Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	kfree(nic_data->mc_stats);
1301	nic_data->mc_stats = NULL;
1302}
1303
1304static int efx_ef10_init_nic(struct efx_nic *efx)
1305{
1306	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1307	netdev_features_t hw_enc_features = 0;
1308	int rc;
1309
1310	if (nic_data->must_check_datapath_caps) {
1311		rc = efx_ef10_init_datapath_caps(efx);
1312		if (rc)
1313			return rc;
1314		nic_data->must_check_datapath_caps = false;
1315	}
1316
1317	if (efx->must_realloc_vis) {
1318		/* We cannot let the number of VIs change now */
1319		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1320					nic_data->n_allocated_vis);
1321		if (rc)
1322			return rc;
1323		efx->must_realloc_vis = false;
1324	}
1325
1326	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1327				     GFP_KERNEL);
1328	if (!nic_data->mc_stats)
1329		return -ENOMEM;
1330
1331	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1332		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1333		if (rc == 0) {
1334			rc = efx_ef10_link_piobufs(efx);
1335			if (rc)
1336				efx_ef10_free_piobufs(efx);
1337		}
1338
1339		/* Log an error on failure, but this is non-fatal.
1340		 * Permission errors are less important - we've presumably
1341		 * had the PIO buffer licence removed.
1342		 */
1343		if (rc == -EPERM)
1344			netif_dbg(efx, drv, efx->net_dev,
1345				  "not permitted to restore PIO buffers\n");
1346		else if (rc)
1347			netif_err(efx, drv, efx->net_dev,
1348				  "failed to restore PIO buffers (%d)\n", rc);
1349		nic_data->must_restore_piobufs = false;
1350	}
1351
1352	/* add encapsulated checksum offload features */
1353	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1354		hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1355	/* add encapsulated TSO features */
1356	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1357		netdev_features_t encap_tso_features;
1358
1359		encap_tso_features = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1360			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1361
1362		hw_enc_features |= encap_tso_features | NETIF_F_TSO;
1363		efx->net_dev->features |= encap_tso_features;
1364	}
1365	efx->net_dev->hw_enc_features = hw_enc_features;
1366
1367	/* don't fail init if RSS setup doesn't work */
1368	rc = efx->type->rx_push_rss_config(efx, false,
1369					   efx->rss_context.rx_indir_table, NULL);
1370
1371	return 0;
1372}
1373
1374static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1375{
1376	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1377#ifdef CONFIG_SFC_SRIOV
1378	unsigned int i;
1379#endif
1380
1381	/* All our allocations have been reset */
1382	efx->must_realloc_vis = true;
1383	efx_mcdi_filter_table_reset_mc_allocations(efx);
1384	nic_data->must_restore_piobufs = true;
1385	efx_ef10_forget_old_piobufs(efx);
1386	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1387
1388	/* Driver-created vswitches and vports must be re-created */
1389	nic_data->must_probe_vswitching = true;
1390	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1391#ifdef CONFIG_SFC_SRIOV
1392	if (nic_data->vf)
1393		for (i = 0; i < efx->vf_count; i++)
1394			nic_data->vf[i].vport_id = 0;
1395#endif
1396}
1397
1398static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1399{
1400	if (reason == RESET_TYPE_MC_FAILURE)
1401		return RESET_TYPE_DATAPATH;
1402
1403	return efx_mcdi_map_reset_reason(reason);
1404}
1405
1406static int efx_ef10_map_reset_flags(u32 *flags)
1407{
1408	enum {
1409		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1410				   ETH_RESET_SHARED_SHIFT),
1411		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1412				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1413				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1414				 ETH_RESET_SHARED_SHIFT)
1415	};
1416
1417	/* We assume for now that our PCI function is permitted to
1418	 * reset everything.
1419	 */
1420
1421	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1422		*flags &= ~EF10_RESET_MC;
1423		return RESET_TYPE_WORLD;
1424	}
1425
1426	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1427		*flags &= ~EF10_RESET_PORT;
1428		return RESET_TYPE_ALL;
1429	}
1430
1431	/* no invisible reset implemented */
1432
1433	return -EINVAL;
1434}
1435
1436static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1437{
1438	int rc = efx_mcdi_reset(efx, reset_type);
1439
1440	/* Unprivileged functions return -EPERM, but need to return success
1441	 * here so that the datapath is brought back up.
1442	 */
1443	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1444		rc = 0;
1445
1446	/* If it was a port reset, trigger reallocation of MC resources.
1447	 * Note that on an MC reset nothing needs to be done now because we'll
1448	 * detect the MC reset later and handle it then.
1449	 * For an FLR, we never get an MC reset event, but the MC has reset all
1450	 * resources assigned to us, so we have to trigger reallocation now.
1451	 */
1452	if ((reset_type == RESET_TYPE_ALL ||
1453	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1454		efx_ef10_table_reset_mc_allocations(efx);
1455	return rc;
1456}
1457
1458#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1459	[EF10_STAT_ ## ext_name] =				\
1460	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1461#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1462	[EF10_STAT_ ## int_name] =				\
1463	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1464#define EF10_OTHER_STAT(ext_name)				\
1465	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1466
1467static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1468	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1469	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1470	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1471	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1472	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1473	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1474	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1475	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1476	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1477	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1478	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1479	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1480	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1481	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1482	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1483	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1484	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1485	EF10_OTHER_STAT(port_rx_good_bytes),
1486	EF10_OTHER_STAT(port_rx_bad_bytes),
1487	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1488	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1489	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1490	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1491	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1492	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1493	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1494	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1495	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1496	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1497	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1498	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1499	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1500	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1501	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1502	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1503	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1504	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1505	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1506	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1507	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1508	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1509	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1510	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1511	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1512	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1513	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1514	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1515	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1516	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1517	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1518	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1519	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1520	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1521	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1522	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1523	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1524	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1525	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1526	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1527	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1528	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1529	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1530	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1531	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1532	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1533	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1534	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1535	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1536	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1537	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1538	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1539	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1540	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1541	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1542	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1543	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1544	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1545	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1546	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1547	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1548	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1549	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1550	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1551	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1552	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1553	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1554	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1555	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1556	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1557	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1558	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1559	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1560	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1561	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1562	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1563};
1564
1565#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1566			       (1ULL << EF10_STAT_port_tx_packets) |	\
1567			       (1ULL << EF10_STAT_port_tx_pause) |	\
1568			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1569			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1570			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1571			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1572			       (1ULL <<                                 \
1573				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1574			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1575			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1576			       (1ULL << EF10_STAT_port_rx_packets) |	\
1577			       (1ULL << EF10_STAT_port_rx_good) |	\
1578			       (1ULL << EF10_STAT_port_rx_bad) |	\
1579			       (1ULL << EF10_STAT_port_rx_pause) |	\
1580			       (1ULL << EF10_STAT_port_rx_control) |	\
1581			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1585			       (1ULL << EF10_STAT_port_rx_64) |		\
1586			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1587			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1588			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1589			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1590			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1591			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1592			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1593			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1594			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1595			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1596			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1597			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1598
1599/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1600 * For a 10G/40G switchable port we do not expose these because they might
1601 * not include all the packets they should.
1602 * On 8000 series NICs these statistics are always provided.
1603 */
1604#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1605				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1606				 (1ULL << EF10_STAT_port_tx_64) |	\
1607				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1608				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1609				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1610				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1611				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1612				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1613
1614/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1615 * switchable port we do expose these because the errors will otherwise
1616 * be silent.
1617 */
1618#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1619				  (1ULL << EF10_STAT_port_rx_length_error))
1620
1621/* These statistics are only provided if the firmware supports the
1622 * capability PM_AND_RXDP_COUNTERS.
1623 */
1624#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1625	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1626	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1627	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1628	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1629	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1630	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1631	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1632	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1633	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1634	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1635	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1636	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1637
1638/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1639 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1640 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1641 * These bits are in the second u64 of the raw mask.
1642 */
1643#define EF10_FEC_STAT_MASK (						\
1644	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1645	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1646	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1647	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1648	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1649	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_CTPIO_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1658	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1659	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1660	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1661	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1662	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1663	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1664	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1665	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1666	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1667	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1668	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1669	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1670	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1671	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1672	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1673
1674static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1675{
1676	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1677	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1678	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679
1680	if (!(efx->mcdi->fn_flags &
1681	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1682		return 0;
1683
1684	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1685		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1686		/* 8000 series have everything even at 40G */
1687		if (nic_data->datapath_caps2 &
1688		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1689			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1690	} else {
1691		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1692	}
1693
1694	if (nic_data->datapath_caps &
1695	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1696		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1697
1698	return raw_mask;
1699}
1700
1701static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1702{
1703	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1704	u64 raw_mask[2];
1705
1706	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1707
1708	/* Only show vadaptor stats when EVB capability is present */
1709	if (nic_data->datapath_caps &
1710	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1711		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1712		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1713	} else {
1714		raw_mask[1] = 0;
1715	}
1716	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1717	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1718		raw_mask[1] |= EF10_FEC_STAT_MASK;
1719
1720	/* CTPIO stats appear in V3. Only show them on devices that actually
1721	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1722	 * and we may be reporting the stats for the underlying port.
1723	 */
1724	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1725	    (nic_data->datapath_caps2 &
1726	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1727		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1728
1729#if BITS_PER_LONG == 64
1730	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1731	mask[0] = raw_mask[0];
1732	mask[1] = raw_mask[1];
1733#else
1734	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1735	mask[0] = raw_mask[0] & 0xffffffff;
1736	mask[1] = raw_mask[0] >> 32;
1737	mask[2] = raw_mask[1] & 0xffffffff;
1738#endif
1739}
1740
1741static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1742{
1743	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1744
1745	efx_ef10_get_stat_mask(efx, mask);
1746	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1747				      mask, names);
1748}
1749
1750static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1751				   struct ethtool_fec_stats *fec_stats)
1752{
1753	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1755	u64 *stats = nic_data->stats;
1756
1757	efx_ef10_get_stat_mask(efx, mask);
1758	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1759		fec_stats->corrected_blocks.total =
1760			stats[EF10_STAT_fec_corrected_errors];
1761	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1762		fec_stats->uncorrectable_blocks.total =
1763			stats[EF10_STAT_fec_uncorrected_errors];
1764}
1765
1766static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1767					   struct rtnl_link_stats64 *core_stats)
1768{
1769	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1770	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1771	u64 *stats = nic_data->stats;
1772	size_t stats_count = 0, index;
1773
1774	efx_ef10_get_stat_mask(efx, mask);
1775
1776	if (full_stats) {
1777		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1778			if (efx_ef10_stat_desc[index].name) {
1779				*full_stats++ = stats[index];
1780				++stats_count;
1781			}
1782		}
1783	}
1784
1785	if (!core_stats)
1786		return stats_count;
1787
1788	if (nic_data->datapath_caps &
1789			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1790		/* Use vadaptor stats. */
1791		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1792					 stats[EF10_STAT_rx_multicast] +
1793					 stats[EF10_STAT_rx_broadcast];
1794		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1795					 stats[EF10_STAT_tx_multicast] +
1796					 stats[EF10_STAT_tx_broadcast];
1797		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1798				       stats[EF10_STAT_rx_multicast_bytes] +
1799				       stats[EF10_STAT_rx_broadcast_bytes];
1800		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1801				       stats[EF10_STAT_tx_multicast_bytes] +
1802				       stats[EF10_STAT_tx_broadcast_bytes];
1803		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1804					 stats[GENERIC_STAT_rx_noskb_drops];
1805		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1806		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1807		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1808		core_stats->rx_errors = core_stats->rx_crc_errors;
1809		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1810	} else {
1811		/* Use port stats. */
1812		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1813		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1814		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1815		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1816		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1817					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1818					 stats[GENERIC_STAT_rx_noskb_drops];
1819		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1820		core_stats->rx_length_errors =
1821				stats[EF10_STAT_port_rx_gtjumbo] +
1822				stats[EF10_STAT_port_rx_length_error];
1823		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1824		core_stats->rx_frame_errors =
1825				stats[EF10_STAT_port_rx_align_error];
1826		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1827		core_stats->rx_errors = (core_stats->rx_length_errors +
1828					 core_stats->rx_crc_errors +
1829					 core_stats->rx_frame_errors);
1830	}
1831
1832	return stats_count;
1833}
1834
1835static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1836				       struct rtnl_link_stats64 *core_stats)
1837{
1838	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1840	u64 *stats = nic_data->stats;
1841
1842	efx_ef10_get_stat_mask(efx, mask);
1843
1844	efx_nic_copy_stats(efx, nic_data->mc_stats);
1845	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1846			     mask, stats, nic_data->mc_stats, false);
1847
1848	/* Update derived statistics */
1849	efx_nic_fix_nodesc_drop_stat(efx,
1850				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1851	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1852	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1853	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1854	 * Here we calculate port_rx_good_bytes.
1855	 */
1856	stats[EF10_STAT_port_rx_good_bytes] =
1857		stats[EF10_STAT_port_rx_bytes] -
1858		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1859
1860	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1861	 * MC Firmware are done such that we should not see an increase in
1862	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1863	 * does mean that the stat can decrease at times. Here we do not
1864	 * update the stat unless it has increased or has gone to zero
1865	 * (In the case of the NIC rebooting).
1866	 * Please see Bug 33781 for a discussion of why things work this way.
1867	 */
1868	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1869			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1870	efx_update_sw_stats(efx, stats);
1871
1872	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1873}
1874
1875static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1876	__must_hold(&efx->stats_lock)
1877{
1878	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1879	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1880	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1881	__le64 generation_start, generation_end;
1882	u64 *stats = nic_data->stats;
1883	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1884	struct efx_buffer stats_buf;
1885	__le64 *dma_stats;
1886	int rc;
1887
1888	spin_unlock_bh(&efx->stats_lock);
1889
1890	efx_ef10_get_stat_mask(efx, mask);
1891
1892	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1893	if (rc) {
1894		spin_lock_bh(&efx->stats_lock);
1895		return rc;
1896	}
1897
1898	dma_stats = stats_buf.addr;
1899	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1900
1901	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1902	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1903			      MAC_STATS_IN_DMA, 1);
1904	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1905	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1906
1907	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1908				NULL, 0, NULL);
1909	spin_lock_bh(&efx->stats_lock);
1910	if (rc) {
1911		/* Expect ENOENT if DMA queues have not been set up */
1912		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1913			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1914					       sizeof(inbuf), NULL, 0, rc);
1915		goto out;
1916	}
1917
1918	generation_end = dma_stats[efx->num_mac_stats - 1];
1919	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1920		WARN_ON_ONCE(1);
1921		goto out;
1922	}
1923	rmb();
1924	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1925			     stats, stats_buf.addr, false);
1926	rmb();
1927	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1928	if (generation_end != generation_start) {
1929		rc = -EAGAIN;
1930		goto out;
1931	}
1932
1933	efx_update_sw_stats(efx, stats);
1934out:
1935	efx_nic_free_buffer(efx, &stats_buf);
1936	return rc;
1937}
1938
1939static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1940				       struct rtnl_link_stats64 *core_stats)
1941{
1942	if (efx_ef10_try_update_nic_stats_vf(efx))
1943		return 0;
1944
1945	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1946}
1947
1948static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1949					      struct rtnl_link_stats64 *core_stats)
1950{
1951	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1952
1953	/* In atomic context, cannot update HW stats.  Just update the
1954	 * software stats and return so the caller can continue.
1955	 */
1956	efx_update_sw_stats(efx, nic_data->stats);
1957	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1958}
1959
1960static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1961{
1962	struct efx_nic *efx = channel->efx;
1963	unsigned int mode, usecs;
1964	efx_dword_t timer_cmd;
1965
1966	if (channel->irq_moderation_us) {
1967		mode = 3;
1968		usecs = channel->irq_moderation_us;
1969	} else {
1970		mode = 0;
1971		usecs = 0;
1972	}
1973
1974	if (EFX_EF10_WORKAROUND_61265(efx)) {
1975		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1976		unsigned int ns = usecs * 1000;
1977
1978		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1979			       channel->channel);
1980		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1981		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1982		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1983
1984		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1985				   inbuf, sizeof(inbuf), 0, NULL, 0);
1986	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1987		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1988
1989		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1990				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1991				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1992				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1993		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1994				channel->channel);
1995	} else {
1996		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1997
1998		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1999				     ERF_DZ_TC_TIMER_VAL, ticks,
2000				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2001		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2002				channel->channel);
2003	}
2004}
2005
2006static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2007				struct ethtool_wolinfo *wol) {}
2008
2009static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2010{
2011	return -EOPNOTSUPP;
2012}
2013
2014static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2015{
2016	wol->supported = 0;
2017	wol->wolopts = 0;
2018	memset(&wol->sopass, 0, sizeof(wol->sopass));
2019}
2020
2021static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2022{
2023	if (type != 0)
2024		return -EINVAL;
2025	return 0;
2026}
2027
2028static void efx_ef10_mcdi_request(struct efx_nic *efx,
2029				  const efx_dword_t *hdr, size_t hdr_len,
2030				  const efx_dword_t *sdu, size_t sdu_len)
2031{
2032	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2033	u8 *pdu = nic_data->mcdi_buf.addr;
2034
2035	memcpy(pdu, hdr, hdr_len);
2036	memcpy(pdu + hdr_len, sdu, sdu_len);
2037	wmb();
2038
2039	/* The hardware provides 'low' and 'high' (doorbell) registers
2040	 * for passing the 64-bit address of an MCDI request to
2041	 * firmware.  However the dwords are swapped by firmware.  The
2042	 * least significant bits of the doorbell are then 0 for all
2043	 * MCDI requests due to alignment.
2044	 */
2045	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2046		    ER_DZ_MC_DB_LWRD);
2047	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2048		    ER_DZ_MC_DB_HWRD);
2049}
2050
2051static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2055
2056	rmb();
2057	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2058}
2059
2060static void
2061efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2062			    size_t offset, size_t outlen)
2063{
2064	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2065	const u8 *pdu = nic_data->mcdi_buf.addr;
2066
2067	memcpy(outbuf, pdu + offset, outlen);
2068}
2069
2070static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2071{
2072	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2073
2074	/* All our allocations have been reset */
2075	efx_ef10_table_reset_mc_allocations(efx);
2076
2077	/* The datapath firmware might have been changed */
2078	nic_data->must_check_datapath_caps = true;
2079
2080	/* MAC statistics have been cleared on the NIC; clear the local
2081	 * statistic that we update with efx_update_diff_stat().
2082	 */
2083	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2084}
2085
2086static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2087{
2088	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2089	int rc;
2090
2091	rc = efx_ef10_get_warm_boot_count(efx);
2092	if (rc < 0) {
2093		/* The firmware is presumably in the process of
2094		 * rebooting.  However, we are supposed to report each
2095		 * reboot just once, so we must only do that once we
2096		 * can read and store the updated warm boot count.
2097		 */
2098		return 0;
2099	}
2100
2101	if (rc == nic_data->warm_boot_count)
2102		return 0;
2103
2104	nic_data->warm_boot_count = rc;
2105	efx_ef10_mcdi_reboot_detected(efx);
2106
2107	return -EIO;
2108}
2109
2110/* Handle an MSI interrupt
2111 *
2112 * Handle an MSI hardware interrupt.  This routine schedules event
2113 * queue processing.  No interrupt acknowledgement cycle is necessary.
2114 * Also, we never need to check that the interrupt is for us, since
2115 * MSI interrupts cannot be shared.
2116 */
2117static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2118{
2119	struct efx_msi_context *context = dev_id;
2120	struct efx_nic *efx = context->efx;
2121
2122	netif_vdbg(efx, intr, efx->net_dev,
2123		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2124
2125	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2126		/* Note test interrupts */
2127		if (context->index == efx->irq_level)
2128			efx->last_irq_cpu = raw_smp_processor_id();
2129
2130		/* Schedule processing of the channel */
2131		efx_schedule_channel_irq(efx->channel[context->index]);
2132	}
2133
2134	return IRQ_HANDLED;
2135}
2136
2137static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2138{
2139	struct efx_nic *efx = dev_id;
2140	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2141	struct efx_channel *channel;
2142	efx_dword_t reg;
2143	u32 queues;
2144
2145	/* Read the ISR which also ACKs the interrupts */
2146	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2147	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2148
2149	if (queues == 0)
2150		return IRQ_NONE;
2151
2152	if (likely(soft_enabled)) {
2153		/* Note test interrupts */
2154		if (queues & (1U << efx->irq_level))
2155			efx->last_irq_cpu = raw_smp_processor_id();
2156
2157		efx_for_each_channel(channel, efx) {
2158			if (queues & 1)
2159				efx_schedule_channel_irq(channel);
2160			queues >>= 1;
2161		}
2162	}
2163
2164	netif_vdbg(efx, intr, efx->net_dev,
2165		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2166		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2167
2168	return IRQ_HANDLED;
2169}
2170
2171static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2172{
2173	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2174
2175	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2176				    NULL) == 0)
2177		return -ENOTSUPP;
2178
2179	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2180
2181	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2182	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2183			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2184}
2185
2186static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2187{
2188	/* low two bits of label are what we want for type */
2189	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2190	tx_queue->type = tx_queue->label & 3;
2191	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2192				    (tx_queue->ptr_mask + 1) *
2193				    sizeof(efx_qword_t),
2194				    GFP_KERNEL);
2195}
2196
2197/* This writes to the TX_DESC_WPTR and also pushes data */
2198static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2199					 const efx_qword_t *txd)
2200{
2201	unsigned int write_ptr;
2202	efx_oword_t reg;
2203
2204	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2205	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2206	reg.qword[0] = *txd;
2207	efx_writeo_page(tx_queue->efx, &reg,
2208			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2209}
2210
2211/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2212 */
2213int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2214			 bool *data_mapped)
2215{
2216	struct efx_tx_buffer *buffer;
2217	u16 inner_ipv4_id = 0;
2218	u16 outer_ipv4_id = 0;
2219	struct tcphdr *tcp;
2220	struct iphdr *ip;
2221	u16 ip_tot_len;
2222	u32 seqnum;
2223	u32 mss;
2224
2225	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2226
2227	mss = skb_shinfo(skb)->gso_size;
2228
2229	if (unlikely(mss < 4)) {
2230		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2231		return -EINVAL;
2232	}
2233
2234	if (skb->encapsulation) {
2235		if (!tx_queue->tso_encap)
2236			return -EINVAL;
2237		ip = ip_hdr(skb);
2238		if (ip->version == 4)
2239			outer_ipv4_id = ntohs(ip->id);
2240
2241		ip = inner_ip_hdr(skb);
2242		tcp = inner_tcp_hdr(skb);
2243	} else {
2244		ip = ip_hdr(skb);
2245		tcp = tcp_hdr(skb);
2246	}
2247
2248	/* 8000-series EF10 hardware requires that IP Total Length be
2249	 * greater than or equal to the value it will have in each segment
2250	 * (which is at most mss + 208 + TCP header length), but also less
2251	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2252	 * checksum calculation will be broken for encapsulated packets.
2253	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2254	 * first requirement unless the MSS is ridiculously large (which
2255	 * should be impossible as the driver max MTU is 9216); it is
2256	 * guaranteed to satisfy the second as we only attempt TSO if
2257	 * inner_network_header <= 208.
2258	 */
2259	ip_tot_len = -EFX_TSO2_MAX_HDRLEN;
2260	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2261				  (tcp->doff << 2u) > ip_tot_len);
2262
2263	if (ip->version == 4) {
2264		ip->tot_len = htons(ip_tot_len);
2265		ip->check = 0;
2266		inner_ipv4_id = ntohs(ip->id);
2267	} else {
2268		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2269	}
2270
2271	seqnum = ntohl(tcp->seq);
2272
2273	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2274
2275	buffer->flags = EFX_TX_BUF_OPTION;
2276	buffer->len = 0;
2277	buffer->unmap_len = 0;
2278	EFX_POPULATE_QWORD_5(buffer->option,
2279			ESF_DZ_TX_DESC_IS_OPT, 1,
2280			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2281			ESF_DZ_TX_TSO_OPTION_TYPE,
2282			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2283			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2284			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2285			);
2286	++tx_queue->insert_count;
2287
2288	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2289
2290	buffer->flags = EFX_TX_BUF_OPTION;
2291	buffer->len = 0;
2292	buffer->unmap_len = 0;
2293	EFX_POPULATE_QWORD_5(buffer->option,
2294			ESF_DZ_TX_DESC_IS_OPT, 1,
2295			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2296			ESF_DZ_TX_TSO_OPTION_TYPE,
2297			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2298			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2299			ESF_DZ_TX_TSO_TCP_MSS, mss
2300			);
2301	++tx_queue->insert_count;
2302
2303	return 0;
2304}
2305
2306static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2307{
2308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2309	u32 tso_versions = 0;
2310
2311	if (nic_data->datapath_caps &
2312	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2313		tso_versions |= BIT(1);
2314	if (nic_data->datapath_caps2 &
2315	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2316		tso_versions |= BIT(2);
2317	return tso_versions;
2318}
2319
2320static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2321{
2322	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2323	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2324	struct efx_channel *channel = tx_queue->channel;
2325	struct efx_nic *efx = tx_queue->efx;
2326	struct efx_ef10_nic_data *nic_data;
2327	efx_qword_t *txd;
2328	int rc;
2329
2330	nic_data = efx->nic_data;
2331
2332	/* Only attempt to enable TX timestamping if we have the license for it,
2333	 * otherwise TXQ init will fail
2334	 */
2335	if (!(nic_data->licensed_features &
2336	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2337		tx_queue->timestamping = false;
2338		/* Disable sync events on this channel. */
2339		if (efx->type->ptp_set_ts_sync_events)
2340			efx->type->ptp_set_ts_sync_events(efx, false, false);
2341	}
2342
2343	/* TSOv2 is a limited resource that can only be configured on a limited
2344	 * number of queues. TSO without checksum offload is not really a thing,
2345	 * so we only enable it for those queues.
2346	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2347	 * for XDP tx.
2348	 */
2349	if (efx_has_cap(efx, TX_TSO_V2)) {
2350		if ((csum_offload || inner_csum) &&
2351		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2352			tx_queue->tso_version = 2;
2353			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2354				  channel->channel);
2355		}
2356	} else if (efx_has_cap(efx, TX_TSO)) {
2357		tx_queue->tso_version = 1;
2358	}
2359
2360	rc = efx_mcdi_tx_init(tx_queue);
2361	if (rc)
2362		goto fail;
2363
2364	/* A previous user of this TX queue might have set us up the
2365	 * bomb by writing a descriptor to the TX push collector but
2366	 * not the doorbell.  (Each collector belongs to a port, not a
2367	 * queue or function, so cannot easily be reset.)  We must
2368	 * attempt to push a no-op descriptor in its place.
2369	 */
2370	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2371	tx_queue->insert_count = 1;
2372	txd = efx_tx_desc(tx_queue, 0);
2373	EFX_POPULATE_QWORD_7(*txd,
2374			     ESF_DZ_TX_DESC_IS_OPT, true,
2375			     ESF_DZ_TX_OPTION_TYPE,
2376			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2377			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2378			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2379			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2380			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2381			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2382	tx_queue->write_count = 1;
2383
2384	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2385		tx_queue->tso_encap = true;
2386
2387	wmb();
2388	efx_ef10_push_tx_desc(tx_queue, txd);
2389
2390	return;
2391
2392fail:
2393	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2394		    tx_queue->queue);
2395}
2396
2397/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2398static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2399{
2400	unsigned int write_ptr;
2401	efx_dword_t reg;
2402
2403	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2404	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2405	efx_writed_page(tx_queue->efx, &reg,
2406			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2407}
2408
2409#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2410
2411static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2412					  dma_addr_t dma_addr, unsigned int len)
2413{
2414	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2415		/* If we need to break across multiple descriptors we should
2416		 * stop at a page boundary. This assumes the length limit is
2417		 * greater than the page size.
2418		 */
2419		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2420
2421		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2422		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2423	}
2424
2425	return len;
2426}
2427
2428static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2429{
2430	unsigned int old_write_count = tx_queue->write_count;
2431	struct efx_tx_buffer *buffer;
2432	unsigned int write_ptr;
2433	efx_qword_t *txd;
2434
2435	tx_queue->xmit_pending = false;
2436	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2437		return;
2438
2439	do {
2440		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2441		buffer = &tx_queue->buffer[write_ptr];
2442		txd = efx_tx_desc(tx_queue, write_ptr);
2443		++tx_queue->write_count;
2444
2445		/* Create TX descriptor ring entry */
2446		if (buffer->flags & EFX_TX_BUF_OPTION) {
2447			*txd = buffer->option;
2448			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2449				/* PIO descriptor */
2450				tx_queue->packet_write_count = tx_queue->write_count;
2451		} else {
2452			tx_queue->packet_write_count = tx_queue->write_count;
2453			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2454			EFX_POPULATE_QWORD_3(
2455				*txd,
2456				ESF_DZ_TX_KER_CONT,
2457				buffer->flags & EFX_TX_BUF_CONT,
2458				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2459				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2460		}
2461	} while (tx_queue->write_count != tx_queue->insert_count);
2462
2463	wmb(); /* Ensure descriptors are written before they are fetched */
2464
2465	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2466		txd = efx_tx_desc(tx_queue,
2467				  old_write_count & tx_queue->ptr_mask);
2468		efx_ef10_push_tx_desc(tx_queue, txd);
2469		++tx_queue->pushes;
2470	} else {
2471		efx_ef10_notify_tx_desc(tx_queue);
2472	}
2473}
2474
2475static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2476{
2477	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2478	unsigned int enabled, implemented;
2479	bool want_workaround_26807;
2480	int rc;
2481
2482	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2483	if (rc == -ENOSYS) {
2484		/* GET_WORKAROUNDS was implemented before this workaround,
2485		 * thus it must be unavailable in this firmware.
2486		 */
2487		nic_data->workaround_26807 = false;
2488		return 0;
2489	}
2490	if (rc)
2491		return rc;
2492	want_workaround_26807 =
2493		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2494	nic_data->workaround_26807 =
2495		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2496
2497	if (want_workaround_26807 && !nic_data->workaround_26807) {
2498		unsigned int flags;
2499
2500		rc = efx_mcdi_set_workaround(efx,
2501					     MC_CMD_WORKAROUND_BUG26807,
2502					     true, &flags);
2503		if (!rc) {
2504			if (flags &
2505			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2506				netif_info(efx, drv, efx->net_dev,
2507					   "other functions on NIC have been reset\n");
2508
2509				/* With MCFW v4.6.x and earlier, the
2510				 * boot count will have incremented,
2511				 * so re-read the warm_boot_count
2512				 * value now to ensure this function
2513				 * doesn't think it has changed next
2514				 * time it checks.
2515				 */
2516				rc = efx_ef10_get_warm_boot_count(efx);
2517				if (rc >= 0) {
2518					nic_data->warm_boot_count = rc;
2519					rc = 0;
2520				}
2521			}
2522			nic_data->workaround_26807 = true;
2523		} else if (rc == -EPERM) {
2524			rc = 0;
2525		}
2526	}
2527	return rc;
2528}
2529
2530static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2531{
2532	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2533	int rc = efx_ef10_probe_multicast_chaining(efx);
2534	struct efx_mcdi_filter_vlan *vlan;
2535
2536	if (rc)
2537		return rc;
2538	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2539
2540	if (rc)
2541		return rc;
2542
2543	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2544		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2545		if (rc)
2546			goto fail_add_vlan;
2547	}
2548	return 0;
2549
2550fail_add_vlan:
2551	efx_mcdi_filter_table_remove(efx);
2552	return rc;
2553}
2554
2555/* This creates an entry in the RX descriptor queue */
2556static inline void
2557efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2558{
2559	struct efx_rx_buffer *rx_buf;
2560	efx_qword_t *rxd;
2561
2562	rxd = efx_rx_desc(rx_queue, index);
2563	rx_buf = efx_rx_buffer(rx_queue, index);
2564	EFX_POPULATE_QWORD_2(*rxd,
2565			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2566			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2567}
2568
2569static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2570{
2571	struct efx_nic *efx = rx_queue->efx;
2572	unsigned int write_count;
2573	efx_dword_t reg;
2574
2575	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2576	write_count = rx_queue->added_count & ~7;
2577	if (rx_queue->notified_count == write_count)
2578		return;
2579
2580	do
2581		efx_ef10_build_rx_desc(
2582			rx_queue,
2583			rx_queue->notified_count & rx_queue->ptr_mask);
2584	while (++rx_queue->notified_count != write_count);
2585
2586	wmb();
2587	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2588			     write_count & rx_queue->ptr_mask);
2589	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2590			efx_rx_queue_index(rx_queue));
2591}
2592
2593static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2594
2595static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2596{
2597	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2598	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2599	efx_qword_t event;
2600
2601	EFX_POPULATE_QWORD_2(event,
2602			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2603			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2604
2605	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2606
2607	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2608	 * already swapped the data to little-endian order.
2609	 */
2610	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2611	       sizeof(efx_qword_t));
2612
2613	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2614			   inbuf, sizeof(inbuf), 0,
2615			   efx_ef10_rx_defer_refill_complete, 0);
2616}
2617
2618static void
2619efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2620				  int rc, efx_dword_t *outbuf,
2621				  size_t outlen_actual)
2622{
2623	/* nothing to do */
2624}
2625
2626static int efx_ef10_ev_init(struct efx_channel *channel)
2627{
2628	struct efx_nic *efx = channel->efx;
2629	struct efx_ef10_nic_data *nic_data;
2630	bool use_v2, cut_thru;
2631
2632	nic_data = efx->nic_data;
2633	use_v2 = nic_data->datapath_caps2 &
2634			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2635	cut_thru = !(nic_data->datapath_caps &
2636			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2637	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2638}
2639
2640static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2641					   unsigned int rx_queue_label)
2642{
2643	struct efx_nic *efx = rx_queue->efx;
2644
2645	netif_info(efx, hw, efx->net_dev,
2646		   "rx event arrived on queue %d labeled as queue %u\n",
2647		   efx_rx_queue_index(rx_queue), rx_queue_label);
2648
2649	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2650}
2651
2652static void
2653efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2654			     unsigned int actual, unsigned int expected)
2655{
2656	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2657	struct efx_nic *efx = rx_queue->efx;
2658
2659	netif_info(efx, hw, efx->net_dev,
2660		   "dropped %d events (index=%d expected=%d)\n",
2661		   dropped, actual, expected);
2662
2663	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2664}
2665
2666/* partially received RX was aborted. clean up. */
2667static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2668{
2669	unsigned int rx_desc_ptr;
2670
2671	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2672		  "scattered RX aborted (dropping %u buffers)\n",
2673		  rx_queue->scatter_n);
2674
2675	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2676
2677	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2678		      0, EFX_RX_PKT_DISCARD);
2679
2680	rx_queue->removed_count += rx_queue->scatter_n;
2681	rx_queue->scatter_n = 0;
2682	rx_queue->scatter_len = 0;
2683	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2684}
2685
2686static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2687					   unsigned int n_packets,
2688					   unsigned int rx_encap_hdr,
2689					   unsigned int rx_l3_class,
2690					   unsigned int rx_l4_class,
2691					   const efx_qword_t *event)
2692{
2693	struct efx_nic *efx = channel->efx;
2694	bool handled = false;
2695
2696	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2697		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2698			if (!efx->loopback_selftest)
2699				channel->n_rx_eth_crc_err += n_packets;
2700			return EFX_RX_PKT_DISCARD;
2701		}
2702		handled = true;
2703	}
2704	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2705		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2706			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2707			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2708			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2709			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2710			netdev_WARN(efx->net_dev,
2711				    "invalid class for RX_IPCKSUM_ERR: event="
2712				    EFX_QWORD_FMT "\n",
2713				    EFX_QWORD_VAL(*event));
2714		if (!efx->loopback_selftest)
2715			*(rx_encap_hdr ?
2716			  &channel->n_rx_outer_ip_hdr_chksum_err :
2717			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2718		return 0;
2719	}
2720	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2721		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2722			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2723			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2724			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2725			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2726			netdev_WARN(efx->net_dev,
2727				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2728				    EFX_QWORD_FMT "\n",
2729				    EFX_QWORD_VAL(*event));
2730		if (!efx->loopback_selftest)
2731			*(rx_encap_hdr ?
2732			  &channel->n_rx_outer_tcp_udp_chksum_err :
2733			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2734		return 0;
2735	}
2736	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2737		if (unlikely(!rx_encap_hdr))
2738			netdev_WARN(efx->net_dev,
2739				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2740				    EFX_QWORD_FMT "\n",
2741				    EFX_QWORD_VAL(*event));
2742		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2743				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2744				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2745				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2746			netdev_WARN(efx->net_dev,
2747				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2748				    EFX_QWORD_FMT "\n",
2749				    EFX_QWORD_VAL(*event));
2750		if (!efx->loopback_selftest)
2751			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2752		return 0;
2753	}
2754	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2755		if (unlikely(!rx_encap_hdr))
2756			netdev_WARN(efx->net_dev,
2757				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2758				    EFX_QWORD_FMT "\n",
2759				    EFX_QWORD_VAL(*event));
2760		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2761				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2762				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2763				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2764			netdev_WARN(efx->net_dev,
2765				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2766				    EFX_QWORD_FMT "\n",
2767				    EFX_QWORD_VAL(*event));
2768		if (!efx->loopback_selftest)
2769			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2770		return 0;
2771	}
2772
2773	WARN_ON(!handled); /* No error bits were recognised */
2774	return 0;
2775}
2776
2777static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2778				    const efx_qword_t *event)
2779{
2780	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2781	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2782	unsigned int n_descs, n_packets, i;
2783	struct efx_nic *efx = channel->efx;
2784	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2785	struct efx_rx_queue *rx_queue;
2786	efx_qword_t errors;
2787	bool rx_cont;
2788	u16 flags = 0;
2789
2790	if (unlikely(READ_ONCE(efx->reset_pending)))
2791		return 0;
2792
2793	/* Basic packet information */
2794	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2795	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2796	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2797	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2798	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2799	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2800	rx_encap_hdr =
2801		nic_data->datapath_caps &
2802			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2803		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2804		ESE_EZ_ENCAP_HDR_NONE;
2805
2806	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2807		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2808			    EFX_QWORD_FMT "\n",
2809			    EFX_QWORD_VAL(*event));
2810
2811	rx_queue = efx_channel_get_rx_queue(channel);
2812
2813	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2814		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2815
2816	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2817		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2818
2819	if (n_descs != rx_queue->scatter_n + 1) {
2820		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2821
2822		/* detect rx abort */
2823		if (unlikely(n_descs == rx_queue->scatter_n)) {
2824			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2825				netdev_WARN(efx->net_dev,
2826					    "invalid RX abort: scatter_n=%u event="
2827					    EFX_QWORD_FMT "\n",
2828					    rx_queue->scatter_n,
2829					    EFX_QWORD_VAL(*event));
2830			efx_ef10_handle_rx_abort(rx_queue);
2831			return 0;
2832		}
2833
2834		/* Check that RX completion merging is valid, i.e.
2835		 * the current firmware supports it and this is a
2836		 * non-scattered packet.
2837		 */
2838		if (!(nic_data->datapath_caps &
2839		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2840		    rx_queue->scatter_n != 0 || rx_cont) {
2841			efx_ef10_handle_rx_bad_lbits(
2842				rx_queue, next_ptr_lbits,
2843				(rx_queue->removed_count +
2844				 rx_queue->scatter_n + 1) &
2845				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2846			return 0;
2847		}
2848
2849		/* Merged completion for multiple non-scattered packets */
2850		rx_queue->scatter_n = 1;
2851		rx_queue->scatter_len = 0;
2852		n_packets = n_descs;
2853		++channel->n_rx_merge_events;
2854		channel->n_rx_merge_packets += n_packets;
2855		flags |= EFX_RX_PKT_PREFIX_LEN;
2856	} else {
2857		++rx_queue->scatter_n;
2858		rx_queue->scatter_len += rx_bytes;
2859		if (rx_cont)
2860			return 0;
2861		n_packets = 1;
2862	}
2863
2864	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2865				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2866				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2867				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2868				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2869	EFX_AND_QWORD(errors, *event, errors);
2870	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2871		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2872							 rx_encap_hdr,
2873							 rx_l3_class, rx_l4_class,
2874							 event);
2875	} else {
2876		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2877			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2878
2879		switch (rx_encap_hdr) {
2880		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2881			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2882			if (tcpudp)
2883				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2884			break;
2885		case ESE_EZ_ENCAP_HDR_GRE:
2886		case ESE_EZ_ENCAP_HDR_NONE:
2887			if (tcpudp)
2888				flags |= EFX_RX_PKT_CSUMMED;
2889			break;
2890		default:
2891			netdev_WARN(efx->net_dev,
2892				    "unknown encapsulation type: event="
2893				    EFX_QWORD_FMT "\n",
2894				    EFX_QWORD_VAL(*event));
2895		}
2896	}
2897
2898	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2899		flags |= EFX_RX_PKT_TCP;
2900
2901	channel->irq_mod_score += 2 * n_packets;
2902
2903	/* Handle received packet(s) */
2904	for (i = 0; i < n_packets; i++) {
2905		efx_rx_packet(rx_queue,
2906			      rx_queue->removed_count & rx_queue->ptr_mask,
2907			      rx_queue->scatter_n, rx_queue->scatter_len,
2908			      flags);
2909		rx_queue->removed_count += rx_queue->scatter_n;
2910	}
2911
2912	rx_queue->scatter_n = 0;
2913	rx_queue->scatter_len = 0;
2914
2915	return n_packets;
2916}
2917
2918static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2919{
2920	u32 tstamp;
2921
2922	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2923	tstamp <<= 16;
2924	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2925
2926	return tstamp;
2927}
2928
2929static void
2930efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2931{
2932	struct efx_nic *efx = channel->efx;
2933	struct efx_tx_queue *tx_queue;
2934	unsigned int tx_ev_desc_ptr;
2935	unsigned int tx_ev_q_label;
2936	unsigned int tx_ev_type;
2937	u64 ts_part;
2938
2939	if (unlikely(READ_ONCE(efx->reset_pending)))
2940		return;
2941
2942	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2943		return;
2944
2945	/* Get the transmit queue */
2946	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2947	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2948
2949	if (!tx_queue->timestamping) {
2950		/* Transmit completion */
2951		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2952		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2953		return;
2954	}
2955
2956	/* Transmit timestamps are only available for 8XXX series. They result
2957	 * in up to three events per packet. These occur in order, and are:
2958	 *  - the normal completion event (may be omitted)
2959	 *  - the low part of the timestamp
2960	 *  - the high part of the timestamp
2961	 *
2962	 * It's possible for multiple completion events to appear before the
2963	 * corresponding timestamps. So we can for example get:
2964	 *  COMP N
2965	 *  COMP N+1
2966	 *  TS_LO N
2967	 *  TS_HI N
2968	 *  TS_LO N+1
2969	 *  TS_HI N+1
2970	 *
2971	 * In addition it's also possible for the adjacent completions to be
2972	 * merged, so we may not see COMP N above. As such, the completion
2973	 * events are not very useful here.
2974	 *
2975	 * Each part of the timestamp is itself split across two 16 bit
2976	 * fields in the event.
2977	 */
2978	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2979
2980	switch (tx_ev_type) {
2981	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2982		/* Ignore this event - see above. */
2983		break;
2984
2985	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2986		ts_part = efx_ef10_extract_event_ts(event);
2987		tx_queue->completed_timestamp_minor = ts_part;
2988		break;
2989
2990	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2991		ts_part = efx_ef10_extract_event_ts(event);
2992		tx_queue->completed_timestamp_major = ts_part;
2993
2994		efx_xmit_done_single(tx_queue);
2995		break;
2996
2997	default:
2998		netif_err(efx, hw, efx->net_dev,
2999			  "channel %d unknown tx event type %d (data "
3000			  EFX_QWORD_FMT ")\n",
3001			  channel->channel, tx_ev_type,
3002			  EFX_QWORD_VAL(*event));
3003		break;
3004	}
3005}
3006
3007static void
3008efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3009{
3010	struct efx_nic *efx = channel->efx;
3011	int subcode;
3012
3013	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3014
3015	switch (subcode) {
3016	case ESE_DZ_DRV_TIMER_EV:
3017	case ESE_DZ_DRV_WAKE_UP_EV:
3018		break;
3019	case ESE_DZ_DRV_START_UP_EV:
3020		/* event queue init complete. ok. */
3021		break;
3022	default:
3023		netif_err(efx, hw, efx->net_dev,
3024			  "channel %d unknown driver event type %d"
3025			  " (data " EFX_QWORD_FMT ")\n",
3026			  channel->channel, subcode,
3027			  EFX_QWORD_VAL(*event));
3028
3029	}
3030}
3031
3032static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3033						   efx_qword_t *event)
3034{
3035	struct efx_nic *efx = channel->efx;
3036	u32 subcode;
3037
3038	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3039
3040	switch (subcode) {
3041	case EFX_EF10_TEST:
3042		channel->event_test_cpu = raw_smp_processor_id();
3043		break;
3044	case EFX_EF10_REFILL:
3045		/* The queue must be empty, so we won't receive any rx
3046		 * events, so efx_process_channel() won't refill the
3047		 * queue. Refill it here
3048		 */
3049		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3050		break;
3051	default:
3052		netif_err(efx, hw, efx->net_dev,
3053			  "channel %d unknown driver event type %u"
3054			  " (data " EFX_QWORD_FMT ")\n",
3055			  channel->channel, (unsigned) subcode,
3056			  EFX_QWORD_VAL(*event));
3057	}
3058}
3059
3060static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3061{
3062	struct efx_nic *efx = channel->efx;
3063	efx_qword_t event, *p_event;
3064	unsigned int read_ptr;
3065	int ev_code;
3066	int spent = 0;
3067
3068	if (quota <= 0)
3069		return spent;
3070
3071	read_ptr = channel->eventq_read_ptr;
3072
3073	for (;;) {
3074		p_event = efx_event(channel, read_ptr);
3075		event = *p_event;
3076
3077		if (!efx_event_present(&event))
3078			break;
3079
3080		EFX_SET_QWORD(*p_event);
3081
3082		++read_ptr;
3083
3084		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3085
3086		netif_vdbg(efx, drv, efx->net_dev,
3087			   "processing event on %d " EFX_QWORD_FMT "\n",
3088			   channel->channel, EFX_QWORD_VAL(event));
3089
3090		switch (ev_code) {
3091		case ESE_DZ_EV_CODE_MCDI_EV:
3092			efx_mcdi_process_event(channel, &event);
3093			break;
3094		case ESE_DZ_EV_CODE_RX_EV:
3095			spent += efx_ef10_handle_rx_event(channel, &event);
3096			if (spent >= quota) {
3097				/* XXX can we split a merged event to
3098				 * avoid going over-quota?
3099				 */
3100				spent = quota;
3101				goto out;
3102			}
3103			break;
3104		case ESE_DZ_EV_CODE_TX_EV:
3105			efx_ef10_handle_tx_event(channel, &event);
3106			break;
3107		case ESE_DZ_EV_CODE_DRIVER_EV:
3108			efx_ef10_handle_driver_event(channel, &event);
3109			if (++spent == quota)
3110				goto out;
3111			break;
3112		case EFX_EF10_DRVGEN_EV:
3113			efx_ef10_handle_driver_generated_event(channel, &event);
3114			break;
3115		default:
3116			netif_err(efx, hw, efx->net_dev,
3117				  "channel %d unknown event type %d"
3118				  " (data " EFX_QWORD_FMT ")\n",
3119				  channel->channel, ev_code,
3120				  EFX_QWORD_VAL(event));
3121		}
3122	}
3123
3124out:
3125	channel->eventq_read_ptr = read_ptr;
3126	return spent;
3127}
3128
3129static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3130{
3131	struct efx_nic *efx = channel->efx;
3132	efx_dword_t rptr;
3133
3134	if (EFX_EF10_WORKAROUND_35388(efx)) {
3135		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3136			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3137		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3138			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3139
3140		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3141				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3142				     ERF_DD_EVQ_IND_RPTR,
3143				     (channel->eventq_read_ptr &
3144				      channel->eventq_mask) >>
3145				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3146		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3147				channel->channel);
3148		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3149				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3150				     ERF_DD_EVQ_IND_RPTR,
3151				     channel->eventq_read_ptr &
3152				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3153		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3154				channel->channel);
3155	} else {
3156		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3157				     channel->eventq_read_ptr &
3158				     channel->eventq_mask);
3159		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3160	}
3161}
3162
3163static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3164{
3165	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3166	struct efx_nic *efx = channel->efx;
3167	efx_qword_t event;
3168	int rc;
3169
3170	EFX_POPULATE_QWORD_2(event,
3171			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3172			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3173
3174	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3175
3176	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3177	 * already swapped the data to little-endian order.
3178	 */
3179	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3180	       sizeof(efx_qword_t));
3181
3182	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3183			  NULL, 0, NULL);
3184	if (rc != 0)
3185		goto fail;
3186
3187	return;
3188
3189fail:
3190	WARN_ON(true);
3191	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3192}
3193
3194static void efx_ef10_prepare_flr(struct efx_nic *efx)
3195{
3196	atomic_set(&efx->active_queues, 0);
3197}
3198
3199static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3200{
3201	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3202	u8 mac_old[ETH_ALEN];
3203	int rc, rc2;
3204
3205	/* Only reconfigure a PF-created vport */
3206	if (is_zero_ether_addr(nic_data->vport_mac))
3207		return 0;
3208
3209	efx_device_detach_sync(efx);
3210	efx_net_stop(efx->net_dev);
3211	down_write(&efx->filter_sem);
3212	efx_mcdi_filter_table_remove(efx);
3213	up_write(&efx->filter_sem);
3214
3215	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3216	if (rc)
3217		goto restore_filters;
3218
3219	ether_addr_copy(mac_old, nic_data->vport_mac);
3220	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3221				    nic_data->vport_mac);
3222	if (rc)
3223		goto restore_vadaptor;
3224
3225	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3226				    efx->net_dev->dev_addr);
3227	if (!rc) {
3228		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3229	} else {
3230		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3231		if (rc2) {
3232			/* Failed to add original MAC, so clear vport_mac */
3233			eth_zero_addr(nic_data->vport_mac);
3234			goto reset_nic;
3235		}
3236	}
3237
3238restore_vadaptor:
3239	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3240	if (rc2)
3241		goto reset_nic;
3242restore_filters:
3243	down_write(&efx->filter_sem);
3244	rc2 = efx_ef10_filter_table_probe(efx);
3245	up_write(&efx->filter_sem);
3246	if (rc2)
3247		goto reset_nic;
3248
3249	rc2 = efx_net_open(efx->net_dev);
3250	if (rc2)
3251		goto reset_nic;
3252
3253	efx_device_attach_if_not_resetting(efx);
3254
3255	return rc;
3256
3257reset_nic:
3258	netif_err(efx, drv, efx->net_dev,
3259		  "Failed to restore when changing MAC address - scheduling reset\n");
3260	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3261
3262	return rc ? rc : rc2;
3263}
3264
3265static int efx_ef10_set_mac_address(struct efx_nic *efx)
3266{
3267	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3268	bool was_enabled = efx->port_enabled;
3269	int rc;
3270
3271	efx_device_detach_sync(efx);
3272	efx_net_stop(efx->net_dev);
3273
3274	mutex_lock(&efx->mac_lock);
3275	down_write(&efx->filter_sem);
3276	efx_mcdi_filter_table_remove(efx);
3277
3278	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3279			efx->net_dev->dev_addr);
3280	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3281		       efx->vport_id);
3282	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3283				sizeof(inbuf), NULL, 0, NULL);
3284
3285	efx_ef10_filter_table_probe(efx);
3286	up_write(&efx->filter_sem);
3287	mutex_unlock(&efx->mac_lock);
3288
3289	if (was_enabled)
3290		efx_net_open(efx->net_dev);
3291	efx_device_attach_if_not_resetting(efx);
3292
3293#ifdef CONFIG_SFC_SRIOV
3294	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3295		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3296		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3297
3298		if (rc == -EPERM) {
3299			struct efx_nic *efx_pf;
3300
3301			/* Switch to PF and change MAC address on vport */
3302			efx_pf = pci_get_drvdata(pci_dev_pf);
3303
3304			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3305						       nic_data->vf_index,
3306						       efx->net_dev->dev_addr);
3307		} else if (!rc) {
3308			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3309			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3310			unsigned int i;
3311
3312			/* MAC address successfully changed by VF (with MAC
3313			 * spoofing) so update the parent PF if possible.
3314			 */
3315			for (i = 0; i < efx_pf->vf_count; ++i) {
3316				struct ef10_vf *vf = nic_data->vf + i;
3317
3318				if (vf->efx == efx) {
3319					ether_addr_copy(vf->mac,
3320							efx->net_dev->dev_addr);
3321					return 0;
3322				}
3323			}
3324		}
3325	} else
3326#endif
3327	if (rc == -EPERM) {
3328		netif_err(efx, drv, efx->net_dev,
3329			  "Cannot change MAC address; use sfboot to enable"
3330			  " mac-spoofing on this interface\n");
3331	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3332		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3333		 * fall-back to the method of changing the MAC address on the
3334		 * vport.  This only applies to PFs because such versions of
3335		 * MCFW do not support VFs.
3336		 */
3337		rc = efx_ef10_vport_set_mac_address(efx);
3338	} else if (rc) {
3339		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3340				       sizeof(inbuf), NULL, 0, rc);
3341	}
3342
3343	return rc;
3344}
3345
3346static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3347{
3348	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3349
3350	efx_mcdi_filter_sync_rx_mode(efx);
3351
3352	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3353		return efx_mcdi_set_mtu(efx);
3354	return efx_mcdi_set_mac(efx);
3355}
3356
3357static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3358{
3359	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3360
3361	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3362	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3363			    NULL, 0, NULL);
3364}
3365
3366/* MC BISTs follow a different poll mechanism to phy BISTs.
3367 * The BIST is done in the poll handler on the MC, and the MCDI command
3368 * will block until the BIST is done.
3369 */
3370static int efx_ef10_poll_bist(struct efx_nic *efx)
3371{
3372	int rc;
3373	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3374	size_t outlen;
3375	u32 result;
3376
3377	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3378			   outbuf, sizeof(outbuf), &outlen);
3379	if (rc != 0)
3380		return rc;
3381
3382	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3383		return -EIO;
3384
3385	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3386	switch (result) {
3387	case MC_CMD_POLL_BIST_PASSED:
3388		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3389		return 0;
3390	case MC_CMD_POLL_BIST_TIMEOUT:
3391		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3392		return -EIO;
3393	case MC_CMD_POLL_BIST_FAILED:
3394		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3395		return -EIO;
3396	default:
3397		netif_err(efx, hw, efx->net_dev,
3398			  "BIST returned unknown result %u", result);
3399		return -EIO;
3400	}
3401}
3402
3403static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3404{
3405	int rc;
3406
3407	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3408
3409	rc = efx_ef10_start_bist(efx, bist_type);
3410	if (rc != 0)
3411		return rc;
3412
3413	return efx_ef10_poll_bist(efx);
3414}
3415
3416static int
3417efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3418{
3419	int rc, rc2;
3420
3421	efx_reset_down(efx, RESET_TYPE_WORLD);
3422
3423	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3424			  NULL, 0, NULL, 0, NULL);
3425	if (rc != 0)
3426		goto out;
3427
3428	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3429	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3430
3431	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3432
3433out:
3434	if (rc == -EPERM)
3435		rc = 0;
3436	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3437	return rc ? rc : rc2;
3438}
3439
3440#ifdef CONFIG_SFC_MTD
3441
3442struct efx_ef10_nvram_type_info {
3443	u16 type, type_mask;
3444	u8 port;
3445	const char *name;
3446};
3447
3448static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3449	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3450	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3451	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3452	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3453	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3454	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3455	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3456	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3457	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3458	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3459	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3460	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3461	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3462	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3463	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3464	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3465	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3466	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3467};
3468#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3469
3470static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3471					struct efx_mcdi_mtd_partition *part,
3472					unsigned int type,
3473					unsigned long *found)
3474{
3475	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3476	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3477	const struct efx_ef10_nvram_type_info *info;
3478	size_t size, erase_size, outlen;
3479	int type_idx = 0;
3480	bool protected;
3481	int rc;
3482
3483	for (type_idx = 0; ; type_idx++) {
3484		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3485			return -ENODEV;
3486		info = efx_ef10_nvram_types + type_idx;
3487		if ((type & ~info->type_mask) == info->type)
3488			break;
3489	}
3490	if (info->port != efx_port_num(efx))
3491		return -ENODEV;
3492
3493	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3494	if (rc)
3495		return rc;
3496	if (protected &&
3497	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3498	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3499		/* Hide protected partitions that don't provide defaults. */
3500		return -ENODEV;
3501
3502	if (protected)
3503		/* Protected partitions are read only. */
3504		erase_size = 0;
3505
3506	/* If we've already exposed a partition of this type, hide this
3507	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3508	 * so we can't act on the duplicate.
3509	 */
3510	if (__test_and_set_bit(type_idx, found))
3511		return -EEXIST;
3512
3513	part->nvram_type = type;
3514
3515	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3516	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3517			  outbuf, sizeof(outbuf), &outlen);
3518	if (rc)
3519		return rc;
3520	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3521		return -EIO;
3522	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3523	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3524		part->fw_subtype = MCDI_DWORD(outbuf,
3525					      NVRAM_METADATA_OUT_SUBTYPE);
3526
3527	part->common.dev_type_name = "EF10 NVRAM manager";
3528	part->common.type_name = info->name;
3529
3530	part->common.mtd.type = MTD_NORFLASH;
3531	part->common.mtd.flags = MTD_CAP_NORFLASH;
3532	part->common.mtd.size = size;
3533	part->common.mtd.erasesize = erase_size;
3534	/* sfc_status is read-only */
3535	if (!erase_size)
3536		part->common.mtd.flags |= MTD_NO_ERASE;
3537
3538	return 0;
3539}
3540
3541static int efx_ef10_mtd_probe(struct efx_nic *efx)
3542{
3543	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3544	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3545	struct efx_mcdi_mtd_partition *parts;
3546	size_t outlen, n_parts_total, i, n_parts;
3547	unsigned int type;
3548	int rc;
3549
3550	ASSERT_RTNL();
3551
3552	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3553	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3554			  outbuf, sizeof(outbuf), &outlen);
3555	if (rc)
3556		return rc;
3557	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3558		return -EIO;
3559
3560	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3561	if (n_parts_total >
3562	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3563		return -EIO;
3564
3565	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3566	if (!parts)
3567		return -ENOMEM;
3568
3569	n_parts = 0;
3570	for (i = 0; i < n_parts_total; i++) {
3571		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3572					i);
3573		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3574						  found);
3575		if (rc == -EEXIST || rc == -ENODEV)
3576			continue;
3577		if (rc)
3578			goto fail;
3579		n_parts++;
3580	}
3581
3582	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3583fail:
3584	if (rc)
3585		kfree(parts);
3586	return rc;
3587}
3588
3589#endif /* CONFIG_SFC_MTD */
3590
3591static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3592{
3593	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3594}
3595
3596static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3597					    u32 host_time) {}
3598
3599static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3600					   bool temp)
3601{
3602	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3603	int rc;
3604
3605	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3606	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3607	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3608		return 0;
3609	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3610
3611	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3612	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3613	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3614		       channel->channel);
3615
3616	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3617			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3618
3619	if (rc != 0)
3620		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3621						    SYNC_EVENTS_DISABLED;
3622
3623	return rc;
3624}
3625
3626static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3627					    bool temp)
3628{
3629	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3630	int rc;
3631
3632	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3633	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3634		return 0;
3635	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3636		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3637		return 0;
3638	}
3639	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3640					    SYNC_EVENTS_DISABLED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3645		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3646	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3647		       channel->channel);
3648
3649	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3650			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3651
3652	return rc;
3653}
3654
3655static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3656					   bool temp)
3657{
3658	int (*set)(struct efx_channel *channel, bool temp);
3659	struct efx_channel *channel;
3660
3661	set = en ?
3662	      efx_ef10_rx_enable_timestamping :
3663	      efx_ef10_rx_disable_timestamping;
3664
3665	channel = efx_ptp_channel(efx);
3666	if (channel) {
3667		int rc = set(channel, temp);
3668		if (en && rc != 0) {
3669			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3670			return rc;
3671		}
3672	}
3673
3674	return 0;
3675}
3676
3677static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3678					 struct hwtstamp_config *init)
3679{
3680	return -EOPNOTSUPP;
3681}
3682
3683static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3684				      struct hwtstamp_config *init)
3685{
3686	int rc;
3687
3688	switch (init->rx_filter) {
3689	case HWTSTAMP_FILTER_NONE:
3690		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3691		/* if TX timestamping is still requested then leave PTP on */
3692		return efx_ptp_change_mode(efx,
3693					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3694	case HWTSTAMP_FILTER_ALL:
3695	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3696	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3697	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3698	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3699	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3700	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3701	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3702	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3703	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3704	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3705	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3706	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3707	case HWTSTAMP_FILTER_NTP_ALL:
3708		init->rx_filter = HWTSTAMP_FILTER_ALL;
3709		rc = efx_ptp_change_mode(efx, true, 0);
3710		if (!rc)
3711			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3712		if (rc)
3713			efx_ptp_change_mode(efx, false, 0);
3714		return rc;
3715	default:
3716		return -ERANGE;
3717	}
3718}
3719
3720static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3721				     struct netdev_phys_item_id *ppid)
3722{
3723	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3724
3725	if (!is_valid_ether_addr(nic_data->port_id))
3726		return -EOPNOTSUPP;
3727
3728	ppid->id_len = ETH_ALEN;
3729	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3730
3731	return 0;
3732}
3733
3734static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3735{
3736	if (proto != htons(ETH_P_8021Q))
3737		return -EINVAL;
3738
3739	return efx_ef10_add_vlan(efx, vid);
3740}
3741
3742static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3743{
3744	if (proto != htons(ETH_P_8021Q))
3745		return -EINVAL;
3746
3747	return efx_ef10_del_vlan(efx, vid);
3748}
3749
3750/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3751 * ports table, ensuring that any TSO descriptors that were made on a now-
3752 * removed tunnel port will be blown away and won't break things when we try
3753 * to transmit them using the new ports table.
3754 */
3755static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3756{
3757	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3758	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3759	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3760	bool will_reset = false;
3761	size_t num_entries = 0;
3762	size_t inlen, outlen;
3763	size_t i;
3764	int rc;
3765	efx_dword_t flags_and_num_entries;
3766
3767	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3768
3769	nic_data->udp_tunnels_dirty = false;
3770
3771	if (!(nic_data->datapath_caps &
3772	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3773		efx_device_attach_if_not_resetting(efx);
3774		return 0;
3775	}
3776
3777	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3778		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3779
3780	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3781		if (nic_data->udp_tunnels[i].type !=
3782		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3783			efx_dword_t entry;
3784
3785			EFX_POPULATE_DWORD_2(entry,
3786				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3787					ntohs(nic_data->udp_tunnels[i].port),
3788				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3789					nic_data->udp_tunnels[i].type);
3790			*_MCDI_ARRAY_DWORD(inbuf,
3791				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3792				num_entries++) = entry;
3793		}
3794	}
3795
3796	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3797		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3798		     EFX_WORD_1_LBN);
3799	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3800		     EFX_WORD_1_WIDTH);
3801	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3802			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3803				!!unloading,
3804			     EFX_WORD_1, num_entries);
3805	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3806		flags_and_num_entries;
3807
3808	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3809
3810	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3811				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3812	if (rc == -EIO) {
3813		/* Most likely the MC rebooted due to another function also
3814		 * setting its tunnel port list. Mark the tunnel port list as
3815		 * dirty, so it will be pushed upon coming up from the reboot.
3816		 */
3817		nic_data->udp_tunnels_dirty = true;
3818		return 0;
3819	}
3820
3821	if (rc) {
3822		/* expected not available on unprivileged functions */
3823		if (rc != -EPERM)
3824			netif_warn(efx, drv, efx->net_dev,
3825				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3826	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3827		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3828		netif_info(efx, drv, efx->net_dev,
3829			   "Rebooting MC due to UDP tunnel port list change\n");
3830		will_reset = true;
3831		if (unloading)
3832			/* Delay for the MC reset to complete. This will make
3833			 * unloading other functions a bit smoother. This is a
3834			 * race, but the other unload will work whichever way
3835			 * it goes, this just avoids an unnecessary error
3836			 * message.
3837			 */
3838			msleep(100);
3839	}
3840	if (!will_reset && !unloading) {
3841		/* The caller will have detached, relying on the MC reset to
3842		 * trigger a re-attach.  Since there won't be an MC reset, we
3843		 * have to do the attach ourselves.
3844		 */
3845		efx_device_attach_if_not_resetting(efx);
3846	}
3847
3848	return rc;
3849}
3850
3851static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3852{
3853	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3854	int rc = 0;
3855
3856	mutex_lock(&nic_data->udp_tunnels_lock);
3857	if (nic_data->udp_tunnels_dirty) {
3858		/* Make sure all TX are stopped while we modify the table, else
3859		 * we might race against an efx_features_check().
3860		 */
3861		efx_device_detach_sync(efx);
3862		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3863	}
3864	mutex_unlock(&nic_data->udp_tunnels_lock);
3865	return rc;
3866}
3867
3868static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3869				     unsigned int table, unsigned int entry,
3870				     struct udp_tunnel_info *ti)
3871{
3872	struct efx_nic *efx = netdev_priv(dev);
3873	struct efx_ef10_nic_data *nic_data;
3874	int efx_tunnel_type, rc;
3875
3876	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3877		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3878	else
3879		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3880
3881	nic_data = efx->nic_data;
3882	if (!(nic_data->datapath_caps &
3883	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3884		return -EOPNOTSUPP;
3885
3886	mutex_lock(&nic_data->udp_tunnels_lock);
3887	/* Make sure all TX are stopped while we add to the table, else we
3888	 * might race against an efx_features_check().
3889	 */
3890	efx_device_detach_sync(efx);
3891	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3892	nic_data->udp_tunnels[entry].port = ti->port;
3893	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	mutex_unlock(&nic_data->udp_tunnels_lock);
3895
3896	return rc;
3897}
3898
3899/* Called under the TX lock with the TX queue running, hence no-one can be
3900 * in the middle of updating the UDP tunnels table.  However, they could
3901 * have tried and failed the MCDI, in which case they'll have set the dirty
3902 * flag before dropping their locks.
3903 */
3904static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3905{
3906	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3907	size_t i;
3908
3909	if (!(nic_data->datapath_caps &
3910	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3911		return false;
3912
3913	if (nic_data->udp_tunnels_dirty)
3914		/* SW table may not match HW state, so just assume we can't
3915		 * use any UDP tunnel offloads.
3916		 */
3917		return false;
3918
3919	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3920		if (nic_data->udp_tunnels[i].type !=
3921		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3922		    nic_data->udp_tunnels[i].port == port)
3923			return true;
3924
3925	return false;
3926}
3927
3928static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3929				       unsigned int table, unsigned int entry,
3930				       struct udp_tunnel_info *ti)
3931{
3932	struct efx_nic *efx = netdev_priv(dev);
3933	struct efx_ef10_nic_data *nic_data;
3934	int rc;
3935
3936	nic_data = efx->nic_data;
3937
3938	mutex_lock(&nic_data->udp_tunnels_lock);
3939	/* Make sure all TX are stopped while we remove from the table, else we
3940	 * might race against an efx_features_check().
3941	 */
3942	efx_device_detach_sync(efx);
3943	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3944	nic_data->udp_tunnels[entry].port = 0;
3945	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3946	mutex_unlock(&nic_data->udp_tunnels_lock);
3947
3948	return rc;
3949}
3950
3951static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3952	.set_port	= efx_ef10_udp_tnl_set_port,
3953	.unset_port	= efx_ef10_udp_tnl_unset_port,
3954	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3955	.tables         = {
3956		{
3957			.n_entries = 16,
3958			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3959					UDP_TUNNEL_TYPE_GENEVE,
3960		},
3961	},
3962};
3963
3964/* EF10 may have multiple datapath firmware variants within a
3965 * single version.  Report which variants are running.
3966 */
3967static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3968					      size_t len)
3969{
3970	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3971
3972	return scnprintf(buf, len, " rx%x tx%x",
3973			 nic_data->rx_dpcpu_fw_id,
3974			 nic_data->tx_dpcpu_fw_id);
3975}
3976
3977static unsigned int ef10_check_caps(const struct efx_nic *efx,
3978				    u8 flag,
3979				    u32 offset)
3980{
3981	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3982
3983	switch (offset) {
3984	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3985		return nic_data->datapath_caps & BIT_ULL(flag);
3986	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3987		return nic_data->datapath_caps2 & BIT_ULL(flag);
3988	default:
3989		return 0;
3990	}
3991}
3992
3993#define EF10_OFFLOAD_FEATURES		\
3994	(NETIF_F_IP_CSUM |		\
3995	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
3996	 NETIF_F_IPV6_CSUM |		\
3997	 NETIF_F_RXHASH |		\
3998	 NETIF_F_NTUPLE)
3999
4000const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4001	.is_vf = true,
4002	.mem_bar = efx_ef10_vf_mem_bar,
4003	.mem_map_size = efx_ef10_mem_map_size,
4004	.probe = efx_ef10_probe_vf,
4005	.remove = efx_ef10_remove,
4006	.dimension_resources = efx_ef10_dimension_resources,
4007	.init = efx_ef10_init_nic,
4008	.fini = efx_ef10_fini_nic,
4009	.map_reset_reason = efx_ef10_map_reset_reason,
4010	.map_reset_flags = efx_ef10_map_reset_flags,
4011	.reset = efx_ef10_reset,
4012	.probe_port = efx_mcdi_port_probe,
4013	.remove_port = efx_mcdi_port_remove,
4014	.fini_dmaq = efx_fini_dmaq,
4015	.prepare_flr = efx_ef10_prepare_flr,
4016	.finish_flr = efx_port_dummy_op_void,
4017	.describe_stats = efx_ef10_describe_stats,
4018	.update_stats = efx_ef10_update_stats_vf,
4019	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4020	.start_stats = efx_port_dummy_op_void,
4021	.pull_stats = efx_port_dummy_op_void,
4022	.stop_stats = efx_port_dummy_op_void,
4023	.push_irq_moderation = efx_ef10_push_irq_moderation,
4024	.reconfigure_mac = efx_ef10_mac_reconfigure,
4025	.check_mac_fault = efx_mcdi_mac_check_fault,
4026	.reconfigure_port = efx_mcdi_port_reconfigure,
4027	.get_wol = efx_ef10_get_wol_vf,
4028	.set_wol = efx_ef10_set_wol_vf,
4029	.resume_wol = efx_port_dummy_op_void,
4030	.mcdi_request = efx_ef10_mcdi_request,
4031	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4032	.mcdi_read_response = efx_ef10_mcdi_read_response,
4033	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4034	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4035	.irq_enable_master = efx_port_dummy_op_void,
4036	.irq_test_generate = efx_ef10_irq_test_generate,
4037	.irq_disable_non_ev = efx_port_dummy_op_void,
4038	.irq_handle_msi = efx_ef10_msi_interrupt,
4039	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4040	.tx_probe = efx_ef10_tx_probe,
4041	.tx_init = efx_ef10_tx_init,
4042	.tx_remove = efx_mcdi_tx_remove,
4043	.tx_write = efx_ef10_tx_write,
4044	.tx_limit_len = efx_ef10_tx_limit_len,
4045	.tx_enqueue = __efx_enqueue_skb,
4046	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4047	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4048	.rx_probe = efx_mcdi_rx_probe,
4049	.rx_init = efx_mcdi_rx_init,
4050	.rx_remove = efx_mcdi_rx_remove,
4051	.rx_write = efx_ef10_rx_write,
4052	.rx_defer_refill = efx_ef10_rx_defer_refill,
4053	.rx_packet = __efx_rx_packet,
4054	.ev_probe = efx_mcdi_ev_probe,
4055	.ev_init = efx_ef10_ev_init,
4056	.ev_fini = efx_mcdi_ev_fini,
4057	.ev_remove = efx_mcdi_ev_remove,
4058	.ev_process = efx_ef10_ev_process,
4059	.ev_read_ack = efx_ef10_ev_read_ack,
4060	.ev_test_generate = efx_ef10_ev_test_generate,
4061	.filter_table_probe = efx_ef10_filter_table_probe,
4062	.filter_table_restore = efx_mcdi_filter_table_restore,
4063	.filter_table_remove = efx_mcdi_filter_table_remove,
4064	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4065	.filter_insert = efx_mcdi_filter_insert,
4066	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4067	.filter_get_safe = efx_mcdi_filter_get_safe,
4068	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4069	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4070	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4071	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4072#ifdef CONFIG_RFS_ACCEL
4073	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4074#endif
4075#ifdef CONFIG_SFC_MTD
4076	.mtd_probe = efx_port_dummy_op_int,
4077#endif
4078	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4079	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4080	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4081	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4082#ifdef CONFIG_SFC_SRIOV
4083	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4084	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4085	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4086#endif
4087	.get_mac_address = efx_ef10_get_mac_address_vf,
4088	.set_mac_address = efx_ef10_set_mac_address,
4089
4090	.get_phys_port_id = efx_ef10_get_phys_port_id,
4091	.revision = EFX_REV_HUNT_A0,
4092	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4093	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4094	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4095	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4096	.can_rx_scatter = true,
4097	.always_rx_scatter = true,
4098	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4099	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4100	.offload_features = EF10_OFFLOAD_FEATURES,
4101	.mcdi_max_ver = 2,
4102	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4103	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4104			    1 << HWTSTAMP_FILTER_ALL,
4105	.rx_hash_key_size = 40,
4106	.check_caps = ef10_check_caps,
4107	.print_additional_fwver = efx_ef10_print_additional_fwver,
4108	.sensor_event = efx_mcdi_sensor_event,
4109};
4110
4111const struct efx_nic_type efx_hunt_a0_nic_type = {
4112	.is_vf = false,
4113	.mem_bar = efx_ef10_pf_mem_bar,
4114	.mem_map_size = efx_ef10_mem_map_size,
4115	.probe = efx_ef10_probe_pf,
4116	.remove = efx_ef10_remove,
4117	.dimension_resources = efx_ef10_dimension_resources,
4118	.init = efx_ef10_init_nic,
4119	.fini = efx_ef10_fini_nic,
4120	.map_reset_reason = efx_ef10_map_reset_reason,
4121	.map_reset_flags = efx_ef10_map_reset_flags,
4122	.reset = efx_ef10_reset,
4123	.probe_port = efx_mcdi_port_probe,
4124	.remove_port = efx_mcdi_port_remove,
4125	.fini_dmaq = efx_fini_dmaq,
4126	.prepare_flr = efx_ef10_prepare_flr,
4127	.finish_flr = efx_port_dummy_op_void,
4128	.describe_stats = efx_ef10_describe_stats,
4129	.update_stats = efx_ef10_update_stats_pf,
4130	.start_stats = efx_mcdi_mac_start_stats,
4131	.pull_stats = efx_mcdi_mac_pull_stats,
4132	.stop_stats = efx_mcdi_mac_stop_stats,
4133	.push_irq_moderation = efx_ef10_push_irq_moderation,
4134	.reconfigure_mac = efx_ef10_mac_reconfigure,
4135	.check_mac_fault = efx_mcdi_mac_check_fault,
4136	.reconfigure_port = efx_mcdi_port_reconfigure,
4137	.get_wol = efx_ef10_get_wol,
4138	.set_wol = efx_ef10_set_wol,
4139	.resume_wol = efx_port_dummy_op_void,
4140	.get_fec_stats = efx_ef10_get_fec_stats,
4141	.test_chip = efx_ef10_test_chip,
4142	.test_nvram = efx_mcdi_nvram_test_all,
4143	.mcdi_request = efx_ef10_mcdi_request,
4144	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4145	.mcdi_read_response = efx_ef10_mcdi_read_response,
4146	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4147	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4148	.irq_enable_master = efx_port_dummy_op_void,
4149	.irq_test_generate = efx_ef10_irq_test_generate,
4150	.irq_disable_non_ev = efx_port_dummy_op_void,
4151	.irq_handle_msi = efx_ef10_msi_interrupt,
4152	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4153	.tx_probe = efx_ef10_tx_probe,
4154	.tx_init = efx_ef10_tx_init,
4155	.tx_remove = efx_mcdi_tx_remove,
4156	.tx_write = efx_ef10_tx_write,
4157	.tx_limit_len = efx_ef10_tx_limit_len,
4158	.tx_enqueue = __efx_enqueue_skb,
4159	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4160	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4161	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4162	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4163	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4164	.rx_probe = efx_mcdi_rx_probe,
4165	.rx_init = efx_mcdi_rx_init,
4166	.rx_remove = efx_mcdi_rx_remove,
4167	.rx_write = efx_ef10_rx_write,
4168	.rx_defer_refill = efx_ef10_rx_defer_refill,
4169	.rx_packet = __efx_rx_packet,
4170	.ev_probe = efx_mcdi_ev_probe,
4171	.ev_init = efx_ef10_ev_init,
4172	.ev_fini = efx_mcdi_ev_fini,
4173	.ev_remove = efx_mcdi_ev_remove,
4174	.ev_process = efx_ef10_ev_process,
4175	.ev_read_ack = efx_ef10_ev_read_ack,
4176	.ev_test_generate = efx_ef10_ev_test_generate,
4177	.filter_table_probe = efx_ef10_filter_table_probe,
4178	.filter_table_restore = efx_mcdi_filter_table_restore,
4179	.filter_table_remove = efx_mcdi_filter_table_remove,
4180	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4181	.filter_insert = efx_mcdi_filter_insert,
4182	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4183	.filter_get_safe = efx_mcdi_filter_get_safe,
4184	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4185	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4186	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4187	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4188#ifdef CONFIG_RFS_ACCEL
4189	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4190#endif
4191#ifdef CONFIG_SFC_MTD
4192	.mtd_probe = efx_ef10_mtd_probe,
4193	.mtd_rename = efx_mcdi_mtd_rename,
4194	.mtd_read = efx_mcdi_mtd_read,
4195	.mtd_erase = efx_mcdi_mtd_erase,
4196	.mtd_write = efx_mcdi_mtd_write,
4197	.mtd_sync = efx_mcdi_mtd_sync,
4198#endif
4199	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4200	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4201	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4202	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4203	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4204	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4205	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4206#ifdef CONFIG_SFC_SRIOV
4207	.sriov_configure = efx_ef10_sriov_configure,
4208	.sriov_init = efx_ef10_sriov_init,
4209	.sriov_fini = efx_ef10_sriov_fini,
4210	.sriov_wanted = efx_ef10_sriov_wanted,
4211	.sriov_reset = efx_ef10_sriov_reset,
4212	.sriov_flr = efx_ef10_sriov_flr,
4213	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4214	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4215	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4216	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4217	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4218	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4219	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4220	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4221#endif
4222	.get_mac_address = efx_ef10_get_mac_address_pf,
4223	.set_mac_address = efx_ef10_set_mac_address,
4224	.tso_versions = efx_ef10_tso_versions,
4225
4226	.get_phys_port_id = efx_ef10_get_phys_port_id,
4227	.revision = EFX_REV_HUNT_A0,
4228	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4229	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4230	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4231	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4232	.can_rx_scatter = true,
4233	.always_rx_scatter = true,
4234	.option_descriptors = true,
4235	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4236	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4237	.offload_features = EF10_OFFLOAD_FEATURES,
4238	.mcdi_max_ver = 2,
4239	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4240	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4241			    1 << HWTSTAMP_FILTER_ALL,
4242	.rx_hash_key_size = 40,
4243	.check_caps = ef10_check_caps,
4244	.print_additional_fwver = efx_ef10_print_additional_fwver,
4245	.sensor_event = efx_mcdi_sensor_event,
4246};