	case hwmon_power_min_alarm:
1016		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017		if (err < 0)
1018			return err;
1019
1020		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1021		return 0;
1022
1023	case hwmon_power_max_alarm:
1024		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025		if (err < 0)
1026			return err;
1027
1028		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029		return 0;
1030
1031	case hwmon_power_crit_alarm:
1032		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033		if (err < 0)
1034			return err;
1035
1036		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037		return 0;
1038	default:
1039		return -EOPNOTSUPP;
1040	}
1041
1042	return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047	u8 status;
1048	int err;
1049
1050	switch (attr) {
1051	case hwmon_power_input:
1052		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054	case hwmon_power_lcrit:
1055		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056		sfp_hwmon_to_rx_power(value);
1057		return 0;
1058
1059	case hwmon_power_min:
1060		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061		sfp_hwmon_to_rx_power(value);
1062		return 0;
1063
1064	case hwmon_power_max:
1065		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066		sfp_hwmon_to_rx_power(value);
1067		return 0;
1068
1069	case hwmon_power_crit:
1070		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071		sfp_hwmon_to_rx_power(value);
1072		return 0;
1073
1074	case hwmon_power_lcrit_alarm:
1075		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076		if (err < 0)
1077			return err;
1078
1079		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080		return 0;
1081
1082	case hwmon_power_min_alarm:
1083		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084		if (err < 0)
1085			return err;
1086
1087		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1088		return 0;
1089
1090	case hwmon_power_max_alarm:
1091		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092		if (err < 0)
1093			return err;
1094
1095		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096		return 0;
1097
1098	case hwmon_power_crit_alarm:
1099		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100		if (err < 0)
1101			return err;
1102
1103		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104		return 0;
1105	default:
1106		return -EOPNOTSUPP;
1107	}
1108
1109	return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113			  u32 attr, int channel, long *value)
1114{
1115	struct sfp *sfp = dev_get_drvdata(dev);
1116
1117	switch (type) {
1118	case hwmon_temp:
1119		return sfp_hwmon_temp(sfp, attr, value);
1120	case hwmon_in:
1121		return sfp_hwmon_vcc(sfp, attr, value);
1122	case hwmon_curr:
1123		return sfp_hwmon_bias(sfp, attr, value);
1124	case hwmon_power:
1125		switch (channel) {
1126		case 0:
1127			return sfp_hwmon_tx_power(sfp, attr, value);
1128		case 1:
1129			return sfp_hwmon_rx_power(sfp, attr, value);
1130		default:
1131			return -EOPNOTSUPP;
1132		}
1133	default:
1134		return -EOPNOTSUPP;
1135	}
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139	"TX_power",
1140	"RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144				 enum hwmon_sensor_types type,
1145				 u32 attr, int channel, const char **str)
1146{
1147	switch (type) {
1148	case hwmon_curr:
1149		switch (attr) {
1150		case hwmon_curr_label:
1151			*str = "bias";
1152			return 0;
1153		default:
1154			return -EOPNOTSUPP;
1155		}
1156		break;
1157	case hwmon_temp:
1158		switch (attr) {
1159		case hwmon_temp_label:
1160			*str = "temperature";
1161			return 0;
1162		default:
1163			return -EOPNOTSUPP;
1164		}
1165		break;
1166	case hwmon_in:
1167		switch (attr) {
1168		case hwmon_in_label:
1169			*str = "VCC";
1170			return 0;
1171		default:
1172			return -EOPNOTSUPP;
1173		}
1174		break;
1175	case hwmon_power:
1176		switch (attr) {
1177		case hwmon_power_label:
1178			*str = sfp_hwmon_power_labels[channel];
1179			return 0;
1180		default:
1181			return -EOPNOTSUPP;
1182		}
1183		break;
1184	default:
1185		return -EOPNOTSUPP;
1186	}
1187
1188	return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192	.is_visible = sfp_hwmon_is_visible,
1193	.read = sfp_hwmon_read,
1194	.read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198	HWMON_C_REGISTER_TZ,
1199	0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203	.type = hwmon_chip,
1204	.config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208	HWMON_T_INPUT |
1209	HWMON_T_MAX | HWMON_T_MIN |
1210	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211	HWMON_T_CRIT | HWMON_T_LCRIT |
1212	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213	HWMON_T_LABEL,
1214	0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218	.type = hwmon_temp,
1219	.config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223	HWMON_I_INPUT |
1224	HWMON_I_MAX | HWMON_I_MIN |
1225	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226	HWMON_I_CRIT | HWMON_I_LCRIT |
1227	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228	HWMON_I_LABEL,
1229	0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233	.type = hwmon_in,
1234	.config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238	HWMON_C_INPUT |
1239	HWMON_C_MAX | HWMON_C_MIN |
1240	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241	HWMON_C_CRIT | HWMON_C_LCRIT |
1242	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243	HWMON_C_LABEL,
1244	0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248	.type = hwmon_curr,
1249	.config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253	/* Transmit power */
1254	HWMON_P_INPUT |
1255	HWMON_P_MAX | HWMON_P_MIN |
1256	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257	HWMON_P_CRIT | HWMON_P_LCRIT |
1258	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259	HWMON_P_LABEL,
1260	/* Receive power */
1261	HWMON_P_INPUT |
1262	HWMON_P_MAX | HWMON_P_MIN |
1263	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264	HWMON_P_CRIT | HWMON_P_LCRIT |
1265	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266	HWMON_P_LABEL,
1267	0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271	.type = hwmon_power,
1272	.config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276	&sfp_hwmon_chip,
1277	&sfp_hwmon_vcc_channel_info,
1278	&sfp_hwmon_temp_channel_info,
1279	&sfp_hwmon_bias_channel_info,
1280	&sfp_hwmon_power_channel_info,
1281	NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285	.ops = &sfp_hwmon_ops,
1286	.info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292	int err, i;
1293
1294	/* hwmon interface needs to access 16bit registers in atomic way to
1295	 * guarantee coherency of the diagnostic monitoring data. If it is not
1296	 * possible to guarantee coherency because EEPROM is broken in such way
1297	 * that does not support atomic 16bit read operation then we have to
1298	 * skip registration of hwmon device.
1299	 */
1300	if (sfp->i2c_block_size < 2) {
1301		dev_info(sfp->dev,
1302			 "skipping hwmon device registration due to broken EEPROM\n");
1303		dev_info(sfp->dev,
1304			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305		return;
1306	}
1307
1308	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309	if (err < 0) {
1310		if (sfp->hwmon_tries--) {
1311			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312					 T_PROBE_RETRY_SLOW);
1313		} else {
1314			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315		}
1316		return;
1317	}
1318
1319	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320	if (!sfp->hwmon_name) {
1321		dev_err(sfp->dev, "out of memory for hwmon name\n");
1322		return;
1323	}
1324
1325	for (i = 0; sfp->hwmon_name[i]; i++)
1326		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327			sfp->hwmon_name[i] = '_';
1328
1329	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330							 sfp->hwmon_name, sfp,
1331							 &sfp_hwmon_chip_info,
1332							 NULL);
1333	if (IS_ERR(sfp->hwmon_dev))
1334		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335			PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341		return 0;
1342
1343	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344		return 0;
1345
1346	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347		/* This driver in general does not support address
1348		 * change.
1349		 */
1350		return 0;
1351
1352	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355	return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360	cancel_delayed_work_sync(&sfp->hwmon_probe);
1361	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362		hwmon_device_unregister(sfp->hwmon_dev);
1363		sfp->hwmon_dev = NULL;
1364		kfree(sfp->hwmon_name);
1365	}
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372	return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377	cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382	return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391	return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404	sfp->state |= SFP_F_TX_DISABLE;
1405	sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412	sfp->state &= ~SFP_F_TX_DISABLE;
1413	sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419	struct sfp *sfp = s->private;
1420
1421	seq_printf(s, "Module state: %s\n",
1422		   mod_state_to_str(sfp->sm_mod_state));
1423	seq_printf(s, "Module probe attempts: %d %d\n",
1424		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426	seq_printf(s, "Device state: %s\n",
1427		   dev_state_to_str(sfp->sm_dev_state));
1428	seq_printf(s, "Main state: %s\n",
1429		   sm_state_to_str(sfp->sm_state));
1430	seq_printf(s, "Fault recovery remaining retries: %d\n",
1431		   sfp->sm_fault_retries);
1432	seq_printf(s, "PHY probe remaining retries: %d\n",
1433		   sfp->sm_phy_retries);
1434	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438	return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447			    &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452	debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466	unsigned int state = sfp->state;
1467
1468	if (state & SFP_F_TX_DISABLE)
1469		return;
1470
1471	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473	udelay(T_RESET_US);
1474
1475	sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481	if (timeout)
1482		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483				 timeout);
1484	else
1485		cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489			unsigned int timeout)
1490{
1491	sfp->sm_state = state;
1492	sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496			    unsigned int timeout)
1497{
1498	sfp->sm_mod_state = state;
1499	sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
1504	sfp_remove_phy(sfp->sfp_bus);
1505	phy_device_remove(sfp->mod_phy);
1506	phy_device_free(sfp->mod_phy);
1507	sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512	struct phy_device *phy;
1513	int err;
1514
1515	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516	if (phy == ERR_PTR(-ENODEV))
1517		return PTR_ERR(phy);
1518	if (IS_ERR(phy)) {
1519		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520		return PTR_ERR(phy);
1521	}
1522
1523	err = phy_device_register(phy);
1524	if (err) {
1525		phy_device_free(phy);
1526		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527		return err;
1528	}
1529
1530	err = sfp_add_phy(sfp->sfp_bus, phy);
1531	if (err) {
1532		phy_device_remove(phy);
1533		phy_device_free(phy);
1534		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535		return err;
1536	}
1537
1538	sfp->mod_phy = phy;
1539
1540	return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545	sfp_link_up(sfp->sfp_bus);
1546	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551	sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559	bool los = false;
1560
1561	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562	 * are set, we assume that no LOS signal is available. If both are
1563	 * set, we assume LOS is not implemented (and is meaningless.)
1564	 */
1565	if (los_options == los_inverted)
1566		los = !(sfp->state & SFP_F_LOS);
1567	else if (los_options == los_normal)
1568		los = !!(sfp->state & SFP_F_LOS);
1569
1570	if (los)
1571		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572	else
1573		sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599		dev_err(sfp->dev,
1600			"module persistently indicates fault, disabling\n");
1601		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602	} else {
1603		if (warn)
1604			dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607	}
1608}
1609
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623	int err = 0;
1624
1625	switch (sfp->id.base.extended_cc) {
1626	case SFF8024_ECC_10GBASE_T_SFI:
1627	case SFF8024_ECC_10GBASE_T_SR:
1628	case SFF8024_ECC_5GBASE_T:
1629	case SFF8024_ECC_2_5GBASE_T:
1630		err = sfp_sm_probe_phy(sfp, true);
1631		break;
1632
1633	default:
1634		if (sfp->id.base.e1000_base_t)
1635			err = sfp_sm_probe_phy(sfp, false);
1636		break;
1637	}
1638	return err;
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643	u32 power_mW = 1000;
1644
1645	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646		power_mW = 1500;
1647	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648		power_mW = 2000;
1649
1650	if (power_mW > sfp->max_power_mW) {
1651		/* Module power specification exceeds the allowed maximum. */
1652		if (sfp->id.ext.sff8472_compliance ==
1653			SFP_SFF8472_COMPLIANCE_NONE &&
1654		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655			/* The module appears not to implement bus address
1656			 * 0xa2, so assume that the module powers up in the
1657			 * indicated mode.
1658			 */
1659			dev_err(sfp->dev,
1660				"Host does not support %u.%uW modules\n",
1661				power_mW / 1000, (power_mW / 100) % 10);
1662			return -EINVAL;
1663		} else {
1664			dev_warn(sfp->dev,
1665				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666				 power_mW / 1000, (power_mW / 100) % 10);
1667			return 0;
1668		}
1669	}
1670
1671	/* If the module requires a higher power mode, but also requires
1672	 * an address change sequence, warn the user that the module may
1673	 * not be functional.
1674	 */
1675	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676		dev_warn(sfp->dev,
1677			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678			 power_mW / 1000, (power_mW / 100) % 10);
1679		return 0;
1680	}
1681
1682	sfp->module_power_mW = power_mW;
1683
1684	return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689	u8 val;
1690	int err;
1691
1692	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693	if (err != sizeof(val)) {
1694		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695		return -EAGAIN;
1696	}
1697
1698	/* DM7052 reports as a high power module, responds to reads (with
1699	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1700	 * if the bit is already set, we're already in high power mode.
1701	 */
1702	if (!!(val & BIT(0)) == enable)
1703		return 0;
1704
1705	if (enable)
1706		val |= BIT(0);
1707	else
1708		val &= ~BIT(0);
1709
1710	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711	if (err != sizeof(val)) {
1712		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713		return -EAGAIN;
1714	}
1715
1716	if (enable)
1717		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718			 sfp->module_power_mW / 1000,
1719			 (sfp->module_power_mW / 100) % 10);
1720
1721	return 0;
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737	size_t i, block_size = sfp->i2c_block_size;
1738
1739	/* Already using byte IO */
1740	if (block_size == 1)
1741		return false;
1742
1743	for (i = 1; i < len; i += block_size) {
1744		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745			return false;
1746	}
1747	return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752	u8 check;
1753	int err;
1754
1755	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757	    id->base.connector != SFF8024_CONNECTOR_LC) {
1758		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759		id->base.phys_id = SFF8024_ID_SFF_8472;
1760		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761		id->base.connector = SFF8024_CONNECTOR_LC;
1762		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763		if (err != 3) {
1764			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765			return err;
1766		}
1767
1768		/* Cotsworks modules have been found to require a delay between write operations. */
1769		mdelay(50);
1770
1771		/* Update base structure checksum */
1772		check = sfp_check(&id->base, sizeof(id->base) - 1);
1773		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774		if (err != 1) {
1775			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776			return err;
1777		}
1778	}
1779	return 0;
1780}
1781
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784	/* SFP module inserted - read I2C data */
1785	struct sfp_eeprom_id id;
1786	bool cotsworks_sfbg;
1787	bool cotsworks;
1788	u8 check;
1789	int ret;
1790
1791	/* Some SFP modules and also some Linux I2C drivers do not like reads
1792	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793	 * a time.
1794	 */
1795	sfp->i2c_block_size = 16;
1796
1797	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798	if (ret < 0) {
1799		if (report)
1800			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801		return -EAGAIN;
1802	}
1803
1804	if (ret != sizeof(id.base)) {
1805		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806		return -EAGAIN;
1807	}
1808
1809	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811	 * that EEPROM supports atomic 16bit read operation for diagnostic
1812	 * fields, so do not switch to one byte reading at a time unless it
1813	 * is really required and we have no other option.
1814	 */
1815	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816		dev_info(sfp->dev,
1817			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818		dev_info(sfp->dev,
1819			 "Switching to reading EEPROM to one byte at a time\n");
1820		sfp->i2c_block_size = 1;
1821
1822		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823		if (ret < 0) {
1824			if (report)
1825				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826					ret);
1827			return -EAGAIN;
1828		}
1829
1830		if (ret != sizeof(id.base)) {
1831			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832			return -EAGAIN;
1833		}
1834	}
1835
1836	/* Cotsworks do not seem to update the checksums when they
1837	 * do the final programming with the final module part number,
1838	 * serial number and date code.
1839	 */
1840	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1841	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1845	 * Cotsworks PN matches and bytes are not correct.
1846	 */
1847	if (cotsworks && cotsworks_sfbg) {
1848		ret = sfp_cotsworks_fixup_check(sfp, &id);
1849		if (ret < 0)
1850			return ret;
1851	}
1852
1853	/* Validate the checksum over the base structure */
1854	check = sfp_check(&id.base, sizeof(id.base) - 1);
1855	if (check != id.base.cc_base) {
1856		if (cotsworks) {
1857			dev_warn(sfp->dev,
1858				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859				 check, id.base.cc_base);
1860		} else {
1861			dev_err(sfp->dev,
1862				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863				check, id.base.cc_base);
1864			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865				       16, 1, &id, sizeof(id), true);
1866			return -EINVAL;
1867		}
1868	}
1869
1870	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871	if (ret < 0) {
1872		if (report)
1873			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874		return -EAGAIN;
1875	}
1876
1877	if (ret != sizeof(id.ext)) {
1878		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879		return -EAGAIN;
1880	}
1881
1882	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883	if (check != id.ext.cc_ext) {
1884		if (cotsworks) {
1885			dev_warn(sfp->dev,
1886				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887				 check, id.ext.cc_ext);
1888		} else {
1889			dev_err(sfp->dev,
1890				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891				check, id.ext.cc_ext);
1892			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893				       16, 1, &id, sizeof(id), true);
1894			memset(&id.ext, 0, sizeof(id.ext));
1895		}
1896	}
1897
1898	sfp->id = id;
1899
1900	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907	/* Check whether we support this module */
1908	if (!sfp->type->module_supported(&id)) {
1909		dev_err(sfp->dev,
1910			"module is not supported - phys id 0x%02x 0x%02x\n",
1911			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912		return -EINVAL;
1913	}
1914
1915	/* If the module requires address swap mode, warn about it */
1916	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917		dev_warn(sfp->dev,
1918			 "module address swap to access page 0xA2 is not supported.\n");
1919
1920	/* Parse the module power requirement */
1921	ret = sfp_module_parse_power(sfp);
1922	if (ret < 0)
1923		return ret;
1924
1925	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1926	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1927		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928	else
1929		sfp->module_t_start_up = T_START_UP;
1930
1931	return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937		sfp_module_remove(sfp->sfp_bus);
1938
1939	sfp_hwmon_remove(sfp);
1940
1941	memset(&sfp->id, 0, sizeof(sfp->id));
1942	sfp->module_power_mW = 0;
1943
1944	dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950	switch (sfp->sm_dev_state) {
1951	default:
1952		if (event == SFP_E_DEV_ATTACH)
1953			sfp->sm_dev_state = SFP_DEV_DOWN;
1954		break;
1955
1956	case SFP_DEV_DOWN:
1957		if (event == SFP_E_DEV_DETACH)
1958			sfp->sm_dev_state = SFP_DEV_DETACHED;
1959		else if (event == SFP_E_DEV_UP)
1960			sfp->sm_dev_state = SFP_DEV_UP;
1961		break;
1962
1963	case SFP_DEV_UP:
1964		if (event == SFP_E_DEV_DETACH)
1965			sfp->sm_dev_state = SFP_DEV_DETACHED;
1966		else if (event == SFP_E_DEV_DOWN)
1967			sfp->sm_dev_state = SFP_DEV_DOWN;
1968		break;
1969	}
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977	int err;
1978
1979	/* Handle remove event globally, it resets this state machine */
1980	if (event == SFP_E_REMOVE) {
1981		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982			sfp_sm_mod_remove(sfp);
1983		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984		return;
1985	}
1986
1987	/* Handle device detach globally */
1988	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990		if (sfp->module_power_mW > 1000 &&
1991		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1992			sfp_sm_mod_hpower(sfp, false);
1993		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994		return;
1995	}
1996
1997	switch (sfp->sm_mod_state) {
1998	default:
1999		if (event == SFP_E_INSERT) {
2000			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003		}
2004		break;
2005
2006	case SFP_MOD_PROBE:
2007		/* Wait for T_PROBE_INIT to time out */
2008		if (event != SFP_E_TIMEOUT)
2009			break;
2010
2011		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012		if (err == -EAGAIN) {
2013			if (sfp->sm_mod_tries_init &&
2014			   --sfp->sm_mod_tries_init) {
2015				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016				break;
2017			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019					dev_warn(sfp->dev,
2020						 "please wait, module slow to respond\n");
2021				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022				break;
2023			}
2024		}
2025		if (err < 0) {
2026			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027			break;
2028		}
2029
2030		err = sfp_hwmon_insert(sfp);
2031		if (err)
2032			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035		fallthrough;
2036	case SFP_MOD_WAITDEV:
2037		/* Ensure that the device is attached before proceeding */
2038		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039			break;
2040
2041		/* Report the module insertion to the upstream device */
2042		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043		if (err < 0) {
2044			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045			break;
2046		}
2047
2048		/* If this is a power level 1 module, we are done */
2049		if (sfp->module_power_mW <= 1000)
2050			goto insert;
2051
2052		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053		fallthrough;
2054	case SFP_MOD_HPOWER:
2055		/* Enable high power mode */
2056		err = sfp_sm_mod_hpower(sfp, true);
2057		if (err < 0) {
2058			if (err != -EAGAIN) {
2059				sfp_module_remove(sfp->sfp_bus);
2060				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061			} else {
2062				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063			}
2064			break;
2065		}
2066
2067		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068		break;
2069
2070	case SFP_MOD_WAITPWR:
2071		/* Wait for T_HPOWER_LEVEL to time out */
2072		if (event != SFP_E_TIMEOUT)
2073			break;
2074
2075	insert:
2076		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077		break;
2078
2079	case SFP_MOD_PRESENT:
2080	case SFP_MOD_ERROR:
2081		break;
2082	}
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087	unsigned long timeout;
2088	int ret;
2089
2090	/* Some events are global */
2091	if (sfp->sm_state != SFP_S_DOWN &&
2092	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093	     sfp->sm_dev_state != SFP_DEV_UP)) {
2094		if (sfp->sm_state == SFP_S_LINK_UP &&
2095		    sfp->sm_dev_state == SFP_DEV_UP)
2096			sfp_sm_link_down(sfp);
2097		if (sfp->sm_state > SFP_S_INIT)
2098			sfp_module_stop(sfp->sfp_bus);
2099		if (sfp->mod_phy)
2100			sfp_sm_phy_detach(sfp);
2101		sfp_module_tx_disable(sfp);
2102		sfp_soft_stop_poll(sfp);
2103		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104		return;
2105	}
2106
2107	/* The main state machine */
2108	switch (sfp->sm_state) {
2109	case SFP_S_DOWN:
2110		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111		    sfp->sm_dev_state != SFP_DEV_UP)
2112			break;
2113
2114		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115			sfp_soft_start_poll(sfp);
2116
2117		sfp_module_tx_enable(sfp);
2118
2119		/* Initialise the fault clearance retries */
2120		sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122		/* We need to check the TX_FAULT state, which is not defined
2123		 * while TX_DISABLE is asserted. The earliest we want to do
2124		 * anything (such as probe for a PHY) is 50ms.
2125		 */
2126		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127		break;
2128
2129	case SFP_S_WAIT:
2130		if (event != SFP_E_TIMEOUT)
2131			break;
2132
2133		if (sfp->state & SFP_F_TX_FAULT) {
2134			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135			 * from the TX_DISABLE deassertion for the module to
2136			 * initialise, which is indicated by TX_FAULT
2137			 * deasserting.
2138			 */
2139			timeout = sfp->module_t_start_up;
2140			if (timeout > T_WAIT)
2141				timeout -= T_WAIT;
2142			else
2143				timeout = 1;
2144
2145			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146		} else {
2147			/* TX_FAULT is not asserted, assume the module has
2148			 * finished initialising.
2149			 */
2150			goto init_done;
2151		}
2152		break;
2153
2154	case SFP_S_INIT:
2155		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156			/* TX_FAULT is still asserted after t_init
2157			 * or t_start_up, so assume there is a fault.
2158			 */
2159			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160				     sfp->sm_fault_retries == N_FAULT_INIT);
2161		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162	init_done:
2163			sfp->sm_phy_retries = R_PHY_RETRY;
2164			goto phy_probe;
2165		}
2166		break;
2167
2168	case SFP_S_INIT_PHY:
2169		if (event != SFP_E_TIMEOUT)
2170			break;
2171	phy_probe:
2172		/* TX_FAULT deasserted or we timed out with TX_FAULT
2173		 * clear.  Probe for the PHY and check the LOS state.
2174		 */
2175		ret = sfp_sm_probe_for_phy(sfp);
2176		if (ret == -ENODEV) {
2177			if (--sfp->sm_phy_retries) {
2178				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179				break;
2180			} else {
2181				dev_info(sfp->dev, "no PHY detected\n");
2182			}
2183		} else if (ret) {
2184			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185			break;
2186		}
2187		if (sfp_module_start(sfp->sfp_bus)) {
2188			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189			break;
2190		}
2191		sfp_sm_link_check_los(sfp);
2192
2193		/* Reset the fault retry count */
2194		sfp->sm_fault_retries = N_FAULT;
2195		break;
2196
2197	case SFP_S_INIT_TX_FAULT:
2198		if (event == SFP_E_TIMEOUT) {
2199			sfp_module_tx_fault_reset(sfp);
2200			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201		}
2202		break;
2203
2204	case SFP_S_WAIT_LOS:
2205		if (event == SFP_E_TX_FAULT)
2206			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207		else if (sfp_los_event_inactive(sfp, event))
2208			sfp_sm_link_up(sfp);
2209		break;
2210
2211	case SFP_S_LINK_UP:
2212		if (event == SFP_E_TX_FAULT) {
2213			sfp_sm_link_down(sfp);
2214			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215		} else if (sfp_los_event_active(sfp, event)) {
2216			sfp_sm_link_down(sfp);
2217			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218		}
2219		break;
2220
2221	case SFP_S_TX_FAULT:
2222		if (event == SFP_E_TIMEOUT) {
2223			sfp_module_tx_fault_reset(sfp);
2224			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225		}
2226		break;
2227
2228	case SFP_S_REINIT:
2229		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232			dev_info(sfp->dev, "module transmit fault recovered\n");
2233			sfp_sm_link_check_los(sfp);
2234		}
2235		break;
2236
2237	case SFP_S_TX_DISABLE:
2238		break;
2239	}
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244	mutex_lock(&sfp->sm_mutex);
2245
2246	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247		mod_state_to_str(sfp->sm_mod_state),
2248		dev_state_to_str(sfp->sm_dev_state),
2249		sm_state_to_str(sfp->sm_state),
2250		event_to_str(event));
2251
2252	sfp_sm_device(sfp, event);
2253	sfp_sm_module(sfp, event);
2254	sfp_sm_main(sfp, event);
2255
2256	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257		mod_state_to_str(sfp->sm_mod_state),
2258		dev_state_to_str(sfp->sm_dev_state),
2259		sm_state_to_str(sfp->sm_state));
2260
2261	mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276	sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286	/* locking... and check module is present */
2287
2288	if (sfp->id.ext.sff8472_compliance &&
2289	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290		modinfo->type = ETH_MODULE_SFF_8472;
2291		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292	} else {
2293		modinfo->type = ETH_MODULE_SFF_8079;
2294		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295	}
2296	return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300			     u8 *data)
2301{
2302	unsigned int first, last, len;
2303	int ret;
2304
2305	if (ee->len == 0)
2306		return -EINVAL;
2307
2308	first = ee->offset;
2309	last = ee->offset + ee->len;
2310	if (first < ETH_MODULE_SFF_8079_LEN) {
2311		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312		len -= first;
2313
2314		ret = sfp_read(sfp, false, first, data, len);
2315		if (ret < 0)
2316			return ret;
2317
2318		first += len;
2319		data += len;
2320	}
2321	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323		len -= first;
2324		first -= ETH_MODULE_SFF_8079_LEN;
2325
2326		ret = sfp_read(sfp, true, first, data, len);
2327		if (ret < 0)
2328			return ret;
2329	}
2330	return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334				     const struct ethtool_module_eeprom *page,
2335				     struct netlink_ext_ack *extack)
2336{
2337	if (page->bank) {
2338		NL_SET_ERR_MSG(extack, "Banks not supported");
2339		return -EOPNOTSUPP;
2340	}
2341
2342	if (page->page) {
2343		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344		return -EOPNOTSUPP;
2345	}
2346
2347	if (page->i2c_address != 0x50 &&
2348	    page->i2c_address != 0x51) {
2349		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350		return -EOPNOTSUPP;
2351	}
2352
2353	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354			page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358	.attach = sfp_attach,
2359	.detach = sfp_detach,
2360	.start = sfp_start,
2361	.stop = sfp_stop,
2362	.module_info = sfp_module_info,
2363	.module_eeprom = sfp_module_eeprom,
2364	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371	rtnl_lock();
2372	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373	rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378	unsigned int state, i, changed;
2379
2380	mutex_lock(&sfp->st_mutex);
2381	state = sfp_get_state(sfp);
2382	changed = state ^ sfp->state;
2383	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385	for (i = 0; i < GPIO_MAX; i++)
2386		if (changed & BIT(i))
2387			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391	sfp->state = state;
2392
2393	rtnl_lock();
2394	if (changed & SFP_F_PRESENT)
2395		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396				SFP_E_INSERT : SFP_E_REMOVE);
2397
2398	if (changed & SFP_F_TX_FAULT)
2399		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402	if (changed & SFP_F_LOS)
2403		sfp_sm_event(sfp, state & SFP_F_LOS ?
2404				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405	rtnl_unlock();
2406	mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411	struct sfp *sfp = data;
2412
2413	sfp_check_state(sfp);
2414
2415	return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422	sfp_check_state(sfp);
2423
2424	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425	    sfp->need_poll)
2426		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431	struct sfp *sfp;
2432
2433	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434	if (!sfp)
2435		return ERR_PTR(-ENOMEM);
2436
2437	sfp->dev = dev;
2438
2439	mutex_init(&sfp->sm_mutex);
2440	mutex_init(&sfp->st_mutex);
2441	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444	sfp_hwmon_init(sfp);
2445
2446	return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451	struct sfp *sfp = data;
2452
2453	sfp_hwmon_exit(sfp);
2454
2455	cancel_delayed_work_sync(&sfp->poll);
2456	cancel_delayed_work_sync(&sfp->timeout);
2457	if (sfp->i2c_mii) {
2458		mdiobus_unregister(sfp->i2c_mii);
2459		mdiobus_free(sfp->i2c_mii);
2460	}
2461	if (sfp->i2c)
2462		i2c_put_adapter(sfp->i2c);
2463	kfree(sfp);
2464}
2465
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468	const struct sff_data *sff;
2469	struct i2c_adapter *i2c;
2470	char *sfp_irq_name;
2471	struct sfp *sfp;
2472	int err, i;
2473
2474	sfp = sfp_alloc(&pdev->dev);
2475	if (IS_ERR(sfp))
2476		return PTR_ERR(sfp);
2477
2478	platform_set_drvdata(pdev, sfp);
2479
2480	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481	if (err < 0)
2482		return err;
2483
2484	sff = sfp->type = &sfp_data;
2485
2486	if (pdev->dev.of_node) {
2487		struct device_node *node = pdev->dev.of_node;
2488		const struct of_device_id *id;
2489		struct device_node *np;
2490
2491		id = of_match_node(sfp_of_match, node);
2492		if (WARN_ON(!id))
2493			return -EINVAL;
2494
2495		sff = sfp->type = id->data;
2496
2497		np = of_parse_phandle(node, "i2c-bus", 0);
2498		if (!np) {
2499			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500			return -ENODEV;
2501		}
2502
2503		i2c = of_find_i2c_adapter_by_node(np);
2504		of_node_put(np);
2505	} else if (has_acpi_companion(&pdev->dev)) {
2506		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508		struct fwnode_reference_args args;
2509		struct acpi_handle *acpi_handle;
2510		int ret;
2511
2512		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513		if (ret || !is_acpi_device_node(args.fwnode)) {
2514			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515			return -ENODEV;
2516		}
2517
2518		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520	} else {
2521		return -EINVAL;
2522	}
2523
2524	if (!i2c)
2525		return -EPROBE_DEFER;
2526
2527	err = sfp_i2c_configure(sfp, i2c);
2528	if (err < 0) {
2529		i2c_put_adapter(i2c);
2530		return err;
2531	}
2532
2533	for (i = 0; i < GPIO_MAX; i++)
2534		if (sff->gpios & BIT(i)) {
2535			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536					   gpio_of_names[i], gpio_flags[i]);
2537			if (IS_ERR(sfp->gpio[i]))
2538				return PTR_ERR(sfp->gpio[i]);
2539		}
2540
2541	sfp->get_state = sfp_gpio_get_state;
2542	sfp->set_state = sfp_gpio_set_state;
2543
2544	/* Modules that have no detect signal are always present */
2545	if (!(sfp->gpio[GPIO_MODDEF0]))
2546		sfp->get_state = sff_gpio_get_state;
2547
2548	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549				 &sfp->max_power_mW);
2550	if (!sfp->max_power_mW)
2551		sfp->max_power_mW = 1000;
2552
2553	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556	/* Get the initial state, and always signal TX disable,
2557	 * since the network interface will not be up.
2558	 */
2559	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561	if (sfp->gpio[GPIO_RATE_SELECT] &&
2562	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563		sfp->state |= SFP_F_RATE_SELECT;
2564	sfp_set_state(sfp, sfp->state);
2565	sfp_module_tx_disable(sfp);
2566	if (sfp->state & SFP_F_PRESENT) {
2567		rtnl_lock();
2568		sfp_sm_event(sfp, SFP_E_INSERT);
2569		rtnl_unlock();
2570	}
2571
2572	for (i = 0; i < GPIO_MAX; i++) {
2573		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574			continue;
2575
2576		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577		if (sfp->gpio_irq[i] < 0) {
2578			sfp->gpio_irq[i] = 0;
2579			sfp->need_poll = true;
2580			continue;
2581		}
2582
2583		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584					      "%s-%s", dev_name(sfp->dev),
2585					      gpio_of_names[i]);
2586
2587		if (!sfp_irq_name)
2588			return -ENOMEM;
2589
2590		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591						NULL, sfp_irq,
2592						IRQF_ONESHOT |
2593						IRQF_TRIGGER_RISING |
2594						IRQF_TRIGGER_FALLING,
2595						sfp_irq_name, sfp);
2596		if (err) {
2597			sfp->gpio_irq[i] = 0;
2598			sfp->need_poll = true;
2599		}
2600	}
2601
2602	if (sfp->need_poll)
2603		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605	/* We could have an issue in cases no Tx disable pin is available or
2606	 * wired as modules using a laser as their light source will continue to
2607	 * be active when the fiber is removed. This could be a safety issue and
2608	 * we should at least warn the user about that.
2609	 */
2610	if (!sfp->gpio[GPIO_TX_DISABLE])
2611		dev_warn(sfp->dev,
2612			 "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615	if (!sfp->sfp_bus)
2616		return -ENOMEM;
2617
2618	sfp_debugfs_init(sfp);
2619
2620	return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625	struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627	sfp_debugfs_exit(sfp);
2628	sfp_unregister_socket(sfp->sfp_bus);
2629
2630	rtnl_lock();
2631	sfp_sm_event(sfp, SFP_E_REMOVE);
2632	rtnl_unlock();
2633
2634	return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639	struct sfp *sfp = platform_get_drvdata(pdev);
2640	int i;
2641
2642	for (i = 0; i < GPIO_MAX; i++) {
2643		if (!sfp->gpio_irq[i])
2644			continue;
2645
2646		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647	}
2648
2649	cancel_delayed_work_sync(&sfp->poll);
2650	cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654	.probe = sfp_probe,
2655	.remove = sfp_remove,
2656	.shutdown = sfp_shutdown,
2657	.driver = {
2658		.name = "sfp",
2659		.of_match_table = sfp_of_match,
2660	},
2661};
2662
2663static int sfp_init(void)
2664{
2665	poll_jiffies = msecs_to_jiffies(100);
2666
2667	return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673	platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");