Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2015 Linaro Ltd.
  4 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
  5 */
  6
  7#include <linux/clk.h>
  8#include <linux/cpu.h>
  9#include <linux/cpufreq.h>
 10#include <linux/cpumask.h>
 11#include <linux/module.h>
 12#include <linux/of.h>
 13#include <linux/platform_device.h>
 14#include <linux/pm_opp.h>
 15#include <linux/regulator/consumer.h>
 16#include <linux/slab.h>
 17#include <linux/thermal.h>
 18
 19#define MIN_VOLT_SHIFT		(100000)
 20#define MAX_VOLT_SHIFT		(200000)
 21#define MAX_VOLT_LIMIT		(1150000)
 22#define VOLT_TOL		(10000)
 23
 24/*
 25 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
 26 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
 27 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
 28 * voltage inputs need to be controlled under a hardware limitation:
 29 * 100mV < Vsram - Vproc < 200mV
 30 *
 31 * When scaling the clock frequency of a CPU clock domain, the clock source
 32 * needs to be switched to another stable PLL clock temporarily until
 33 * the original PLL becomes stable at target frequency.
 34 */
 35struct mtk_cpu_dvfs_info {
 36	struct cpumask cpus;
 37	struct device *cpu_dev;
 38	struct regulator *proc_reg;
 39	struct regulator *sram_reg;
 40	struct clk *cpu_clk;
 41	struct clk *inter_clk;
 42	struct list_head list_head;
 43	int intermediate_voltage;
 44	bool need_voltage_tracking;
 45};
 46
 47static LIST_HEAD(dvfs_info_list);
 48
 49static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
 50{
 51	struct mtk_cpu_dvfs_info *info;
 52
 53	list_for_each_entry(info, &dvfs_info_list, list_head) {
 54		if (cpumask_test_cpu(cpu, &info->cpus))
 55			return info;
 56	}
 57
 58	return NULL;
 59}
 60
 61static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
 62					int new_vproc)
 63{
 64	struct regulator *proc_reg = info->proc_reg;
 65	struct regulator *sram_reg = info->sram_reg;
 66	int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
 67
 68	old_vproc = regulator_get_voltage(proc_reg);
 69	if (old_vproc < 0) {
 70		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
 71		return old_vproc;
 72	}
 73	/* Vsram should not exceed the maximum allowed voltage of SoC. */
 74	new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
 75
 76	if (old_vproc < new_vproc) {
 77		/*
 78		 * When scaling up voltages, Vsram and Vproc scale up step
 79		 * by step. At each step, set Vsram to (Vproc + 200mV) first,
 80		 * then set Vproc to (Vsram - 100mV).
 81		 * Keep doing it until Vsram and Vproc hit target voltages.
 82		 */
 83		do {
 84			old_vsram = regulator_get_voltage(sram_reg);
 85			if (old_vsram < 0) {
 86				pr_err("%s: invalid Vsram value: %d\n",
 87				       __func__, old_vsram);
 88				return old_vsram;
 89			}
 90			old_vproc = regulator_get_voltage(proc_reg);
 91			if (old_vproc < 0) {
 92				pr_err("%s: invalid Vproc value: %d\n",
 93				       __func__, old_vproc);
 94				return old_vproc;
 95			}
 96
 97			vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
 98
 99			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
100				vsram = MAX_VOLT_LIMIT;
101
102				/*
103				 * If the target Vsram hits the maximum voltage,
104				 * try to set the exact voltage value first.
105				 */
106				ret = regulator_set_voltage(sram_reg, vsram,
107							    vsram);
108				if (ret)
109					ret = regulator_set_voltage(sram_reg,
110							vsram - VOLT_TOL,
111							vsram);
112
113				vproc = new_vproc;
114			} else {
115				ret = regulator_set_voltage(sram_reg, vsram,
116							    vsram + VOLT_TOL);
117
118				vproc = vsram - MIN_VOLT_SHIFT;
119			}
120			if (ret)
121				return ret;
122
123			ret = regulator_set_voltage(proc_reg, vproc,
124						    vproc + VOLT_TOL);
125			if (ret) {
126				regulator_set_voltage(sram_reg, old_vsram,
127						      old_vsram);
128				return ret;
129			}
130		} while (vproc < new_vproc || vsram < new_vsram);
131	} else if (old_vproc > new_vproc) {
132		/*
133		 * When scaling down voltages, Vsram and Vproc scale down step
134		 * by step. At each step, set Vproc to (Vsram - 200mV) first,
135		 * then set Vproc to (Vproc + 100mV).
136		 * Keep doing it until Vsram and Vproc hit target voltages.
137		 */
138		do {
139			old_vproc = regulator_get_voltage(proc_reg);
140			if (old_vproc < 0) {
141				pr_err("%s: invalid Vproc value: %d\n",
142				       __func__, old_vproc);
143				return old_vproc;
144			}
145			old_vsram = regulator_get_voltage(sram_reg);
146			if (old_vsram < 0) {
147				pr_err("%s: invalid Vsram value: %d\n",
148				       __func__, old_vsram);
149				return old_vsram;
150			}
151
152			vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
153			ret = regulator_set_voltage(proc_reg, vproc,
154						    vproc + VOLT_TOL);
155			if (ret)
156				return ret;
157
158			if (vproc == new_vproc)
159				vsram = new_vsram;
160			else
161				vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
162
163			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
164				vsram = MAX_VOLT_LIMIT;
165
166				/*
167				 * If the target Vsram hits the maximum voltage,
168				 * try to set the exact voltage value first.
169				 */
170				ret = regulator_set_voltage(sram_reg, vsram,
171							    vsram);
172				if (ret)
173					ret = regulator_set_voltage(sram_reg,
174							vsram - VOLT_TOL,
175							vsram);
176			} else {
177				ret = regulator_set_voltage(sram_reg, vsram,
178							    vsram + VOLT_TOL);
179			}
180
181			if (ret) {
182				regulator_set_voltage(proc_reg, old_vproc,
183						      old_vproc);
184				return ret;
185			}
186		} while (vproc > new_vproc + VOLT_TOL ||
187			 vsram > new_vsram + VOLT_TOL);
188	}
189
190	return 0;
191}
192
193static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
194{
195	if (info->need_voltage_tracking)
196		return mtk_cpufreq_voltage_tracking(info, vproc);
197	else
198		return regulator_set_voltage(info->proc_reg, vproc,
199					     vproc + VOLT_TOL);
200}
201
202static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
203				  unsigned int index)
204{
205	struct cpufreq_frequency_table *freq_table = policy->freq_table;
206	struct clk *cpu_clk = policy->clk;
207	struct clk *armpll = clk_get_parent(cpu_clk);
208	struct mtk_cpu_dvfs_info *info = policy->driver_data;
209	struct device *cpu_dev = info->cpu_dev;
210	struct dev_pm_opp *opp;
211	long freq_hz, old_freq_hz;
212	int vproc, old_vproc, inter_vproc, target_vproc, ret;
213
214	inter_vproc = info->intermediate_voltage;
215
216	old_freq_hz = clk_get_rate(cpu_clk);
217	old_vproc = regulator_get_voltage(info->proc_reg);
218	if (old_vproc < 0) {
219		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
220		return old_vproc;
221	}
222
223	freq_hz = freq_table[index].frequency * 1000;
224
225	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
226	if (IS_ERR(opp)) {
227		pr_err("cpu%d: failed to find OPP for %ld\n",
228		       policy->cpu, freq_hz);
229		return PTR_ERR(opp);
230	}
231	vproc = dev_pm_opp_get_voltage(opp);
232	dev_pm_opp_put(opp);
233
234	/*
235	 * If the new voltage or the intermediate voltage is higher than the
236	 * current voltage, scale up voltage first.
237	 */
238	target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
239	if (old_vproc < target_vproc) {
240		ret = mtk_cpufreq_set_voltage(info, target_vproc);
241		if (ret) {
242			pr_err("cpu%d: failed to scale up voltage!\n",
243			       policy->cpu);
244			mtk_cpufreq_set_voltage(info, old_vproc);
245			return ret;
246		}
247	}
248
249	/* Reparent the CPU clock to intermediate clock. */
250	ret = clk_set_parent(cpu_clk, info->inter_clk);
251	if (ret) {
252		pr_err("cpu%d: failed to re-parent cpu clock!\n",
253		       policy->cpu);
254		mtk_cpufreq_set_voltage(info, old_vproc);
255		WARN_ON(1);
256		return ret;
257	}
258
259	/* Set the original PLL to target rate. */
260	ret = clk_set_rate(armpll, freq_hz);
261	if (ret) {
262		pr_err("cpu%d: failed to scale cpu clock rate!\n",
263		       policy->cpu);
264		clk_set_parent(cpu_clk, armpll);
265		mtk_cpufreq_set_voltage(info, old_vproc);
266		return ret;
267	}
268
269	/* Set parent of CPU clock back to the original PLL. */
270	ret = clk_set_parent(cpu_clk, armpll);
271	if (ret) {
272		pr_err("cpu%d: failed to re-parent cpu clock!\n",
273		       policy->cpu);
274		mtk_cpufreq_set_voltage(info, inter_vproc);
275		WARN_ON(1);
276		return ret;
277	}
278
279	/*
280	 * If the new voltage is lower than the intermediate voltage or the
281	 * original voltage, scale down to the new voltage.
282	 */
283	if (vproc < inter_vproc || vproc < old_vproc) {
284		ret = mtk_cpufreq_set_voltage(info, vproc);
285		if (ret) {
286			pr_err("cpu%d: failed to scale down voltage!\n",
287			       policy->cpu);
288			clk_set_parent(cpu_clk, info->inter_clk);
289			clk_set_rate(armpll, old_freq_hz);
290			clk_set_parent(cpu_clk, armpll);
291			return ret;
292		}
293	}
294
295	return 0;
296}
297
298#define DYNAMIC_POWER "dynamic-power-coefficient"
299
300static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
301{
302	struct device *cpu_dev;
303	struct regulator *proc_reg = ERR_PTR(-ENODEV);
304	struct regulator *sram_reg = ERR_PTR(-ENODEV);
305	struct clk *cpu_clk = ERR_PTR(-ENODEV);
306	struct clk *inter_clk = ERR_PTR(-ENODEV);
307	struct dev_pm_opp *opp;
308	unsigned long rate;
309	int ret;
310
311	cpu_dev = get_cpu_device(cpu);
312	if (!cpu_dev) {
313		pr_err("failed to get cpu%d device\n", cpu);
314		return -ENODEV;
315	}
316
317	cpu_clk = clk_get(cpu_dev, "cpu");
318	if (IS_ERR(cpu_clk)) {
319		if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
320			pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
321		else
322			pr_err("failed to get cpu clk for cpu%d\n", cpu);
323
324		ret = PTR_ERR(cpu_clk);
325		return ret;
326	}
327
328	inter_clk = clk_get(cpu_dev, "intermediate");
329	if (IS_ERR(inter_clk)) {
330		if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
331			pr_warn("intermediate clk for cpu%d not ready, retry.\n",
332				cpu);
333		else
334			pr_err("failed to get intermediate clk for cpu%d\n",
335			       cpu);
336
337		ret = PTR_ERR(inter_clk);
338		goto out_free_resources;
339	}
340
341	proc_reg = regulator_get_optional(cpu_dev, "proc");
342	if (IS_ERR(proc_reg)) {
343		if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
344			pr_warn("proc regulator for cpu%d not ready, retry.\n",
345				cpu);
346		else
347			pr_err("failed to get proc regulator for cpu%d\n",
348			       cpu);
349
350		ret = PTR_ERR(proc_reg);
351		goto out_free_resources;
352	}
353
354	/* Both presence and absence of sram regulator are valid cases. */
355	sram_reg = regulator_get_exclusive(cpu_dev, "sram");
356
357	/* Get OPP-sharing information from "operating-points-v2" bindings */
358	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
359	if (ret) {
360		pr_err("failed to get OPP-sharing information for cpu%d\n",
361		       cpu);
362		goto out_free_resources;
363	}
364
365	ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
366	if (ret) {
367		pr_warn("no OPP table for cpu%d\n", cpu);
368		goto out_free_resources;
369	}
370
371	/* Search a safe voltage for intermediate frequency. */
372	rate = clk_get_rate(inter_clk);
373	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
374	if (IS_ERR(opp)) {
375		pr_err("failed to get intermediate opp for cpu%d\n", cpu);
376		ret = PTR_ERR(opp);
377		goto out_free_opp_table;
378	}
379	info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
380	dev_pm_opp_put(opp);
381
382	info->cpu_dev = cpu_dev;
383	info->proc_reg = proc_reg;
384	info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
385	info->cpu_clk = cpu_clk;
386	info->inter_clk = inter_clk;
387
388	/*
389	 * If SRAM regulator is present, software "voltage tracking" is needed
390	 * for this CPU power domain.
391	 */
392	info->need_voltage_tracking = !IS_ERR(sram_reg);
393
394	return 0;
395
396out_free_opp_table:
397	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
398
399out_free_resources:
400	if (!IS_ERR(proc_reg))
401		regulator_put(proc_reg);
402	if (!IS_ERR(sram_reg))
403		regulator_put(sram_reg);
404	if (!IS_ERR(cpu_clk))
405		clk_put(cpu_clk);
406	if (!IS_ERR(inter_clk))
407		clk_put(inter_clk);
408
409	return ret;
410}
411
412static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
413{
414	if (!IS_ERR(info->proc_reg))
415		regulator_put(info->proc_reg);
416	if (!IS_ERR(info->sram_reg))
417		regulator_put(info->sram_reg);
418	if (!IS_ERR(info->cpu_clk))
419		clk_put(info->cpu_clk);
420	if (!IS_ERR(info->inter_clk))
421		clk_put(info->inter_clk);
422
423	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
424}
425
426static int mtk_cpufreq_init(struct cpufreq_policy *policy)
427{
428	struct mtk_cpu_dvfs_info *info;
429	struct cpufreq_frequency_table *freq_table;
430	int ret;
431
432	info = mtk_cpu_dvfs_info_lookup(policy->cpu);
433	if (!info) {
434		pr_err("dvfs info for cpu%d is not initialized.\n",
435		       policy->cpu);
436		return -EINVAL;
437	}
438
439	ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
440	if (ret) {
441		pr_err("failed to init cpufreq table for cpu%d: %d\n",
442		       policy->cpu, ret);
443		return ret;
444	}
445
446	cpumask_copy(policy->cpus, &info->cpus);
447	policy->freq_table = freq_table;
448	policy->driver_data = info;
449	policy->clk = info->cpu_clk;
450
451	dev_pm_opp_of_register_em(info->cpu_dev, policy->cpus);
452
453	return 0;
454}
455
456static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
457{
458	struct mtk_cpu_dvfs_info *info = policy->driver_data;
459
460	dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
461
462	return 0;
463}
464
465static struct cpufreq_driver mtk_cpufreq_driver = {
466	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
467		 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
468		 CPUFREQ_IS_COOLING_DEV,
469	.verify = cpufreq_generic_frequency_table_verify,
470	.target_index = mtk_cpufreq_set_target,
471	.get = cpufreq_generic_get,
472	.init = mtk_cpufreq_init,
473	.exit = mtk_cpufreq_exit,
474	.name = "mtk-cpufreq",
475	.attr = cpufreq_generic_attr,
476};
477
478static int mtk_cpufreq_probe(struct platform_device *pdev)
479{
480	struct mtk_cpu_dvfs_info *info, *tmp;
481	int cpu, ret;
482
483	for_each_possible_cpu(cpu) {
484		info = mtk_cpu_dvfs_info_lookup(cpu);
485		if (info)
486			continue;
487
488		info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
489		if (!info) {
490			ret = -ENOMEM;
491			goto release_dvfs_info_list;
492		}
493
494		ret = mtk_cpu_dvfs_info_init(info, cpu);
495		if (ret) {
496			dev_err(&pdev->dev,
497				"failed to initialize dvfs info for cpu%d\n",
498				cpu);
499			goto release_dvfs_info_list;
500		}
501
502		list_add(&info->list_head, &dvfs_info_list);
503	}
504
505	ret = cpufreq_register_driver(&mtk_cpufreq_driver);
506	if (ret) {
507		dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
508		goto release_dvfs_info_list;
509	}
510
511	return 0;
512
513release_dvfs_info_list:
514	list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
515		mtk_cpu_dvfs_info_release(info);
516		list_del(&info->list_head);
517	}
518
519	return ret;
520}
521
522static struct platform_driver mtk_cpufreq_platdrv = {
523	.driver = {
524		.name	= "mtk-cpufreq",
525	},
526	.probe		= mtk_cpufreq_probe,
527};
528
529/* List of machines supported by this driver */
530static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
531	{ .compatible = "mediatek,mt2701", },
532	{ .compatible = "mediatek,mt2712", },
533	{ .compatible = "mediatek,mt7622", },
534	{ .compatible = "mediatek,mt7623", },
535	{ .compatible = "mediatek,mt8167", },
536	{ .compatible = "mediatek,mt817x", },
537	{ .compatible = "mediatek,mt8173", },
538	{ .compatible = "mediatek,mt8176", },
539	{ .compatible = "mediatek,mt8183", },
540	{ .compatible = "mediatek,mt8365", },
541	{ .compatible = "mediatek,mt8516", },
542
543	{ }
544};
545MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
546
547static int __init mtk_cpufreq_driver_init(void)
548{
549	struct device_node *np;
550	const struct of_device_id *match;
551	struct platform_device *pdev;
552	int err;
553
554	np = of_find_node_by_path("/");
555	if (!np)
556		return -ENODEV;
557
558	match = of_match_node(mtk_cpufreq_machines, np);
559	of_node_put(np);
560	if (!match) {
561		pr_debug("Machine is not compatible with mtk-cpufreq\n");
562		return -ENODEV;
563	}
564
565	err = platform_driver_register(&mtk_cpufreq_platdrv);
566	if (err)
567		return err;
568
569	/*
570	 * Since there's no place to hold device registration code and no
571	 * device tree based way to match cpufreq driver yet, both the driver
572	 * and the device registration codes are put here to handle defer
573	 * probing.
574	 */
575	pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
576	if (IS_ERR(pdev)) {
577		pr_err("failed to register mtk-cpufreq platform device\n");
578		platform_driver_unregister(&mtk_cpufreq_platdrv);
579		return PTR_ERR(pdev);
580	}
581
582	return 0;
583}
584device_initcall(mtk_cpufreq_driver_init);
585
586MODULE_DESCRIPTION("MediaTek CPUFreq driver");
587MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
588MODULE_LICENSE("GPL v2");