Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
   3 *
   4 *  Copyright 2004 IDT Inc. (rischelp@idt.com)
   5 *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
   6 *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
   7 *  Copyright 2017 Roman Yeryomin <roman@advem.lv>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
  15 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  16 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  17 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
  18 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  19 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  20 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  21 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  22 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  23 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24 *
  25 *  You should have received a copy of the  GNU General Public License along
  26 *  with this program; if not, write  to the Free Software Foundation, Inc.,
  27 *  675 Mass Ave, Cambridge, MA 02139, USA.
  28 *
  29 *  Writing to a DMA status register:
  30 *
  31 *  When writing to the status register, you should mask the bit you have
  32 *  been testing the status register with. Both Tx and Rx DMA registers
  33 *  should stick to this procedure.
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/kernel.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>
  40#include <linux/ctype.h>
  41#include <linux/types.h>
  42#include <linux/interrupt.h>
  43#include <linux/ioport.h>
  44#include <linux/iopoll.h>
  45#include <linux/in.h>
  46#include <linux/of_device.h>
  47#include <linux/of_net.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/delay.h>
  51#include <linux/netdevice.h>
  52#include <linux/etherdevice.h>
  53#include <linux/skbuff.h>
  54#include <linux/errno.h>
  55#include <linux/platform_device.h>
  56#include <linux/mii.h>
  57#include <linux/ethtool.h>
  58#include <linux/crc32.h>
  59#include <linux/pgtable.h>
  60#include <linux/clk.h>
  61
  62#define DRV_NAME	"korina"
  63#define DRV_VERSION	"0.20"
  64#define DRV_RELDATE	"15Sep2017"
  65
  66struct eth_regs {
  67	u32 ethintfc;
  68	u32 ethfifott;
  69	u32 etharc;
  70	u32 ethhash0;
  71	u32 ethhash1;
  72	u32 ethu0[4];		/* Reserved. */
  73	u32 ethpfs;
  74	u32 ethmcp;
  75	u32 eth_u1[10];		/* Reserved. */
  76	u32 ethspare;
  77	u32 eth_u2[42];		/* Reserved. */
  78	u32 ethsal0;
  79	u32 ethsah0;
  80	u32 ethsal1;
  81	u32 ethsah1;
  82	u32 ethsal2;
  83	u32 ethsah2;
  84	u32 ethsal3;
  85	u32 ethsah3;
  86	u32 ethrbc;
  87	u32 ethrpc;
  88	u32 ethrupc;
  89	u32 ethrfc;
  90	u32 ethtbc;
  91	u32 ethgpf;
  92	u32 eth_u9[50];		/* Reserved. */
  93	u32 ethmac1;
  94	u32 ethmac2;
  95	u32 ethipgt;
  96	u32 ethipgr;
  97	u32 ethclrt;
  98	u32 ethmaxf;
  99	u32 eth_u10;		/* Reserved. */
 100	u32 ethmtest;
 101	u32 miimcfg;
 102	u32 miimcmd;
 103	u32 miimaddr;
 104	u32 miimwtd;
 105	u32 miimrdd;
 106	u32 miimind;
 107	u32 eth_u11;		/* Reserved. */
 108	u32 eth_u12;		/* Reserved. */
 109	u32 ethcfsa0;
 110	u32 ethcfsa1;
 111	u32 ethcfsa2;
 112};
 113
 114/* Ethernet interrupt registers */
 115#define ETH_INT_FC_EN		BIT(0)
 116#define ETH_INT_FC_ITS		BIT(1)
 117#define ETH_INT_FC_RIP		BIT(2)
 118#define ETH_INT_FC_JAM		BIT(3)
 119#define ETH_INT_FC_OVR		BIT(4)
 120#define ETH_INT_FC_UND		BIT(5)
 121#define ETH_INT_FC_IOC		0x000000c0
 122
 123/* Ethernet FIFO registers */
 124#define ETH_FIFI_TT_TTH_BIT	0
 125#define ETH_FIFO_TT_TTH		0x0000007f
 126
 127/* Ethernet ARC/multicast registers */
 128#define ETH_ARC_PRO		BIT(0)
 129#define ETH_ARC_AM		BIT(1)
 130#define ETH_ARC_AFM		BIT(2)
 131#define ETH_ARC_AB		BIT(3)
 132
 133/* Ethernet SAL registers */
 134#define ETH_SAL_BYTE_5		0x000000ff
 135#define ETH_SAL_BYTE_4		0x0000ff00
 136#define ETH_SAL_BYTE_3		0x00ff0000
 137#define ETH_SAL_BYTE_2		0xff000000
 138
 139/* Ethernet SAH registers */
 140#define ETH_SAH_BYTE1		0x000000ff
 141#define ETH_SAH_BYTE0		0x0000ff00
 142
 143/* Ethernet GPF register */
 144#define ETH_GPF_PTV		0x0000ffff
 145
 146/* Ethernet PFG register */
 147#define ETH_PFS_PFD		BIT(0)
 148
 149/* Ethernet CFSA[0-3] registers */
 150#define ETH_CFSA0_CFSA4		0x000000ff
 151#define ETH_CFSA0_CFSA5		0x0000ff00
 152#define ETH_CFSA1_CFSA2		0x000000ff
 153#define ETH_CFSA1_CFSA3		0x0000ff00
 154#define ETH_CFSA1_CFSA0		0x000000ff
 155#define ETH_CFSA1_CFSA1		0x0000ff00
 156
 157/* Ethernet MAC1 registers */
 158#define ETH_MAC1_RE		BIT(0)
 159#define ETH_MAC1_PAF		BIT(1)
 160#define ETH_MAC1_RFC		BIT(2)
 161#define ETH_MAC1_TFC		BIT(3)
 162#define ETH_MAC1_LB		BIT(4)
 163#define ETH_MAC1_MR		BIT(31)
 164
 165/* Ethernet MAC2 registers */
 166#define ETH_MAC2_FD		BIT(0)
 167#define ETH_MAC2_FLC		BIT(1)
 168#define ETH_MAC2_HFE		BIT(2)
 169#define ETH_MAC2_DC		BIT(3)
 170#define ETH_MAC2_CEN		BIT(4)
 171#define ETH_MAC2_PE		BIT(5)
 172#define ETH_MAC2_VPE		BIT(6)
 173#define ETH_MAC2_APE		BIT(7)
 174#define ETH_MAC2_PPE		BIT(8)
 175#define ETH_MAC2_LPE		BIT(9)
 176#define ETH_MAC2_NB		BIT(12)
 177#define ETH_MAC2_BP		BIT(13)
 178#define ETH_MAC2_ED		BIT(14)
 179
 180/* Ethernet IPGT register */
 181#define ETH_IPGT		0x0000007f
 182
 183/* Ethernet IPGR registers */
 184#define ETH_IPGR_IPGR2		0x0000007f
 185#define ETH_IPGR_IPGR1		0x00007f00
 186
 187/* Ethernet CLRT registers */
 188#define ETH_CLRT_MAX_RET	0x0000000f
 189#define ETH_CLRT_COL_WIN	0x00003f00
 190
 191/* Ethernet MAXF register */
 192#define ETH_MAXF		0x0000ffff
 193
 194/* Ethernet test registers */
 195#define ETH_TEST_REG		BIT(2)
 196#define ETH_MCP_DIV		0x000000ff
 197
 198/* MII registers */
 199#define ETH_MII_CFG_RSVD	0x0000000c
 200#define ETH_MII_CMD_RD		BIT(0)
 201#define ETH_MII_CMD_SCN		BIT(1)
 202#define ETH_MII_REG_ADDR	0x0000001f
 203#define ETH_MII_PHY_ADDR	0x00001f00
 204#define ETH_MII_WTD_DATA	0x0000ffff
 205#define ETH_MII_RDD_DATA	0x0000ffff
 206#define ETH_MII_IND_BSY		BIT(0)
 207#define ETH_MII_IND_SCN		BIT(1)
 208#define ETH_MII_IND_NV		BIT(2)
 209
 210/* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
 211#define ETH_RX_FD		BIT(0)
 212#define ETH_RX_LD		BIT(1)
 213#define ETH_RX_ROK		BIT(2)
 214#define ETH_RX_FM		BIT(3)
 215#define ETH_RX_MP		BIT(4)
 216#define ETH_RX_BP		BIT(5)
 217#define ETH_RX_VLT		BIT(6)
 218#define ETH_RX_CF		BIT(7)
 219#define ETH_RX_OVR		BIT(8)
 220#define ETH_RX_CRC		BIT(9)
 221#define ETH_RX_CV		BIT(10)
 222#define ETH_RX_DB		BIT(11)
 223#define ETH_RX_LE		BIT(12)
 224#define ETH_RX_LOR		BIT(13)
 225#define ETH_RX_CES		BIT(14)
 226#define ETH_RX_LEN_BIT		16
 227#define ETH_RX_LEN		0xffff0000
 228
 229#define ETH_TX_FD		BIT(0)
 230#define ETH_TX_LD		BIT(1)
 231#define ETH_TX_OEN		BIT(2)
 232#define ETH_TX_PEN		BIT(3)
 233#define ETH_TX_CEN		BIT(4)
 234#define ETH_TX_HEN		BIT(5)
 235#define ETH_TX_TOK		BIT(6)
 236#define ETH_TX_MP		BIT(7)
 237#define ETH_TX_BP		BIT(8)
 238#define ETH_TX_UND		BIT(9)
 239#define ETH_TX_OF		BIT(10)
 240#define ETH_TX_ED		BIT(11)
 241#define ETH_TX_EC		BIT(12)
 242#define ETH_TX_LC		BIT(13)
 243#define ETH_TX_TD		BIT(14)
 244#define ETH_TX_CRC		BIT(15)
 245#define ETH_TX_LE		BIT(16)
 246#define ETH_TX_CC		0x001E0000
 247
 248/* DMA descriptor (in physical memory). */
 249struct dma_desc {
 250	u32 control;			/* Control. use DMAD_* */
 251	u32 ca;				/* Current Address. */
 252	u32 devcs;			/* Device control and status. */
 253	u32 link;			/* Next descriptor in chain. */
 254};
 255
 256#define DMA_DESC_COUNT_BIT		0
 257#define DMA_DESC_COUNT_MSK		0x0003ffff
 258#define DMA_DESC_DS_BIT			20
 259#define DMA_DESC_DS_MSK			0x00300000
 260
 261#define DMA_DESC_DEV_CMD_BIT		22
 262#define DMA_DESC_DEV_CMD_MSK		0x01c00000
 263
 264/* DMA descriptors interrupts */
 265#define DMA_DESC_COF			BIT(25) /* Chain on finished */
 266#define DMA_DESC_COD			BIT(26) /* Chain on done */
 267#define DMA_DESC_IOF			BIT(27) /* Interrupt on finished */
 268#define DMA_DESC_IOD			BIT(28) /* Interrupt on done */
 269#define DMA_DESC_TERM			BIT(29) /* Terminated */
 270#define DMA_DESC_DONE			BIT(30) /* Done */
 271#define DMA_DESC_FINI			BIT(31) /* Finished */
 272
 273/* DMA register (within Internal Register Map).  */
 274struct dma_reg {
 275	u32 dmac;		/* Control. */
 276	u32 dmas;		/* Status. */
 277	u32 dmasm;		/* Mask. */
 278	u32 dmadptr;		/* Descriptor pointer. */
 279	u32 dmandptr;		/* Next descriptor pointer. */
 280};
 281
 282/* DMA channels specific registers */
 283#define DMA_CHAN_RUN_BIT		BIT(0)
 284#define DMA_CHAN_DONE_BIT		BIT(1)
 285#define DMA_CHAN_MODE_BIT		BIT(2)
 286#define DMA_CHAN_MODE_MSK		0x0000000c
 287#define	 DMA_CHAN_MODE_AUTO		0
 288#define	 DMA_CHAN_MODE_BURST		1
 289#define	 DMA_CHAN_MODE_XFRT		2
 290#define	 DMA_CHAN_MODE_RSVD		3
 291#define DMA_CHAN_ACT_BIT		BIT(4)
 292
 293/* DMA status registers */
 294#define DMA_STAT_FINI			BIT(0)
 295#define DMA_STAT_DONE			BIT(1)
 296#define DMA_STAT_CHAIN			BIT(2)
 297#define DMA_STAT_ERR			BIT(3)
 298#define DMA_STAT_HALT			BIT(4)
 299
 300#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
 301				   ((dev)->dev_addr[1]))
 302#define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
 303				   ((dev)->dev_addr[3] << 16) | \
 304				   ((dev)->dev_addr[4] << 8)  | \
 305				   ((dev)->dev_addr[5]))
 306
 307#define MII_CLOCK	1250000 /* no more than 2.5MHz */
 308
 309/* the following must be powers of two */
 310#define KORINA_NUM_RDS	64  /* number of receive descriptors */
 311#define KORINA_NUM_TDS	64  /* number of transmit descriptors */
 312
 313/* KORINA_RBSIZE is the hardware's default maximum receive
 314 * frame size in bytes. Having this hardcoded means that there
 315 * is no support for MTU sizes greater than 1500. */
 316#define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
 317#define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
 318#define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
 319#define RD_RING_SIZE	(KORINA_NUM_RDS * sizeof(struct dma_desc))
 320#define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
 321
 322#define TX_TIMEOUT	(6000 * HZ / 1000)
 323
 324enum chain_status {
 325	desc_filled,
 326	desc_is_empty
 327};
 328
 329#define DMA_COUNT(count)	((count) & DMA_DESC_COUNT_MSK)
 330#define IS_DMA_FINISHED(X)	(((X) & (DMA_DESC_FINI)) != 0)
 331#define IS_DMA_DONE(X)		(((X) & (DMA_DESC_DONE)) != 0)
 332#define RCVPKT_LENGTH(X)	(((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
 333
 334/* Information that need to be kept for each board. */
 335struct korina_private {
 336	struct eth_regs __iomem *eth_regs;
 337	struct dma_reg __iomem *rx_dma_regs;
 338	struct dma_reg __iomem *tx_dma_regs;
 339	struct dma_desc *td_ring; /* transmit descriptor ring */
 340	struct dma_desc *rd_ring; /* receive descriptor ring  */
 341	dma_addr_t td_dma;
 342	dma_addr_t rd_dma;
 343
 344	struct sk_buff *tx_skb[KORINA_NUM_TDS];
 345	struct sk_buff *rx_skb[KORINA_NUM_RDS];
 346
 347	dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
 348	dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
 349
 350	int rx_next_done;
 351	int rx_chain_head;
 352	int rx_chain_tail;
 353	enum chain_status rx_chain_status;
 354
 355	int tx_next_done;
 356	int tx_chain_head;
 357	int tx_chain_tail;
 358	enum chain_status tx_chain_status;
 359	int tx_count;
 360	int tx_full;
 361
 362	int rx_irq;
 363	int tx_irq;
 364
 365	spinlock_t lock;	/* NIC xmit lock */
 366
 367	int dma_halt_cnt;
 368	int dma_run_cnt;
 369	struct napi_struct napi;
 370	struct timer_list media_check_timer;
 371	struct mii_if_info mii_if;
 372	struct work_struct restart_task;
 373	struct net_device *dev;
 374	struct device *dmadev;
 375	int mii_clock_freq;
 376};
 377
 378static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
 379{
 380	return lp->td_dma + (idx * sizeof(struct dma_desc));
 381}
 382
 383static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
 384{
 385	return lp->rd_dma + (idx * sizeof(struct dma_desc));
 386}
 387
 388static inline void korina_abort_dma(struct net_device *dev,
 389					struct dma_reg *ch)
 390{
 391	if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
 392		writel(0x10, &ch->dmac);
 393
 394		while (!(readl(&ch->dmas) & DMA_STAT_HALT))
 395			netif_trans_update(dev);
 396
 397		writel(0, &ch->dmas);
 398	}
 399
 400	writel(0, &ch->dmadptr);
 401	writel(0, &ch->dmandptr);
 402}
 403
 404static void korina_abort_tx(struct net_device *dev)
 405{
 406	struct korina_private *lp = netdev_priv(dev);
 407
 408	korina_abort_dma(dev, lp->tx_dma_regs);
 409}
 410
 411static void korina_abort_rx(struct net_device *dev)
 412{
 413	struct korina_private *lp = netdev_priv(dev);
 414
 415	korina_abort_dma(dev, lp->rx_dma_regs);
 416}
 417
 418/* transmit packet */
 419static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
 420{
 421	struct korina_private *lp = netdev_priv(dev);
 422	u32 chain_prev, chain_next;
 423	unsigned long flags;
 424	struct dma_desc *td;
 425	dma_addr_t ca;
 426	u32 length;
 427	int idx;
 428
 429	spin_lock_irqsave(&lp->lock, flags);
 430
 431	idx = lp->tx_chain_tail;
 432	td = &lp->td_ring[idx];
 433
 434	/* stop queue when full, drop pkts if queue already full */
 435	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
 436		lp->tx_full = 1;
 437
 438		if (lp->tx_count == (KORINA_NUM_TDS - 2))
 439			netif_stop_queue(dev);
 440		else
 441			goto drop_packet;
 442	}
 443
 444	lp->tx_count++;
 445
 446	lp->tx_skb[idx] = skb;
 447
 448	length = skb->len;
 449
 450	/* Setup the transmit descriptor. */
 451	ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
 452	if (dma_mapping_error(lp->dmadev, ca))
 453		goto drop_packet;
 454
 455	lp->tx_skb_dma[idx] = ca;
 456	td->ca = ca;
 457
 458	chain_prev = (idx - 1) & KORINA_TDS_MASK;
 459	chain_next = (idx + 1) & KORINA_TDS_MASK;
 460
 461	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
 462		if (lp->tx_chain_status == desc_is_empty) {
 463			/* Update tail */
 464			td->control = DMA_COUNT(length) |
 465					DMA_DESC_COF | DMA_DESC_IOF;
 466			/* Move tail */
 467			lp->tx_chain_tail = chain_next;
 468			/* Write to NDPTR */
 469			writel(korina_tx_dma(lp, lp->tx_chain_head),
 470			       &lp->tx_dma_regs->dmandptr);
 471			/* Move head to tail */
 472			lp->tx_chain_head = lp->tx_chain_tail;
 473		} else {
 474			/* Update tail */
 475			td->control = DMA_COUNT(length) |
 476					DMA_DESC_COF | DMA_DESC_IOF;
 477			/* Link to prev */
 478			lp->td_ring[chain_prev].control &=
 479					~DMA_DESC_COF;
 480			/* Link to prev */
 481			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
 482			/* Move tail */
 483			lp->tx_chain_tail = chain_next;
 484			/* Write to NDPTR */
 485			writel(korina_tx_dma(lp, lp->tx_chain_head),
 486			       &lp->tx_dma_regs->dmandptr);
 487			/* Move head to tail */
 488			lp->tx_chain_head = lp->tx_chain_tail;
 489			lp->tx_chain_status = desc_is_empty;
 490		}
 491	} else {
 492		if (lp->tx_chain_status == desc_is_empty) {
 493			/* Update tail */
 494			td->control = DMA_COUNT(length) |
 495					DMA_DESC_COF | DMA_DESC_IOF;
 496			/* Move tail */
 497			lp->tx_chain_tail = chain_next;
 498			lp->tx_chain_status = desc_filled;
 499		} else {
 500			/* Update tail */
 501			td->control = DMA_COUNT(length) |
 502					DMA_DESC_COF | DMA_DESC_IOF;
 503			lp->td_ring[chain_prev].control &=
 504					~DMA_DESC_COF;
 505			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
 506			lp->tx_chain_tail = chain_next;
 507		}
 508	}
 509
 510	netif_trans_update(dev);
 511	spin_unlock_irqrestore(&lp->lock, flags);
 512
 513	return NETDEV_TX_OK;
 514
 515drop_packet:
 516	dev->stats.tx_dropped++;
 517	dev_kfree_skb_any(skb);
 518	spin_unlock_irqrestore(&lp->lock, flags);
 519
 520	return NETDEV_TX_OK;
 521}
 522
 523static int korina_mdio_wait(struct korina_private *lp)
 524{
 525	u32 value;
 526
 527	return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
 528					 value, value & ETH_MII_IND_BSY,
 529					 1, 1000);
 530}
 531
 532static int korina_mdio_read(struct net_device *dev, int phy, int reg)
 533{
 534	struct korina_private *lp = netdev_priv(dev);
 535	int ret;
 536
 537	ret = korina_mdio_wait(lp);
 538	if (ret < 0)
 539		return ret;
 540
 541	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
 542	writel(1, &lp->eth_regs->miimcmd);
 543
 544	ret = korina_mdio_wait(lp);
 545	if (ret < 0)
 546		return ret;
 547
 548	if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
 549		return -EINVAL;
 550
 551	ret = readl(&lp->eth_regs->miimrdd);
 552	writel(0, &lp->eth_regs->miimcmd);
 553	return ret;
 554}
 555
 556static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
 557{
 558	struct korina_private *lp = netdev_priv(dev);
 559
 560	if (korina_mdio_wait(lp))
 561		return;
 562
 563	writel(0, &lp->eth_regs->miimcmd);
 564	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
 565	writel(val, &lp->eth_regs->miimwtd);
 566}
 567
 568/* Ethernet Rx DMA interrupt */
 569static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
 570{
 571	struct net_device *dev = dev_id;
 572	struct korina_private *lp = netdev_priv(dev);
 573	u32 dmas, dmasm;
 574	irqreturn_t retval;
 575
 576	dmas = readl(&lp->rx_dma_regs->dmas);
 577	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
 578		dmasm = readl(&lp->rx_dma_regs->dmasm);
 579		writel(dmasm | (DMA_STAT_DONE |
 580				DMA_STAT_HALT | DMA_STAT_ERR),
 581				&lp->rx_dma_regs->dmasm);
 582
 583		napi_schedule(&lp->napi);
 584
 585		if (dmas & DMA_STAT_ERR)
 586			printk(KERN_ERR "%s: DMA error\n", dev->name);
 587
 588		retval = IRQ_HANDLED;
 589	} else
 590		retval = IRQ_NONE;
 591
 592	return retval;
 593}
 594
 595static int korina_rx(struct net_device *dev, int limit)
 596{
 597	struct korina_private *lp = netdev_priv(dev);
 598	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
 599	struct sk_buff *skb, *skb_new;
 600	u32 devcs, pkt_len, dmas;
 601	dma_addr_t ca;
 602	int count;
 603
 604	for (count = 0; count < limit; count++) {
 605		skb = lp->rx_skb[lp->rx_next_done];
 606		skb_new = NULL;
 607
 608		devcs = rd->devcs;
 609
 610		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
 611			break;
 612
 613		/* check that this is a whole packet
 614		 * WARNING: DMA_FD bit incorrectly set
 615		 * in Rc32434 (errata ref #077) */
 616		if (!(devcs & ETH_RX_LD))
 617			goto next;
 618
 619		if (!(devcs & ETH_RX_ROK)) {
 620			/* Update statistics counters */
 621			dev->stats.rx_errors++;
 622			dev->stats.rx_dropped++;
 623			if (devcs & ETH_RX_CRC)
 624				dev->stats.rx_crc_errors++;
 625			if (devcs & ETH_RX_LE)
 626				dev->stats.rx_length_errors++;
 627			if (devcs & ETH_RX_OVR)
 628				dev->stats.rx_fifo_errors++;
 629			if (devcs & ETH_RX_CV)
 630				dev->stats.rx_frame_errors++;
 631			if (devcs & ETH_RX_CES)
 632				dev->stats.rx_frame_errors++;
 633
 634			goto next;
 635		}
 636
 637		/* Malloc up new buffer. */
 638		skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
 639		if (!skb_new)
 640			break;
 641
 642		ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
 643				    DMA_FROM_DEVICE);
 644		if (dma_mapping_error(lp->dmadev, ca)) {
 645			dev_kfree_skb_any(skb_new);
 646			break;
 647		}
 648
 649		pkt_len = RCVPKT_LENGTH(devcs);
 650		dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
 651				 pkt_len, DMA_FROM_DEVICE);
 652
 653		/* Do not count the CRC */
 654		skb_put(skb, pkt_len - 4);
 655		skb->protocol = eth_type_trans(skb, dev);
 656
 657		/* Pass the packet to upper layers */
 658		napi_gro_receive(&lp->napi, skb);
 659		dev->stats.rx_packets++;
 660		dev->stats.rx_bytes += pkt_len;
 661
 662		/* Update the mcast stats */
 663		if (devcs & ETH_RX_MP)
 664			dev->stats.multicast++;
 665
 666		lp->rx_skb[lp->rx_next_done] = skb_new;
 667		lp->rx_skb_dma[lp->rx_next_done] = ca;
 668
 669next:
 670		rd->devcs = 0;
 671
 672		/* Restore descriptor's curr_addr */
 673		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
 674
 675		rd->control = DMA_COUNT(KORINA_RBSIZE) |
 676			DMA_DESC_COD | DMA_DESC_IOD;
 677		lp->rd_ring[(lp->rx_next_done - 1) &
 678			KORINA_RDS_MASK].control &=
 679			~DMA_DESC_COD;
 680
 681		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
 682		rd = &lp->rd_ring[lp->rx_next_done];
 683		writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
 684	}
 685
 686	dmas = readl(&lp->rx_dma_regs->dmas);
 687
 688	if (dmas & DMA_STAT_HALT) {
 689		writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
 690		       &lp->rx_dma_regs->dmas);
 691
 692		lp->dma_halt_cnt++;
 693		rd->devcs = 0;
 694		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
 695		writel(korina_rx_dma(lp, rd - lp->rd_ring),
 696		       &lp->rx_dma_regs->dmandptr);
 697	}
 698
 699	return count;
 700}
 701
 702static int korina_poll(struct napi_struct *napi, int budget)
 703{
 704	struct korina_private *lp =
 705		container_of(napi, struct korina_private, napi);
 706	struct net_device *dev = lp->dev;
 707	int work_done;
 708
 709	work_done = korina_rx(dev, budget);
 710	if (work_done < budget) {
 711		napi_complete_done(napi, work_done);
 712
 713		writel(readl(&lp->rx_dma_regs->dmasm) &
 714			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
 715			&lp->rx_dma_regs->dmasm);
 716	}
 717	return work_done;
 718}
 719
 720/*
 721 * Set or clear the multicast filter for this adaptor.
 722 */
 723static void korina_multicast_list(struct net_device *dev)
 724{
 725	struct korina_private *lp = netdev_priv(dev);
 726	unsigned long flags;
 727	struct netdev_hw_addr *ha;
 728	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
 729
 730	/* Set promiscuous mode */
 731	if (dev->flags & IFF_PROMISC)
 732		recognise |= ETH_ARC_PRO;
 733
 734	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
 735		/* All multicast and broadcast */
 736		recognise |= ETH_ARC_AM;
 737
 738	/* Build the hash table */
 739	if (netdev_mc_count(dev) > 4) {
 740		u16 hash_table[4] = { 0 };
 741		u32 crc;
 742
 743		netdev_for_each_mc_addr(ha, dev) {
 744			crc = ether_crc_le(6, ha->addr);
 745			crc >>= 26;
 746			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
 747		}
 748		/* Accept filtered multicast */
 749		recognise |= ETH_ARC_AFM;
 750
 751		/* Fill the MAC hash tables with their values */
 752		writel((u32)(hash_table[1] << 16 | hash_table[0]),
 753					&lp->eth_regs->ethhash0);
 754		writel((u32)(hash_table[3] << 16 | hash_table[2]),
 755					&lp->eth_regs->ethhash1);
 756	}
 757
 758	spin_lock_irqsave(&lp->lock, flags);
 759	writel(recognise, &lp->eth_regs->etharc);
 760	spin_unlock_irqrestore(&lp->lock, flags);
 761}
 762
 763static void korina_tx(struct net_device *dev)
 764{
 765	struct korina_private *lp = netdev_priv(dev);
 766	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
 767	u32 devcs;
 768	u32 dmas;
 769
 770	spin_lock(&lp->lock);
 771
 772	/* Process all desc that are done */
 773	while (IS_DMA_FINISHED(td->control)) {
 774		if (lp->tx_full == 1) {
 775			netif_wake_queue(dev);
 776			lp->tx_full = 0;
 777		}
 778
 779		devcs = lp->td_ring[lp->tx_next_done].devcs;
 780		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
 781				(ETH_TX_FD | ETH_TX_LD)) {
 782			dev->stats.tx_errors++;
 783			dev->stats.tx_dropped++;
 784
 785			/* Should never happen */
 786			printk(KERN_ERR "%s: split tx ignored\n",
 787							dev->name);
 788		} else if (devcs & ETH_TX_TOK) {
 789			dev->stats.tx_packets++;
 790			dev->stats.tx_bytes +=
 791					lp->tx_skb[lp->tx_next_done]->len;
 792		} else {
 793			dev->stats.tx_errors++;
 794			dev->stats.tx_dropped++;
 795
 796			/* Underflow */
 797			if (devcs & ETH_TX_UND)
 798				dev->stats.tx_fifo_errors++;
 799
 800			/* Oversized frame */
 801			if (devcs & ETH_TX_OF)
 802				dev->stats.tx_aborted_errors++;
 803
 804			/* Excessive deferrals */
 805			if (devcs & ETH_TX_ED)
 806				dev->stats.tx_carrier_errors++;
 807
 808			/* Collisions: medium busy */
 809			if (devcs & ETH_TX_EC)
 810				dev->stats.collisions++;
 811
 812			/* Late collision */
 813			if (devcs & ETH_TX_LC)
 814				dev->stats.tx_window_errors++;
 815		}
 816
 817		/* We must always free the original skb */
 818		if (lp->tx_skb[lp->tx_next_done]) {
 819			dma_unmap_single(lp->dmadev,
 820					 lp->tx_skb_dma[lp->tx_next_done],
 821					 lp->tx_skb[lp->tx_next_done]->len,
 822					 DMA_TO_DEVICE);
 823			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
 824			lp->tx_skb[lp->tx_next_done] = NULL;
 825		}
 826
 827		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
 828		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
 829		lp->td_ring[lp->tx_next_done].link = 0;
 830		lp->td_ring[lp->tx_next_done].ca = 0;
 831		lp->tx_count--;
 832
 833		/* Go on to next transmission */
 834		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
 835		td = &lp->td_ring[lp->tx_next_done];
 836
 837	}
 838
 839	/* Clear the DMA status register */
 840	dmas = readl(&lp->tx_dma_regs->dmas);
 841	writel(~dmas, &lp->tx_dma_regs->dmas);
 842
 843	writel(readl(&lp->tx_dma_regs->dmasm) &
 844			~(DMA_STAT_FINI | DMA_STAT_ERR),
 845			&lp->tx_dma_regs->dmasm);
 846
 847	spin_unlock(&lp->lock);
 848}
 849
 850static irqreturn_t
 851korina_tx_dma_interrupt(int irq, void *dev_id)
 852{
 853	struct net_device *dev = dev_id;
 854	struct korina_private *lp = netdev_priv(dev);
 855	u32 dmas, dmasm;
 856	irqreturn_t retval;
 857
 858	dmas = readl(&lp->tx_dma_regs->dmas);
 859
 860	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
 861		dmasm = readl(&lp->tx_dma_regs->dmasm);
 862		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
 863				&lp->tx_dma_regs->dmasm);
 864
 865		korina_tx(dev);
 866
 867		if (lp->tx_chain_status == desc_filled &&
 868			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
 869			writel(korina_tx_dma(lp, lp->tx_chain_head),
 870			       &lp->tx_dma_regs->dmandptr);
 871			lp->tx_chain_status = desc_is_empty;
 872			lp->tx_chain_head = lp->tx_chain_tail;
 873			netif_trans_update(dev);
 874		}
 875		if (dmas & DMA_STAT_ERR)
 876			printk(KERN_ERR "%s: DMA error\n", dev->name);
 877
 878		retval = IRQ_HANDLED;
 879	} else
 880		retval = IRQ_NONE;
 881
 882	return retval;
 883}
 884
 885
 886static void korina_check_media(struct net_device *dev, unsigned int init_media)
 887{
 888	struct korina_private *lp = netdev_priv(dev);
 889
 890	mii_check_media(&lp->mii_if, 1, init_media);
 891
 892	if (lp->mii_if.full_duplex)
 893		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
 894						&lp->eth_regs->ethmac2);
 895	else
 896		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
 897						&lp->eth_regs->ethmac2);
 898}
 899
 900static void korina_poll_media(struct timer_list *t)
 901{
 902	struct korina_private *lp = from_timer(lp, t, media_check_timer);
 903	struct net_device *dev = lp->dev;
 904
 905	korina_check_media(dev, 0);
 906	mod_timer(&lp->media_check_timer, jiffies + HZ);
 907}
 908
 909static void korina_set_carrier(struct mii_if_info *mii)
 910{
 911	if (mii->force_media) {
 912		/* autoneg is off: Link is always assumed to be up */
 913		if (!netif_carrier_ok(mii->dev))
 914			netif_carrier_on(mii->dev);
 915	} else  /* Let MMI library update carrier status */
 916		korina_check_media(mii->dev, 0);
 917}
 918
 919static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 920{
 921	struct korina_private *lp = netdev_priv(dev);
 922	struct mii_ioctl_data *data = if_mii(rq);
 923	int rc;
 924
 925	if (!netif_running(dev))
 926		return -EINVAL;
 927	spin_lock_irq(&lp->lock);
 928	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
 929	spin_unlock_irq(&lp->lock);
 930	korina_set_carrier(&lp->mii_if);
 931
 932	return rc;
 933}
 934
 935/* ethtool helpers */
 936static void netdev_get_drvinfo(struct net_device *dev,
 937				struct ethtool_drvinfo *info)
 938{
 939	struct korina_private *lp = netdev_priv(dev);
 940
 941	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 942	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 943	strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
 944}
 945
 946static int netdev_get_link_ksettings(struct net_device *dev,
 947				     struct ethtool_link_ksettings *cmd)
 948{
 949	struct korina_private *lp = netdev_priv(dev);
 950
 951	spin_lock_irq(&lp->lock);
 952	mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
 953	spin_unlock_irq(&lp->lock);
 954
 955	return 0;
 956}
 957
 958static int netdev_set_link_ksettings(struct net_device *dev,
 959				     const struct ethtool_link_ksettings *cmd)
 960{
 961	struct korina_private *lp = netdev_priv(dev);
 962	int rc;
 963
 964	spin_lock_irq(&lp->lock);
 965	rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
 966	spin_unlock_irq(&lp->lock);
 967	korina_set_carrier(&lp->mii_if);
 968
 969	return rc;
 970}
 971
 972static u32 netdev_get_link(struct net_device *dev)
 973{
 974	struct korina_private *lp = netdev_priv(dev);
 975
 976	return mii_link_ok(&lp->mii_if);
 977}
 978
 979static const struct ethtool_ops netdev_ethtool_ops = {
 980	.get_drvinfo		= netdev_get_drvinfo,
 981	.get_link		= netdev_get_link,
 982	.get_link_ksettings	= netdev_get_link_ksettings,
 983	.set_link_ksettings	= netdev_set_link_ksettings,
 984};
 985
 986static int korina_alloc_ring(struct net_device *dev)
 987{
 988	struct korina_private *lp = netdev_priv(dev);
 989	struct sk_buff *skb;
 990	dma_addr_t ca;
 991	int i;
 992
 993	/* Initialize the transmit descriptors */
 994	for (i = 0; i < KORINA_NUM_TDS; i++) {
 995		lp->td_ring[i].control = DMA_DESC_IOF;
 996		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
 997		lp->td_ring[i].ca = 0;
 998		lp->td_ring[i].link = 0;
 999	}
1000	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1001			lp->tx_full = lp->tx_count = 0;
1002	lp->tx_chain_status = desc_is_empty;
1003
1004	/* Initialize the receive descriptors */
1005	for (i = 0; i < KORINA_NUM_RDS; i++) {
1006		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1007		if (!skb)
1008			return -ENOMEM;
1009		lp->rx_skb[i] = skb;
1010		lp->rd_ring[i].control = DMA_DESC_IOD |
1011				DMA_COUNT(KORINA_RBSIZE);
1012		lp->rd_ring[i].devcs = 0;
1013		ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1014				    DMA_FROM_DEVICE);
1015		if (dma_mapping_error(lp->dmadev, ca))
1016			return -ENOMEM;
1017		lp->rd_ring[i].ca = ca;
1018		lp->rx_skb_dma[i] = ca;
1019		lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1020	}
1021
1022	/* loop back receive descriptors, so the last
1023	 * descriptor points to the first one */
1024	lp->rd_ring[i - 1].link = lp->rd_dma;
1025	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1026
1027	lp->rx_next_done  = 0;
1028	lp->rx_chain_head = 0;
1029	lp->rx_chain_tail = 0;
1030	lp->rx_chain_status = desc_is_empty;
1031
1032	return 0;
1033}
1034
1035static void korina_free_ring(struct net_device *dev)
1036{
1037	struct korina_private *lp = netdev_priv(dev);
1038	int i;
1039
1040	for (i = 0; i < KORINA_NUM_RDS; i++) {
1041		lp->rd_ring[i].control = 0;
1042		if (lp->rx_skb[i]) {
1043			dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1044					 KORINA_RBSIZE, DMA_FROM_DEVICE);
1045			dev_kfree_skb_any(lp->rx_skb[i]);
1046			lp->rx_skb[i] = NULL;
1047		}
1048	}
1049
1050	for (i = 0; i < KORINA_NUM_TDS; i++) {
1051		lp->td_ring[i].control = 0;
1052		if (lp->tx_skb[i]) {
1053			dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1054					 lp->tx_skb[i]->len, DMA_TO_DEVICE);
1055			dev_kfree_skb_any(lp->tx_skb[i]);
1056			lp->tx_skb[i] = NULL;
1057		}
1058	}
1059}
1060
1061/*
1062 * Initialize the RC32434 ethernet controller.
1063 */
1064static int korina_init(struct net_device *dev)
1065{
1066	struct korina_private *lp = netdev_priv(dev);
1067
1068	/* Disable DMA */
1069	korina_abort_tx(dev);
1070	korina_abort_rx(dev);
1071
1072	/* reset ethernet logic */
1073	writel(0, &lp->eth_regs->ethintfc);
1074	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1075		netif_trans_update(dev);
1076
1077	/* Enable Ethernet Interface */
1078	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1079
1080	/* Allocate rings */
1081	if (korina_alloc_ring(dev)) {
1082		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1083		korina_free_ring(dev);
1084		return -ENOMEM;
1085	}
1086
1087	writel(0, &lp->rx_dma_regs->dmas);
1088	/* Start Rx DMA */
1089	writel(0, &lp->rx_dma_regs->dmandptr);
1090	writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1091
1092	writel(readl(&lp->tx_dma_regs->dmasm) &
1093			~(DMA_STAT_FINI | DMA_STAT_ERR),
1094			&lp->tx_dma_regs->dmasm);
1095	writel(readl(&lp->rx_dma_regs->dmasm) &
1096			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1097			&lp->rx_dma_regs->dmasm);
1098
1099	/* Accept only packets destined for this Ethernet device address */
1100	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1101
1102	/* Set all Ether station address registers to their initial values */
1103	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1104	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1105
1106	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1107	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1108
1109	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1110	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1111
1112	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1113	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1114
1115
1116	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1117	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1118			&lp->eth_regs->ethmac2);
1119
1120	/* Back to back inter-packet-gap */
1121	writel(0x15, &lp->eth_regs->ethipgt);
1122	/* Non - Back to back inter-packet-gap */
1123	writel(0x12, &lp->eth_regs->ethipgr);
1124
1125	/* Management Clock Prescaler Divisor
1126	 * Clock independent setting */
1127	writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1128	       &lp->eth_regs->ethmcp);
1129	writel(0, &lp->eth_regs->miimcfg);
1130
1131	/* don't transmit until fifo contains 48b */
1132	writel(48, &lp->eth_regs->ethfifott);
1133
1134	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1135
1136	korina_check_media(dev, 1);
1137
1138	napi_enable(&lp->napi);
1139	netif_start_queue(dev);
1140
1141	return 0;
1142}
1143
1144/*
1145 * Restart the RC32434 ethernet controller.
1146 */
1147static void korina_restart_task(struct work_struct *work)
1148{
1149	struct korina_private *lp = container_of(work,
1150			struct korina_private, restart_task);
1151	struct net_device *dev = lp->dev;
1152
1153	/*
1154	 * Disable interrupts
1155	 */
1156	disable_irq(lp->rx_irq);
1157	disable_irq(lp->tx_irq);
1158
1159	writel(readl(&lp->tx_dma_regs->dmasm) |
1160				DMA_STAT_FINI | DMA_STAT_ERR,
1161				&lp->tx_dma_regs->dmasm);
1162	writel(readl(&lp->rx_dma_regs->dmasm) |
1163				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1164				&lp->rx_dma_regs->dmasm);
1165
1166	napi_disable(&lp->napi);
1167
1168	korina_free_ring(dev);
1169
1170	if (korina_init(dev) < 0) {
1171		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1172		return;
1173	}
1174	korina_multicast_list(dev);
1175
1176	enable_irq(lp->tx_irq);
1177	enable_irq(lp->rx_irq);
1178}
1179
1180static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1181{
1182	struct korina_private *lp = netdev_priv(dev);
1183
1184	schedule_work(&lp->restart_task);
1185}
1186
1187#ifdef CONFIG_NET_POLL_CONTROLLER
1188static void korina_poll_controller(struct net_device *dev)
1189{
1190	disable_irq(dev->irq);
1191	korina_tx_dma_interrupt(dev->irq, dev);
1192	enable_irq(dev->irq);
1193}
1194#endif
1195
1196static int korina_open(struct net_device *dev)
1197{
1198	struct korina_private *lp = netdev_priv(dev);
1199	int ret;
1200
1201	/* Initialize */
1202	ret = korina_init(dev);
1203	if (ret < 0) {
1204		printk(KERN_ERR "%s: cannot open device\n", dev->name);
1205		goto out;
1206	}
1207
1208	/* Install the interrupt handler
1209	 * that handles the Done Finished */
1210	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1211			0, "Korina ethernet Rx", dev);
1212	if (ret < 0) {
1213		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1214			dev->name, lp->rx_irq);
1215		goto err_release;
1216	}
1217	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1218			0, "Korina ethernet Tx", dev);
1219	if (ret < 0) {
1220		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1221			dev->name, lp->tx_irq);
1222		goto err_free_rx_irq;
1223	}
1224
1225	mod_timer(&lp->media_check_timer, jiffies + 1);
1226out:
1227	return ret;
1228
1229err_free_rx_irq:
1230	free_irq(lp->rx_irq, dev);
1231err_release:
1232	korina_free_ring(dev);
1233	goto out;
1234}
1235
1236static int korina_close(struct net_device *dev)
1237{
1238	struct korina_private *lp = netdev_priv(dev);
1239	u32 tmp;
1240
1241	del_timer(&lp->media_check_timer);
1242
1243	/* Disable interrupts */
1244	disable_irq(lp->rx_irq);
1245	disable_irq(lp->tx_irq);
1246
1247	korina_abort_tx(dev);
1248	tmp = readl(&lp->tx_dma_regs->dmasm);
1249	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1250	writel(tmp, &lp->tx_dma_regs->dmasm);
1251
1252	korina_abort_rx(dev);
1253	tmp = readl(&lp->rx_dma_regs->dmasm);
1254	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1255	writel(tmp, &lp->rx_dma_regs->dmasm);
1256
1257	napi_disable(&lp->napi);
1258
1259	cancel_work_sync(&lp->restart_task);
1260
1261	korina_free_ring(dev);
1262
1263	free_irq(lp->rx_irq, dev);
1264	free_irq(lp->tx_irq, dev);
1265
1266	return 0;
1267}
1268
1269static const struct net_device_ops korina_netdev_ops = {
1270	.ndo_open		= korina_open,
1271	.ndo_stop		= korina_close,
1272	.ndo_start_xmit		= korina_send_packet,
1273	.ndo_set_rx_mode	= korina_multicast_list,
1274	.ndo_tx_timeout		= korina_tx_timeout,
1275	.ndo_do_ioctl		= korina_ioctl,
1276	.ndo_validate_addr	= eth_validate_addr,
1277	.ndo_set_mac_address	= eth_mac_addr,
1278#ifdef CONFIG_NET_POLL_CONTROLLER
1279	.ndo_poll_controller	= korina_poll_controller,
1280#endif
1281};
1282
1283static int korina_probe(struct platform_device *pdev)
1284{
1285	u8 *mac_addr = dev_get_platdata(&pdev->dev);
1286	struct korina_private *lp;
1287	struct net_device *dev;
1288	struct clk *clk;
1289	void __iomem *p;
1290	int rc;
1291
1292	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1293	if (!dev)
1294		return -ENOMEM;
1295
1296	SET_NETDEV_DEV(dev, &pdev->dev);
1297	lp = netdev_priv(dev);
1298
1299	if (mac_addr)
1300		ether_addr_copy(dev->dev_addr, mac_addr);
1301	else if (of_get_mac_address(pdev->dev.of_node, dev->dev_addr) < 0)
1302		eth_hw_addr_random(dev);
1303
1304	clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
1305	if (IS_ERR(clk))
1306		return PTR_ERR(clk);
1307	if (clk) {
1308		clk_prepare_enable(clk);
1309		lp->mii_clock_freq = clk_get_rate(clk);
1310	} else {
1311		lp->mii_clock_freq = 200000000; /* max possible input clk */
1312	}
1313
1314	lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1315	lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1316
1317	p = devm_platform_ioremap_resource_byname(pdev, "emac");
1318	if (IS_ERR(p)) {
1319		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1320		return PTR_ERR(p);
1321	}
1322	lp->eth_regs = p;
1323
1324	p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1325	if (IS_ERR(p)) {
1326		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1327		return PTR_ERR(p);
1328	}
1329	lp->rx_dma_regs = p;
1330
1331	p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1332	if (IS_ERR(p)) {
1333		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1334		return PTR_ERR(p);
1335	}
1336	lp->tx_dma_regs = p;
1337
1338	lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1339					  &lp->td_dma, GFP_KERNEL);
1340	if (!lp->td_ring)
1341		return -ENOMEM;
1342
1343	lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1344					  &lp->rd_dma, GFP_KERNEL);
1345	if (!lp->rd_ring)
1346		return -ENOMEM;
1347
1348	spin_lock_init(&lp->lock);
1349	/* just use the rx dma irq */
1350	dev->irq = lp->rx_irq;
1351	lp->dev = dev;
1352	lp->dmadev = &pdev->dev;
1353
1354	dev->netdev_ops = &korina_netdev_ops;
1355	dev->ethtool_ops = &netdev_ethtool_ops;
1356	dev->watchdog_timeo = TX_TIMEOUT;
1357	netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
1358
1359	lp->mii_if.dev = dev;
1360	lp->mii_if.mdio_read = korina_mdio_read;
1361	lp->mii_if.mdio_write = korina_mdio_write;
1362	lp->mii_if.phy_id = 1;
1363	lp->mii_if.phy_id_mask = 0x1f;
1364	lp->mii_if.reg_num_mask = 0x1f;
1365
1366	platform_set_drvdata(pdev, dev);
1367
1368	rc = register_netdev(dev);
1369	if (rc < 0) {
1370		printk(KERN_ERR DRV_NAME
1371			": cannot register net device: %d\n", rc);
1372		return rc;
1373	}
1374	timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1375
1376	INIT_WORK(&lp->restart_task, korina_restart_task);
1377
1378	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1379			dev->name);
1380	return rc;
1381}
1382
1383static int korina_remove(struct platform_device *pdev)
1384{
1385	struct net_device *dev = platform_get_drvdata(pdev);
1386
1387	unregister_netdev(dev);
1388
1389	return 0;
1390}
1391
1392#ifdef CONFIG_OF
1393static const struct of_device_id korina_match[] = {
1394	{
1395		.compatible = "idt,3243x-emac",
1396	},
1397	{ }
1398};
1399MODULE_DEVICE_TABLE(of, korina_match);
1400#endif
1401
1402static struct platform_driver korina_driver = {
1403	.driver = {
1404		.name = "korina",
1405		.of_match_table = of_match_ptr(korina_match),
1406	},
1407	.probe = korina_probe,
1408	.remove = korina_remove,
1409};
1410
1411module_platform_driver(korina_driver);
1412
1413MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1414MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1415MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1416MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1417MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1418MODULE_LICENSE("GPL");