Loading...
1/*
2 * linux/drivers/mmc/core/sd.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/slab.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19#include <linux/mmc/sd.h>
20
21#include "core.h"
22#include "bus.h"
23#include "mmc_ops.h"
24#include "sd.h"
25#include "sd_ops.h"
26
27static const unsigned int tran_exp[] = {
28 10000, 100000, 1000000, 10000000,
29 0, 0, 0, 0
30};
31
32static const unsigned char tran_mant[] = {
33 0, 10, 12, 13, 15, 20, 25, 30,
34 35, 40, 45, 50, 55, 60, 70, 80,
35};
36
37static const unsigned int tacc_exp[] = {
38 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
39};
40
41static const unsigned int tacc_mant[] = {
42 0, 10, 12, 13, 15, 20, 25, 30,
43 35, 40, 45, 50, 55, 60, 70, 80,
44};
45
46#define UNSTUFF_BITS(resp,start,size) \
47 ({ \
48 const int __size = size; \
49 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
50 const int __off = 3 - ((start) / 32); \
51 const int __shft = (start) & 31; \
52 u32 __res; \
53 \
54 __res = resp[__off] >> __shft; \
55 if (__size + __shft > 32) \
56 __res |= resp[__off-1] << ((32 - __shft) % 32); \
57 __res & __mask; \
58 })
59
60/*
61 * Given the decoded CSD structure, decode the raw CID to our CID structure.
62 */
63void mmc_decode_cid(struct mmc_card *card)
64{
65 u32 *resp = card->raw_cid;
66
67 memset(&card->cid, 0, sizeof(struct mmc_cid));
68
69 /*
70 * SD doesn't currently have a version field so we will
71 * have to assume we can parse this.
72 */
73 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
74 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
75 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
76 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
77 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
78 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
79 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
80 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
81 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
82 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
83 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
84 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
85
86 card->cid.year += 2000; /* SD cards year offset */
87}
88
89/*
90 * Given a 128-bit response, decode to our card CSD structure.
91 */
92static int mmc_decode_csd(struct mmc_card *card)
93{
94 struct mmc_csd *csd = &card->csd;
95 unsigned int e, m, csd_struct;
96 u32 *resp = card->raw_csd;
97
98 csd_struct = UNSTUFF_BITS(resp, 126, 2);
99
100 switch (csd_struct) {
101 case 0:
102 m = UNSTUFF_BITS(resp, 115, 4);
103 e = UNSTUFF_BITS(resp, 112, 3);
104 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
105 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
106
107 m = UNSTUFF_BITS(resp, 99, 4);
108 e = UNSTUFF_BITS(resp, 96, 3);
109 csd->max_dtr = tran_exp[e] * tran_mant[m];
110 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
111
112 e = UNSTUFF_BITS(resp, 47, 3);
113 m = UNSTUFF_BITS(resp, 62, 12);
114 csd->capacity = (1 + m) << (e + 2);
115
116 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
117 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
118 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
119 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
120 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
121 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
122 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
123
124 if (UNSTUFF_BITS(resp, 46, 1)) {
125 csd->erase_size = 1;
126 } else if (csd->write_blkbits >= 9) {
127 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
128 csd->erase_size <<= csd->write_blkbits - 9;
129 }
130 break;
131 case 1:
132 /*
133 * This is a block-addressed SDHC or SDXC card. Most
134 * interesting fields are unused and have fixed
135 * values. To avoid getting tripped by buggy cards,
136 * we assume those fixed values ourselves.
137 */
138 mmc_card_set_blockaddr(card);
139
140 csd->tacc_ns = 0; /* Unused */
141 csd->tacc_clks = 0; /* Unused */
142
143 m = UNSTUFF_BITS(resp, 99, 4);
144 e = UNSTUFF_BITS(resp, 96, 3);
145 csd->max_dtr = tran_exp[e] * tran_mant[m];
146 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
147 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
148
149 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
150 if (csd->c_size >= 0xFFFF)
151 mmc_card_set_ext_capacity(card);
152
153 m = UNSTUFF_BITS(resp, 48, 22);
154 csd->capacity = (1 + m) << 10;
155
156 csd->read_blkbits = 9;
157 csd->read_partial = 0;
158 csd->write_misalign = 0;
159 csd->read_misalign = 0;
160 csd->r2w_factor = 4; /* Unused */
161 csd->write_blkbits = 9;
162 csd->write_partial = 0;
163 csd->erase_size = 1;
164 break;
165 default:
166 printk(KERN_ERR "%s: unrecognised CSD structure version %d\n",
167 mmc_hostname(card->host), csd_struct);
168 return -EINVAL;
169 }
170
171 card->erase_size = csd->erase_size;
172
173 return 0;
174}
175
176/*
177 * Given a 64-bit response, decode to our card SCR structure.
178 */
179static int mmc_decode_scr(struct mmc_card *card)
180{
181 struct sd_scr *scr = &card->scr;
182 unsigned int scr_struct;
183 u32 resp[4];
184
185 resp[3] = card->raw_scr[1];
186 resp[2] = card->raw_scr[0];
187
188 scr_struct = UNSTUFF_BITS(resp, 60, 4);
189 if (scr_struct != 0) {
190 printk(KERN_ERR "%s: unrecognised SCR structure version %d\n",
191 mmc_hostname(card->host), scr_struct);
192 return -EINVAL;
193 }
194
195 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
196 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
197 if (scr->sda_vsn == SCR_SPEC_VER_2)
198 /* Check if Physical Layer Spec v3.0 is supported */
199 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
200
201 if (UNSTUFF_BITS(resp, 55, 1))
202 card->erased_byte = 0xFF;
203 else
204 card->erased_byte = 0x0;
205
206 if (scr->sda_spec3)
207 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
208 return 0;
209}
210
211/*
212 * Fetch and process SD Status register.
213 */
214static int mmc_read_ssr(struct mmc_card *card)
215{
216 unsigned int au, es, et, eo;
217 int err, i;
218 u32 *ssr;
219
220 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
221 printk(KERN_WARNING "%s: card lacks mandatory SD Status "
222 "function.\n", mmc_hostname(card->host));
223 return 0;
224 }
225
226 ssr = kmalloc(64, GFP_KERNEL);
227 if (!ssr)
228 return -ENOMEM;
229
230 err = mmc_app_sd_status(card, ssr);
231 if (err) {
232 printk(KERN_WARNING "%s: problem reading SD Status "
233 "register.\n", mmc_hostname(card->host));
234 err = 0;
235 goto out;
236 }
237
238 for (i = 0; i < 16; i++)
239 ssr[i] = be32_to_cpu(ssr[i]);
240
241 /*
242 * UNSTUFF_BITS only works with four u32s so we have to offset the
243 * bitfield positions accordingly.
244 */
245 au = UNSTUFF_BITS(ssr, 428 - 384, 4);
246 if (au > 0 || au <= 9) {
247 card->ssr.au = 1 << (au + 4);
248 es = UNSTUFF_BITS(ssr, 408 - 384, 16);
249 et = UNSTUFF_BITS(ssr, 402 - 384, 6);
250 eo = UNSTUFF_BITS(ssr, 400 - 384, 2);
251 if (es && et) {
252 card->ssr.erase_timeout = (et * 1000) / es;
253 card->ssr.erase_offset = eo * 1000;
254 }
255 } else {
256 printk(KERN_WARNING "%s: SD Status: Invalid Allocation Unit "
257 "size.\n", mmc_hostname(card->host));
258 }
259out:
260 kfree(ssr);
261 return err;
262}
263
264/*
265 * Fetches and decodes switch information
266 */
267static int mmc_read_switch(struct mmc_card *card)
268{
269 int err;
270 u8 *status;
271
272 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
273 return 0;
274
275 if (!(card->csd.cmdclass & CCC_SWITCH)) {
276 printk(KERN_WARNING "%s: card lacks mandatory switch "
277 "function, performance might suffer.\n",
278 mmc_hostname(card->host));
279 return 0;
280 }
281
282 err = -EIO;
283
284 status = kmalloc(64, GFP_KERNEL);
285 if (!status) {
286 printk(KERN_ERR "%s: could not allocate a buffer for "
287 "switch capabilities.\n",
288 mmc_hostname(card->host));
289 return -ENOMEM;
290 }
291
292 /* Find out the supported Bus Speed Modes. */
293 err = mmc_sd_switch(card, 0, 0, 1, status);
294 if (err) {
295 /*
296 * If the host or the card can't do the switch,
297 * fail more gracefully.
298 */
299 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
300 goto out;
301
302 printk(KERN_WARNING "%s: problem reading Bus Speed modes.\n",
303 mmc_hostname(card->host));
304 err = 0;
305
306 goto out;
307 }
308
309 if (card->scr.sda_spec3) {
310 card->sw_caps.sd3_bus_mode = status[13];
311
312 /* Find out Driver Strengths supported by the card */
313 err = mmc_sd_switch(card, 0, 2, 1, status);
314 if (err) {
315 /*
316 * If the host or the card can't do the switch,
317 * fail more gracefully.
318 */
319 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
320 goto out;
321
322 printk(KERN_WARNING "%s: problem reading "
323 "Driver Strength.\n",
324 mmc_hostname(card->host));
325 err = 0;
326
327 goto out;
328 }
329
330 card->sw_caps.sd3_drv_type = status[9];
331
332 /* Find out Current Limits supported by the card */
333 err = mmc_sd_switch(card, 0, 3, 1, status);
334 if (err) {
335 /*
336 * If the host or the card can't do the switch,
337 * fail more gracefully.
338 */
339 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
340 goto out;
341
342 printk(KERN_WARNING "%s: problem reading "
343 "Current Limit.\n",
344 mmc_hostname(card->host));
345 err = 0;
346
347 goto out;
348 }
349
350 card->sw_caps.sd3_curr_limit = status[7];
351 } else {
352 if (status[13] & 0x02)
353 card->sw_caps.hs_max_dtr = 50000000;
354 }
355
356out:
357 kfree(status);
358
359 return err;
360}
361
362/*
363 * Test if the card supports high-speed mode and, if so, switch to it.
364 */
365int mmc_sd_switch_hs(struct mmc_card *card)
366{
367 int err;
368 u8 *status;
369
370 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
371 return 0;
372
373 if (!(card->csd.cmdclass & CCC_SWITCH))
374 return 0;
375
376 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
377 return 0;
378
379 if (card->sw_caps.hs_max_dtr == 0)
380 return 0;
381
382 err = -EIO;
383
384 status = kmalloc(64, GFP_KERNEL);
385 if (!status) {
386 printk(KERN_ERR "%s: could not allocate a buffer for "
387 "switch capabilities.\n", mmc_hostname(card->host));
388 return -ENOMEM;
389 }
390
391 err = mmc_sd_switch(card, 1, 0, 1, status);
392 if (err)
393 goto out;
394
395 if ((status[16] & 0xF) != 1) {
396 printk(KERN_WARNING "%s: Problem switching card "
397 "into high-speed mode!\n",
398 mmc_hostname(card->host));
399 err = 0;
400 } else {
401 err = 1;
402 }
403
404out:
405 kfree(status);
406
407 return err;
408}
409
410static int sd_select_driver_type(struct mmc_card *card, u8 *status)
411{
412 int host_drv_type = SD_DRIVER_TYPE_B;
413 int card_drv_type = SD_DRIVER_TYPE_B;
414 int drive_strength;
415 int err;
416
417 /*
418 * If the host doesn't support any of the Driver Types A,C or D,
419 * or there is no board specific handler then default Driver
420 * Type B is used.
421 */
422 if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C
423 | MMC_CAP_DRIVER_TYPE_D)))
424 return 0;
425
426 if (!card->host->ops->select_drive_strength)
427 return 0;
428
429 if (card->host->caps & MMC_CAP_DRIVER_TYPE_A)
430 host_drv_type |= SD_DRIVER_TYPE_A;
431
432 if (card->host->caps & MMC_CAP_DRIVER_TYPE_C)
433 host_drv_type |= SD_DRIVER_TYPE_C;
434
435 if (card->host->caps & MMC_CAP_DRIVER_TYPE_D)
436 host_drv_type |= SD_DRIVER_TYPE_D;
437
438 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A)
439 card_drv_type |= SD_DRIVER_TYPE_A;
440
441 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C)
442 card_drv_type |= SD_DRIVER_TYPE_C;
443
444 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_D)
445 card_drv_type |= SD_DRIVER_TYPE_D;
446
447 /*
448 * The drive strength that the hardware can support
449 * depends on the board design. Pass the appropriate
450 * information and let the hardware specific code
451 * return what is possible given the options
452 */
453 drive_strength = card->host->ops->select_drive_strength(
454 card->sw_caps.uhs_max_dtr,
455 host_drv_type, card_drv_type);
456
457 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
458 if (err)
459 return err;
460
461 if ((status[15] & 0xF) != drive_strength) {
462 printk(KERN_WARNING "%s: Problem setting drive strength!\n",
463 mmc_hostname(card->host));
464 return 0;
465 }
466
467 mmc_set_driver_type(card->host, drive_strength);
468
469 return 0;
470}
471
472static void sd_update_bus_speed_mode(struct mmc_card *card)
473{
474 /*
475 * If the host doesn't support any of the UHS-I modes, fallback on
476 * default speed.
477 */
478 if (!(card->host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))) {
480 card->sd_bus_speed = 0;
481 return;
482 }
483
484 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
485 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
486 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
487 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
488 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
489 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
490 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
491 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
492 SD_MODE_UHS_SDR50)) {
493 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
494 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
495 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
496 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
497 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
498 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
499 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
500 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
501 SD_MODE_UHS_SDR12)) {
502 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
503 }
504}
505
506static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
507{
508 int err;
509 unsigned int timing = 0;
510
511 switch (card->sd_bus_speed) {
512 case UHS_SDR104_BUS_SPEED:
513 timing = MMC_TIMING_UHS_SDR104;
514 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
515 break;
516 case UHS_DDR50_BUS_SPEED:
517 timing = MMC_TIMING_UHS_DDR50;
518 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
519 break;
520 case UHS_SDR50_BUS_SPEED:
521 timing = MMC_TIMING_UHS_SDR50;
522 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
523 break;
524 case UHS_SDR25_BUS_SPEED:
525 timing = MMC_TIMING_UHS_SDR25;
526 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
527 break;
528 case UHS_SDR12_BUS_SPEED:
529 timing = MMC_TIMING_UHS_SDR12;
530 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
531 break;
532 default:
533 return 0;
534 }
535
536 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
537 if (err)
538 return err;
539
540 if ((status[16] & 0xF) != card->sd_bus_speed)
541 printk(KERN_WARNING "%s: Problem setting bus speed mode!\n",
542 mmc_hostname(card->host));
543 else {
544 mmc_set_timing(card->host, timing);
545 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
546 }
547
548 return 0;
549}
550
551static int sd_set_current_limit(struct mmc_card *card, u8 *status)
552{
553 int current_limit = 0;
554 int err;
555
556 /*
557 * Current limit switch is only defined for SDR50, SDR104, and DDR50
558 * bus speed modes. For other bus speed modes, we set the default
559 * current limit of 200mA.
560 */
561 if ((card->sd_bus_speed == UHS_SDR50_BUS_SPEED) ||
562 (card->sd_bus_speed == UHS_SDR104_BUS_SPEED) ||
563 (card->sd_bus_speed == UHS_DDR50_BUS_SPEED)) {
564 if (card->host->caps & MMC_CAP_MAX_CURRENT_800) {
565 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
566 current_limit = SD_SET_CURRENT_LIMIT_800;
567 else if (card->sw_caps.sd3_curr_limit &
568 SD_MAX_CURRENT_600)
569 current_limit = SD_SET_CURRENT_LIMIT_600;
570 else if (card->sw_caps.sd3_curr_limit &
571 SD_MAX_CURRENT_400)
572 current_limit = SD_SET_CURRENT_LIMIT_400;
573 else if (card->sw_caps.sd3_curr_limit &
574 SD_MAX_CURRENT_200)
575 current_limit = SD_SET_CURRENT_LIMIT_200;
576 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_600) {
577 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
578 current_limit = SD_SET_CURRENT_LIMIT_600;
579 else if (card->sw_caps.sd3_curr_limit &
580 SD_MAX_CURRENT_400)
581 current_limit = SD_SET_CURRENT_LIMIT_400;
582 else if (card->sw_caps.sd3_curr_limit &
583 SD_MAX_CURRENT_200)
584 current_limit = SD_SET_CURRENT_LIMIT_200;
585 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_400) {
586 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
587 current_limit = SD_SET_CURRENT_LIMIT_400;
588 else if (card->sw_caps.sd3_curr_limit &
589 SD_MAX_CURRENT_200)
590 current_limit = SD_SET_CURRENT_LIMIT_200;
591 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_200) {
592 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
593 current_limit = SD_SET_CURRENT_LIMIT_200;
594 }
595 } else
596 current_limit = SD_SET_CURRENT_LIMIT_200;
597
598 err = mmc_sd_switch(card, 1, 3, current_limit, status);
599 if (err)
600 return err;
601
602 if (((status[15] >> 4) & 0x0F) != current_limit)
603 printk(KERN_WARNING "%s: Problem setting current limit!\n",
604 mmc_hostname(card->host));
605
606 return 0;
607}
608
609/*
610 * UHS-I specific initialization procedure
611 */
612static int mmc_sd_init_uhs_card(struct mmc_card *card)
613{
614 int err;
615 u8 *status;
616
617 if (!card->scr.sda_spec3)
618 return 0;
619
620 if (!(card->csd.cmdclass & CCC_SWITCH))
621 return 0;
622
623 status = kmalloc(64, GFP_KERNEL);
624 if (!status) {
625 printk(KERN_ERR "%s: could not allocate a buffer for "
626 "switch capabilities.\n", mmc_hostname(card->host));
627 return -ENOMEM;
628 }
629
630 /* Set 4-bit bus width */
631 if ((card->host->caps & MMC_CAP_4_BIT_DATA) &&
632 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
633 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
634 if (err)
635 goto out;
636
637 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
638 }
639
640 /*
641 * Select the bus speed mode depending on host
642 * and card capability.
643 */
644 sd_update_bus_speed_mode(card);
645
646 /* Set the driver strength for the card */
647 err = sd_select_driver_type(card, status);
648 if (err)
649 goto out;
650
651 /* Set current limit for the card */
652 err = sd_set_current_limit(card, status);
653 if (err)
654 goto out;
655
656 /* Set bus speed mode of the card */
657 err = sd_set_bus_speed_mode(card, status);
658 if (err)
659 goto out;
660
661 /* SPI mode doesn't define CMD19 */
662 if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning)
663 err = card->host->ops->execute_tuning(card->host);
664
665out:
666 kfree(status);
667
668 return err;
669}
670
671MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
672 card->raw_cid[2], card->raw_cid[3]);
673MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
674 card->raw_csd[2], card->raw_csd[3]);
675MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
676MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
677MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
678MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
679MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
680MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
681MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
682MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
683MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
684MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
685
686
687static struct attribute *sd_std_attrs[] = {
688 &dev_attr_cid.attr,
689 &dev_attr_csd.attr,
690 &dev_attr_scr.attr,
691 &dev_attr_date.attr,
692 &dev_attr_erase_size.attr,
693 &dev_attr_preferred_erase_size.attr,
694 &dev_attr_fwrev.attr,
695 &dev_attr_hwrev.attr,
696 &dev_attr_manfid.attr,
697 &dev_attr_name.attr,
698 &dev_attr_oemid.attr,
699 &dev_attr_serial.attr,
700 NULL,
701};
702
703static struct attribute_group sd_std_attr_group = {
704 .attrs = sd_std_attrs,
705};
706
707static const struct attribute_group *sd_attr_groups[] = {
708 &sd_std_attr_group,
709 NULL,
710};
711
712struct device_type sd_type = {
713 .groups = sd_attr_groups,
714};
715
716/*
717 * Fetch CID from card.
718 */
719int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
720{
721 int err;
722
723 /*
724 * Since we're changing the OCR value, we seem to
725 * need to tell some cards to go back to the idle
726 * state. We wait 1ms to give cards time to
727 * respond.
728 */
729 mmc_go_idle(host);
730
731 /*
732 * If SD_SEND_IF_COND indicates an SD 2.0
733 * compliant card and we should set bit 30
734 * of the ocr to indicate that we can handle
735 * block-addressed SDHC cards.
736 */
737 err = mmc_send_if_cond(host, ocr);
738 if (!err)
739 ocr |= SD_OCR_CCS;
740
741 /*
742 * If the host supports one of UHS-I modes, request the card
743 * to switch to 1.8V signaling level.
744 */
745 if (host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
746 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))
747 ocr |= SD_OCR_S18R;
748
749 /* If the host can supply more than 150mA, XPC should be set to 1. */
750 if (host->caps & (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 |
751 MMC_CAP_SET_XPC_180))
752 ocr |= SD_OCR_XPC;
753
754try_again:
755 err = mmc_send_app_op_cond(host, ocr, rocr);
756 if (err)
757 return err;
758
759 /*
760 * In case CCS and S18A in the response is set, start Signal Voltage
761 * Switch procedure. SPI mode doesn't support CMD11.
762 */
763 if (!mmc_host_is_spi(host) && rocr &&
764 ((*rocr & 0x41000000) == 0x41000000)) {
765 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, true);
766 if (err) {
767 ocr &= ~SD_OCR_S18R;
768 goto try_again;
769 }
770 }
771
772 if (mmc_host_is_spi(host))
773 err = mmc_send_cid(host, cid);
774 else
775 err = mmc_all_send_cid(host, cid);
776
777 return err;
778}
779
780int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card)
781{
782 int err;
783
784 /*
785 * Fetch CSD from card.
786 */
787 err = mmc_send_csd(card, card->raw_csd);
788 if (err)
789 return err;
790
791 err = mmc_decode_csd(card);
792 if (err)
793 return err;
794
795 return 0;
796}
797
798int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
799 bool reinit)
800{
801 int err;
802
803 if (!reinit) {
804 /*
805 * Fetch SCR from card.
806 */
807 err = mmc_app_send_scr(card, card->raw_scr);
808 if (err)
809 return err;
810
811 err = mmc_decode_scr(card);
812 if (err)
813 return err;
814
815 /*
816 * Fetch and process SD Status register.
817 */
818 err = mmc_read_ssr(card);
819 if (err)
820 return err;
821
822 /* Erase init depends on CSD and SSR */
823 mmc_init_erase(card);
824
825 /*
826 * Fetch switch information from card.
827 */
828 err = mmc_read_switch(card);
829 if (err)
830 return err;
831 }
832
833 /*
834 * For SPI, enable CRC as appropriate.
835 * This CRC enable is located AFTER the reading of the
836 * card registers because some SDHC cards are not able
837 * to provide valid CRCs for non-512-byte blocks.
838 */
839 if (mmc_host_is_spi(host)) {
840 err = mmc_spi_set_crc(host, use_spi_crc);
841 if (err)
842 return err;
843 }
844
845 /*
846 * Check if read-only switch is active.
847 */
848 if (!reinit) {
849 int ro = -1;
850
851 if (host->ops->get_ro)
852 ro = host->ops->get_ro(host);
853
854 if (ro < 0) {
855 printk(KERN_WARNING "%s: host does not "
856 "support reading read-only "
857 "switch. assuming write-enable.\n",
858 mmc_hostname(host));
859 } else if (ro > 0) {
860 mmc_card_set_readonly(card);
861 }
862 }
863
864 return 0;
865}
866
867unsigned mmc_sd_get_max_clock(struct mmc_card *card)
868{
869 unsigned max_dtr = (unsigned int)-1;
870
871 if (mmc_card_highspeed(card)) {
872 if (max_dtr > card->sw_caps.hs_max_dtr)
873 max_dtr = card->sw_caps.hs_max_dtr;
874 } else if (max_dtr > card->csd.max_dtr) {
875 max_dtr = card->csd.max_dtr;
876 }
877
878 return max_dtr;
879}
880
881void mmc_sd_go_highspeed(struct mmc_card *card)
882{
883 mmc_card_set_highspeed(card);
884 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
885}
886
887/*
888 * Handle the detection and initialisation of a card.
889 *
890 * In the case of a resume, "oldcard" will contain the card
891 * we're trying to reinitialise.
892 */
893static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
894 struct mmc_card *oldcard)
895{
896 struct mmc_card *card;
897 int err;
898 u32 cid[4];
899 u32 rocr = 0;
900
901 BUG_ON(!host);
902 WARN_ON(!host->claimed);
903
904 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
905 if (err)
906 return err;
907
908 if (oldcard) {
909 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0)
910 return -ENOENT;
911
912 card = oldcard;
913 } else {
914 /*
915 * Allocate card structure.
916 */
917 card = mmc_alloc_card(host, &sd_type);
918 if (IS_ERR(card))
919 return PTR_ERR(card);
920
921 card->type = MMC_TYPE_SD;
922 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
923 }
924
925 /*
926 * For native busses: get card RCA and quit open drain mode.
927 */
928 if (!mmc_host_is_spi(host)) {
929 err = mmc_send_relative_addr(host, &card->rca);
930 if (err)
931 return err;
932
933 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
934 }
935
936 if (!oldcard) {
937 err = mmc_sd_get_csd(host, card);
938 if (err)
939 return err;
940
941 mmc_decode_cid(card);
942 }
943
944 /*
945 * Select card, as all following commands rely on that.
946 */
947 if (!mmc_host_is_spi(host)) {
948 err = mmc_select_card(card);
949 if (err)
950 return err;
951 }
952
953 err = mmc_sd_setup_card(host, card, oldcard != NULL);
954 if (err)
955 goto free_card;
956
957 /* Initialization sequence for UHS-I cards */
958 if (rocr & SD_ROCR_S18A) {
959 err = mmc_sd_init_uhs_card(card);
960 if (err)
961 goto free_card;
962
963 /* Card is an ultra-high-speed card */
964 mmc_sd_card_set_uhs(card);
965
966 /*
967 * Since initialization is now complete, enable preset
968 * value registers for UHS-I cards.
969 */
970 if (host->ops->enable_preset_value)
971 host->ops->enable_preset_value(host, true);
972 } else {
973 /*
974 * Attempt to change to high-speed (if supported)
975 */
976 err = mmc_sd_switch_hs(card);
977 if (err > 0)
978 mmc_sd_go_highspeed(card);
979 else if (err)
980 goto free_card;
981
982 /*
983 * Set bus speed.
984 */
985 mmc_set_clock(host, mmc_sd_get_max_clock(card));
986
987 /*
988 * Switch to wider bus (if supported).
989 */
990 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
991 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
992 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
993 if (err)
994 goto free_card;
995
996 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
997 }
998 }
999
1000 host->card = card;
1001 return 0;
1002
1003free_card:
1004 if (!oldcard)
1005 mmc_remove_card(card);
1006
1007 return err;
1008}
1009
1010/*
1011 * Host is being removed. Free up the current card.
1012 */
1013static void mmc_sd_remove(struct mmc_host *host)
1014{
1015 BUG_ON(!host);
1016 BUG_ON(!host->card);
1017
1018 mmc_remove_card(host->card);
1019 host->card = NULL;
1020}
1021
1022/*
1023 * Card detection callback from host.
1024 */
1025static void mmc_sd_detect(struct mmc_host *host)
1026{
1027 int err;
1028
1029 BUG_ON(!host);
1030 BUG_ON(!host->card);
1031
1032 mmc_claim_host(host);
1033
1034 /*
1035 * Just check if our card has been removed.
1036 */
1037 err = mmc_send_status(host->card, NULL);
1038
1039 mmc_release_host(host);
1040
1041 if (err) {
1042 mmc_sd_remove(host);
1043
1044 mmc_claim_host(host);
1045 mmc_detach_bus(host);
1046 mmc_release_host(host);
1047 }
1048}
1049
1050/*
1051 * Suspend callback from host.
1052 */
1053static int mmc_sd_suspend(struct mmc_host *host)
1054{
1055 BUG_ON(!host);
1056 BUG_ON(!host->card);
1057
1058 mmc_claim_host(host);
1059 if (!mmc_host_is_spi(host))
1060 mmc_deselect_cards(host);
1061 host->card->state &= ~MMC_STATE_HIGHSPEED;
1062 mmc_release_host(host);
1063
1064 return 0;
1065}
1066
1067/*
1068 * Resume callback from host.
1069 *
1070 * This function tries to determine if the same card is still present
1071 * and, if so, restore all state to it.
1072 */
1073static int mmc_sd_resume(struct mmc_host *host)
1074{
1075 int err;
1076
1077 BUG_ON(!host);
1078 BUG_ON(!host->card);
1079
1080 mmc_claim_host(host);
1081 err = mmc_sd_init_card(host, host->ocr, host->card);
1082 mmc_release_host(host);
1083
1084 return err;
1085}
1086
1087static int mmc_sd_power_restore(struct mmc_host *host)
1088{
1089 int ret;
1090
1091 host->card->state &= ~MMC_STATE_HIGHSPEED;
1092 mmc_claim_host(host);
1093 ret = mmc_sd_init_card(host, host->ocr, host->card);
1094 mmc_release_host(host);
1095
1096 return ret;
1097}
1098
1099static const struct mmc_bus_ops mmc_sd_ops = {
1100 .remove = mmc_sd_remove,
1101 .detect = mmc_sd_detect,
1102 .suspend = NULL,
1103 .resume = NULL,
1104 .power_restore = mmc_sd_power_restore,
1105};
1106
1107static const struct mmc_bus_ops mmc_sd_ops_unsafe = {
1108 .remove = mmc_sd_remove,
1109 .detect = mmc_sd_detect,
1110 .suspend = mmc_sd_suspend,
1111 .resume = mmc_sd_resume,
1112 .power_restore = mmc_sd_power_restore,
1113};
1114
1115static void mmc_sd_attach_bus_ops(struct mmc_host *host)
1116{
1117 const struct mmc_bus_ops *bus_ops;
1118
1119 if (!mmc_card_is_removable(host))
1120 bus_ops = &mmc_sd_ops_unsafe;
1121 else
1122 bus_ops = &mmc_sd_ops;
1123 mmc_attach_bus(host, bus_ops);
1124}
1125
1126/*
1127 * Starting point for SD card init.
1128 */
1129int mmc_attach_sd(struct mmc_host *host)
1130{
1131 int err;
1132 u32 ocr;
1133
1134 BUG_ON(!host);
1135 WARN_ON(!host->claimed);
1136
1137 /* Make sure we are at 3.3V signalling voltage */
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1139 if (err)
1140 return err;
1141
1142 /* Disable preset value enable if already set since last time */
1143 if (host->ops->enable_preset_value)
1144 host->ops->enable_preset_value(host, false);
1145
1146 err = mmc_send_app_op_cond(host, 0, &ocr);
1147 if (err)
1148 return err;
1149
1150 mmc_sd_attach_bus_ops(host);
1151 if (host->ocr_avail_sd)
1152 host->ocr_avail = host->ocr_avail_sd;
1153
1154 /*
1155 * We need to get OCR a different way for SPI.
1156 */
1157 if (mmc_host_is_spi(host)) {
1158 mmc_go_idle(host);
1159
1160 err = mmc_spi_read_ocr(host, 0, &ocr);
1161 if (err)
1162 goto err;
1163 }
1164
1165 /*
1166 * Sanity check the voltages that the card claims to
1167 * support.
1168 */
1169 if (ocr & 0x7F) {
1170 printk(KERN_WARNING "%s: card claims to support voltages "
1171 "below the defined range. These will be ignored.\n",
1172 mmc_hostname(host));
1173 ocr &= ~0x7F;
1174 }
1175
1176 if ((ocr & MMC_VDD_165_195) &&
1177 !(host->ocr_avail_sd & MMC_VDD_165_195)) {
1178 printk(KERN_WARNING "%s: SD card claims to support the "
1179 "incompletely defined 'low voltage range'. This "
1180 "will be ignored.\n", mmc_hostname(host));
1181 ocr &= ~MMC_VDD_165_195;
1182 }
1183
1184 host->ocr = mmc_select_voltage(host, ocr);
1185
1186 /*
1187 * Can we support the voltage(s) of the card(s)?
1188 */
1189 if (!host->ocr) {
1190 err = -EINVAL;
1191 goto err;
1192 }
1193
1194 /*
1195 * Detect and init the card.
1196 */
1197 err = mmc_sd_init_card(host, host->ocr, NULL);
1198 if (err)
1199 goto err;
1200
1201 mmc_release_host(host);
1202 err = mmc_add_card(host->card);
1203 mmc_claim_host(host);
1204 if (err)
1205 goto remove_card;
1206
1207 return 0;
1208
1209remove_card:
1210 mmc_release_host(host);
1211 mmc_remove_card(host->card);
1212 host->card = NULL;
1213 mmc_claim_host(host);
1214err:
1215 mmc_detach_bus(host);
1216
1217 printk(KERN_ERR "%s: error %d whilst initialising SD card\n",
1218 mmc_hostname(host), err);
1219
1220 return err;
1221}
1222
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/sizes.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19#include <linux/mmc/sd.h>
20
21#include "core.h"
22#include "card.h"
23#include "host.h"
24#include "bus.h"
25#include "mmc_ops.h"
26#include "sd.h"
27#include "sd_ops.h"
28
29static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32};
33
34static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37};
38
39static const unsigned int taac_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41};
42
43static const unsigned int taac_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46};
47
48static const unsigned int sd_au_size[] = {
49 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
50 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
51 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
52 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
53};
54
55#define UNSTUFF_BITS(resp,start,size) \
56 ({ \
57 const int __size = size; \
58 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
59 const int __off = 3 - ((start) / 32); \
60 const int __shft = (start) & 31; \
61 u32 __res; \
62 \
63 __res = resp[__off] >> __shft; \
64 if (__size + __shft > 32) \
65 __res |= resp[__off-1] << ((32 - __shft) % 32); \
66 __res & __mask; \
67 })
68
69#define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000
70#define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
71
72struct sd_busy_data {
73 struct mmc_card *card;
74 u8 *reg_buf;
75};
76
77/*
78 * Given the decoded CSD structure, decode the raw CID to our CID structure.
79 */
80void mmc_decode_cid(struct mmc_card *card)
81{
82 u32 *resp = card->raw_cid;
83
84 /*
85 * SD doesn't currently have a version field so we will
86 * have to assume we can parse this.
87 */
88 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
89 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
95 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
96 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
97 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
98 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
99 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
100
101 card->cid.year += 2000; /* SD cards year offset */
102}
103
104/*
105 * Given a 128-bit response, decode to our card CSD structure.
106 */
107static int mmc_decode_csd(struct mmc_card *card)
108{
109 struct mmc_csd *csd = &card->csd;
110 unsigned int e, m, csd_struct;
111 u32 *resp = card->raw_csd;
112
113 csd_struct = UNSTUFF_BITS(resp, 126, 2);
114
115 switch (csd_struct) {
116 case 0:
117 m = UNSTUFF_BITS(resp, 115, 4);
118 e = UNSTUFF_BITS(resp, 112, 3);
119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
121
122 m = UNSTUFF_BITS(resp, 99, 4);
123 e = UNSTUFF_BITS(resp, 96, 3);
124 csd->max_dtr = tran_exp[e] * tran_mant[m];
125 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
126
127 e = UNSTUFF_BITS(resp, 47, 3);
128 m = UNSTUFF_BITS(resp, 62, 12);
129 csd->capacity = (1 + m) << (e + 2);
130
131 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
132 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
133 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
134 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
135 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
136 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
137 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
138 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
139
140 if (UNSTUFF_BITS(resp, 46, 1)) {
141 csd->erase_size = 1;
142 } else if (csd->write_blkbits >= 9) {
143 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
144 csd->erase_size <<= csd->write_blkbits - 9;
145 }
146
147 if (UNSTUFF_BITS(resp, 13, 1))
148 mmc_card_set_readonly(card);
149 break;
150 case 1:
151 /*
152 * This is a block-addressed SDHC or SDXC card. Most
153 * interesting fields are unused and have fixed
154 * values. To avoid getting tripped by buggy cards,
155 * we assume those fixed values ourselves.
156 */
157 mmc_card_set_blockaddr(card);
158
159 csd->taac_ns = 0; /* Unused */
160 csd->taac_clks = 0; /* Unused */
161
162 m = UNSTUFF_BITS(resp, 99, 4);
163 e = UNSTUFF_BITS(resp, 96, 3);
164 csd->max_dtr = tran_exp[e] * tran_mant[m];
165 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
166 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
167
168 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
169 if (csd->c_size >= 0xFFFF)
170 mmc_card_set_ext_capacity(card);
171
172 m = UNSTUFF_BITS(resp, 48, 22);
173 csd->capacity = (1 + m) << 10;
174
175 csd->read_blkbits = 9;
176 csd->read_partial = 0;
177 csd->write_misalign = 0;
178 csd->read_misalign = 0;
179 csd->r2w_factor = 4; /* Unused */
180 csd->write_blkbits = 9;
181 csd->write_partial = 0;
182 csd->erase_size = 1;
183
184 if (UNSTUFF_BITS(resp, 13, 1))
185 mmc_card_set_readonly(card);
186 break;
187 default:
188 pr_err("%s: unrecognised CSD structure version %d\n",
189 mmc_hostname(card->host), csd_struct);
190 return -EINVAL;
191 }
192
193 card->erase_size = csd->erase_size;
194
195 return 0;
196}
197
198/*
199 * Given a 64-bit response, decode to our card SCR structure.
200 */
201static int mmc_decode_scr(struct mmc_card *card)
202{
203 struct sd_scr *scr = &card->scr;
204 unsigned int scr_struct;
205 u32 resp[4];
206
207 resp[3] = card->raw_scr[1];
208 resp[2] = card->raw_scr[0];
209
210 scr_struct = UNSTUFF_BITS(resp, 60, 4);
211 if (scr_struct != 0) {
212 pr_err("%s: unrecognised SCR structure version %d\n",
213 mmc_hostname(card->host), scr_struct);
214 return -EINVAL;
215 }
216
217 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
218 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
219 if (scr->sda_vsn == SCR_SPEC_VER_2)
220 /* Check if Physical Layer Spec v3.0 is supported */
221 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
222
223 if (scr->sda_spec3) {
224 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
225 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
226 }
227
228 if (UNSTUFF_BITS(resp, 55, 1))
229 card->erased_byte = 0xFF;
230 else
231 card->erased_byte = 0x0;
232
233 if (scr->sda_spec4)
234 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
235 else if (scr->sda_spec3)
236 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
237
238 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
239 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
240 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
241 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
242 return -EINVAL;
243 }
244
245 return 0;
246}
247
248/*
249 * Fetch and process SD Status register.
250 */
251static int mmc_read_ssr(struct mmc_card *card)
252{
253 unsigned int au, es, et, eo;
254 __be32 *raw_ssr;
255 u32 resp[4] = {};
256 u8 discard_support;
257 int i;
258
259 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
260 pr_warn("%s: card lacks mandatory SD Status function\n",
261 mmc_hostname(card->host));
262 return 0;
263 }
264
265 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
266 if (!raw_ssr)
267 return -ENOMEM;
268
269 if (mmc_app_sd_status(card, raw_ssr)) {
270 pr_warn("%s: problem reading SD Status register\n",
271 mmc_hostname(card->host));
272 kfree(raw_ssr);
273 return 0;
274 }
275
276 for (i = 0; i < 16; i++)
277 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
278
279 kfree(raw_ssr);
280
281 /*
282 * UNSTUFF_BITS only works with four u32s so we have to offset the
283 * bitfield positions accordingly.
284 */
285 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
286 if (au) {
287 if (au <= 9 || card->scr.sda_spec3) {
288 card->ssr.au = sd_au_size[au];
289 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
290 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
291 if (es && et) {
292 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
293 card->ssr.erase_timeout = (et * 1000) / es;
294 card->ssr.erase_offset = eo * 1000;
295 }
296 } else {
297 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
298 mmc_hostname(card->host));
299 }
300 }
301
302 /*
303 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
304 */
305 resp[3] = card->raw_ssr[6];
306 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
307 card->erase_arg = (card->scr.sda_specx && discard_support) ?
308 SD_DISCARD_ARG : SD_ERASE_ARG;
309
310 return 0;
311}
312
313/*
314 * Fetches and decodes switch information
315 */
316static int mmc_read_switch(struct mmc_card *card)
317{
318 int err;
319 u8 *status;
320
321 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
322 return 0;
323
324 if (!(card->csd.cmdclass & CCC_SWITCH)) {
325 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
326 mmc_hostname(card->host));
327 return 0;
328 }
329
330 status = kmalloc(64, GFP_KERNEL);
331 if (!status)
332 return -ENOMEM;
333
334 /*
335 * Find out the card's support bits with a mode 0 operation.
336 * The argument does not matter, as the support bits do not
337 * change with the arguments.
338 */
339 err = mmc_sd_switch(card, 0, 0, 0, status);
340 if (err) {
341 /*
342 * If the host or the card can't do the switch,
343 * fail more gracefully.
344 */
345 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
346 goto out;
347
348 pr_warn("%s: problem reading Bus Speed modes\n",
349 mmc_hostname(card->host));
350 err = 0;
351
352 goto out;
353 }
354
355 if (status[13] & SD_MODE_HIGH_SPEED)
356 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
357
358 if (card->scr.sda_spec3) {
359 card->sw_caps.sd3_bus_mode = status[13];
360 /* Driver Strengths supported by the card */
361 card->sw_caps.sd3_drv_type = status[9];
362 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
363 }
364
365out:
366 kfree(status);
367
368 return err;
369}
370
371/*
372 * Test if the card supports high-speed mode and, if so, switch to it.
373 */
374int mmc_sd_switch_hs(struct mmc_card *card)
375{
376 int err;
377 u8 *status;
378
379 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
380 return 0;
381
382 if (!(card->csd.cmdclass & CCC_SWITCH))
383 return 0;
384
385 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
386 return 0;
387
388 if (card->sw_caps.hs_max_dtr == 0)
389 return 0;
390
391 status = kmalloc(64, GFP_KERNEL);
392 if (!status)
393 return -ENOMEM;
394
395 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
396 if (err)
397 goto out;
398
399 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
400 pr_warn("%s: Problem switching card into high-speed mode!\n",
401 mmc_hostname(card->host));
402 err = 0;
403 } else {
404 err = 1;
405 }
406
407out:
408 kfree(status);
409
410 return err;
411}
412
413static int sd_select_driver_type(struct mmc_card *card, u8 *status)
414{
415 int card_drv_type, drive_strength, drv_type;
416 int err;
417
418 card->drive_strength = 0;
419
420 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
421
422 drive_strength = mmc_select_drive_strength(card,
423 card->sw_caps.uhs_max_dtr,
424 card_drv_type, &drv_type);
425
426 if (drive_strength) {
427 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
428 if (err)
429 return err;
430 if ((status[15] & 0xF) != drive_strength) {
431 pr_warn("%s: Problem setting drive strength!\n",
432 mmc_hostname(card->host));
433 return 0;
434 }
435 card->drive_strength = drive_strength;
436 }
437
438 if (drv_type)
439 mmc_set_driver_type(card->host, drv_type);
440
441 return 0;
442}
443
444static void sd_update_bus_speed_mode(struct mmc_card *card)
445{
446 /*
447 * If the host doesn't support any of the UHS-I modes, fallback on
448 * default speed.
449 */
450 if (!mmc_host_uhs(card->host)) {
451 card->sd_bus_speed = 0;
452 return;
453 }
454
455 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
456 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
457 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
458 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
459 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
460 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
461 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
462 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
463 SD_MODE_UHS_SDR50)) {
464 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
468 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
471 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
472 SD_MODE_UHS_SDR12)) {
473 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
474 }
475}
476
477static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
478{
479 int err;
480 unsigned int timing = 0;
481
482 switch (card->sd_bus_speed) {
483 case UHS_SDR104_BUS_SPEED:
484 timing = MMC_TIMING_UHS_SDR104;
485 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
486 break;
487 case UHS_DDR50_BUS_SPEED:
488 timing = MMC_TIMING_UHS_DDR50;
489 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
490 break;
491 case UHS_SDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_SDR50;
493 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
494 break;
495 case UHS_SDR25_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR25;
497 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
498 break;
499 case UHS_SDR12_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR12;
501 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
502 break;
503 default:
504 return 0;
505 }
506
507 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
508 if (err)
509 return err;
510
511 if ((status[16] & 0xF) != card->sd_bus_speed)
512 pr_warn("%s: Problem setting bus speed mode!\n",
513 mmc_hostname(card->host));
514 else {
515 mmc_set_timing(card->host, timing);
516 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
517 }
518
519 return 0;
520}
521
522/* Get host's max current setting at its current voltage */
523static u32 sd_get_host_max_current(struct mmc_host *host)
524{
525 u32 voltage, max_current;
526
527 voltage = 1 << host->ios.vdd;
528 switch (voltage) {
529 case MMC_VDD_165_195:
530 max_current = host->max_current_180;
531 break;
532 case MMC_VDD_29_30:
533 case MMC_VDD_30_31:
534 max_current = host->max_current_300;
535 break;
536 case MMC_VDD_32_33:
537 case MMC_VDD_33_34:
538 max_current = host->max_current_330;
539 break;
540 default:
541 max_current = 0;
542 }
543
544 return max_current;
545}
546
547static int sd_set_current_limit(struct mmc_card *card, u8 *status)
548{
549 int current_limit = SD_SET_CURRENT_NO_CHANGE;
550 int err;
551 u32 max_current;
552
553 /*
554 * Current limit switch is only defined for SDR50, SDR104, and DDR50
555 * bus speed modes. For other bus speed modes, we do not change the
556 * current limit.
557 */
558 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
559 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
560 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
561 return 0;
562
563 /*
564 * Host has different current capabilities when operating at
565 * different voltages, so find out its max current first.
566 */
567 max_current = sd_get_host_max_current(card->host);
568
569 /*
570 * We only check host's capability here, if we set a limit that is
571 * higher than the card's maximum current, the card will be using its
572 * maximum current, e.g. if the card's maximum current is 300ma, and
573 * when we set current limit to 200ma, the card will draw 200ma, and
574 * when we set current limit to 400/600/800ma, the card will draw its
575 * maximum 300ma from the host.
576 *
577 * The above is incorrect: if we try to set a current limit that is
578 * not supported by the card, the card can rightfully error out the
579 * attempt, and remain at the default current limit. This results
580 * in a 300mA card being limited to 200mA even though the host
581 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
582 * an iMX6 host. --rmk
583 */
584 if (max_current >= 800 &&
585 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
586 current_limit = SD_SET_CURRENT_LIMIT_800;
587 else if (max_current >= 600 &&
588 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
589 current_limit = SD_SET_CURRENT_LIMIT_600;
590 else if (max_current >= 400 &&
591 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
592 current_limit = SD_SET_CURRENT_LIMIT_400;
593 else if (max_current >= 200 &&
594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
595 current_limit = SD_SET_CURRENT_LIMIT_200;
596
597 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
598 err = mmc_sd_switch(card, 1, 3, current_limit, status);
599 if (err)
600 return err;
601
602 if (((status[15] >> 4) & 0x0F) != current_limit)
603 pr_warn("%s: Problem setting current limit!\n",
604 mmc_hostname(card->host));
605
606 }
607
608 return 0;
609}
610
611/*
612 * UHS-I specific initialization procedure
613 */
614static int mmc_sd_init_uhs_card(struct mmc_card *card)
615{
616 int err;
617 u8 *status;
618
619 if (!(card->csd.cmdclass & CCC_SWITCH))
620 return 0;
621
622 status = kmalloc(64, GFP_KERNEL);
623 if (!status)
624 return -ENOMEM;
625
626 /* Set 4-bit bus width */
627 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
628 if (err)
629 goto out;
630
631 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
632
633 /*
634 * Select the bus speed mode depending on host
635 * and card capability.
636 */
637 sd_update_bus_speed_mode(card);
638
639 /* Set the driver strength for the card */
640 err = sd_select_driver_type(card, status);
641 if (err)
642 goto out;
643
644 /* Set current limit for the card */
645 err = sd_set_current_limit(card, status);
646 if (err)
647 goto out;
648
649 /* Set bus speed mode of the card */
650 err = sd_set_bus_speed_mode(card, status);
651 if (err)
652 goto out;
653
654 /*
655 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
656 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
657 */
658 if (!mmc_host_is_spi(card->host) &&
659 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
660 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
661 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
662 err = mmc_execute_tuning(card);
663
664 /*
665 * As SD Specifications Part1 Physical Layer Specification
666 * Version 3.01 says, CMD19 tuning is available for unlocked
667 * cards in transfer state of 1.8V signaling mode. The small
668 * difference between v3.00 and 3.01 spec means that CMD19
669 * tuning is also available for DDR50 mode.
670 */
671 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
672 pr_warn("%s: ddr50 tuning failed\n",
673 mmc_hostname(card->host));
674 err = 0;
675 }
676 }
677
678out:
679 kfree(status);
680
681 return err;
682}
683
684MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
685 card->raw_cid[2], card->raw_cid[3]);
686MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
687 card->raw_csd[2], card->raw_csd[3]);
688MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
689MMC_DEV_ATTR(ssr,
690 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
691 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
692 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
693 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
694 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
695 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
696 card->raw_ssr[15]);
697MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
698MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
699MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
700MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
701MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
702MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
703MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
704MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
705MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
706MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
707MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
708
709
710static ssize_t mmc_dsr_show(struct device *dev,
711 struct device_attribute *attr,
712 char *buf)
713{
714 struct mmc_card *card = mmc_dev_to_card(dev);
715 struct mmc_host *host = card->host;
716
717 if (card->csd.dsr_imp && host->dsr_req)
718 return sprintf(buf, "0x%x\n", host->dsr);
719 else
720 /* return default DSR value */
721 return sprintf(buf, "0x%x\n", 0x404);
722}
723
724static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
725
726MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
727MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
728MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
729
730#define sdio_info_attr(num) \
731static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
732{ \
733 struct mmc_card *card = mmc_dev_to_card(dev); \
734 \
735 if (num > card->num_info) \
736 return -ENODATA; \
737 if (!card->info[num-1][0]) \
738 return 0; \
739 return sprintf(buf, "%s\n", card->info[num-1]); \
740} \
741static DEVICE_ATTR_RO(info##num)
742
743sdio_info_attr(1);
744sdio_info_attr(2);
745sdio_info_attr(3);
746sdio_info_attr(4);
747
748static struct attribute *sd_std_attrs[] = {
749 &dev_attr_vendor.attr,
750 &dev_attr_device.attr,
751 &dev_attr_revision.attr,
752 &dev_attr_info1.attr,
753 &dev_attr_info2.attr,
754 &dev_attr_info3.attr,
755 &dev_attr_info4.attr,
756 &dev_attr_cid.attr,
757 &dev_attr_csd.attr,
758 &dev_attr_scr.attr,
759 &dev_attr_ssr.attr,
760 &dev_attr_date.attr,
761 &dev_attr_erase_size.attr,
762 &dev_attr_preferred_erase_size.attr,
763 &dev_attr_fwrev.attr,
764 &dev_attr_hwrev.attr,
765 &dev_attr_manfid.attr,
766 &dev_attr_name.attr,
767 &dev_attr_oemid.attr,
768 &dev_attr_serial.attr,
769 &dev_attr_ocr.attr,
770 &dev_attr_rca.attr,
771 &dev_attr_dsr.attr,
772 NULL,
773};
774
775static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
776 int index)
777{
778 struct device *dev = kobj_to_dev(kobj);
779 struct mmc_card *card = mmc_dev_to_card(dev);
780
781 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
782 if ((attr == &dev_attr_vendor.attr ||
783 attr == &dev_attr_device.attr ||
784 attr == &dev_attr_revision.attr ||
785 attr == &dev_attr_info1.attr ||
786 attr == &dev_attr_info2.attr ||
787 attr == &dev_attr_info3.attr ||
788 attr == &dev_attr_info4.attr
789 ) && card->type != MMC_TYPE_SD_COMBO)
790 return 0;
791
792 return attr->mode;
793}
794
795static const struct attribute_group sd_std_group = {
796 .attrs = sd_std_attrs,
797 .is_visible = sd_std_is_visible,
798};
799__ATTRIBUTE_GROUPS(sd_std);
800
801struct device_type sd_type = {
802 .groups = sd_std_groups,
803};
804
805/*
806 * Fetch CID from card.
807 */
808int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
809{
810 int err;
811 u32 max_current;
812 int retries = 10;
813 u32 pocr = ocr;
814
815try_again:
816 if (!retries) {
817 ocr &= ~SD_OCR_S18R;
818 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
819 }
820
821 /*
822 * Since we're changing the OCR value, we seem to
823 * need to tell some cards to go back to the idle
824 * state. We wait 1ms to give cards time to
825 * respond.
826 */
827 mmc_go_idle(host);
828
829 /*
830 * If SD_SEND_IF_COND indicates an SD 2.0
831 * compliant card and we should set bit 30
832 * of the ocr to indicate that we can handle
833 * block-addressed SDHC cards.
834 */
835 err = mmc_send_if_cond(host, ocr);
836 if (!err)
837 ocr |= SD_OCR_CCS;
838
839 /*
840 * If the host supports one of UHS-I modes, request the card
841 * to switch to 1.8V signaling level. If the card has failed
842 * repeatedly to switch however, skip this.
843 */
844 if (retries && mmc_host_uhs(host))
845 ocr |= SD_OCR_S18R;
846
847 /*
848 * If the host can supply more than 150mA at current voltage,
849 * XPC should be set to 1.
850 */
851 max_current = sd_get_host_max_current(host);
852 if (max_current > 150)
853 ocr |= SD_OCR_XPC;
854
855 err = mmc_send_app_op_cond(host, ocr, rocr);
856 if (err)
857 return err;
858
859 /*
860 * In case the S18A bit is set in the response, let's start the signal
861 * voltage switch procedure. SPI mode doesn't support CMD11.
862 * Note that, according to the spec, the S18A bit is not valid unless
863 * the CCS bit is set as well. We deliberately deviate from the spec in
864 * regards to this, which allows UHS-I to be supported for SDSC cards.
865 */
866 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) {
867 err = mmc_set_uhs_voltage(host, pocr);
868 if (err == -EAGAIN) {
869 retries--;
870 goto try_again;
871 } else if (err) {
872 retries = 0;
873 goto try_again;
874 }
875 }
876
877 err = mmc_send_cid(host, cid);
878 return err;
879}
880
881int mmc_sd_get_csd(struct mmc_card *card)
882{
883 int err;
884
885 /*
886 * Fetch CSD from card.
887 */
888 err = mmc_send_csd(card, card->raw_csd);
889 if (err)
890 return err;
891
892 err = mmc_decode_csd(card);
893 if (err)
894 return err;
895
896 return 0;
897}
898
899static int mmc_sd_get_ro(struct mmc_host *host)
900{
901 int ro;
902
903 /*
904 * Some systems don't feature a write-protect pin and don't need one.
905 * E.g. because they only have micro-SD card slot. For those systems
906 * assume that the SD card is always read-write.
907 */
908 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
909 return 0;
910
911 if (!host->ops->get_ro)
912 return -1;
913
914 ro = host->ops->get_ro(host);
915
916 return ro;
917}
918
919int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
920 bool reinit)
921{
922 int err;
923
924 if (!reinit) {
925 /*
926 * Fetch SCR from card.
927 */
928 err = mmc_app_send_scr(card);
929 if (err)
930 return err;
931
932 err = mmc_decode_scr(card);
933 if (err)
934 return err;
935
936 /*
937 * Fetch and process SD Status register.
938 */
939 err = mmc_read_ssr(card);
940 if (err)
941 return err;
942
943 /* Erase init depends on CSD and SSR */
944 mmc_init_erase(card);
945
946 /*
947 * Fetch switch information from card.
948 */
949 err = mmc_read_switch(card);
950 if (err)
951 return err;
952 }
953
954 /*
955 * For SPI, enable CRC as appropriate.
956 * This CRC enable is located AFTER the reading of the
957 * card registers because some SDHC cards are not able
958 * to provide valid CRCs for non-512-byte blocks.
959 */
960 if (mmc_host_is_spi(host)) {
961 err = mmc_spi_set_crc(host, use_spi_crc);
962 if (err)
963 return err;
964 }
965
966 /*
967 * Check if read-only switch is active.
968 */
969 if (!reinit) {
970 int ro = mmc_sd_get_ro(host);
971
972 if (ro < 0) {
973 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
974 mmc_hostname(host));
975 } else if (ro > 0) {
976 mmc_card_set_readonly(card);
977 }
978 }
979
980 return 0;
981}
982
983unsigned mmc_sd_get_max_clock(struct mmc_card *card)
984{
985 unsigned max_dtr = (unsigned int)-1;
986
987 if (mmc_card_hs(card)) {
988 if (max_dtr > card->sw_caps.hs_max_dtr)
989 max_dtr = card->sw_caps.hs_max_dtr;
990 } else if (max_dtr > card->csd.max_dtr) {
991 max_dtr = card->csd.max_dtr;
992 }
993
994 return max_dtr;
995}
996
997static bool mmc_sd_card_using_v18(struct mmc_card *card)
998{
999 /*
1000 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1001 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1002 * they can be used to determine if the card has already switched to
1003 * 1.8V signaling.
1004 */
1005 return card->sw_caps.sd3_bus_mode &
1006 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1007}
1008
1009static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1010 u8 reg_data)
1011{
1012 struct mmc_host *host = card->host;
1013 struct mmc_request mrq = {};
1014 struct mmc_command cmd = {};
1015 struct mmc_data data = {};
1016 struct scatterlist sg;
1017 u8 *reg_buf;
1018
1019 reg_buf = kzalloc(512, GFP_KERNEL);
1020 if (!reg_buf)
1021 return -ENOMEM;
1022
1023 mrq.cmd = &cmd;
1024 mrq.data = &data;
1025
1026 /*
1027 * Arguments of CMD49:
1028 * [31:31] MIO (0 = memory).
1029 * [30:27] FNO (function number).
1030 * [26:26] MW - mask write mode (0 = disable).
1031 * [25:18] page number.
1032 * [17:9] offset address.
1033 * [8:0] length (0 = 1 byte).
1034 */
1035 cmd.arg = fno << 27 | page << 18 | offset << 9;
1036
1037 /* The first byte in the buffer is the data to be written. */
1038 reg_buf[0] = reg_data;
1039
1040 data.flags = MMC_DATA_WRITE;
1041 data.blksz = 512;
1042 data.blocks = 1;
1043 data.sg = &sg;
1044 data.sg_len = 1;
1045 sg_init_one(&sg, reg_buf, 512);
1046
1047 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1048 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1049
1050 mmc_set_data_timeout(&data, card);
1051 mmc_wait_for_req(host, &mrq);
1052
1053 kfree(reg_buf);
1054
1055 /*
1056 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1057 * after the CMD49. Although, let's leave this to be managed by the
1058 * caller.
1059 */
1060
1061 if (cmd.error)
1062 return cmd.error;
1063 if (data.error)
1064 return data.error;
1065
1066 return 0;
1067}
1068
1069static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1070 u16 offset, u16 len, u8 *reg_buf)
1071{
1072 u32 cmd_args;
1073
1074 /*
1075 * Command arguments of CMD48:
1076 * [31:31] MIO (0 = memory).
1077 * [30:27] FNO (function number).
1078 * [26:26] reserved (0).
1079 * [25:18] page number.
1080 * [17:9] offset address.
1081 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1082 */
1083 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1084
1085 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1086 cmd_args, reg_buf, 512);
1087}
1088
1089static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1090 u16 offset)
1091{
1092 int err;
1093 u8 *reg_buf;
1094
1095 reg_buf = kzalloc(512, GFP_KERNEL);
1096 if (!reg_buf)
1097 return -ENOMEM;
1098
1099 /* Read the extension register for power management function. */
1100 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1101 if (err) {
1102 pr_warn("%s: error %d reading PM func of ext reg\n",
1103 mmc_hostname(card->host), err);
1104 goto out;
1105 }
1106
1107 /* PM revision consists of 4 bits. */
1108 card->ext_power.rev = reg_buf[0] & 0xf;
1109
1110 /* Power Off Notification support at bit 4. */
1111 if (reg_buf[1] & BIT(4))
1112 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1113
1114 /* Power Sustenance support at bit 5. */
1115 if (reg_buf[1] & BIT(5))
1116 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1117
1118 /* Power Down Mode support at bit 6. */
1119 if (reg_buf[1] & BIT(6))
1120 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1121
1122 card->ext_power.fno = fno;
1123 card->ext_power.page = page;
1124 card->ext_power.offset = offset;
1125
1126out:
1127 kfree(reg_buf);
1128 return err;
1129}
1130
1131static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1132 u16 offset)
1133{
1134 int err;
1135 u8 *reg_buf;
1136
1137 reg_buf = kzalloc(512, GFP_KERNEL);
1138 if (!reg_buf)
1139 return -ENOMEM;
1140
1141 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1142 if (err) {
1143 pr_warn("%s: error %d reading PERF func of ext reg\n",
1144 mmc_hostname(card->host), err);
1145 goto out;
1146 }
1147
1148 /* PERF revision. */
1149 card->ext_perf.rev = reg_buf[0];
1150
1151 /* FX_EVENT support at bit 0. */
1152 if (reg_buf[1] & BIT(0))
1153 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1154
1155 /* Card initiated self-maintenance support at bit 0. */
1156 if (reg_buf[2] & BIT(0))
1157 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1158
1159 /* Host initiated self-maintenance support at bit 1. */
1160 if (reg_buf[2] & BIT(1))
1161 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1162
1163 /* Cache support at bit 0. */
1164 if (reg_buf[4] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1166
1167 /* Command queue support indicated via queue depth bits (0 to 4). */
1168 if (reg_buf[6] & 0x1f)
1169 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1170
1171 card->ext_perf.fno = fno;
1172 card->ext_perf.page = page;
1173 card->ext_perf.offset = offset;
1174
1175out:
1176 kfree(reg_buf);
1177 return err;
1178}
1179
1180static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1181 u16 *next_ext_addr)
1182{
1183 u8 num_regs, fno, page;
1184 u16 sfc, offset, ext = *next_ext_addr;
1185 u32 reg_addr;
1186
1187 /*
1188 * Parse only one register set per extension, as that is sufficient to
1189 * support the standard functions. This means another 48 bytes in the
1190 * buffer must be available.
1191 */
1192 if (ext + 48 > 512)
1193 return -EFAULT;
1194
1195 /* Standard Function Code */
1196 memcpy(&sfc, &gen_info_buf[ext], 2);
1197
1198 /* Address to the next extension. */
1199 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1200
1201 /* Number of registers for this extension. */
1202 num_regs = gen_info_buf[ext + 42];
1203
1204 /* We support only one register per extension. */
1205 if (num_regs != 1)
1206 return 0;
1207
1208 /* Extension register address. */
1209 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1210
1211 /* 9 bits (0 to 8) contains the offset address. */
1212 offset = reg_addr & 0x1ff;
1213
1214 /* 8 bits (9 to 16) contains the page number. */
1215 page = reg_addr >> 9 & 0xff ;
1216
1217 /* 4 bits (18 to 21) contains the function number. */
1218 fno = reg_addr >> 18 & 0xf;
1219
1220 /* Standard Function Code for power management. */
1221 if (sfc == 0x1)
1222 return sd_parse_ext_reg_power(card, fno, page, offset);
1223
1224 /* Standard Function Code for performance enhancement. */
1225 if (sfc == 0x2)
1226 return sd_parse_ext_reg_perf(card, fno, page, offset);
1227
1228 return 0;
1229}
1230
1231static int sd_read_ext_regs(struct mmc_card *card)
1232{
1233 int err, i;
1234 u8 num_ext, *gen_info_buf;
1235 u16 rev, len, next_ext_addr;
1236
1237 if (mmc_host_is_spi(card->host))
1238 return 0;
1239
1240 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1241 return 0;
1242
1243 gen_info_buf = kzalloc(512, GFP_KERNEL);
1244 if (!gen_info_buf)
1245 return -ENOMEM;
1246
1247 /*
1248 * Read 512 bytes of general info, which is found at function number 0,
1249 * at page 0 and with no offset.
1250 */
1251 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1252 if (err) {
1253 pr_warn("%s: error %d reading general info of SD ext reg\n",
1254 mmc_hostname(card->host), err);
1255 goto out;
1256 }
1257
1258 /* General info structure revision. */
1259 memcpy(&rev, &gen_info_buf[0], 2);
1260
1261 /* Length of general info in bytes. */
1262 memcpy(&len, &gen_info_buf[2], 2);
1263
1264 /* Number of extensions to be find. */
1265 num_ext = gen_info_buf[4];
1266
1267 /* We support revision 0, but limit it to 512 bytes for simplicity. */
1268 if (rev != 0 || len > 512) {
1269 pr_warn("%s: non-supported SD ext reg layout\n",
1270 mmc_hostname(card->host));
1271 goto out;
1272 }
1273
1274 /*
1275 * Parse the extension registers. The first extension should start
1276 * immediately after the general info header (16 bytes).
1277 */
1278 next_ext_addr = 16;
1279 for (i = 0; i < num_ext; i++) {
1280 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1281 if (err) {
1282 pr_warn("%s: error %d parsing SD ext reg\n",
1283 mmc_hostname(card->host), err);
1284 goto out;
1285 }
1286 }
1287
1288out:
1289 kfree(gen_info_buf);
1290 return err;
1291}
1292
1293static bool sd_cache_enabled(struct mmc_host *host)
1294{
1295 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1296}
1297
1298static int sd_flush_cache(struct mmc_host *host)
1299{
1300 struct mmc_card *card = host->card;
1301 u8 *reg_buf, fno, page;
1302 u16 offset;
1303 int err;
1304
1305 if (!sd_cache_enabled(host))
1306 return 0;
1307
1308 reg_buf = kzalloc(512, GFP_KERNEL);
1309 if (!reg_buf)
1310 return -ENOMEM;
1311
1312 /*
1313 * Set Flush Cache at bit 0 in the performance enhancement register at
1314 * 261 bytes offset.
1315 */
1316 fno = card->ext_perf.fno;
1317 page = card->ext_perf.page;
1318 offset = card->ext_perf.offset + 261;
1319
1320 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1321 if (err) {
1322 pr_warn("%s: error %d writing Cache Flush bit\n",
1323 mmc_hostname(host), err);
1324 goto out;
1325 }
1326
1327 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1328 MMC_BUSY_EXTR_SINGLE);
1329 if (err)
1330 goto out;
1331
1332 /*
1333 * Read the Flush Cache bit. The card shall reset it, to confirm that
1334 * it's has completed the flushing of the cache.
1335 */
1336 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1337 if (err) {
1338 pr_warn("%s: error %d reading Cache Flush bit\n",
1339 mmc_hostname(host), err);
1340 goto out;
1341 }
1342
1343 if (reg_buf[0] & BIT(0))
1344 err = -ETIMEDOUT;
1345out:
1346 kfree(reg_buf);
1347 return err;
1348}
1349
1350static int sd_enable_cache(struct mmc_card *card)
1351{
1352 u8 *reg_buf;
1353 int err;
1354
1355 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1356
1357 reg_buf = kzalloc(512, GFP_KERNEL);
1358 if (!reg_buf)
1359 return -ENOMEM;
1360
1361 /*
1362 * Set Cache Enable at bit 0 in the performance enhancement register at
1363 * 260 bytes offset.
1364 */
1365 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1366 card->ext_perf.offset + 260, BIT(0));
1367 if (err) {
1368 pr_warn("%s: error %d writing Cache Enable bit\n",
1369 mmc_hostname(card->host), err);
1370 goto out;
1371 }
1372
1373 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1374 MMC_BUSY_EXTR_SINGLE);
1375 if (!err)
1376 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1377
1378out:
1379 kfree(reg_buf);
1380 return err;
1381}
1382
1383/*
1384 * Handle the detection and initialisation of a card.
1385 *
1386 * In the case of a resume, "oldcard" will contain the card
1387 * we're trying to reinitialise.
1388 */
1389static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1390 struct mmc_card *oldcard)
1391{
1392 struct mmc_card *card;
1393 int err;
1394 u32 cid[4];
1395 u32 rocr = 0;
1396 bool v18_fixup_failed = false;
1397
1398 WARN_ON(!host->claimed);
1399retry:
1400 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1401 if (err)
1402 return err;
1403
1404 if (oldcard) {
1405 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1406 pr_debug("%s: Perhaps the card was replaced\n",
1407 mmc_hostname(host));
1408 return -ENOENT;
1409 }
1410
1411 card = oldcard;
1412 } else {
1413 /*
1414 * Allocate card structure.
1415 */
1416 card = mmc_alloc_card(host, &sd_type);
1417 if (IS_ERR(card))
1418 return PTR_ERR(card);
1419
1420 card->ocr = ocr;
1421 card->type = MMC_TYPE_SD;
1422 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1423 }
1424
1425 /*
1426 * Call the optional HC's init_card function to handle quirks.
1427 */
1428 if (host->ops->init_card)
1429 host->ops->init_card(host, card);
1430
1431 /*
1432 * For native busses: get card RCA and quit open drain mode.
1433 */
1434 if (!mmc_host_is_spi(host)) {
1435 err = mmc_send_relative_addr(host, &card->rca);
1436 if (err)
1437 goto free_card;
1438 }
1439
1440 if (!oldcard) {
1441 err = mmc_sd_get_csd(card);
1442 if (err)
1443 goto free_card;
1444
1445 mmc_decode_cid(card);
1446 }
1447
1448 /*
1449 * handling only for cards supporting DSR and hosts requesting
1450 * DSR configuration
1451 */
1452 if (card->csd.dsr_imp && host->dsr_req)
1453 mmc_set_dsr(host);
1454
1455 /*
1456 * Select card, as all following commands rely on that.
1457 */
1458 if (!mmc_host_is_spi(host)) {
1459 err = mmc_select_card(card);
1460 if (err)
1461 goto free_card;
1462 }
1463
1464 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1465 if (err)
1466 goto free_card;
1467
1468 /*
1469 * If the card has not been power cycled, it may still be using 1.8V
1470 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1471 * transfer mode.
1472 */
1473 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1474 mmc_sd_card_using_v18(card) &&
1475 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1476 /*
1477 * Re-read switch information in case it has changed since
1478 * oldcard was initialized.
1479 */
1480 if (oldcard) {
1481 err = mmc_read_switch(card);
1482 if (err)
1483 goto free_card;
1484 }
1485 if (mmc_sd_card_using_v18(card)) {
1486 if (mmc_host_set_uhs_voltage(host) ||
1487 mmc_sd_init_uhs_card(card)) {
1488 v18_fixup_failed = true;
1489 mmc_power_cycle(host, ocr);
1490 if (!oldcard)
1491 mmc_remove_card(card);
1492 goto retry;
1493 }
1494 goto done;
1495 }
1496 }
1497
1498 /* Initialization sequence for UHS-I cards */
1499 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1500 err = mmc_sd_init_uhs_card(card);
1501 if (err)
1502 goto free_card;
1503 } else {
1504 /*
1505 * Attempt to change to high-speed (if supported)
1506 */
1507 err = mmc_sd_switch_hs(card);
1508 if (err > 0)
1509 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1510 else if (err)
1511 goto free_card;
1512
1513 /*
1514 * Set bus speed.
1515 */
1516 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1517
1518 /*
1519 * Switch to wider bus (if supported).
1520 */
1521 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1522 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1523 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1524 if (err)
1525 goto free_card;
1526
1527 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1528 }
1529 }
1530
1531 if (!oldcard) {
1532 /* Read/parse the extension registers. */
1533 err = sd_read_ext_regs(card);
1534 if (err)
1535 goto free_card;
1536 }
1537
1538 /* Enable internal SD cache if supported. */
1539 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1540 err = sd_enable_cache(card);
1541 if (err)
1542 goto free_card;
1543 }
1544
1545 if (host->cqe_ops && !host->cqe_enabled) {
1546 err = host->cqe_ops->cqe_enable(host, card);
1547 if (!err) {
1548 host->cqe_enabled = true;
1549 host->hsq_enabled = true;
1550 pr_info("%s: Host Software Queue enabled\n",
1551 mmc_hostname(host));
1552 }
1553 }
1554
1555 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1556 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1557 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1558 mmc_hostname(host));
1559 err = -EINVAL;
1560 goto free_card;
1561 }
1562done:
1563 host->card = card;
1564 return 0;
1565
1566free_card:
1567 if (!oldcard)
1568 mmc_remove_card(card);
1569
1570 return err;
1571}
1572
1573/*
1574 * Host is being removed. Free up the current card.
1575 */
1576static void mmc_sd_remove(struct mmc_host *host)
1577{
1578 mmc_remove_card(host->card);
1579 host->card = NULL;
1580}
1581
1582/*
1583 * Card detection - card is alive.
1584 */
1585static int mmc_sd_alive(struct mmc_host *host)
1586{
1587 return mmc_send_status(host->card, NULL);
1588}
1589
1590/*
1591 * Card detection callback from host.
1592 */
1593static void mmc_sd_detect(struct mmc_host *host)
1594{
1595 int err;
1596
1597 mmc_get_card(host->card, NULL);
1598
1599 /*
1600 * Just check if our card has been removed.
1601 */
1602 err = _mmc_detect_card_removed(host);
1603
1604 mmc_put_card(host->card, NULL);
1605
1606 if (err) {
1607 mmc_sd_remove(host);
1608
1609 mmc_claim_host(host);
1610 mmc_detach_bus(host);
1611 mmc_power_off(host);
1612 mmc_release_host(host);
1613 }
1614}
1615
1616static int sd_can_poweroff_notify(struct mmc_card *card)
1617{
1618 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1619}
1620
1621static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1622{
1623 struct sd_busy_data *data = cb_data;
1624 struct mmc_card *card = data->card;
1625 int err;
1626
1627 /*
1628 * Read the status register for the power management function. It's at
1629 * one byte offset and is one byte long. The Power Off Notification
1630 * Ready is bit 0.
1631 */
1632 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1633 card->ext_power.offset + 1, 1, data->reg_buf);
1634 if (err) {
1635 pr_warn("%s: error %d reading status reg of PM func\n",
1636 mmc_hostname(card->host), err);
1637 return err;
1638 }
1639
1640 *busy = !(data->reg_buf[0] & BIT(0));
1641 return 0;
1642}
1643
1644static int sd_poweroff_notify(struct mmc_card *card)
1645{
1646 struct sd_busy_data cb_data;
1647 u8 *reg_buf;
1648 int err;
1649
1650 reg_buf = kzalloc(512, GFP_KERNEL);
1651 if (!reg_buf)
1652 return -ENOMEM;
1653
1654 /*
1655 * Set the Power Off Notification bit in the power management settings
1656 * register at 2 bytes offset.
1657 */
1658 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1659 card->ext_power.offset + 2, BIT(0));
1660 if (err) {
1661 pr_warn("%s: error %d writing Power Off Notify bit\n",
1662 mmc_hostname(card->host), err);
1663 goto out;
1664 }
1665
1666 cb_data.card = card;
1667 cb_data.reg_buf = reg_buf;
1668 err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1669 &sd_busy_poweroff_notify_cb, &cb_data);
1670
1671out:
1672 kfree(reg_buf);
1673 return err;
1674}
1675
1676static int _mmc_sd_suspend(struct mmc_host *host)
1677{
1678 struct mmc_card *card = host->card;
1679 int err = 0;
1680
1681 mmc_claim_host(host);
1682
1683 if (mmc_card_suspended(card))
1684 goto out;
1685
1686 if (sd_can_poweroff_notify(card))
1687 err = sd_poweroff_notify(card);
1688 else if (!mmc_host_is_spi(host))
1689 err = mmc_deselect_cards(host);
1690
1691 if (!err) {
1692 mmc_power_off(host);
1693 mmc_card_set_suspended(card);
1694 }
1695
1696out:
1697 mmc_release_host(host);
1698 return err;
1699}
1700
1701/*
1702 * Callback for suspend
1703 */
1704static int mmc_sd_suspend(struct mmc_host *host)
1705{
1706 int err;
1707
1708 err = _mmc_sd_suspend(host);
1709 if (!err) {
1710 pm_runtime_disable(&host->card->dev);
1711 pm_runtime_set_suspended(&host->card->dev);
1712 }
1713
1714 return err;
1715}
1716
1717/*
1718 * This function tries to determine if the same card is still present
1719 * and, if so, restore all state to it.
1720 */
1721static int _mmc_sd_resume(struct mmc_host *host)
1722{
1723 int err = 0;
1724
1725 mmc_claim_host(host);
1726
1727 if (!mmc_card_suspended(host->card))
1728 goto out;
1729
1730 mmc_power_up(host, host->card->ocr);
1731 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1732 mmc_card_clr_suspended(host->card);
1733
1734out:
1735 mmc_release_host(host);
1736 return err;
1737}
1738
1739/*
1740 * Callback for resume
1741 */
1742static int mmc_sd_resume(struct mmc_host *host)
1743{
1744 pm_runtime_enable(&host->card->dev);
1745 return 0;
1746}
1747
1748/*
1749 * Callback for runtime_suspend.
1750 */
1751static int mmc_sd_runtime_suspend(struct mmc_host *host)
1752{
1753 int err;
1754
1755 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1756 return 0;
1757
1758 err = _mmc_sd_suspend(host);
1759 if (err)
1760 pr_err("%s: error %d doing aggressive suspend\n",
1761 mmc_hostname(host), err);
1762
1763 return err;
1764}
1765
1766/*
1767 * Callback for runtime_resume.
1768 */
1769static int mmc_sd_runtime_resume(struct mmc_host *host)
1770{
1771 int err;
1772
1773 err = _mmc_sd_resume(host);
1774 if (err && err != -ENOMEDIUM)
1775 pr_err("%s: error %d doing runtime resume\n",
1776 mmc_hostname(host), err);
1777
1778 return 0;
1779}
1780
1781static int mmc_sd_hw_reset(struct mmc_host *host)
1782{
1783 mmc_power_cycle(host, host->card->ocr);
1784 return mmc_sd_init_card(host, host->card->ocr, host->card);
1785}
1786
1787static const struct mmc_bus_ops mmc_sd_ops = {
1788 .remove = mmc_sd_remove,
1789 .detect = mmc_sd_detect,
1790 .runtime_suspend = mmc_sd_runtime_suspend,
1791 .runtime_resume = mmc_sd_runtime_resume,
1792 .suspend = mmc_sd_suspend,
1793 .resume = mmc_sd_resume,
1794 .alive = mmc_sd_alive,
1795 .shutdown = mmc_sd_suspend,
1796 .hw_reset = mmc_sd_hw_reset,
1797 .cache_enabled = sd_cache_enabled,
1798 .flush_cache = sd_flush_cache,
1799};
1800
1801/*
1802 * Starting point for SD card init.
1803 */
1804int mmc_attach_sd(struct mmc_host *host)
1805{
1806 int err;
1807 u32 ocr, rocr;
1808
1809 WARN_ON(!host->claimed);
1810
1811 err = mmc_send_app_op_cond(host, 0, &ocr);
1812 if (err)
1813 return err;
1814
1815 mmc_attach_bus(host, &mmc_sd_ops);
1816 if (host->ocr_avail_sd)
1817 host->ocr_avail = host->ocr_avail_sd;
1818
1819 /*
1820 * We need to get OCR a different way for SPI.
1821 */
1822 if (mmc_host_is_spi(host)) {
1823 mmc_go_idle(host);
1824
1825 err = mmc_spi_read_ocr(host, 0, &ocr);
1826 if (err)
1827 goto err;
1828 }
1829
1830 /*
1831 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1832 * these bits as being in-valid and especially also bit7.
1833 */
1834 ocr &= ~0x7FFF;
1835
1836 rocr = mmc_select_voltage(host, ocr);
1837
1838 /*
1839 * Can we support the voltage(s) of the card(s)?
1840 */
1841 if (!rocr) {
1842 err = -EINVAL;
1843 goto err;
1844 }
1845
1846 /*
1847 * Detect and init the card.
1848 */
1849 err = mmc_sd_init_card(host, rocr, NULL);
1850 if (err)
1851 goto err;
1852
1853 mmc_release_host(host);
1854 err = mmc_add_card(host->card);
1855 if (err)
1856 goto remove_card;
1857
1858 mmc_claim_host(host);
1859 return 0;
1860
1861remove_card:
1862 mmc_remove_card(host->card);
1863 host->card = NULL;
1864 mmc_claim_host(host);
1865err:
1866 mmc_detach_bus(host);
1867
1868 pr_err("%s: error %d whilst initialising SD card\n",
1869 mmc_hostname(host), err);
1870
1871 return err;
1872}