Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
  4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
  5 * lockups) along with other things that don't fit well into existing LKDTM
  6 * test source files.
  7 */
  8#include "lkdtm.h"
  9#include <linux/list.h>
 10#include <linux/sched.h>
 11#include <linux/sched/signal.h>
 12#include <linux/sched/task_stack.h>
 13#include <linux/uaccess.h>
 14#include <linux/slab.h>
 15
 16#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
 17#include <asm/desc.h>
 18#endif
 19
 20struct lkdtm_list {
 21	struct list_head node;
 22};
 23
 24/*
 25 * Make sure our attempts to over run the kernel stack doesn't trigger
 26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
 27 * recurse past the end of THREAD_SIZE by default.
 28 */
 29#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
 30#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
 31#else
 32#define REC_STACK_SIZE (THREAD_SIZE / 8)
 33#endif
 34#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
 35
 36static int recur_count = REC_NUM_DEFAULT;
 37
 38static DEFINE_SPINLOCK(lock_me_up);
 39
 40/*
 41 * Make sure compiler does not optimize this function or stack frame away:
 42 * - function marked noinline
 43 * - stack variables are marked volatile
 44 * - stack variables are written (memset()) and read (pr_info())
 45 * - function has external effects (pr_info())
 46 * */
 47static int noinline recursive_loop(int remaining)
 48{
 49	volatile char buf[REC_STACK_SIZE];
 50
 51	memset((void *)buf, remaining & 0xFF, sizeof(buf));
 52	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
 53		recur_count);
 54	if (!remaining)
 55		return 0;
 56	else
 57		return recursive_loop(remaining - 1);
 58}
 59
 60/* If the depth is negative, use the default, otherwise keep parameter. */
 61void __init lkdtm_bugs_init(int *recur_param)
 62{
 63	if (*recur_param < 0)
 64		*recur_param = recur_count;
 65	else
 66		recur_count = *recur_param;
 67}
 68
 69void lkdtm_PANIC(void)
 70{
 71	panic("dumptest");
 72}
 73
 74void lkdtm_BUG(void)
 75{
 76	BUG();
 77}
 78
 79static int warn_counter;
 80
 81void lkdtm_WARNING(void)
 82{
 83	WARN_ON(++warn_counter);
 84}
 85
 86void lkdtm_WARNING_MESSAGE(void)
 87{
 88	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
 89}
 90
 91void lkdtm_EXCEPTION(void)
 92{
 93	*((volatile int *) 0) = 0;
 94}
 95
 96void lkdtm_LOOP(void)
 97{
 98	for (;;)
 99		;
100}
101
102void lkdtm_EXHAUST_STACK(void)
103{
104	pr_info("Calling function with %lu frame size to depth %d ...\n",
105		REC_STACK_SIZE, recur_count);
106	recursive_loop(recur_count);
107	pr_info("FAIL: survived without exhausting stack?!\n");
108}
109
110static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111{
112	memset(stack, '\xff', 64);
113}
114
115/* This should trip the stack canary, not corrupt the return address. */
116noinline void lkdtm_CORRUPT_STACK(void)
117{
118	/* Use default char array length that triggers stack protection. */
119	char data[8] __aligned(sizeof(void *));
120
121	pr_info("Corrupting stack containing char array ...\n");
122	__lkdtm_CORRUPT_STACK((void *)&data);
123}
124
125/* Same as above but will only get a canary with -fstack-protector-strong */
126noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127{
128	union {
129		unsigned short shorts[4];
130		unsigned long *ptr;
131	} data __aligned(sizeof(void *));
132
133	pr_info("Corrupting stack containing union ...\n");
134	__lkdtm_CORRUPT_STACK((void *)&data);
135}
136
137static pid_t stack_pid;
138static unsigned long stack_addr;
139
140void lkdtm_REPORT_STACK(void)
141{
142	volatile uintptr_t magic;
143	pid_t pid = task_pid_nr(current);
144
145	if (pid != stack_pid) {
146		pr_info("Starting stack offset tracking for pid %d\n", pid);
147		stack_pid = pid;
148		stack_addr = (uintptr_t)&magic;
149	}
150
151	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152}
153
154void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
155{
156	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157	u32 *p;
158	u32 val = 0x12345678;
159
160	p = (u32 *)(data + 1);
161	if (*p == 0)
162		val = 0x87654321;
163	*p = val;
164
165	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
166		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
167}
168
169void lkdtm_SOFTLOCKUP(void)
170{
171	preempt_disable();
172	for (;;)
173		cpu_relax();
174}
175
176void lkdtm_HARDLOCKUP(void)
177{
178	local_irq_disable();
179	for (;;)
180		cpu_relax();
181}
182
183void lkdtm_SPINLOCKUP(void)
184{
185	/* Must be called twice to trigger. */
186	spin_lock(&lock_me_up);
187	/* Let sparse know we intended to exit holding the lock. */
188	__release(&lock_me_up);
189}
190
191void lkdtm_HUNG_TASK(void)
192{
193	set_current_state(TASK_UNINTERRUPTIBLE);
194	schedule();
195}
196
197volatile unsigned int huge = INT_MAX - 2;
198volatile unsigned int ignored;
199
200void lkdtm_OVERFLOW_SIGNED(void)
201{
202	int value;
203
204	value = huge;
205	pr_info("Normal signed addition ...\n");
206	value += 1;
207	ignored = value;
208
209	pr_info("Overflowing signed addition ...\n");
210	value += 4;
211	ignored = value;
212}
213
214
215void lkdtm_OVERFLOW_UNSIGNED(void)
216{
217	unsigned int value;
218
219	value = huge;
220	pr_info("Normal unsigned addition ...\n");
221	value += 1;
222	ignored = value;
223
224	pr_info("Overflowing unsigned addition ...\n");
225	value += 4;
226	ignored = value;
227}
228
229/* Intentionally using old-style flex array definition of 1 byte. */
230struct array_bounds_flex_array {
231	int one;
232	int two;
233	char data[1];
234};
235
236struct array_bounds {
237	int one;
238	int two;
239	char data[8];
240	int three;
241};
242
243void lkdtm_ARRAY_BOUNDS(void)
244{
245	struct array_bounds_flex_array *not_checked;
246	struct array_bounds *checked;
247	volatile int i;
248
249	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
250	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
251
252	pr_info("Array access within bounds ...\n");
253	/* For both, touch all bytes in the actual member size. */
254	for (i = 0; i < sizeof(checked->data); i++)
255		checked->data[i] = 'A';
256	/*
257	 * For the uninstrumented flex array member, also touch 1 byte
258	 * beyond to verify it is correctly uninstrumented.
259	 */
260	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
261		not_checked->data[i] = 'A';
262
263	pr_info("Array access beyond bounds ...\n");
264	for (i = 0; i < sizeof(checked->data) + 1; i++)
265		checked->data[i] = 'B';
266
267	kfree(not_checked);
268	kfree(checked);
269	pr_err("FAIL: survived array bounds overflow!\n");
270}
271
272void lkdtm_CORRUPT_LIST_ADD(void)
273{
274	/*
275	 * Initially, an empty list via LIST_HEAD:
276	 *	test_head.next = &test_head
277	 *	test_head.prev = &test_head
278	 */
279	LIST_HEAD(test_head);
280	struct lkdtm_list good, bad;
281	void *target[2] = { };
282	void *redirection = &target;
283
284	pr_info("attempting good list addition\n");
285
286	/*
287	 * Adding to the list performs these actions:
288	 *	test_head.next->prev = &good.node
289	 *	good.node.next = test_head.next
290	 *	good.node.prev = test_head
291	 *	test_head.next = good.node
292	 */
293	list_add(&good.node, &test_head);
294
295	pr_info("attempting corrupted list addition\n");
296	/*
297	 * In simulating this "write what where" primitive, the "what" is
298	 * the address of &bad.node, and the "where" is the address held
299	 * by "redirection".
300	 */
301	test_head.next = redirection;
302	list_add(&bad.node, &test_head);
303
304	if (target[0] == NULL && target[1] == NULL)
305		pr_err("Overwrite did not happen, but no BUG?!\n");
306	else {
307		pr_err("list_add() corruption not detected!\n");
308		pr_expected_config(CONFIG_DEBUG_LIST);
309	}
310}
311
312void lkdtm_CORRUPT_LIST_DEL(void)
313{
314	LIST_HEAD(test_head);
315	struct lkdtm_list item;
316	void *target[2] = { };
317	void *redirection = &target;
318
319	list_add(&item.node, &test_head);
320
321	pr_info("attempting good list removal\n");
322	list_del(&item.node);
323
324	pr_info("attempting corrupted list removal\n");
325	list_add(&item.node, &test_head);
326
327	/* As with the list_add() test above, this corrupts "next". */
328	item.node.next = redirection;
329	list_del(&item.node);
330
331	if (target[0] == NULL && target[1] == NULL)
332		pr_err("Overwrite did not happen, but no BUG?!\n");
333	else {
334		pr_err("list_del() corruption not detected!\n");
335		pr_expected_config(CONFIG_DEBUG_LIST);
336	}
337}
338
339/* Test that VMAP_STACK is actually allocating with a leading guard page */
340void lkdtm_STACK_GUARD_PAGE_LEADING(void)
341{
342	const unsigned char *stack = task_stack_page(current);
343	const unsigned char *ptr = stack - 1;
344	volatile unsigned char byte;
345
346	pr_info("attempting bad read from page below current stack\n");
347
348	byte = *ptr;
349
350	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
351}
352
353/* Test that VMAP_STACK is actually allocating with a trailing guard page */
354void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
355{
356	const unsigned char *stack = task_stack_page(current);
357	const unsigned char *ptr = stack + THREAD_SIZE;
358	volatile unsigned char byte;
359
360	pr_info("attempting bad read from page above current stack\n");
361
362	byte = *ptr;
363
364	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
365}
366
367void lkdtm_UNSET_SMEP(void)
368{
369#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
370#define MOV_CR4_DEPTH	64
371	void (*direct_write_cr4)(unsigned long val);
372	unsigned char *insn;
373	unsigned long cr4;
374	int i;
375
376	cr4 = native_read_cr4();
377
378	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
379		pr_err("FAIL: SMEP not in use\n");
380		return;
381	}
382	cr4 &= ~(X86_CR4_SMEP);
383
384	pr_info("trying to clear SMEP normally\n");
385	native_write_cr4(cr4);
386	if (cr4 == native_read_cr4()) {
387		pr_err("FAIL: pinning SMEP failed!\n");
388		cr4 |= X86_CR4_SMEP;
389		pr_info("restoring SMEP\n");
390		native_write_cr4(cr4);
391		return;
392	}
393	pr_info("ok: SMEP did not get cleared\n");
394
395	/*
396	 * To test the post-write pinning verification we need to call
397	 * directly into the middle of native_write_cr4() where the
398	 * cr4 write happens, skipping any pinning. This searches for
399	 * the cr4 writing instruction.
400	 */
401	insn = (unsigned char *)native_write_cr4;
402	for (i = 0; i < MOV_CR4_DEPTH; i++) {
403		/* mov %rdi, %cr4 */
404		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
405			break;
406		/* mov %rdi,%rax; mov %rax, %cr4 */
407		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
408		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
409		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
410			break;
411	}
412	if (i >= MOV_CR4_DEPTH) {
413		pr_info("ok: cannot locate cr4 writing call gadget\n");
414		return;
415	}
416	direct_write_cr4 = (void *)(insn + i);
417
418	pr_info("trying to clear SMEP with call gadget\n");
419	direct_write_cr4(cr4);
420	if (native_read_cr4() & X86_CR4_SMEP) {
421		pr_info("ok: SMEP removal was reverted\n");
422	} else {
423		pr_err("FAIL: cleared SMEP not detected!\n");
424		cr4 |= X86_CR4_SMEP;
425		pr_info("restoring SMEP\n");
426		native_write_cr4(cr4);
427	}
428#else
429	pr_err("XFAIL: this test is x86_64-only\n");
430#endif
431}
432
433void lkdtm_DOUBLE_FAULT(void)
434{
435#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
436	/*
437	 * Trigger #DF by setting the stack limit to zero.  This clobbers
438	 * a GDT TLS slot, which is okay because the current task will die
439	 * anyway due to the double fault.
440	 */
441	struct desc_struct d = {
442		.type = 3,	/* expand-up, writable, accessed data */
443		.p = 1,		/* present */
444		.d = 1,		/* 32-bit */
445		.g = 0,		/* limit in bytes */
446		.s = 1,		/* not system */
447	};
448
449	local_irq_disable();
450	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
451			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
452
453	/*
454	 * Put our zero-limit segment in SS and then trigger a fault.  The
455	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
456	 * deliver the fault will recursively cause #SS and result in #DF.
457	 * This whole process happens while NMIs and MCEs are blocked by the
458	 * MOV SS window.  This is nice because an NMI with an invalid SS
459	 * would also double-fault, resulting in the NMI or MCE being lost.
460	 */
461	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
462		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
463
464	pr_err("FAIL: tried to double fault but didn't die\n");
465#else
466	pr_err("XFAIL: this test is ia32-only\n");
467#endif
468}
469
470#ifdef CONFIG_ARM64
471static noinline void change_pac_parameters(void)
472{
473	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
474		/* Reset the keys of current task */
475		ptrauth_thread_init_kernel(current);
476		ptrauth_thread_switch_kernel(current);
477	}
478}
479#endif
480
481noinline void lkdtm_CORRUPT_PAC(void)
482{
483#ifdef CONFIG_ARM64
484#define CORRUPT_PAC_ITERATE	10
485	int i;
486
487	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
488		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
489
490	if (!system_supports_address_auth()) {
491		pr_err("FAIL: CPU lacks pointer authentication feature\n");
492		return;
493	}
494
495	pr_info("changing PAC parameters to force function return failure...\n");
496	/*
497	 * PAC is a hash value computed from input keys, return address and
498	 * stack pointer. As pac has fewer bits so there is a chance of
499	 * collision, so iterate few times to reduce the collision probability.
500	 */
501	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
502		change_pac_parameters();
503
504	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
505#else
506	pr_err("XFAIL: this test is arm64-only\n");
507#endif
508}
509
510void lkdtm_FORTIFY_OBJECT(void)
511{
512	struct target {
513		char a[10];
514	} target[2] = {};
515	int result;
516
517	/*
518	 * Using volatile prevents the compiler from determining the value of
519	 * 'size' at compile time. Without that, we would get a compile error
520	 * rather than a runtime error.
521	 */
522	volatile int size = 11;
523
524	pr_info("trying to read past the end of a struct\n");
525
526	result = memcmp(&target[0], &target[1], size);
527
528	/* Print result to prevent the code from being eliminated */
529	pr_err("FAIL: fortify did not catch an object overread!\n"
530	       "\"%d\" was the memcmp result.\n", result);
531}
532
533void lkdtm_FORTIFY_SUBOBJECT(void)
534{
535	struct target {
536		char a[10];
537		char b[10];
538	} target;
539	char *src;
540
541	src = kmalloc(20, GFP_KERNEL);
542	strscpy(src, "over ten bytes", 20);
543
544	pr_info("trying to strcpy past the end of a member of a struct\n");
545
546	/*
547	 * strncpy(target.a, src, 20); will hit a compile error because the
548	 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
549	 * to force a runtime error.
550	 */
551	strcpy(target.a, src);
552
553	/* Use target.a to prevent the code from being eliminated */
554	pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
555	       "\"%s\" was copied.\n", target.a);
556
557	kfree(src);
558}