Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2008-2018 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#ifndef I915_REQUEST_H
 26#define I915_REQUEST_H
 27
 28#include <linux/dma-fence.h>
 29#include <linux/hrtimer.h>
 30#include <linux/irq_work.h>
 31#include <linux/llist.h>
 32#include <linux/lockdep.h>
 33
 34#include "gem/i915_gem_context_types.h"
 35#include "gt/intel_context_types.h"
 36#include "gt/intel_engine_types.h"
 37#include "gt/intel_timeline_types.h"
 38
 39#include "i915_gem.h"
 40#include "i915_scheduler.h"
 41#include "i915_selftest.h"
 42#include "i915_sw_fence.h"
 43
 44#include <uapi/drm/i915_drm.h>
 45
 46struct drm_file;
 47struct drm_i915_gem_object;
 48struct drm_printer;
 49struct i915_request;
 50
 51struct i915_capture_list {
 52	struct i915_capture_list *next;
 53	struct i915_vma *vma;
 54};
 55
 56#define RQ_TRACE(rq, fmt, ...) do {					\
 57	const struct i915_request *rq__ = (rq);				\
 58	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
 59		     rq__->fence.context, rq__->fence.seqno,		\
 60		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
 61} while (0)
 62
 63enum {
 64	/*
 65	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
 66	 *
 67	 * Set by __i915_request_submit() on handing over to HW, and cleared
 68	 * by __i915_request_unsubmit() if we preempt this request.
 69	 *
 70	 * Finally cleared for consistency on retiring the request, when
 71	 * we know the HW is no longer running this request.
 72	 *
 73	 * See i915_request_is_active()
 74	 */
 75	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
 76
 77	/*
 78	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
 79	 *
 80	 * Using the scheduler, when a request is ready for execution it is put
 81	 * into the priority queue, and removed from that queue when transferred
 82	 * to the HW runlists. We want to track its membership within the
 83	 * priority queue so that we can easily check before rescheduling.
 84	 *
 85	 * See i915_request_in_priority_queue()
 86	 */
 87	I915_FENCE_FLAG_PQUEUE,
 88
 89	/*
 90	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
 91	 *
 92	 * This request has been suspended, pending an ongoing investigation.
 93	 */
 94	I915_FENCE_FLAG_HOLD,
 95
 96	/*
 97	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
 98	 * breadcrumb that marks the end of semaphore waits and start of the
 99	 * user payload.
100	 */
101	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
102
103	/*
104	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
105	 *
106	 * Internal bookkeeping used by the breadcrumb code to track when
107	 * a request is on the various signal_list.
108	 */
109	I915_FENCE_FLAG_SIGNAL,
110
111	/*
112	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
113	 *
114	 * The execution of some requests should not be interrupted. This is
115	 * a sensitive operation as it makes the request super important,
116	 * blocking other higher priority work. Abuse of this flag will
117	 * lead to quality of service issues.
118	 */
119	I915_FENCE_FLAG_NOPREEMPT,
120
121	/*
122	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
123	 *
124	 * A high priority sentinel request may be submitted to clear the
125	 * submission queue. As it will be the only request in-flight, upon
126	 * execution all other active requests will have been preempted and
127	 * unsubmitted. This preemptive pulse is used to re-evaluate the
128	 * in-flight requests, particularly in cases where an active context
129	 * is banned and those active requests need to be cancelled.
130	 */
131	I915_FENCE_FLAG_SENTINEL,
132
133	/*
134	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
135	 *
136	 * Some requests are more important than others! In particular, a
137	 * request that the user is waiting on is typically required for
138	 * interactive latency, for which we want to minimise by upclocking
139	 * the GPU. Here we track such boost requests on a per-request basis.
140	 */
141	I915_FENCE_FLAG_BOOST,
142};
143
144/**
145 * Request queue structure.
146 *
147 * The request queue allows us to note sequence numbers that have been emitted
148 * and may be associated with active buffers to be retired.
149 *
150 * By keeping this list, we can avoid having to do questionable sequence
151 * number comparisons on buffer last_read|write_seqno. It also allows an
152 * emission time to be associated with the request for tracking how far ahead
153 * of the GPU the submission is.
154 *
155 * When modifying this structure be very aware that we perform a lockless
156 * RCU lookup of it that may race against reallocation of the struct
157 * from the slab freelist. We intentionally do not zero the structure on
158 * allocation so that the lookup can use the dangling pointers (and is
159 * cogniscent that those pointers may be wrong). Instead, everything that
160 * needs to be initialised must be done so explicitly.
161 *
162 * The requests are reference counted.
163 */
164struct i915_request {
165	struct dma_fence fence;
166	spinlock_t lock;
167
168	/**
169	 * Context and ring buffer related to this request
170	 * Contexts are refcounted, so when this request is associated with a
171	 * context, we must increment the context's refcount, to guarantee that
172	 * it persists while any request is linked to it. Requests themselves
173	 * are also refcounted, so the request will only be freed when the last
174	 * reference to it is dismissed, and the code in
175	 * i915_request_free() will then decrement the refcount on the
176	 * context.
177	 */
178	struct intel_engine_cs *engine;
179	struct intel_context *context;
180	struct intel_ring *ring;
181	struct intel_timeline __rcu *timeline;
182
183	struct list_head signal_link;
184	struct llist_node signal_node;
185
186	/*
187	 * The rcu epoch of when this request was allocated. Used to judiciously
188	 * apply backpressure on future allocations to ensure that under
189	 * mempressure there is sufficient RCU ticks for us to reclaim our
190	 * RCU protected slabs.
191	 */
192	unsigned long rcustate;
193
194	/*
195	 * We pin the timeline->mutex while constructing the request to
196	 * ensure that no caller accidentally drops it during construction.
197	 * The timeline->mutex must be held to ensure that only this caller
198	 * can use the ring and manipulate the associated timeline during
199	 * construction.
200	 */
201	struct pin_cookie cookie;
202
203	/*
204	 * Fences for the various phases in the request's lifetime.
205	 *
206	 * The submit fence is used to await upon all of the request's
207	 * dependencies. When it is signaled, the request is ready to run.
208	 * It is used by the driver to then queue the request for execution.
209	 */
210	struct i915_sw_fence submit;
211	union {
212		wait_queue_entry_t submitq;
213		struct i915_sw_dma_fence_cb dmaq;
214		struct i915_request_duration_cb {
215			struct dma_fence_cb cb;
216			ktime_t emitted;
217		} duration;
218	};
219	struct llist_head execute_cb;
220	struct i915_sw_fence semaphore;
221
222	/*
223	 * A list of everyone we wait upon, and everyone who waits upon us.
224	 * Even though we will not be submitted to the hardware before the
225	 * submit fence is signaled (it waits for all external events as well
226	 * as our own requests), the scheduler still needs to know the
227	 * dependency tree for the lifetime of the request (from execbuf
228	 * to retirement), i.e. bidirectional dependency information for the
229	 * request not tied to individual fences.
230	 */
231	struct i915_sched_node sched;
232	struct i915_dependency dep;
233	intel_engine_mask_t execution_mask;
234
235	/*
236	 * A convenience pointer to the current breadcrumb value stored in
237	 * the HW status page (or our timeline's local equivalent). The full
238	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
239	 */
240	const u32 *hwsp_seqno;
241
242	/** Position in the ring of the start of the request */
243	u32 head;
244
245	/** Position in the ring of the start of the user packets */
246	u32 infix;
247
248	/**
249	 * Position in the ring of the start of the postfix.
250	 * This is required to calculate the maximum available ring space
251	 * without overwriting the postfix.
252	 */
253	u32 postfix;
254
255	/** Position in the ring of the end of the whole request */
256	u32 tail;
257
258	/** Position in the ring of the end of any workarounds after the tail */
259	u32 wa_tail;
260
261	/** Preallocate space in the ring for the emitting the request */
262	u32 reserved_space;
263
264	/** Batch buffer related to this request if any (used for
265	 * error state dump only).
266	 */
267	struct i915_vma *batch;
268	/**
269	 * Additional buffers requested by userspace to be captured upon
270	 * a GPU hang. The vma/obj on this list are protected by their
271	 * active reference - all objects on this list must also be
272	 * on the active_list (of their final request).
273	 */
274	struct i915_capture_list *capture_list;
275
276	/** Time at which this request was emitted, in jiffies. */
277	unsigned long emitted_jiffies;
278
279	/** timeline->request entry for this request */
280	struct list_head link;
281
282	/** Watchdog support fields. */
283	struct i915_request_watchdog {
284		struct llist_node link;
285		struct hrtimer timer;
286	} watchdog;
287
288	I915_SELFTEST_DECLARE(struct {
289		struct list_head link;
290		unsigned long delay;
291	} mock;)
292};
293
294#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
295
296extern const struct dma_fence_ops i915_fence_ops;
297
298static inline bool dma_fence_is_i915(const struct dma_fence *fence)
299{
300	return fence->ops == &i915_fence_ops;
301}
302
303struct kmem_cache *i915_request_slab_cache(void);
304
305struct i915_request * __must_check
306__i915_request_create(struct intel_context *ce, gfp_t gfp);
307struct i915_request * __must_check
308i915_request_create(struct intel_context *ce);
309
310void __i915_request_skip(struct i915_request *rq);
311bool i915_request_set_error_once(struct i915_request *rq, int error);
312struct i915_request *i915_request_mark_eio(struct i915_request *rq);
313
314struct i915_request *__i915_request_commit(struct i915_request *request);
315void __i915_request_queue(struct i915_request *rq,
316			  const struct i915_sched_attr *attr);
317void __i915_request_queue_bh(struct i915_request *rq);
318
319bool i915_request_retire(struct i915_request *rq);
320void i915_request_retire_upto(struct i915_request *rq);
321
322static inline struct i915_request *
323to_request(struct dma_fence *fence)
324{
325	/* We assume that NULL fence/request are interoperable */
326	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
327	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
328	return container_of(fence, struct i915_request, fence);
329}
330
331static inline struct i915_request *
332i915_request_get(struct i915_request *rq)
333{
334	return to_request(dma_fence_get(&rq->fence));
335}
336
337static inline struct i915_request *
338i915_request_get_rcu(struct i915_request *rq)
339{
340	return to_request(dma_fence_get_rcu(&rq->fence));
341}
342
343static inline void
344i915_request_put(struct i915_request *rq)
345{
346	dma_fence_put(&rq->fence);
347}
348
349int i915_request_await_object(struct i915_request *to,
350			      struct drm_i915_gem_object *obj,
351			      bool write);
352int i915_request_await_dma_fence(struct i915_request *rq,
353				 struct dma_fence *fence);
354int i915_request_await_execution(struct i915_request *rq,
355				 struct dma_fence *fence,
356				 void (*hook)(struct i915_request *rq,
357					      struct dma_fence *signal));
358
359void i915_request_add(struct i915_request *rq);
360
361bool __i915_request_submit(struct i915_request *request);
362void i915_request_submit(struct i915_request *request);
363
364void __i915_request_unsubmit(struct i915_request *request);
365void i915_request_unsubmit(struct i915_request *request);
366
367void i915_request_cancel(struct i915_request *rq, int error);
368
369long i915_request_wait(struct i915_request *rq,
370		       unsigned int flags,
371		       long timeout)
372	__attribute__((nonnull(1)));
373#define I915_WAIT_INTERRUPTIBLE	BIT(0)
374#define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
375#define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
376
377void i915_request_show(struct drm_printer *m,
378		       const struct i915_request *rq,
379		       const char *prefix,
380		       int indent);
381
382static inline bool i915_request_signaled(const struct i915_request *rq)
383{
384	/* The request may live longer than its HWSP, so check flags first! */
385	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
386}
387
388static inline bool i915_request_is_active(const struct i915_request *rq)
389{
390	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
391}
392
393static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
394{
395	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
396}
397
398static inline bool
399i915_request_has_initial_breadcrumb(const struct i915_request *rq)
400{
401	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
402}
403
404/**
405 * Returns true if seq1 is later than seq2.
406 */
407static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
408{
409	return (s32)(seq1 - seq2) >= 0;
410}
411
412static inline u32 __hwsp_seqno(const struct i915_request *rq)
413{
414	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
415
416	return READ_ONCE(*hwsp);
417}
418
419/**
420 * hwsp_seqno - the current breadcrumb value in the HW status page
421 * @rq: the request, to chase the relevant HW status page
422 *
423 * The emphasis in naming here is that hwsp_seqno() is not a property of the
424 * request, but an indication of the current HW state (associated with this
425 * request). Its value will change as the GPU executes more requests.
426 *
427 * Returns the current breadcrumb value in the associated HW status page (or
428 * the local timeline's equivalent) for this request. The request itself
429 * has the associated breadcrumb value of rq->fence.seqno, when the HW
430 * status page has that breadcrumb or later, this request is complete.
431 */
432static inline u32 hwsp_seqno(const struct i915_request *rq)
433{
434	u32 seqno;
435
436	rcu_read_lock(); /* the HWSP may be freed at runtime */
437	seqno = __hwsp_seqno(rq);
438	rcu_read_unlock();
439
440	return seqno;
441}
442
443static inline bool __i915_request_has_started(const struct i915_request *rq)
444{
445	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
446}
447
448/**
449 * i915_request_started - check if the request has begun being executed
450 * @rq: the request
451 *
452 * If the timeline is not using initial breadcrumbs, a request is
453 * considered started if the previous request on its timeline (i.e.
454 * context) has been signaled.
455 *
456 * If the timeline is using semaphores, it will also be emitting an
457 * "initial breadcrumb" after the semaphores are complete and just before
458 * it began executing the user payload. A request can therefore be active
459 * on the HW and not yet started as it is still busywaiting on its
460 * dependencies (via HW semaphores).
461 *
462 * If the request has started, its dependencies will have been signaled
463 * (either by fences or by semaphores) and it will have begun processing
464 * the user payload.
465 *
466 * However, even if a request has started, it may have been preempted and
467 * so no longer active, or it may have already completed.
468 *
469 * See also i915_request_is_active().
470 *
471 * Returns true if the request has begun executing the user payload, or
472 * has completed:
473 */
474static inline bool i915_request_started(const struct i915_request *rq)
475{
476	bool result;
477
478	if (i915_request_signaled(rq))
479		return true;
480
481	result = true;
482	rcu_read_lock(); /* the HWSP may be freed at runtime */
483	if (likely(!i915_request_signaled(rq)))
484		/* Remember: started but may have since been preempted! */
485		result = __i915_request_has_started(rq);
486	rcu_read_unlock();
487
488	return result;
489}
490
491/**
492 * i915_request_is_running - check if the request may actually be executing
493 * @rq: the request
494 *
495 * Returns true if the request is currently submitted to hardware, has passed
496 * its start point (i.e. the context is setup and not busywaiting). Note that
497 * it may no longer be running by the time the function returns!
498 */
499static inline bool i915_request_is_running(const struct i915_request *rq)
500{
501	bool result;
502
503	if (!i915_request_is_active(rq))
504		return false;
505
506	rcu_read_lock();
507	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
508	rcu_read_unlock();
509
510	return result;
511}
512
513/**
514 * i915_request_is_ready - check if the request is ready for execution
515 * @rq: the request
516 *
517 * Upon construction, the request is instructed to wait upon various
518 * signals before it is ready to be executed by the HW. That is, we do
519 * not want to start execution and read data before it is written. In practice,
520 * this is controlled with a mixture of interrupts and semaphores. Once
521 * the submit fence is completed, the backend scheduler will place the
522 * request into its queue and from there submit it for execution. So we
523 * can detect when a request is eligible for execution (and is under control
524 * of the scheduler) by querying where it is in any of the scheduler's lists.
525 *
526 * Returns true if the request is ready for execution (it may be inflight),
527 * false otherwise.
528 */
529static inline bool i915_request_is_ready(const struct i915_request *rq)
530{
531	return !list_empty(&rq->sched.link);
532}
533
534static inline bool __i915_request_is_complete(const struct i915_request *rq)
535{
536	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
537}
538
539static inline bool i915_request_completed(const struct i915_request *rq)
540{
541	bool result;
542
543	if (i915_request_signaled(rq))
544		return true;
545
546	result = true;
547	rcu_read_lock(); /* the HWSP may be freed at runtime */
548	if (likely(!i915_request_signaled(rq)))
549		result = __i915_request_is_complete(rq);
550	rcu_read_unlock();
551
552	return result;
553}
554
555static inline void i915_request_mark_complete(struct i915_request *rq)
556{
557	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
558		   (u32 *)&rq->fence.seqno);
559}
560
561static inline bool i915_request_has_waitboost(const struct i915_request *rq)
562{
563	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
564}
565
566static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
567{
568	/* Preemption should only be disabled very rarely */
569	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
570}
571
572static inline bool i915_request_has_sentinel(const struct i915_request *rq)
573{
574	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
575}
576
577static inline bool i915_request_on_hold(const struct i915_request *rq)
578{
579	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
580}
581
582static inline void i915_request_set_hold(struct i915_request *rq)
583{
584	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
585}
586
587static inline void i915_request_clear_hold(struct i915_request *rq)
588{
589	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
590}
591
592static inline struct intel_timeline *
593i915_request_timeline(const struct i915_request *rq)
594{
595	/* Valid only while the request is being constructed (or retired). */
596	return rcu_dereference_protected(rq->timeline,
597					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
598}
599
600static inline struct i915_gem_context *
601i915_request_gem_context(const struct i915_request *rq)
602{
603	/* Valid only while the request is being constructed (or retired). */
604	return rcu_dereference_protected(rq->context->gem_context, true);
605}
606
607static inline struct intel_timeline *
608i915_request_active_timeline(const struct i915_request *rq)
609{
610	/*
611	 * When in use during submission, we are protected by a guarantee that
612	 * the context/timeline is pinned and must remain pinned until after
613	 * this submission.
614	 */
615	return rcu_dereference_protected(rq->timeline,
616					 lockdep_is_held(&rq->engine->active.lock));
617}
618
619static inline u32
620i915_request_active_seqno(const struct i915_request *rq)
621{
622	u32 hwsp_phys_base =
623		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
624	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
625
626	/*
627	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
628	 * but instead use the fact that the relative for vaddr is the
629	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
630	 * and combine them with the relative offset in rq->hwsp_seqno.
631	 *
632	 * As rw->hwsp_seqno is rewritten when signaled, this only works
633	 * when the request isn't signaled yet, but at that point you
634	 * no longer need the offset.
635	 */
636
637	return hwsp_phys_base + hwsp_relative_offset;
638}
639
640bool
641i915_request_active_engine(struct i915_request *rq,
642			   struct intel_engine_cs **active);
643
644#endif /* I915_REQUEST_H */