Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2015 Broadcom
  4 */
  5
  6/**
  7 * DOC: VC4 KMS
  8 *
  9 * This is the general code for implementing KMS mode setting that
 10 * doesn't clearly associate with any of the other objects (plane,
 11 * crtc, HDMI encoder).
 12 */
 13
 14#include <linux/clk.h>
 15
 16#include <drm/drm_atomic.h>
 17#include <drm/drm_atomic_helper.h>
 18#include <drm/drm_crtc.h>
 19#include <drm/drm_gem_framebuffer_helper.h>
 20#include <drm/drm_plane_helper.h>
 21#include <drm/drm_probe_helper.h>
 22#include <drm/drm_vblank.h>
 23
 24#include "vc4_drv.h"
 25#include "vc4_regs.h"
 26
 27#define HVS_NUM_CHANNELS 3
 28
 29struct vc4_ctm_state {
 30	struct drm_private_state base;
 31	struct drm_color_ctm *ctm;
 32	int fifo;
 33};
 34
 35static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
 36{
 37	return container_of(priv, struct vc4_ctm_state, base);
 38}
 39
 40struct vc4_hvs_state {
 41	struct drm_private_state base;
 42
 43	struct {
 44		unsigned in_use: 1;
 45		struct drm_crtc_commit *pending_commit;
 46	} fifo_state[HVS_NUM_CHANNELS];
 47};
 48
 49static struct vc4_hvs_state *
 50to_vc4_hvs_state(struct drm_private_state *priv)
 51{
 52	return container_of(priv, struct vc4_hvs_state, base);
 53}
 54
 55struct vc4_load_tracker_state {
 56	struct drm_private_state base;
 57	u64 hvs_load;
 58	u64 membus_load;
 59};
 60
 61static struct vc4_load_tracker_state *
 62to_vc4_load_tracker_state(struct drm_private_state *priv)
 63{
 64	return container_of(priv, struct vc4_load_tracker_state, base);
 65}
 66
 67static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
 68					       struct drm_private_obj *manager)
 69{
 70	struct drm_device *dev = state->dev;
 71	struct vc4_dev *vc4 = to_vc4_dev(dev);
 72	struct drm_private_state *priv_state;
 73	int ret;
 74
 75	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
 76	if (ret)
 77		return ERR_PTR(ret);
 78
 79	priv_state = drm_atomic_get_private_obj_state(state, manager);
 80	if (IS_ERR(priv_state))
 81		return ERR_CAST(priv_state);
 82
 83	return to_vc4_ctm_state(priv_state);
 84}
 85
 86static struct drm_private_state *
 87vc4_ctm_duplicate_state(struct drm_private_obj *obj)
 88{
 89	struct vc4_ctm_state *state;
 90
 91	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
 92	if (!state)
 93		return NULL;
 94
 95	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
 96
 97	return &state->base;
 98}
 99
100static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
101				  struct drm_private_state *state)
102{
103	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104
105	kfree(ctm_state);
106}
107
108static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
109	.atomic_duplicate_state = vc4_ctm_duplicate_state,
110	.atomic_destroy_state = vc4_ctm_destroy_state,
111};
112
113static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
114{
115	struct vc4_dev *vc4 = to_vc4_dev(dev);
116
117	drm_atomic_private_obj_fini(&vc4->ctm_manager);
118}
119
120static int vc4_ctm_obj_init(struct vc4_dev *vc4)
121{
122	struct vc4_ctm_state *ctm_state;
123
124	drm_modeset_lock_init(&vc4->ctm_state_lock);
125
126	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
127	if (!ctm_state)
128		return -ENOMEM;
129
130	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
131				    &vc4_ctm_state_funcs);
132
133	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
134}
135
136/* Converts a DRM S31.32 value to the HW S0.9 format. */
137static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138{
139	u16 r;
140
141	/* Sign bit. */
142	r = in & BIT_ULL(63) ? BIT(9) : 0;
143
144	if ((in & GENMASK_ULL(62, 32)) > 0) {
145		/* We have zero integer bits so we can only saturate here. */
146		r |= GENMASK(8, 0);
147	} else {
148		/* Otherwise take the 9 most important fractional bits. */
149		r |= (in >> 23) & GENMASK(8, 0);
150	}
151
152	return r;
153}
154
155static void
156vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
157{
158	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
159	struct drm_color_ctm *ctm = ctm_state->ctm;
160
161	if (ctm_state->fifo) {
162		HVS_WRITE(SCALER_OLEDCOEF2,
163			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
164					SCALER_OLEDCOEF2_R_TO_R) |
165			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
166					SCALER_OLEDCOEF2_R_TO_G) |
167			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
168					SCALER_OLEDCOEF2_R_TO_B));
169		HVS_WRITE(SCALER_OLEDCOEF1,
170			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
171					SCALER_OLEDCOEF1_G_TO_R) |
172			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
173					SCALER_OLEDCOEF1_G_TO_G) |
174			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
175					SCALER_OLEDCOEF1_G_TO_B));
176		HVS_WRITE(SCALER_OLEDCOEF0,
177			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
178					SCALER_OLEDCOEF0_B_TO_R) |
179			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
180					SCALER_OLEDCOEF0_B_TO_G) |
181			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
182					SCALER_OLEDCOEF0_B_TO_B));
183	}
184
185	HVS_WRITE(SCALER_OLEDOFFS,
186		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
187}
188
189static struct vc4_hvs_state *
190vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
191{
192	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
193	struct drm_private_state *priv_state;
194
195	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
196	if (IS_ERR(priv_state))
197		return ERR_CAST(priv_state);
198
199	return to_vc4_hvs_state(priv_state);
200}
201
202static struct vc4_hvs_state *
203vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
204{
205	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
206	struct drm_private_state *priv_state;
207
208	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
209	if (IS_ERR(priv_state))
210		return ERR_CAST(priv_state);
211
212	return to_vc4_hvs_state(priv_state);
213}
214
215static struct vc4_hvs_state *
216vc4_hvs_get_global_state(struct drm_atomic_state *state)
217{
218	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
219	struct drm_private_state *priv_state;
220
221	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
222	if (IS_ERR(priv_state))
223		return ERR_CAST(priv_state);
224
225	return to_vc4_hvs_state(priv_state);
226}
227
228static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
229				     struct drm_atomic_state *state)
230{
231	struct drm_crtc_state *crtc_state;
232	struct drm_crtc *crtc;
233	unsigned int i;
234
235	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
236		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
237		u32 dispctrl;
238		u32 dsp3_mux;
239
240		if (!crtc_state->active)
241			continue;
242
243		if (vc4_state->assigned_channel != 2)
244			continue;
245
246		/*
247		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
248		 * FIFO X'.
249		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
250		 *
251		 * DSP3 is connected to FIFO2 unless the transposer is
252		 * enabled. In this case, FIFO 2 is directly accessed by the
253		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
254		 * route.
255		 */
256		if (vc4_state->feed_txp)
257			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
258		else
259			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
260
261		dispctrl = HVS_READ(SCALER_DISPCTRL) &
262			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
263		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
264	}
265}
266
267static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
268				     struct drm_atomic_state *state)
269{
270	struct drm_crtc_state *crtc_state;
271	struct drm_crtc *crtc;
272	unsigned char mux;
273	unsigned int i;
274	u32 reg;
275
276	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
277		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
278		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
279
280		if (!vc4_state->update_muxing)
281			continue;
282
283		switch (vc4_crtc->data->hvs_output) {
284		case 2:
285			mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
286			reg = HVS_READ(SCALER_DISPECTRL);
287			HVS_WRITE(SCALER_DISPECTRL,
288				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
289				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
290			break;
291
292		case 3:
293			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
294				mux = 3;
295			else
296				mux = vc4_state->assigned_channel;
297
298			reg = HVS_READ(SCALER_DISPCTRL);
299			HVS_WRITE(SCALER_DISPCTRL,
300				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
301				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
302			break;
303
304		case 4:
305			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
306				mux = 3;
307			else
308				mux = vc4_state->assigned_channel;
309
310			reg = HVS_READ(SCALER_DISPEOLN);
311			HVS_WRITE(SCALER_DISPEOLN,
312				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
313				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
314
315			break;
316
317		case 5:
318			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
319				mux = 3;
320			else
321				mux = vc4_state->assigned_channel;
322
323			reg = HVS_READ(SCALER_DISPDITHER);
324			HVS_WRITE(SCALER_DISPDITHER,
325				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
326				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
327			break;
328
329		default:
330			break;
331		}
332	}
333}
334
335static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
336{
337	struct drm_device *dev = state->dev;
338	struct vc4_dev *vc4 = to_vc4_dev(dev);
339	struct vc4_hvs *hvs = vc4->hvs;
340	struct drm_crtc_state *old_crtc_state;
341	struct drm_crtc_state *new_crtc_state;
342	struct drm_crtc *crtc;
343	struct vc4_hvs_state *old_hvs_state;
344	int i;
345
346	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
347		struct vc4_crtc_state *vc4_crtc_state;
348
349		if (!new_crtc_state->commit)
350			continue;
351
352		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
353		vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
354	}
355
356	if (vc4->hvs->hvs5)
357		clk_set_min_rate(hvs->core_clk, 500000000);
358
359	old_hvs_state = vc4_hvs_get_old_global_state(state);
360	if (!old_hvs_state)
361		return;
362
363	for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) {
364		struct vc4_crtc_state *vc4_crtc_state =
365			to_vc4_crtc_state(old_crtc_state);
366		unsigned int channel = vc4_crtc_state->assigned_channel;
367		int ret;
368
369		if (channel == VC4_HVS_CHANNEL_DISABLED)
370			continue;
371
372		if (!old_hvs_state->fifo_state[channel].in_use)
373			continue;
374
375		ret = drm_crtc_commit_wait(old_hvs_state->fifo_state[channel].pending_commit);
376		if (ret)
377			drm_err(dev, "Timed out waiting for commit\n");
378	}
379
380	drm_atomic_helper_commit_modeset_disables(dev, state);
381
382	vc4_ctm_commit(vc4, state);
383
384	if (vc4->hvs->hvs5)
385		vc5_hvs_pv_muxing_commit(vc4, state);
386	else
387		vc4_hvs_pv_muxing_commit(vc4, state);
388
389	drm_atomic_helper_commit_planes(dev, state, 0);
390
391	drm_atomic_helper_commit_modeset_enables(dev, state);
392
393	drm_atomic_helper_fake_vblank(state);
394
395	drm_atomic_helper_commit_hw_done(state);
396
397	drm_atomic_helper_wait_for_flip_done(dev, state);
398
399	drm_atomic_helper_cleanup_planes(dev, state);
400
401	if (vc4->hvs->hvs5)
402		clk_set_min_rate(hvs->core_clk, 0);
403}
404
405static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
406{
407	struct drm_crtc_state *crtc_state;
408	struct vc4_hvs_state *hvs_state;
409	struct drm_crtc *crtc;
410	unsigned int i;
411
412	hvs_state = vc4_hvs_get_new_global_state(state);
413	if (!hvs_state)
414		return -EINVAL;
415
416	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
417		struct vc4_crtc_state *vc4_crtc_state =
418			to_vc4_crtc_state(crtc_state);
419		unsigned int channel =
420			vc4_crtc_state->assigned_channel;
421
422		if (channel == VC4_HVS_CHANNEL_DISABLED)
423			continue;
424
425		if (!hvs_state->fifo_state[channel].in_use)
426			continue;
427
428		hvs_state->fifo_state[channel].pending_commit =
429			drm_crtc_commit_get(crtc_state->commit);
430	}
431
432	return 0;
433}
434
435static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
436					     struct drm_file *file_priv,
437					     const struct drm_mode_fb_cmd2 *mode_cmd)
438{
439	struct drm_mode_fb_cmd2 mode_cmd_local;
440
441	/* If the user didn't specify a modifier, use the
442	 * vc4_set_tiling_ioctl() state for the BO.
443	 */
444	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
445		struct drm_gem_object *gem_obj;
446		struct vc4_bo *bo;
447
448		gem_obj = drm_gem_object_lookup(file_priv,
449						mode_cmd->handles[0]);
450		if (!gem_obj) {
451			DRM_DEBUG("Failed to look up GEM BO %d\n",
452				  mode_cmd->handles[0]);
453			return ERR_PTR(-ENOENT);
454		}
455		bo = to_vc4_bo(gem_obj);
456
457		mode_cmd_local = *mode_cmd;
458
459		if (bo->t_format) {
460			mode_cmd_local.modifier[0] =
461				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
462		} else {
463			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
464		}
465
466		drm_gem_object_put(gem_obj);
467
468		mode_cmd = &mode_cmd_local;
469	}
470
471	return drm_gem_fb_create(dev, file_priv, mode_cmd);
472}
473
474/* Our CTM has some peculiar limitations: we can only enable it for one CRTC
475 * at a time and the HW only supports S0.9 scalars. To account for the latter,
476 * we don't allow userland to set a CTM that we have no hope of approximating.
477 */
478static int
479vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
480{
481	struct vc4_dev *vc4 = to_vc4_dev(dev);
482	struct vc4_ctm_state *ctm_state = NULL;
483	struct drm_crtc *crtc;
484	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
485	struct drm_color_ctm *ctm;
486	int i;
487
488	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
489		/* CTM is being disabled. */
490		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
491			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
492			if (IS_ERR(ctm_state))
493				return PTR_ERR(ctm_state);
494			ctm_state->fifo = 0;
495		}
496	}
497
498	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
499		if (new_crtc_state->ctm == old_crtc_state->ctm)
500			continue;
501
502		if (!ctm_state) {
503			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
504			if (IS_ERR(ctm_state))
505				return PTR_ERR(ctm_state);
506		}
507
508		/* CTM is being enabled or the matrix changed. */
509		if (new_crtc_state->ctm) {
510			struct vc4_crtc_state *vc4_crtc_state =
511				to_vc4_crtc_state(new_crtc_state);
512
513			/* fifo is 1-based since 0 disables CTM. */
514			int fifo = vc4_crtc_state->assigned_channel + 1;
515
516			/* Check userland isn't trying to turn on CTM for more
517			 * than one CRTC at a time.
518			 */
519			if (ctm_state->fifo && ctm_state->fifo != fifo) {
520				DRM_DEBUG_DRIVER("Too many CTM configured\n");
521				return -EINVAL;
522			}
523
524			/* Check we can approximate the specified CTM.
525			 * We disallow scalars |c| > 1.0 since the HW has
526			 * no integer bits.
527			 */
528			ctm = new_crtc_state->ctm->data;
529			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
530				u64 val = ctm->matrix[i];
531
532				val &= ~BIT_ULL(63);
533				if (val > BIT_ULL(32))
534					return -EINVAL;
535			}
536
537			ctm_state->fifo = fifo;
538			ctm_state->ctm = ctm;
539		}
540	}
541
542	return 0;
543}
544
545static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
546{
547	struct drm_plane_state *old_plane_state, *new_plane_state;
548	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
549	struct vc4_load_tracker_state *load_state;
550	struct drm_private_state *priv_state;
551	struct drm_plane *plane;
552	int i;
553
554	if (!vc4->load_tracker_available)
555		return 0;
556
557	priv_state = drm_atomic_get_private_obj_state(state,
558						      &vc4->load_tracker);
559	if (IS_ERR(priv_state))
560		return PTR_ERR(priv_state);
561
562	load_state = to_vc4_load_tracker_state(priv_state);
563	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
564				       new_plane_state, i) {
565		struct vc4_plane_state *vc4_plane_state;
566
567		if (old_plane_state->fb && old_plane_state->crtc) {
568			vc4_plane_state = to_vc4_plane_state(old_plane_state);
569			load_state->membus_load -= vc4_plane_state->membus_load;
570			load_state->hvs_load -= vc4_plane_state->hvs_load;
571		}
572
573		if (new_plane_state->fb && new_plane_state->crtc) {
574			vc4_plane_state = to_vc4_plane_state(new_plane_state);
575			load_state->membus_load += vc4_plane_state->membus_load;
576			load_state->hvs_load += vc4_plane_state->hvs_load;
577		}
578	}
579
580	/* Don't check the load when the tracker is disabled. */
581	if (!vc4->load_tracker_enabled)
582		return 0;
583
584	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
585	 * the system work when other blocks are accessing the memory.
586	 */
587	if (load_state->membus_load > SZ_1G + SZ_512M)
588		return -ENOSPC;
589
590	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
591	 * consider the maximum number of cycles is 240M.
592	 */
593	if (load_state->hvs_load > 240000000ULL)
594		return -ENOSPC;
595
596	return 0;
597}
598
599static struct drm_private_state *
600vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
601{
602	struct vc4_load_tracker_state *state;
603
604	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
605	if (!state)
606		return NULL;
607
608	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
609
610	return &state->base;
611}
612
613static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
614					   struct drm_private_state *state)
615{
616	struct vc4_load_tracker_state *load_state;
617
618	load_state = to_vc4_load_tracker_state(state);
619	kfree(load_state);
620}
621
622static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
623	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
624	.atomic_destroy_state = vc4_load_tracker_destroy_state,
625};
626
627static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
628{
629	struct vc4_dev *vc4 = to_vc4_dev(dev);
630
631	if (!vc4->load_tracker_available)
632		return;
633
634	drm_atomic_private_obj_fini(&vc4->load_tracker);
635}
636
637static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
638{
639	struct vc4_load_tracker_state *load_state;
640
641	if (!vc4->load_tracker_available)
642		return 0;
643
644	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
645	if (!load_state)
646		return -ENOMEM;
647
648	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
649				    &load_state->base,
650				    &vc4_load_tracker_state_funcs);
651
652	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
653}
654
655static struct drm_private_state *
656vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
657{
658	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
659	struct vc4_hvs_state *state;
660	unsigned int i;
661
662	state = kzalloc(sizeof(*state), GFP_KERNEL);
663	if (!state)
664		return NULL;
665
666	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
667
668
669	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
670		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
671
672		if (!old_state->fifo_state[i].pending_commit)
673			continue;
674
675		state->fifo_state[i].pending_commit =
676			drm_crtc_commit_get(old_state->fifo_state[i].pending_commit);
677	}
678
679	return &state->base;
680}
681
682static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
683					   struct drm_private_state *state)
684{
685	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
686	unsigned int i;
687
688	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
689		if (!hvs_state->fifo_state[i].pending_commit)
690			continue;
691
692		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
693	}
694
695	kfree(hvs_state);
696}
697
698static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
699	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
700	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
701};
702
703static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
704{
705	struct vc4_dev *vc4 = to_vc4_dev(dev);
706
707	drm_atomic_private_obj_fini(&vc4->hvs_channels);
708}
709
710static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
711{
712	struct vc4_hvs_state *state;
713
714	state = kzalloc(sizeof(*state), GFP_KERNEL);
715	if (!state)
716		return -ENOMEM;
717
718	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
719				    &state->base,
720				    &vc4_hvs_state_funcs);
721
722	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
723}
724
725/*
726 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
727 * the TXP (and therefore all the CRTCs found on that platform).
728 *
729 * The naive (and our initial) implementation would just iterate over
730 * all the active CRTCs, try to find a suitable FIFO, and then remove it
731 * from the pool of available FIFOs. However, there are a few corner
732 * cases that need to be considered:
733 *
734 * - When running in a dual-display setup (so with two CRTCs involved),
735 *   we can update the state of a single CRTC (for example by changing
736 *   its mode using xrandr under X11) without affecting the other. In
737 *   this case, the other CRTC wouldn't be in the state at all, so we
738 *   need to consider all the running CRTCs in the DRM device to assign
739 *   a FIFO, not just the one in the state.
740 *
741 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
742 *   enabled CRTCs to pull their CRTC state into the global state, since
743 *   a page flip would start considering their vblank to complete. Since
744 *   we don't have a guarantee that they are actually active, that
745 *   vblank might never happen, and shouldn't even be considered if we
746 *   want to do a page flip on a single CRTC. That can be tested by
747 *   doing a modetest -v first on HDMI1 and then on HDMI0.
748 *
749 * - Since we need the pixelvalve to be disabled and enabled back when
750 *   the FIFO is changed, we should keep the FIFO assigned for as long
751 *   as the CRTC is enabled, only considering it free again once that
752 *   CRTC has been disabled. This can be tested by booting X11 on a
753 *   single display, and changing the resolution down and then back up.
754 */
755static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
756				      struct drm_atomic_state *state)
757{
758	struct vc4_hvs_state *hvs_new_state;
759	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
760	struct drm_crtc *crtc;
761	unsigned int unassigned_channels = 0;
762	unsigned int i;
763
764	hvs_new_state = vc4_hvs_get_global_state(state);
765	if (!hvs_new_state)
766		return -EINVAL;
767
768	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
769		if (!hvs_new_state->fifo_state[i].in_use)
770			unassigned_channels |= BIT(i);
771
772	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
773		struct vc4_crtc_state *old_vc4_crtc_state =
774			to_vc4_crtc_state(old_crtc_state);
775		struct vc4_crtc_state *new_vc4_crtc_state =
776			to_vc4_crtc_state(new_crtc_state);
777		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
778		unsigned int matching_channels;
779		unsigned int channel;
780
781		/* Nothing to do here, let's skip it */
782		if (old_crtc_state->enable == new_crtc_state->enable)
783			continue;
784
785		/* Muxing will need to be modified, mark it as such */
786		new_vc4_crtc_state->update_muxing = true;
787
788		/* If we're disabling our CRTC, we put back our channel */
789		if (!new_crtc_state->enable) {
790			channel = old_vc4_crtc_state->assigned_channel;
791			hvs_new_state->fifo_state[channel].in_use = false;
792			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
793			continue;
794		}
795
796		/*
797		 * The problem we have to solve here is that we have
798		 * up to 7 encoders, connected to up to 6 CRTCs.
799		 *
800		 * Those CRTCs, depending on the instance, can be
801		 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
802		 * the change the muxing between FIFOs and outputs in
803		 * the HVS accordingly.
804		 *
805		 * It would be pretty hard to come up with an
806		 * algorithm that would generically solve
807		 * this. However, the current routing trees we support
808		 * allow us to simplify a bit the problem.
809		 *
810		 * Indeed, with the current supported layouts, if we
811		 * try to assign in the ascending crtc index order the
812		 * FIFOs, we can't fall into the situation where an
813		 * earlier CRTC that had multiple routes is assigned
814		 * one that was the only option for a later CRTC.
815		 *
816		 * If the layout changes and doesn't give us that in
817		 * the future, we will need to have something smarter,
818		 * but it works so far.
819		 */
820		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
821		if (!matching_channels)
822			return -EINVAL;
823
824		channel = ffs(matching_channels) - 1;
825		new_vc4_crtc_state->assigned_channel = channel;
826		unassigned_channels &= ~BIT(channel);
827		hvs_new_state->fifo_state[channel].in_use = true;
828	}
829
830	return 0;
831}
832
833static int
834vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
835{
836	int ret;
837
838	ret = vc4_pv_muxing_atomic_check(dev, state);
839	if (ret)
840		return ret;
841
842	ret = vc4_ctm_atomic_check(dev, state);
843	if (ret < 0)
844		return ret;
845
846	ret = drm_atomic_helper_check(dev, state);
847	if (ret)
848		return ret;
849
850	return vc4_load_tracker_atomic_check(state);
851}
852
853static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
854	.atomic_commit_setup	= vc4_atomic_commit_setup,
855	.atomic_commit_tail	= vc4_atomic_commit_tail,
856};
857
858static const struct drm_mode_config_funcs vc4_mode_funcs = {
859	.atomic_check = vc4_atomic_check,
860	.atomic_commit = drm_atomic_helper_commit,
861	.fb_create = vc4_fb_create,
862};
863
864int vc4_kms_load(struct drm_device *dev)
865{
866	struct vc4_dev *vc4 = to_vc4_dev(dev);
867	bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
868					      "brcm,bcm2711-vc5");
869	int ret;
870
871	if (!is_vc5) {
872		vc4->load_tracker_available = true;
873
874		/* Start with the load tracker enabled. Can be
875		 * disabled through the debugfs load_tracker file.
876		 */
877		vc4->load_tracker_enabled = true;
878	}
879
880	/* Set support for vblank irq fast disable, before drm_vblank_init() */
881	dev->vblank_disable_immediate = true;
882
883	dev->irq_enabled = true;
884	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
885	if (ret < 0) {
886		dev_err(dev->dev, "failed to initialize vblank\n");
887		return ret;
888	}
889
890	if (is_vc5) {
891		dev->mode_config.max_width = 7680;
892		dev->mode_config.max_height = 7680;
893	} else {
894		dev->mode_config.max_width = 2048;
895		dev->mode_config.max_height = 2048;
896	}
897
898	dev->mode_config.funcs = &vc4_mode_funcs;
899	dev->mode_config.helper_private = &vc4_mode_config_helpers;
900	dev->mode_config.preferred_depth = 24;
901	dev->mode_config.async_page_flip = true;
902
903	ret = vc4_ctm_obj_init(vc4);
904	if (ret)
905		return ret;
906
907	ret = vc4_load_tracker_obj_init(vc4);
908	if (ret)
909		return ret;
910
911	ret = vc4_hvs_channels_obj_init(vc4);
912	if (ret)
913		return ret;
914
915	drm_mode_config_reset(dev);
916
917	drm_kms_helper_poll_init(dev);
918
919	return 0;
920}