Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2014-2016 Intel Corporation
  5 */
  6
  7#include "display/intel_frontbuffer.h"
  8#include "gt/intel_gt.h"
  9
 10#include "i915_drv.h"
 11#include "i915_gem_clflush.h"
 12#include "i915_gem_gtt.h"
 13#include "i915_gem_ioctls.h"
 14#include "i915_gem_object.h"
 15#include "i915_vma.h"
 16#include "i915_gem_lmem.h"
 17#include "i915_gem_mman.h"
 18
 19static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
 20{
 21	return !(obj->cache_level == I915_CACHE_NONE ||
 22		 obj->cache_level == I915_CACHE_WT);
 23}
 24
 25static void
 26flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
 27{
 28	struct i915_vma *vma;
 29
 30	assert_object_held(obj);
 31
 32	if (!(obj->write_domain & flush_domains))
 33		return;
 34
 35	switch (obj->write_domain) {
 36	case I915_GEM_DOMAIN_GTT:
 37		spin_lock(&obj->vma.lock);
 38		for_each_ggtt_vma(vma, obj) {
 39			if (i915_vma_unset_ggtt_write(vma))
 40				intel_gt_flush_ggtt_writes(vma->vm->gt);
 41		}
 42		spin_unlock(&obj->vma.lock);
 43
 44		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 45		break;
 46
 47	case I915_GEM_DOMAIN_WC:
 48		wmb();
 49		break;
 50
 51	case I915_GEM_DOMAIN_CPU:
 52		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
 53		break;
 54
 55	case I915_GEM_DOMAIN_RENDER:
 56		if (gpu_write_needs_clflush(obj))
 57			obj->cache_dirty = true;
 58		break;
 59	}
 60
 61	obj->write_domain = 0;
 62}
 63
 64static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
 65{
 66	/*
 67	 * We manually flush the CPU domain so that we can override and
 68	 * force the flush for the display, and perform it asyncrhonously.
 69	 */
 70	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 71	if (obj->cache_dirty)
 72		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
 73	obj->write_domain = 0;
 74}
 75
 76void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
 77{
 78	if (!i915_gem_object_is_framebuffer(obj))
 79		return;
 80
 81	i915_gem_object_lock(obj, NULL);
 82	__i915_gem_object_flush_for_display(obj);
 83	i915_gem_object_unlock(obj);
 84}
 85
 86void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
 87{
 88	if (i915_gem_object_is_framebuffer(obj))
 89		__i915_gem_object_flush_for_display(obj);
 90}
 91
 92/**
 93 * Moves a single object to the WC read, and possibly write domain.
 94 * @obj: object to act on
 95 * @write: ask for write access or read only
 96 *
 97 * This function returns when the move is complete, including waiting on
 98 * flushes to occur.
 99 */
100int
101i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
102{
103	int ret;
104
105	assert_object_held(obj);
106
107	ret = i915_gem_object_wait(obj,
108				   I915_WAIT_INTERRUPTIBLE |
109				   (write ? I915_WAIT_ALL : 0),
110				   MAX_SCHEDULE_TIMEOUT);
111	if (ret)
112		return ret;
113
114	if (obj->write_domain == I915_GEM_DOMAIN_WC)
115		return 0;
116
117	/* Flush and acquire obj->pages so that we are coherent through
118	 * direct access in memory with previous cached writes through
119	 * shmemfs and that our cache domain tracking remains valid.
120	 * For example, if the obj->filp was moved to swap without us
121	 * being notified and releasing the pages, we would mistakenly
122	 * continue to assume that the obj remained out of the CPU cached
123	 * domain.
124	 */
125	ret = i915_gem_object_pin_pages(obj);
126	if (ret)
127		return ret;
128
129	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
130
131	/* Serialise direct access to this object with the barriers for
132	 * coherent writes from the GPU, by effectively invalidating the
133	 * WC domain upon first access.
134	 */
135	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
136		mb();
137
138	/* It should now be out of any other write domains, and we can update
139	 * the domain values for our changes.
140	 */
141	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
142	obj->read_domains |= I915_GEM_DOMAIN_WC;
143	if (write) {
144		obj->read_domains = I915_GEM_DOMAIN_WC;
145		obj->write_domain = I915_GEM_DOMAIN_WC;
146		obj->mm.dirty = true;
147	}
148
149	i915_gem_object_unpin_pages(obj);
150	return 0;
151}
152
153/**
154 * Moves a single object to the GTT read, and possibly write domain.
155 * @obj: object to act on
156 * @write: ask for write access or read only
157 *
158 * This function returns when the move is complete, including waiting on
159 * flushes to occur.
160 */
161int
162i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
163{
164	int ret;
165
166	assert_object_held(obj);
167
168	ret = i915_gem_object_wait(obj,
169				   I915_WAIT_INTERRUPTIBLE |
170				   (write ? I915_WAIT_ALL : 0),
171				   MAX_SCHEDULE_TIMEOUT);
172	if (ret)
173		return ret;
174
175	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
176		return 0;
177
178	/* Flush and acquire obj->pages so that we are coherent through
179	 * direct access in memory with previous cached writes through
180	 * shmemfs and that our cache domain tracking remains valid.
181	 * For example, if the obj->filp was moved to swap without us
182	 * being notified and releasing the pages, we would mistakenly
183	 * continue to assume that the obj remained out of the CPU cached
184	 * domain.
185	 */
186	ret = i915_gem_object_pin_pages(obj);
187	if (ret)
188		return ret;
189
190	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
191
192	/* Serialise direct access to this object with the barriers for
193	 * coherent writes from the GPU, by effectively invalidating the
194	 * GTT domain upon first access.
195	 */
196	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
197		mb();
198
199	/* It should now be out of any other write domains, and we can update
200	 * the domain values for our changes.
201	 */
202	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
203	obj->read_domains |= I915_GEM_DOMAIN_GTT;
204	if (write) {
205		struct i915_vma *vma;
206
207		obj->read_domains = I915_GEM_DOMAIN_GTT;
208		obj->write_domain = I915_GEM_DOMAIN_GTT;
209		obj->mm.dirty = true;
210
211		spin_lock(&obj->vma.lock);
212		for_each_ggtt_vma(vma, obj)
213			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
214				i915_vma_set_ggtt_write(vma);
215		spin_unlock(&obj->vma.lock);
216	}
217
218	i915_gem_object_unpin_pages(obj);
219	return 0;
220}
221
222/**
223 * Changes the cache-level of an object across all VMA.
224 * @obj: object to act on
225 * @cache_level: new cache level to set for the object
226 *
227 * After this function returns, the object will be in the new cache-level
228 * across all GTT and the contents of the backing storage will be coherent,
229 * with respect to the new cache-level. In order to keep the backing storage
230 * coherent for all users, we only allow a single cache level to be set
231 * globally on the object and prevent it from being changed whilst the
232 * hardware is reading from the object. That is if the object is currently
233 * on the scanout it will be set to uncached (or equivalent display
234 * cache coherency) and all non-MOCS GPU access will also be uncached so
235 * that all direct access to the scanout remains coherent.
236 */
237int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
238				    enum i915_cache_level cache_level)
239{
240	int ret;
241
242	if (obj->cache_level == cache_level)
243		return 0;
244
245	ret = i915_gem_object_wait(obj,
246				   I915_WAIT_INTERRUPTIBLE |
247				   I915_WAIT_ALL,
248				   MAX_SCHEDULE_TIMEOUT);
249	if (ret)
250		return ret;
251
252	/* Always invalidate stale cachelines */
253	if (obj->cache_level != cache_level) {
254		i915_gem_object_set_cache_coherency(obj, cache_level);
255		obj->cache_dirty = true;
256	}
257
258	/* The cache-level will be applied when each vma is rebound. */
259	return i915_gem_object_unbind(obj,
260				      I915_GEM_OBJECT_UNBIND_ACTIVE |
261				      I915_GEM_OBJECT_UNBIND_BARRIER);
262}
263
264int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
265			       struct drm_file *file)
266{
267	struct drm_i915_gem_caching *args = data;
268	struct drm_i915_gem_object *obj;
269	int err = 0;
270
271	rcu_read_lock();
272	obj = i915_gem_object_lookup_rcu(file, args->handle);
273	if (!obj) {
274		err = -ENOENT;
275		goto out;
276	}
277
278	switch (obj->cache_level) {
279	case I915_CACHE_LLC:
280	case I915_CACHE_L3_LLC:
281		args->caching = I915_CACHING_CACHED;
282		break;
283
284	case I915_CACHE_WT:
285		args->caching = I915_CACHING_DISPLAY;
286		break;
287
288	default:
289		args->caching = I915_CACHING_NONE;
290		break;
291	}
292out:
293	rcu_read_unlock();
294	return err;
295}
296
297int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
298			       struct drm_file *file)
299{
300	struct drm_i915_private *i915 = to_i915(dev);
301	struct drm_i915_gem_caching *args = data;
302	struct drm_i915_gem_object *obj;
303	enum i915_cache_level level;
304	int ret = 0;
305
306	switch (args->caching) {
307	case I915_CACHING_NONE:
308		level = I915_CACHE_NONE;
309		break;
310	case I915_CACHING_CACHED:
311		/*
312		 * Due to a HW issue on BXT A stepping, GPU stores via a
313		 * snooped mapping may leave stale data in a corresponding CPU
314		 * cacheline, whereas normally such cachelines would get
315		 * invalidated.
316		 */
317		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
318			return -ENODEV;
319
320		level = I915_CACHE_LLC;
321		break;
322	case I915_CACHING_DISPLAY:
323		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
324		break;
325	default:
326		return -EINVAL;
327	}
328
329	obj = i915_gem_object_lookup(file, args->handle);
330	if (!obj)
331		return -ENOENT;
332
333	/*
334	 * The caching mode of proxy object is handled by its generator, and
335	 * not allowed to be changed by userspace.
336	 */
337	if (i915_gem_object_is_proxy(obj)) {
338		/*
339		 * Silently allow cached for userptr; the vulkan driver
340		 * sets all objects to cached
341		 */
342		if (!i915_gem_object_is_userptr(obj) ||
343		    args->caching != I915_CACHING_CACHED)
344			ret = -ENXIO;
345
346		goto out;
347	}
348
349	ret = i915_gem_object_lock_interruptible(obj, NULL);
350	if (ret)
351		goto out;
352
353	ret = i915_gem_object_set_cache_level(obj, level);
354	i915_gem_object_unlock(obj);
355
356out:
357	i915_gem_object_put(obj);
358	return ret;
359}
360
361/*
362 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
363 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
364 * (for pageflips). We only flush the caches while preparing the buffer for
365 * display, the callers are responsible for frontbuffer flush.
366 */
367struct i915_vma *
368i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
369				     struct i915_gem_ww_ctx *ww,
370				     u32 alignment,
371				     const struct i915_ggtt_view *view,
372				     unsigned int flags)
373{
374	struct drm_i915_private *i915 = to_i915(obj->base.dev);
375	struct i915_vma *vma;
376	int ret;
377
378	/* Frame buffer must be in LMEM (no migration yet) */
379	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
380		return ERR_PTR(-EINVAL);
381
382	/*
383	 * The display engine is not coherent with the LLC cache on gen6.  As
384	 * a result, we make sure that the pinning that is about to occur is
385	 * done with uncached PTEs. This is lowest common denominator for all
386	 * chipsets.
387	 *
388	 * However for gen6+, we could do better by using the GFDT bit instead
389	 * of uncaching, which would allow us to flush all the LLC-cached data
390	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
391	 */
392	ret = i915_gem_object_set_cache_level(obj,
393					      HAS_WT(i915) ?
394					      I915_CACHE_WT : I915_CACHE_NONE);
395	if (ret)
396		return ERR_PTR(ret);
397
398	/*
399	 * As the user may map the buffer once pinned in the display plane
400	 * (e.g. libkms for the bootup splash), we have to ensure that we
401	 * always use map_and_fenceable for all scanout buffers. However,
402	 * it may simply be too big to fit into mappable, in which case
403	 * put it anyway and hope that userspace can cope (but always first
404	 * try to preserve the existing ABI).
405	 */
406	vma = ERR_PTR(-ENOSPC);
407	if ((flags & PIN_MAPPABLE) == 0 &&
408	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
409		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
410						  flags | PIN_MAPPABLE |
411						  PIN_NONBLOCK);
412	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
413		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
414						  alignment, flags);
415	if (IS_ERR(vma))
416		return vma;
417
418	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
419	i915_vma_mark_scanout(vma);
420
421	i915_gem_object_flush_if_display_locked(obj);
422
423	return vma;
424}
425
426/**
427 * Moves a single object to the CPU read, and possibly write domain.
428 * @obj: object to act on
429 * @write: requesting write or read-only access
430 *
431 * This function returns when the move is complete, including waiting on
432 * flushes to occur.
433 */
434int
435i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
436{
437	int ret;
438
439	assert_object_held(obj);
440
441	ret = i915_gem_object_wait(obj,
442				   I915_WAIT_INTERRUPTIBLE |
443				   (write ? I915_WAIT_ALL : 0),
444				   MAX_SCHEDULE_TIMEOUT);
445	if (ret)
446		return ret;
447
448	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
449
450	/* Flush the CPU cache if it's still invalid. */
451	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
452		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
453		obj->read_domains |= I915_GEM_DOMAIN_CPU;
454	}
455
456	/* It should now be out of any other write domains, and we can update
457	 * the domain values for our changes.
458	 */
459	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
460
461	/* If we're writing through the CPU, then the GPU read domains will
462	 * need to be invalidated at next use.
463	 */
464	if (write)
465		__start_cpu_write(obj);
466
467	return 0;
468}
469
470/**
471 * Called when user space prepares to use an object with the CPU, either
472 * through the mmap ioctl's mapping or a GTT mapping.
473 * @dev: drm device
474 * @data: ioctl data blob
475 * @file: drm file
476 */
477int
478i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
479			  struct drm_file *file)
480{
481	struct drm_i915_gem_set_domain *args = data;
482	struct drm_i915_gem_object *obj;
483	u32 read_domains = args->read_domains;
484	u32 write_domain = args->write_domain;
485	int err;
486
487	/* Only handle setting domains to types used by the CPU. */
488	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
489		return -EINVAL;
490
491	/*
492	 * Having something in the write domain implies it's in the read
493	 * domain, and only that read domain.  Enforce that in the request.
494	 */
495	if (write_domain && read_domains != write_domain)
496		return -EINVAL;
497
498	if (!read_domains)
499		return 0;
500
501	obj = i915_gem_object_lookup(file, args->handle);
502	if (!obj)
503		return -ENOENT;
504
505	/*
506	 * Try to flush the object off the GPU without holding the lock.
507	 * We will repeat the flush holding the lock in the normal manner
508	 * to catch cases where we are gazumped.
509	 */
510	err = i915_gem_object_wait(obj,
511				   I915_WAIT_INTERRUPTIBLE |
512				   I915_WAIT_PRIORITY |
513				   (write_domain ? I915_WAIT_ALL : 0),
514				   MAX_SCHEDULE_TIMEOUT);
515	if (err)
516		goto out;
517
518	if (i915_gem_object_is_userptr(obj)) {
519		/*
520		 * Try to grab userptr pages, iris uses set_domain to check
521		 * userptr validity
522		 */
523		err = i915_gem_object_userptr_validate(obj);
524		if (!err)
525			err = i915_gem_object_wait(obj,
526						   I915_WAIT_INTERRUPTIBLE |
527						   I915_WAIT_PRIORITY |
528						   (write_domain ? I915_WAIT_ALL : 0),
529						   MAX_SCHEDULE_TIMEOUT);
530		goto out;
531	}
532
533	/*
534	 * Proxy objects do not control access to the backing storage, ergo
535	 * they cannot be used as a means to manipulate the cache domain
536	 * tracking for that backing storage. The proxy object is always
537	 * considered to be outside of any cache domain.
538	 */
539	if (i915_gem_object_is_proxy(obj)) {
540		err = -ENXIO;
541		goto out;
542	}
543
544	err = i915_gem_object_lock_interruptible(obj, NULL);
545	if (err)
546		goto out;
547
548	/*
549	 * Flush and acquire obj->pages so that we are coherent through
550	 * direct access in memory with previous cached writes through
551	 * shmemfs and that our cache domain tracking remains valid.
552	 * For example, if the obj->filp was moved to swap without us
553	 * being notified and releasing the pages, we would mistakenly
554	 * continue to assume that the obj remained out of the CPU cached
555	 * domain.
556	 */
557	err = i915_gem_object_pin_pages(obj);
558	if (err)
559		goto out_unlock;
560
561	/*
562	 * Already in the desired write domain? Nothing for us to do!
563	 *
564	 * We apply a little bit of cunning here to catch a broader set of
565	 * no-ops. If obj->write_domain is set, we must be in the same
566	 * obj->read_domains, and only that domain. Therefore, if that
567	 * obj->write_domain matches the request read_domains, we are
568	 * already in the same read/write domain and can skip the operation,
569	 * without having to further check the requested write_domain.
570	 */
571	if (READ_ONCE(obj->write_domain) == read_domains)
572		goto out_unpin;
573
574	if (read_domains & I915_GEM_DOMAIN_WC)
575		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
576	else if (read_domains & I915_GEM_DOMAIN_GTT)
577		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
578	else
579		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
580
581out_unpin:
582	i915_gem_object_unpin_pages(obj);
583
584out_unlock:
585	i915_gem_object_unlock(obj);
586
587	if (!err && write_domain)
588		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
589
590out:
591	i915_gem_object_put(obj);
592	return err;
593}
594
595/*
596 * Pins the specified object's pages and synchronizes the object with
597 * GPU accesses. Sets needs_clflush to non-zero if the caller should
598 * flush the object from the CPU cache.
599 */
600int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
601				 unsigned int *needs_clflush)
602{
603	int ret;
604
605	*needs_clflush = 0;
606	if (!i915_gem_object_has_struct_page(obj))
607		return -ENODEV;
608
609	assert_object_held(obj);
610
611	ret = i915_gem_object_wait(obj,
612				   I915_WAIT_INTERRUPTIBLE,
613				   MAX_SCHEDULE_TIMEOUT);
614	if (ret)
615		return ret;
616
617	ret = i915_gem_object_pin_pages(obj);
618	if (ret)
619		return ret;
620
621	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
622	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
623		ret = i915_gem_object_set_to_cpu_domain(obj, false);
624		if (ret)
625			goto err_unpin;
626		else
627			goto out;
628	}
629
630	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
631
632	/* If we're not in the cpu read domain, set ourself into the gtt
633	 * read domain and manually flush cachelines (if required). This
634	 * optimizes for the case when the gpu will dirty the data
635	 * anyway again before the next pread happens.
636	 */
637	if (!obj->cache_dirty &&
638	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
639		*needs_clflush = CLFLUSH_BEFORE;
640
641out:
642	/* return with the pages pinned */
643	return 0;
644
645err_unpin:
646	i915_gem_object_unpin_pages(obj);
647	return ret;
648}
649
650int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
651				  unsigned int *needs_clflush)
652{
653	int ret;
654
655	*needs_clflush = 0;
656	if (!i915_gem_object_has_struct_page(obj))
657		return -ENODEV;
658
659	assert_object_held(obj);
660
661	ret = i915_gem_object_wait(obj,
662				   I915_WAIT_INTERRUPTIBLE |
663				   I915_WAIT_ALL,
664				   MAX_SCHEDULE_TIMEOUT);
665	if (ret)
666		return ret;
667
668	ret = i915_gem_object_pin_pages(obj);
669	if (ret)
670		return ret;
671
672	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
673	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
674		ret = i915_gem_object_set_to_cpu_domain(obj, true);
675		if (ret)
676			goto err_unpin;
677		else
678			goto out;
679	}
680
681	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
682
683	/* If we're not in the cpu write domain, set ourself into the
684	 * gtt write domain and manually flush cachelines (as required).
685	 * This optimizes for the case when the gpu will use the data
686	 * right away and we therefore have to clflush anyway.
687	 */
688	if (!obj->cache_dirty) {
689		*needs_clflush |= CLFLUSH_AFTER;
690
691		/*
692		 * Same trick applies to invalidate partially written
693		 * cachelines read before writing.
694		 */
695		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
696			*needs_clflush |= CLFLUSH_BEFORE;
697	}
698
699out:
700	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
701	obj->mm.dirty = true;
702	/* return with the pages pinned */
703	return 0;
704
705err_unpin:
706	i915_gem_object_unpin_pages(obj);
707	return ret;
708}