Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include "blk-cgroup.h"
 
 
  13
  14/* Max dispatch from a group in 1 round */
  15static int throtl_grp_quantum = 8;
  16
  17/* Total max dispatch from all groups in one round */
  18static int throtl_quantum = 32;
  19
  20/* Throttling is performed over 100ms slice and after that slice is renewed */
  21static unsigned long throtl_slice = HZ/10;	/* 100 ms */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22
  23/* A workqueue to queue throttle related work */
  24static struct workqueue_struct *kthrotld_workqueue;
  25static void throtl_schedule_delayed_work(struct throtl_data *td,
  26				unsigned long delay);
  27
  28struct throtl_rb_root {
  29	struct rb_root rb;
  30	struct rb_node *left;
  31	unsigned int count;
  32	unsigned long min_disptime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33};
  34
  35#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
  36			.count = 0, .min_disptime = 0}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
  39
 
 
 
 
 
 
  40struct throtl_grp {
  41	/* List of throtl groups on the request queue*/
  42	struct hlist_node tg_node;
  43
  44	/* active throtl group service_tree member */
  45	struct rb_node rb_node;
  46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47	/*
  48	 * Dispatch time in jiffies. This is the estimated time when group
  49	 * will unthrottle and is ready to dispatch more bio. It is used as
  50	 * key to sort active groups in service tree.
  51	 */
  52	unsigned long disptime;
  53
  54	struct blkio_group blkg;
  55	atomic_t ref;
  56	unsigned int flags;
  57
  58	/* Two lists for READ and WRITE */
  59	struct bio_list bio_lists[2];
  60
  61	/* Number of queued bios on READ and WRITE lists */
  62	unsigned int nr_queued[2];
  63
  64	/* bytes per second rate limits */
  65	uint64_t bps[2];
 
 
 
 
  66
  67	/* IOPS limits */
  68	unsigned int iops[2];
  69
  70	/* Number of bytes disptached in current slice */
  71	uint64_t bytes_disp[2];
  72	/* Number of bio's dispatched in current slice */
  73	unsigned int io_disp[2];
  74
 
 
 
 
 
 
 
 
 
  75	/* When did we start a new slice */
  76	unsigned long slice_start[2];
  77	unsigned long slice_end[2];
  78
  79	/* Some throttle limits got updated for the group */
  80	int limits_changed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	struct rcu_head rcu_head;
 
 
 
 
 
 
 
  83};
  84
  85struct throtl_data
  86{
  87	/* List of throtl groups */
  88	struct hlist_head tg_list;
  89
  90	/* service tree for active throtl groups */
  91	struct throtl_rb_root tg_service_tree;
  92
  93	struct throtl_grp *root_tg;
  94	struct request_queue *queue;
  95
  96	/* Total Number of queued bios on READ and WRITE lists */
  97	unsigned int nr_queued[2];
  98
  99	/*
 100	 * number of total undestroyed groups
 101	 */
 102	unsigned int nr_undestroyed_grps;
 103
 104	/* Work for dispatching throttled bios */
 105	struct delayed_work throtl_work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107	int limits_changed;
 108};
 109
 110enum tg_state_flags {
 111	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
 112};
 113
 114#define THROTL_TG_FNS(name)						\
 115static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
 116{									\
 117	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
 118}									\
 119static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
 120{									\
 121	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
 122}									\
 123static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
 124{									\
 125	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
 126}
 127
 128THROTL_TG_FNS(on_rr);
 129
 130#define throtl_log_tg(td, tg, fmt, args...)				\
 131	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
 132				blkg_path(&(tg)->blkg), ##args);      	\
 133
 134#define throtl_log(td, fmt, args...)	\
 135	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
 136
 137static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
 138{
 139	if (blkg)
 140		return container_of(blkg, struct throtl_grp, blkg);
 141
 142	return NULL;
 
 
 143}
 144
 145static inline unsigned int total_nr_queued(struct throtl_data *td)
 146{
 147	return td->nr_queued[0] + td->nr_queued[1];
 148}
 149
 150static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
 
 
 
 
 
 
 
 151{
 152	atomic_inc(&tg->ref);
 153	return tg;
 
 
 154}
 155
 156static void throtl_free_tg(struct rcu_head *head)
 
 
 
 
 
 
 
 157{
 158	struct throtl_grp *tg;
 159
 160	tg = container_of(head, struct throtl_grp, rcu_head);
 161	free_percpu(tg->blkg.stats_cpu);
 162	kfree(tg);
 
 163}
 164
 165static void throtl_put_tg(struct throtl_grp *tg)
 
 
 
 
 
 
 
 
 166{
 167	BUG_ON(atomic_read(&tg->ref) <= 0);
 168	if (!atomic_dec_and_test(&tg->ref))
 169		return;
 
 170
 171	/*
 172	 * A group is freed in rcu manner. But having an rcu lock does not
 173	 * mean that one can access all the fields of blkg and assume these
 174	 * are valid. For example, don't try to follow throtl_data and
 175	 * request queue links.
 176	 *
 177	 * Having a reference to blkg under an rcu allows acess to only
 178	 * values local to groups like group stats and group rate limits
 179	 */
 180	call_rcu(&tg->rcu_head, throtl_free_tg);
 181}
 182
 183static void throtl_init_group(struct throtl_grp *tg)
 184{
 185	INIT_HLIST_NODE(&tg->tg_node);
 186	RB_CLEAR_NODE(&tg->rb_node);
 187	bio_list_init(&tg->bio_lists[0]);
 188	bio_list_init(&tg->bio_lists[1]);
 189	tg->limits_changed = false;
 190
 191	/* Practically unlimited BW */
 192	tg->bps[0] = tg->bps[1] = -1;
 193	tg->iops[0] = tg->iops[1] = -1;
 194
 195	/*
 196	 * Take the initial reference that will be released on destroy
 197	 * This can be thought of a joint reference by cgroup and
 198	 * request queue which will be dropped by either request queue
 199	 * exit or cgroup deletion path depending on who is exiting first.
 200	 */
 201	atomic_set(&tg->ref, 1);
 202}
 
 
 203
 204/* Should be called with rcu read lock held (needed for blkcg) */
 205static void
 206throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
 207{
 208	hlist_add_head(&tg->tg_node, &td->tg_list);
 209	td->nr_undestroyed_grps++;
 
 
 210}
 211
 212static void
 213__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
 214{
 215	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
 216	unsigned int major, minor;
 
 217
 218	if (!tg || tg->blkg.dev)
 219		return;
 220
 221	/*
 222	 * Fill in device details for a group which might not have been
 223	 * filled at group creation time as queue was being instantiated
 224	 * and driver had not attached a device yet
 225	 */
 226	if (bdi->dev && dev_name(bdi->dev)) {
 227		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
 228		tg->blkg.dev = MKDEV(major, minor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	}
 230}
 231
 232/*
 233 * Should be called with without queue lock held. Here queue lock will be
 234 * taken rarely. It will be taken only once during life time of a group
 235 * if need be
 236 */
 237static void
 238throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
 239{
 240	if (!tg || tg->blkg.dev)
 241		return;
 
 
 
 242
 243	spin_lock_irq(td->queue->queue_lock);
 244	__throtl_tg_fill_dev_details(td, tg);
 245	spin_unlock_irq(td->queue->queue_lock);
 
 246}
 247
 248static void throtl_init_add_tg_lists(struct throtl_data *td,
 249			struct throtl_grp *tg, struct blkio_cgroup *blkcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	__throtl_tg_fill_dev_details(td, tg);
 
 252
 253	/* Add group onto cgroup list */
 254	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
 255				tg->blkg.dev, BLKIO_POLICY_THROTL);
 256
 257	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
 258	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
 259	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
 260	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
 261
 262	throtl_add_group_to_td_list(td, tg);
 
 
 
 
 
 
 
 
 
 
 263}
 264
 265/* Should be called without queue lock and outside of rcu period */
 266static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
 267{
 268	struct throtl_grp *tg = NULL;
 269	int ret;
 
 
 
 270
 271	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
 
 
 
 
 
 
 
 272	if (!tg)
 273		return NULL;
 274
 275	ret = blkio_alloc_blkg_stats(&tg->blkg);
 
 276
 277	if (ret) {
 278		kfree(tg);
 279		return NULL;
 
 
 
 
 
 280	}
 281
 282	throtl_init_group(tg);
 283	return tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 285
 286static struct
 287throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
 288{
 289	struct throtl_grp *tg = NULL;
 290	void *key = td;
 
 
 291
 292	/*
 293	 * This is the common case when there are no blkio cgroups.
 294 	 * Avoid lookup in this case
 295 	 */
 296	if (blkcg == &blkio_root_cgroup)
 297		tg = td->root_tg;
 298	else
 299		tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
 300
 301	__throtl_tg_fill_dev_details(td, tg);
 302	return tg;
 
 
 
 
 
 
 303}
 304
 305/*
 306 * This function returns with queue lock unlocked in case of error, like
 307 * request queue is no more
 
 308 */
 309static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
 310{
 311	struct throtl_grp *tg = NULL, *__tg = NULL;
 312	struct blkio_cgroup *blkcg;
 313	struct request_queue *q = td->queue;
 314
 315	rcu_read_lock();
 316	blkcg = task_blkio_cgroup(current);
 317	tg = throtl_find_tg(td, blkcg);
 318	if (tg) {
 319		rcu_read_unlock();
 320		return tg;
 321	}
 322
 323	/*
 324	 * Need to allocate a group. Allocation of group also needs allocation
 325	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
 326	 * we need to drop rcu lock and queue_lock before we call alloc
 327	 *
 328	 * Take the request queue reference to make sure queue does not
 329	 * go away once we return from allocation.
 330	 */
 331	blk_get_queue(q);
 332	rcu_read_unlock();
 333	spin_unlock_irq(q->queue_lock);
 334
 335	tg = throtl_alloc_tg(td);
 
 
 336	/*
 337	 * We might have slept in group allocation. Make sure queue is not
 338	 * dead
 339	 */
 340	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 341		blk_put_queue(q);
 342		if (tg)
 343			kfree(tg);
 344
 345		return ERR_PTR(-ENODEV);
 346	}
 347	blk_put_queue(q);
 348
 349	/* Group allocated and queue is still alive. take the lock */
 350	spin_lock_irq(q->queue_lock);
 
 
 
 
 351
 352	/*
 353	 * Initialize the new group. After sleeping, read the blkcg again.
 354	 */
 355	rcu_read_lock();
 356	blkcg = task_blkio_cgroup(current);
 357
 358	/*
 359	 * If some other thread already allocated the group while we were
 360	 * not holding queue lock, free up the group
 361	 */
 362	__tg = throtl_find_tg(td, blkcg);
 363
 364	if (__tg) {
 365		kfree(tg);
 366		rcu_read_unlock();
 367		return __tg;
 368	}
 369
 370	/* Group allocation failed. Account the IO to root group */
 371	if (!tg) {
 372		tg = td->root_tg;
 373		return tg;
 
 374	}
 375
 376	throtl_init_add_tg_lists(td, tg, blkcg);
 377	rcu_read_unlock();
 378	return tg;
 
 379}
 
 
 
 
 
 380
 381static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
 
 382{
 383	/* Service tree is empty */
 384	if (!root->count)
 385		return NULL;
 386
 387	if (!root->left)
 388		root->left = rb_first(&root->rb);
 
 
 389
 390	if (root->left)
 391		return rb_entry_tg(root->left);
 392
 393	return NULL;
 
 394}
 395
 396static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 397{
 398	rb_erase(n, root);
 399	RB_CLEAR_NODE(n);
 
 
 
 
 400}
 401
 402static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
 
 403{
 404	if (root->left == n)
 405		root->left = NULL;
 406	rb_erase_init(n, &root->rb);
 407	--root->count;
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410static void update_min_dispatch_time(struct throtl_rb_root *st)
 411{
 412	struct throtl_grp *tg;
 413
 414	tg = throtl_rb_first(st);
 415	if (!tg)
 416		return;
 417
 418	st->min_disptime = tg->disptime;
 419}
 420
 421static void
 422tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
 423{
 424	struct rb_node **node = &st->rb.rb_node;
 
 425	struct rb_node *parent = NULL;
 426	struct throtl_grp *__tg;
 427	unsigned long key = tg->disptime;
 428	int left = 1;
 429
 430	while (*node != NULL) {
 431		parent = *node;
 432		__tg = rb_entry_tg(parent);
 433
 434		if (time_before(key, __tg->disptime))
 435			node = &parent->rb_left;
 436		else {
 437			node = &parent->rb_right;
 438			left = 0;
 439		}
 440	}
 441
 442	if (left)
 443		st->left = &tg->rb_node;
 444
 445	rb_link_node(&tg->rb_node, parent, node);
 446	rb_insert_color(&tg->rb_node, &st->rb);
 
 447}
 448
 449static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
 450{
 451	struct throtl_rb_root *st = &td->tg_service_tree;
 452
 453	tg_service_tree_add(st, tg);
 454	throtl_mark_tg_on_rr(tg);
 455	st->count++;
 456}
 457
 458static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
 459{
 460	if (!throtl_tg_on_rr(tg))
 461		__throtl_enqueue_tg(td, tg);
 
 
 462}
 463
 464static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
 
 
 465{
 466	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
 467	throtl_clear_tg_on_rr(tg);
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	if (throtl_tg_on_rr(tg))
 473		__throtl_dequeue_tg(td, tg);
 
 
 
 
 
 
 
 
 
 
 
 
 474}
 475
 476static void throtl_schedule_next_dispatch(struct throtl_data *td)
 
 477{
 478	struct throtl_rb_root *st = &td->tg_service_tree;
 
 
 
 479
 480	/*
 481	 * If there are more bios pending, schedule more work.
 
 
 
 482	 */
 483	if (!total_nr_queued(td))
 484		return;
 485
 486	BUG_ON(!st->count);
 487
 488	update_min_dispatch_time(st);
 489
 490	if (time_before_eq(st->min_disptime, jiffies))
 491		throtl_schedule_delayed_work(td, 0);
 492	else
 493		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
 
 494}
 495
 496static inline void
 497throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 498{
 499	tg->bytes_disp[rw] = 0;
 500	tg->io_disp[rw] = 0;
 501	tg->slice_start[rw] = jiffies;
 502	tg->slice_end[rw] = jiffies + throtl_slice;
 503	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
 504			rw == READ ? 'R' : 'W', tg->slice_start[rw],
 505			tg->slice_end[rw], jiffies);
 
 
 
 
 506}
 507
 508static inline void throtl_set_slice_end(struct throtl_data *td,
 509		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
 510{
 511	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 512}
 513
 514static inline void throtl_extend_slice(struct throtl_data *td,
 515		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
 516{
 517	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 518	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 519			rw == READ ? 'R' : 'W', tg->slice_start[rw],
 520			tg->slice_end[rw], jiffies);
 
 521}
 522
 523/* Determine if previously allocated or extended slice is complete or not */
 524static bool
 525throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 526{
 527	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 528		return 0;
 529
 530	return 1;
 531}
 532
 533/* Trim the used slices and adjust slice start accordingly */
 534static inline void
 535throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
 536{
 537	unsigned long nr_slices, time_elapsed, io_trim;
 538	u64 bytes_trim, tmp;
 539
 540	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 541
 542	/*
 543	 * If bps are unlimited (-1), then time slice don't get
 544	 * renewed. Don't try to trim the slice if slice is used. A new
 545	 * slice will start when appropriate.
 546	 */
 547	if (throtl_slice_used(td, tg, rw))
 548		return;
 549
 550	/*
 551	 * A bio has been dispatched. Also adjust slice_end. It might happen
 552	 * that initially cgroup limit was very low resulting in high
 553	 * slice_end, but later limit was bumped up and bio was dispached
 554	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 555	 * is bad because it does not allow new slice to start.
 556	 */
 557
 558	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
 559
 560	time_elapsed = jiffies - tg->slice_start[rw];
 561
 562	nr_slices = time_elapsed / throtl_slice;
 563
 564	if (!nr_slices)
 565		return;
 566	tmp = tg->bps[rw] * throtl_slice * nr_slices;
 567	do_div(tmp, HZ);
 568	bytes_trim = tmp;
 569
 570	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 
 571
 572	if (!bytes_trim && !io_trim)
 573		return;
 574
 575	if (tg->bytes_disp[rw] >= bytes_trim)
 576		tg->bytes_disp[rw] -= bytes_trim;
 577	else
 578		tg->bytes_disp[rw] = 0;
 579
 580	if (tg->io_disp[rw] >= io_trim)
 581		tg->io_disp[rw] -= io_trim;
 582	else
 583		tg->io_disp[rw] = 0;
 584
 585	tg->slice_start[rw] += nr_slices * throtl_slice;
 586
 587	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
 588			" start=%lu end=%lu jiffies=%lu",
 589			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 590			tg->slice_start[rw], tg->slice_end[rw], jiffies);
 591}
 592
 593static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
 594		struct bio *bio, unsigned long *wait)
 595{
 596	bool rw = bio_data_dir(bio);
 597	unsigned int io_allowed;
 598	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 599	u64 tmp;
 600
 601	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 
 
 
 
 602
 603	/* Slice has just started. Consider one slice interval */
 604	if (!jiffy_elapsed)
 605		jiffy_elapsed_rnd = throtl_slice;
 606
 607	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 
 608
 609	/*
 610	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 611	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 612	 * will allow dispatch after 1 second and after that slice should
 613	 * have been trimmed.
 614	 */
 615
 616	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 617	do_div(tmp, HZ);
 618
 619	if (tmp > UINT_MAX)
 620		io_allowed = UINT_MAX;
 621	else
 622		io_allowed = tmp;
 623
 624	if (tg->io_disp[rw] + 1 <= io_allowed) {
 625		if (wait)
 626			*wait = 0;
 627		return 1;
 628	}
 629
 630	/* Calc approx time to dispatch */
 631	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 632
 633	if (jiffy_wait > jiffy_elapsed)
 634		jiffy_wait = jiffy_wait - jiffy_elapsed;
 635	else
 636		jiffy_wait = 1;
 637
 638	if (wait)
 639		*wait = jiffy_wait;
 640	return 0;
 641}
 642
 643static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
 644		struct bio *bio, unsigned long *wait)
 645{
 646	bool rw = bio_data_dir(bio);
 647	u64 bytes_allowed, extra_bytes, tmp;
 648	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 
 
 
 
 
 
 
 649
 650	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 651
 652	/* Slice has just started. Consider one slice interval */
 653	if (!jiffy_elapsed)
 654		jiffy_elapsed_rnd = throtl_slice;
 655
 656	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 657
 658	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 659	do_div(tmp, HZ);
 660	bytes_allowed = tmp;
 661
 662	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
 663		if (wait)
 664			*wait = 0;
 665		return 1;
 666	}
 667
 668	/* Calc approx time to dispatch */
 669	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
 670	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 671
 672	if (!jiffy_wait)
 673		jiffy_wait = 1;
 674
 675	/*
 676	 * This wait time is without taking into consideration the rounding
 677	 * up we did. Add that time also.
 678	 */
 679	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 680	if (wait)
 681		*wait = jiffy_wait;
 682	return 0;
 683}
 684
 685static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
 686	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
 687		return 1;
 688	return 0;
 689}
 690
 691/*
 692 * Returns whether one can dispatch a bio or not. Also returns approx number
 693 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 694 */
 695static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
 696				struct bio *bio, unsigned long *wait)
 697{
 698	bool rw = bio_data_dir(bio);
 699	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 
 
 700
 701	/*
 702 	 * Currently whole state machine of group depends on first bio
 703	 * queued in the group bio list. So one should not be calling
 704	 * this function with a different bio if there are other bios
 705	 * queued.
 706	 */
 707	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
 
 708
 709	/* If tg->bps = -1, then BW is unlimited */
 710	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 711		if (wait)
 712			*wait = 0;
 713		return 1;
 714	}
 715
 716	/*
 717	 * If previous slice expired, start a new one otherwise renew/extend
 718	 * existing slice to make sure it is at least throtl_slice interval
 719	 * long since now.
 
 
 720	 */
 721	if (throtl_slice_used(td, tg, rw))
 722		throtl_start_new_slice(td, tg, rw);
 723	else {
 724		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 725			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
 
 
 726	}
 727
 728	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
 729	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
 
 
 
 730		if (wait)
 731			*wait = 0;
 732		return 1;
 733	}
 734
 735	max_wait = max(bps_wait, iops_wait);
 736
 737	if (wait)
 738		*wait = max_wait;
 739
 740	if (time_before(tg->slice_end[rw], jiffies + max_wait))
 741		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
 742
 743	return 0;
 744}
 745
 746static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 747{
 748	bool rw = bio_data_dir(bio);
 749	bool sync = rw_is_sync(bio->bi_rw);
 750
 751	/* Charge the bio to the group */
 752	tg->bytes_disp[rw] += bio->bi_size;
 753	tg->io_disp[rw]++;
 
 
 754
 755	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
 
 
 
 
 
 
 
 756}
 757
 758static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
 759			struct bio *bio)
 
 
 
 
 
 
 
 
 
 760{
 
 761	bool rw = bio_data_dir(bio);
 762
 763	bio_list_add(&tg->bio_lists[rw], bio);
 764	/* Take a bio reference on tg */
 765	throtl_ref_get_tg(tg);
 766	tg->nr_queued[rw]++;
 767	td->nr_queued[rw]++;
 768	throtl_enqueue_tg(td, tg);
 
 
 
 
 
 
 
 
 
 
 769}
 770
 771static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
 772{
 
 773	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
 774	struct bio *bio;
 775
 776	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
 777		tg_may_dispatch(td, tg, bio, &read_wait);
 778
 779	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
 780		tg_may_dispatch(td, tg, bio, &write_wait);
 
 
 781
 782	min_wait = min(read_wait, write_wait);
 783	disptime = jiffies + min_wait;
 784
 785	/* Update dispatch time */
 786	throtl_dequeue_tg(td, tg);
 787	tg->disptime = disptime;
 788	throtl_enqueue_tg(td, tg);
 
 
 
 789}
 790
 791static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
 792				bool rw, struct bio_list *bl)
 793{
 794	struct bio *bio;
 
 
 
 795
 796	bio = bio_list_pop(&tg->bio_lists[rw]);
 797	tg->nr_queued[rw]--;
 798	/* Drop bio reference on tg */
 799	throtl_put_tg(tg);
 800
 801	BUG_ON(td->nr_queued[rw] <= 0);
 802	td->nr_queued[rw]--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804	throtl_charge_bio(tg, bio);
 805	bio_list_add(bl, bio);
 806	bio->bi_rw |= REQ_THROTTLED;
 807
 808	throtl_trim_slice(td, tg, rw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809}
 810
 811static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
 812				struct bio_list *bl)
 813{
 
 814	unsigned int nr_reads = 0, nr_writes = 0;
 815	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
 816	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
 817	struct bio *bio;
 818
 819	/* Try to dispatch 75% READS and 25% WRITES */
 820
 821	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
 822		&& tg_may_dispatch(td, tg, bio, NULL)) {
 823
 824		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
 825		nr_reads++;
 826
 827		if (nr_reads >= max_nr_reads)
 828			break;
 829	}
 830
 831	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
 832		&& tg_may_dispatch(td, tg, bio, NULL)) {
 833
 834		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
 835		nr_writes++;
 836
 837		if (nr_writes >= max_nr_writes)
 838			break;
 839	}
 840
 841	return nr_reads + nr_writes;
 842}
 843
 844static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
 845{
 846	unsigned int nr_disp = 0;
 847	struct throtl_grp *tg;
 848	struct throtl_rb_root *st = &td->tg_service_tree;
 849
 850	while (1) {
 851		tg = throtl_rb_first(st);
 
 
 
 
 852
 
 853		if (!tg)
 854			break;
 855
 856		if (time_before(jiffies, tg->disptime))
 857			break;
 858
 859		throtl_dequeue_tg(td, tg);
 860
 861		nr_disp += throtl_dispatch_tg(td, tg, bl);
 862
 863		if (tg->nr_queued[0] || tg->nr_queued[1]) {
 864			tg_update_disptime(td, tg);
 865			throtl_enqueue_tg(td, tg);
 866		}
 867
 868		if (nr_disp >= throtl_quantum)
 869			break;
 870	}
 871
 872	return nr_disp;
 873}
 874
 875static void throtl_process_limit_change(struct throtl_data *td)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876{
 877	struct throtl_grp *tg;
 878	struct hlist_node *pos, *n;
 879
 880	if (!td->limits_changed)
 881		return;
 882
 883	xchg(&td->limits_changed, false);
 884
 885	throtl_log(td, "limits changed");
 886
 887	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
 888		if (!tg->limits_changed)
 889			continue;
 890
 891		if (!xchg(&tg->limits_changed, false))
 892			continue;
 893
 894		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
 895			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
 896			tg->iops[READ], tg->iops[WRITE]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898		/*
 899		 * Restart the slices for both READ and WRITES. It
 900		 * might happen that a group's limit are dropped
 901		 * suddenly and we don't want to account recently
 902		 * dispatched IO with new low rate
 903		 */
 904		throtl_start_new_slice(td, tg, 0);
 905		throtl_start_new_slice(td, tg, 1);
 906
 907		if (throtl_tg_on_rr(tg))
 908			tg_update_disptime(td, tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909	}
 
 
 910}
 911
 912/* Dispatch throttled bios. Should be called without queue lock held. */
 913static int throtl_dispatch(struct request_queue *q)
 
 
 
 
 
 
 
 914{
 915	struct throtl_data *td = q->td;
 916	unsigned int nr_disp = 0;
 
 
 917	struct bio_list bio_list_on_stack;
 918	struct bio *bio;
 919	struct blk_plug plug;
 920
 921	spin_lock_irq(q->queue_lock);
 922
 923	throtl_process_limit_change(td);
 924
 925	if (!total_nr_queued(td))
 926		goto out;
 927
 928	bio_list_init(&bio_list_on_stack);
 929
 930	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
 931			total_nr_queued(td), td->nr_queued[READ],
 932			td->nr_queued[WRITE]);
 933
 934	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
 935
 936	if (nr_disp)
 937		throtl_log(td, "bios disp=%u", nr_disp);
 938
 939	throtl_schedule_next_dispatch(td);
 940out:
 941	spin_unlock_irq(q->queue_lock);
 942
 943	/*
 944	 * If we dispatched some requests, unplug the queue to make sure
 945	 * immediate dispatch
 946	 */
 947	if (nr_disp) {
 948		blk_start_plug(&plug);
 949		while((bio = bio_list_pop(&bio_list_on_stack)))
 950			generic_make_request(bio);
 951		blk_finish_plug(&plug);
 952	}
 953	return nr_disp;
 954}
 955
 956void blk_throtl_work(struct work_struct *work)
 
 957{
 958	struct throtl_data *td = container_of(work, struct throtl_data,
 959					throtl_work.work);
 960	struct request_queue *q = td->queue;
 961
 962	throtl_dispatch(q);
 
 
 963}
 964
 965/* Call with queue lock held */
 966static void
 967throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
 968{
 
 
 969
 970	struct delayed_work *dwork = &td->throtl_work;
 
 
 
 971
 972	/* schedule work if limits changed even if no bio is queued */
 973	if (total_nr_queued(td) || td->limits_changed) {
 974		/*
 975		 * We might have a work scheduled to be executed in future.
 976		 * Cancel that and schedule a new one.
 977		 */
 978		__cancel_delayed_work(dwork);
 979		queue_delayed_work(kthrotld_workqueue, dwork, delay);
 980		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
 981				delay, jiffies);
 982	}
 983}
 984
 985static void
 986throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
 987{
 988	/* Something wrong if we are trying to remove same group twice */
 989	BUG_ON(hlist_unhashed(&tg->tg_node));
 
 
 990
 991	hlist_del_init(&tg->tg_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	/*
 994	 * Put the reference taken at the time of creation so that when all
 995	 * queues are gone, group can be destroyed.
 
 
 
 
 996	 */
 997	throtl_put_tg(tg);
 998	td->nr_undestroyed_grps--;
 
 
 
 
 
 999}
1000
1001static void throtl_release_tgs(struct throtl_data *td)
 
1002{
1003	struct hlist_node *pos, *n;
 
1004	struct throtl_grp *tg;
 
 
1005
1006	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
1007		/*
1008		 * If cgroup removal path got to blk_group first and removed
1009		 * it from cgroup list, then it will take care of destroying
1010		 * cfqg also.
1011		 */
1012		if (!blkiocg_del_blkio_group(&tg->blkg))
1013			throtl_destroy_tg(td, tg);
1014	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1015}
1016
1017static void throtl_td_free(struct throtl_data *td)
 
1018{
1019	kfree(td);
1020}
1021
1022/*
1023 * Blk cgroup controller notification saying that blkio_group object is being
1024 * delinked as associated cgroup object is going away. That also means that
1025 * no new IO will come in this group. So get rid of this group as soon as
1026 * any pending IO in the group is finished.
1027 *
1028 * This function is called under rcu_read_lock(). key is the rcu protected
1029 * pointer. That means "key" is a valid throtl_data pointer as long as we are
1030 * rcu read lock.
1031 *
1032 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1033 * it should not be NULL as even if queue was going away, cgroup deltion
1034 * path got to it first.
1035 */
1036void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1037{
1038	unsigned long flags;
1039	struct throtl_data *td = key;
1040
1041	spin_lock_irqsave(td->queue->queue_lock, flags);
1042	throtl_destroy_tg(td, tg_of_blkg(blkg));
1043	spin_unlock_irqrestore(td->queue->queue_lock, flags);
1044}
1045
1046static void throtl_update_blkio_group_common(struct throtl_data *td,
1047				struct throtl_grp *tg)
1048{
1049	xchg(&tg->limits_changed, true);
1050	xchg(&td->limits_changed, true);
1051	/* Schedule a work now to process the limit change */
1052	throtl_schedule_delayed_work(td, 0);
1053}
1054
1055/*
1056 * For all update functions, key should be a valid pointer because these
1057 * update functions are called under blkcg_lock, that means, blkg is
1058 * valid and in turn key is valid. queue exit path can not race because
1059 * of blkcg_lock
1060 *
1061 * Can not take queue lock in update functions as queue lock under blkcg_lock
1062 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
1063 */
1064static void throtl_update_blkio_group_read_bps(void *key,
1065				struct blkio_group *blkg, u64 read_bps)
1066{
1067	struct throtl_data *td = key;
1068	struct throtl_grp *tg = tg_of_blkg(blkg);
1069
1070	tg->bps[READ] = read_bps;
1071	throtl_update_blkio_group_common(td, tg);
 
1072}
1073
1074static void throtl_update_blkio_group_write_bps(void *key,
1075				struct blkio_group *blkg, u64 write_bps)
1076{
1077	struct throtl_data *td = key;
1078	struct throtl_grp *tg = tg_of_blkg(blkg);
1079
1080	tg->bps[WRITE] = write_bps;
1081	throtl_update_blkio_group_common(td, tg);
1082}
1083
1084static void throtl_update_blkio_group_read_iops(void *key,
1085			struct blkio_group *blkg, unsigned int read_iops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086{
1087	struct throtl_data *td = key;
1088	struct throtl_grp *tg = tg_of_blkg(blkg);
 
 
 
 
 
1089
1090	tg->iops[READ] = read_iops;
1091	throtl_update_blkio_group_common(td, tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092}
1093
1094static void throtl_update_blkio_group_write_iops(void *key,
1095			struct blkio_group *blkg, unsigned int write_iops)
1096{
1097	struct throtl_data *td = key;
1098	struct throtl_grp *tg = tg_of_blkg(blkg);
1099
1100	tg->iops[WRITE] = write_iops;
1101	throtl_update_blkio_group_common(td, tg);
1102}
1103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104static void throtl_shutdown_wq(struct request_queue *q)
1105{
1106	struct throtl_data *td = q->td;
1107
1108	cancel_delayed_work_sync(&td->throtl_work);
1109}
1110
1111static struct blkio_policy_type blkio_policy_throtl = {
1112	.ops = {
1113		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1114		.blkio_update_group_read_bps_fn =
1115					throtl_update_blkio_group_read_bps,
1116		.blkio_update_group_write_bps_fn =
1117					throtl_update_blkio_group_write_bps,
1118		.blkio_update_group_read_iops_fn =
1119					throtl_update_blkio_group_read_iops,
1120		.blkio_update_group_write_iops_fn =
1121					throtl_update_blkio_group_write_iops,
1122	},
1123	.plid = BLKIO_POLICY_THROTL,
1124};
1125
1126int blk_throtl_bio(struct request_queue *q, struct bio **biop)
1127{
1128	struct throtl_data *td = q->td;
1129	struct throtl_grp *tg;
1130	struct bio *bio = *biop;
1131	bool rw = bio_data_dir(bio), update_disptime = true;
1132	struct blkio_cgroup *blkcg;
1133
1134	if (bio->bi_rw & REQ_THROTTLED) {
1135		bio->bi_rw &= ~REQ_THROTTLED;
1136		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	/*
1140	 * A throtl_grp pointer retrieved under rcu can be used to access
1141	 * basic fields like stats and io rates. If a group has no rules,
1142	 * just update the dispatch stats in lockless manner and return.
1143	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145	rcu_read_lock();
1146	blkcg = task_blkio_cgroup(current);
1147	tg = throtl_find_tg(td, blkcg);
1148	if (tg) {
1149		throtl_tg_fill_dev_details(td, tg);
1150
1151		if (tg_no_rule_group(tg, rw)) {
1152			blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1153					rw, rw_is_sync(bio->bi_rw));
1154			rcu_read_unlock();
1155			return 0;
1156		}
1157	}
1158	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	/*
1161	 * Either group has not been allocated yet or it is not an unlimited
1162	 * IO group
1163	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165	spin_lock_irq(q->queue_lock);
1166	tg = throtl_get_tg(td);
 
 
 
 
 
 
 
 
 
1167
1168	if (IS_ERR(tg)) {
1169		if (PTR_ERR(tg)	== -ENODEV) {
1170			/*
1171			 * Queue is gone. No queue lock held here.
1172			 */
1173			return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174		}
1175	}
1176
1177	if (tg->nr_queued[rw]) {
1178		/*
1179		 * There is already another bio queued in same dir. No
1180		 * need to update dispatch time.
1181		 */
1182		update_disptime = false;
1183		goto queue_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	}
1186
1187	/* Bio is with-in rate limit of group */
1188	if (tg_may_dispatch(td, tg, bio, NULL)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189		throtl_charge_bio(tg, bio);
1190
1191		/*
1192		 * We need to trim slice even when bios are not being queued
1193		 * otherwise it might happen that a bio is not queued for
1194		 * a long time and slice keeps on extending and trim is not
1195		 * called for a long time. Now if limits are reduced suddenly
1196		 * we take into account all the IO dispatched so far at new
1197		 * low rate and * newly queued IO gets a really long dispatch
1198		 * time.
1199		 *
1200		 * So keep on trimming slice even if bio is not queued.
1201		 */
1202		throtl_trim_slice(td, tg, rw);
1203		goto out;
 
 
 
 
 
 
 
 
 
 
1204	}
1205
1206queue_bio:
1207	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1208			" iodisp=%u iops=%u queued=%d/%d",
1209			rw == READ ? 'R' : 'W',
1210			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1211			tg->io_disp[rw], tg->iops[rw],
1212			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1213
1214	throtl_add_bio_tg(q->td, tg, bio);
1215	*biop = NULL;
1216
1217	if (update_disptime) {
1218		tg_update_disptime(td, tg);
1219		throtl_schedule_next_dispatch(td);
 
 
 
 
 
 
 
 
 
1220	}
1221
 
 
1222out:
1223	spin_unlock_irq(q->queue_lock);
1224	return 0;
 
 
 
 
 
 
1225}
1226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227int blk_throtl_init(struct request_queue *q)
1228{
1229	struct throtl_data *td;
1230	struct throtl_grp *tg;
1231
1232	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1233	if (!td)
1234		return -ENOMEM;
1235
1236	INIT_HLIST_HEAD(&td->tg_list);
1237	td->tg_service_tree = THROTL_RB_ROOT;
1238	td->limits_changed = false;
1239	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1240
1241	/* alloc and Init root group. */
1242	td->queue = q;
1243	tg = throtl_alloc_tg(td);
1244
1245	if (!tg) {
1246		kfree(td);
1247		return -ENOMEM;
1248	}
1249
1250	td->root_tg = tg;
1251
1252	rcu_read_lock();
1253	throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1254	rcu_read_unlock();
1255
1256	/* Attach throtl data to request queue */
1257	q->td = td;
1258	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
1260
1261void blk_throtl_exit(struct request_queue *q)
1262{
1263	struct throtl_data *td = q->td;
1264	bool wait = false;
 
 
 
 
 
 
1265
1266	BUG_ON(!td);
 
 
 
1267
1268	throtl_shutdown_wq(q);
 
1269
1270	spin_lock_irq(q->queue_lock);
1271	throtl_release_tgs(td);
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273	/* If there are other groups */
1274	if (td->nr_undestroyed_grps > 0)
1275		wait = true;
 
1276
1277	spin_unlock_irq(q->queue_lock);
 
 
 
 
 
 
1278
1279	/*
1280	 * Wait for tg->blkg->key accessors to exit their grace periods.
1281	 * Do this wait only if there are other undestroyed groups out
1282	 * there (other than root group). This can happen if cgroup deletion
1283	 * path claimed the responsibility of cleaning up a group before
1284	 * queue cleanup code get to the group.
1285	 *
1286	 * Do not call synchronize_rcu() unconditionally as there are drivers
1287	 * which create/delete request queue hundreds of times during scan/boot
1288	 * and synchronize_rcu() can take significant time and slow down boot.
1289	 */
1290	if (wait)
1291		synchronize_rcu();
1292
1293	/*
1294	 * Just being safe to make sure after previous flush if some body did
1295	 * update limits through cgroup and another work got queued, cancel
1296	 * it.
1297	 */
1298	throtl_shutdown_wq(q);
1299	throtl_td_free(td);
 
 
1300}
 
1301
1302static int __init throtl_init(void)
1303{
1304	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1305	if (!kthrotld_workqueue)
1306		panic("Failed to create kthrotld\n");
1307
1308	blkio_policy_register(&blkio_policy_throtl);
1309	return 0;
1310}
1311
1312module_init(throtl_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15#include "blk-cgroup-rwstat.h"
  16
  17/* Max dispatch from a group in 1 round */
  18#define THROTL_GRP_QUANTUM 8
  19
  20/* Total max dispatch from all groups in one round */
  21#define THROTL_QUANTUM 32
  22
  23/* Throttling is performed over a slice and after that slice is renewed */
  24#define DFL_THROTL_SLICE_HD (HZ / 10)
  25#define DFL_THROTL_SLICE_SSD (HZ / 50)
  26#define MAX_THROTL_SLICE (HZ)
  27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  28#define MIN_THROTL_BPS (320 * 1024)
  29#define MIN_THROTL_IOPS (10)
  30#define DFL_LATENCY_TARGET (-1L)
  31#define DFL_IDLE_THRESHOLD (0)
  32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  33#define LATENCY_FILTERED_SSD (0)
  34/*
  35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  36 * help determine if its IO is impacted by others, hence we ignore the IO
  37 */
  38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  39
  40static struct blkcg_policy blkcg_policy_throtl;
  41
  42/* A workqueue to queue throttle related work */
  43static struct workqueue_struct *kthrotld_workqueue;
 
 
  44
  45/*
  46 * To implement hierarchical throttling, throtl_grps form a tree and bios
  47 * are dispatched upwards level by level until they reach the top and get
  48 * issued.  When dispatching bios from the children and local group at each
  49 * level, if the bios are dispatched into a single bio_list, there's a risk
  50 * of a local or child group which can queue many bios at once filling up
  51 * the list starving others.
  52 *
  53 * To avoid such starvation, dispatched bios are queued separately
  54 * according to where they came from.  When they are again dispatched to
  55 * the parent, they're popped in round-robin order so that no single source
  56 * hogs the dispatch window.
  57 *
  58 * throtl_qnode is used to keep the queued bios separated by their sources.
  59 * Bios are queued to throtl_qnode which in turn is queued to
  60 * throtl_service_queue and then dispatched in round-robin order.
  61 *
  62 * It's also used to track the reference counts on blkg's.  A qnode always
  63 * belongs to a throtl_grp and gets queued on itself or the parent, so
  64 * incrementing the reference of the associated throtl_grp when a qnode is
  65 * queued and decrementing when dequeued is enough to keep the whole blkg
  66 * tree pinned while bios are in flight.
  67 */
  68struct throtl_qnode {
  69	struct list_head	node;		/* service_queue->queued[] */
  70	struct bio_list		bios;		/* queued bios */
  71	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  72};
  73
  74struct throtl_service_queue {
  75	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  76
  77	/*
  78	 * Bios queued directly to this service_queue or dispatched from
  79	 * children throtl_grp's.
  80	 */
  81	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  82	unsigned int		nr_queued[2];	/* number of queued bios */
  83
  84	/*
  85	 * RB tree of active children throtl_grp's, which are sorted by
  86	 * their ->disptime.
  87	 */
  88	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
  89	unsigned int		nr_pending;	/* # queued in the tree */
  90	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  91	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  92};
  93
  94enum tg_state_flags {
  95	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  96	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  97};
  98
  99#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
 100
 101enum {
 102	LIMIT_LOW,
 103	LIMIT_MAX,
 104	LIMIT_CNT,
 105};
 106
 107struct throtl_grp {
 108	/* must be the first member */
 109	struct blkg_policy_data pd;
 110
 111	/* active throtl group service_queue member */
 112	struct rb_node rb_node;
 113
 114	/* throtl_data this group belongs to */
 115	struct throtl_data *td;
 116
 117	/* this group's service queue */
 118	struct throtl_service_queue service_queue;
 119
 120	/*
 121	 * qnode_on_self is used when bios are directly queued to this
 122	 * throtl_grp so that local bios compete fairly with bios
 123	 * dispatched from children.  qnode_on_parent is used when bios are
 124	 * dispatched from this throtl_grp into its parent and will compete
 125	 * with the sibling qnode_on_parents and the parent's
 126	 * qnode_on_self.
 127	 */
 128	struct throtl_qnode qnode_on_self[2];
 129	struct throtl_qnode qnode_on_parent[2];
 130
 131	/*
 132	 * Dispatch time in jiffies. This is the estimated time when group
 133	 * will unthrottle and is ready to dispatch more bio. It is used as
 134	 * key to sort active groups in service tree.
 135	 */
 136	unsigned long disptime;
 137
 
 
 138	unsigned int flags;
 139
 140	/* are there any throtl rules between this group and td? */
 141	bool has_rules[2];
 142
 143	/* internally used bytes per second rate limits */
 144	uint64_t bps[2][LIMIT_CNT];
 145	/* user configured bps limits */
 146	uint64_t bps_conf[2][LIMIT_CNT];
 147
 148	/* internally used IOPS limits */
 149	unsigned int iops[2][LIMIT_CNT];
 150	/* user configured IOPS limits */
 151	unsigned int iops_conf[2][LIMIT_CNT];
 152
 153	/* Number of bytes dispatched in current slice */
 
 
 
 154	uint64_t bytes_disp[2];
 155	/* Number of bio's dispatched in current slice */
 156	unsigned int io_disp[2];
 157
 158	unsigned long last_low_overflow_time[2];
 159
 160	uint64_t last_bytes_disp[2];
 161	unsigned int last_io_disp[2];
 162
 163	unsigned long last_check_time;
 164
 165	unsigned long latency_target; /* us */
 166	unsigned long latency_target_conf; /* us */
 167	/* When did we start a new slice */
 168	unsigned long slice_start[2];
 169	unsigned long slice_end[2];
 170
 171	unsigned long last_finish_time; /* ns / 1024 */
 172	unsigned long checked_last_finish_time; /* ns / 1024 */
 173	unsigned long avg_idletime; /* ns / 1024 */
 174	unsigned long idletime_threshold; /* us */
 175	unsigned long idletime_threshold_conf; /* us */
 176
 177	unsigned int bio_cnt; /* total bios */
 178	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 179	unsigned long bio_cnt_reset_time;
 180
 181	atomic_t io_split_cnt[2];
 182	atomic_t last_io_split_cnt[2];
 183
 184	struct blkg_rwstat stat_bytes;
 185	struct blkg_rwstat stat_ios;
 186};
 187
 188/* We measure latency for request size from <= 4k to >= 1M */
 189#define LATENCY_BUCKET_SIZE 9
 190
 191struct latency_bucket {
 192	unsigned long total_latency; /* ns / 1024 */
 193	int samples;
 194};
 195
 196struct avg_latency_bucket {
 197	unsigned long latency; /* ns / 1024 */
 198	bool valid;
 199};
 200
 201struct throtl_data
 202{
 
 
 
 203	/* service tree for active throtl groups */
 204	struct throtl_service_queue service_queue;
 205
 
 206	struct request_queue *queue;
 207
 208	/* Total Number of queued bios on READ and WRITE lists */
 209	unsigned int nr_queued[2];
 210
 211	unsigned int throtl_slice;
 
 
 
 212
 213	/* Work for dispatching throttled bios */
 214	struct work_struct dispatch_work;
 215	unsigned int limit_index;
 216	bool limit_valid[LIMIT_CNT];
 217
 218	unsigned long low_upgrade_time;
 219	unsigned long low_downgrade_time;
 220
 221	unsigned int scale;
 222
 223	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 224	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 225	struct latency_bucket __percpu *latency_buckets[2];
 226	unsigned long last_calculate_time;
 227	unsigned long filtered_latency;
 228
 229	bool track_bio_latency;
 230};
 231
 232static void throtl_pending_timer_fn(struct timer_list *t);
 
 
 233
 234static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235{
 236	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 237}
 238
 239static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 240{
 241	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 242}
 243
 244static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 245{
 246	return pd_to_blkg(&tg->pd);
 247}
 248
 249/**
 250 * sq_to_tg - return the throl_grp the specified service queue belongs to
 251 * @sq: the throtl_service_queue of interest
 252 *
 253 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 254 * embedded in throtl_data, %NULL is returned.
 255 */
 256static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 257{
 258	if (sq && sq->parent_sq)
 259		return container_of(sq, struct throtl_grp, service_queue);
 260	else
 261		return NULL;
 262}
 263
 264/**
 265 * sq_to_td - return throtl_data the specified service queue belongs to
 266 * @sq: the throtl_service_queue of interest
 267 *
 268 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 269 * Determine the associated throtl_data accordingly and return it.
 270 */
 271static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 272{
 273	struct throtl_grp *tg = sq_to_tg(sq);
 274
 275	if (tg)
 276		return tg->td;
 277	else
 278		return container_of(sq, struct throtl_data, service_queue);
 279}
 280
 281/*
 282 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 283 * make the IO dispatch more smooth.
 284 * Scale up: linearly scale up according to lapsed time since upgrade. For
 285 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 286 *           limit hits .max limit
 287 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 288 */
 289static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 290{
 291	/* arbitrary value to avoid too big scale */
 292	if (td->scale < 4096 && time_after_eq(jiffies,
 293	    td->low_upgrade_time + td->scale * td->throtl_slice))
 294		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 295
 296	return low + (low >> 1) * td->scale;
 
 
 
 
 
 
 
 
 
 297}
 298
 299static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 300{
 301	struct blkcg_gq *blkg = tg_to_blkg(tg);
 302	struct throtl_data *td;
 303	uint64_t ret;
 
 
 304
 305	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 306		return U64_MAX;
 
 307
 308	td = tg->td;
 309	ret = tg->bps[rw][td->limit_index];
 310	if (ret == 0 && td->limit_index == LIMIT_LOW) {
 311		/* intermediate node or iops isn't 0 */
 312		if (!list_empty(&blkg->blkcg->css.children) ||
 313		    tg->iops[rw][td->limit_index])
 314			return U64_MAX;
 315		else
 316			return MIN_THROTL_BPS;
 317	}
 318
 319	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 320	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 321		uint64_t adjusted;
 322
 323		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 324		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 325	}
 326	return ret;
 327}
 328
 329static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 
 330{
 331	struct blkcg_gq *blkg = tg_to_blkg(tg);
 332	struct throtl_data *td;
 333	unsigned int ret;
 334
 335	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 336		return UINT_MAX;
 337
 338	td = tg->td;
 339	ret = tg->iops[rw][td->limit_index];
 340	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 341		/* intermediate node or bps isn't 0 */
 342		if (!list_empty(&blkg->blkcg->css.children) ||
 343		    tg->bps[rw][td->limit_index])
 344			return UINT_MAX;
 345		else
 346			return MIN_THROTL_IOPS;
 347	}
 348
 349	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 350	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 351		uint64_t adjusted;
 352
 353		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 354		if (adjusted > UINT_MAX)
 355			adjusted = UINT_MAX;
 356		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 357	}
 358	return ret;
 359}
 360
 361#define request_bucket_index(sectors) \
 362	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 363
 364/**
 365 * throtl_log - log debug message via blktrace
 366 * @sq: the service_queue being reported
 367 * @fmt: printf format string
 368 * @args: printf args
 369 *
 370 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 371 * throtl_grp; otherwise, just "throtl".
 372 */
 373#define throtl_log(sq, fmt, args...)	do {				\
 374	struct throtl_grp *__tg = sq_to_tg((sq));			\
 375	struct throtl_data *__td = sq_to_td((sq));			\
 376									\
 377	(void)__td;							\
 378	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
 379		break;							\
 380	if ((__tg)) {							\
 381		blk_add_cgroup_trace_msg(__td->queue,			\
 382			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 383	} else {							\
 384		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 385	}								\
 386} while (0)
 387
 388static inline unsigned int throtl_bio_data_size(struct bio *bio)
 389{
 390	/* assume it's one sector */
 391	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 392		return 512;
 393	return bio->bi_iter.bi_size;
 394}
 395
 396static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 397{
 398	INIT_LIST_HEAD(&qn->node);
 399	bio_list_init(&qn->bios);
 400	qn->tg = tg;
 401}
 402
 403/**
 404 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 405 * @bio: bio being added
 406 * @qn: qnode to add bio to
 407 * @queued: the service_queue->queued[] list @qn belongs to
 408 *
 409 * Add @bio to @qn and put @qn on @queued if it's not already on.
 410 * @qn->tg's reference count is bumped when @qn is activated.  See the
 411 * comment on top of throtl_qnode definition for details.
 412 */
 413static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 414				 struct list_head *queued)
 415{
 416	bio_list_add(&qn->bios, bio);
 417	if (list_empty(&qn->node)) {
 418		list_add_tail(&qn->node, queued);
 419		blkg_get(tg_to_blkg(qn->tg));
 420	}
 421}
 422
 423/**
 424 * throtl_peek_queued - peek the first bio on a qnode list
 425 * @queued: the qnode list to peek
 
 426 */
 427static struct bio *throtl_peek_queued(struct list_head *queued)
 
 428{
 429	struct throtl_qnode *qn;
 430	struct bio *bio;
 431
 432	if (list_empty(queued))
 433		return NULL;
 434
 435	qn = list_first_entry(queued, struct throtl_qnode, node);
 436	bio = bio_list_peek(&qn->bios);
 437	WARN_ON_ONCE(!bio);
 438	return bio;
 439}
 440
 441/**
 442 * throtl_pop_queued - pop the first bio form a qnode list
 443 * @queued: the qnode list to pop a bio from
 444 * @tg_to_put: optional out argument for throtl_grp to put
 445 *
 446 * Pop the first bio from the qnode list @queued.  After popping, the first
 447 * qnode is removed from @queued if empty or moved to the end of @queued so
 448 * that the popping order is round-robin.
 449 *
 450 * When the first qnode is removed, its associated throtl_grp should be put
 451 * too.  If @tg_to_put is NULL, this function automatically puts it;
 452 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 453 * responsible for putting it.
 454 */
 455static struct bio *throtl_pop_queued(struct list_head *queued,
 456				     struct throtl_grp **tg_to_put)
 457{
 458	struct throtl_qnode *qn;
 459	struct bio *bio;
 460
 461	if (list_empty(queued))
 462		return NULL;
 
 463
 464	qn = list_first_entry(queued, struct throtl_qnode, node);
 465	bio = bio_list_pop(&qn->bios);
 466	WARN_ON_ONCE(!bio);
 
 467
 468	if (bio_list_empty(&qn->bios)) {
 469		list_del_init(&qn->node);
 470		if (tg_to_put)
 471			*tg_to_put = qn->tg;
 472		else
 473			blkg_put(tg_to_blkg(qn->tg));
 474	} else {
 475		list_move_tail(&qn->node, queued);
 476	}
 477
 478	return bio;
 479}
 480
 481/* init a service_queue, assumes the caller zeroed it */
 482static void throtl_service_queue_init(struct throtl_service_queue *sq)
 483{
 484	INIT_LIST_HEAD(&sq->queued[0]);
 485	INIT_LIST_HEAD(&sq->queued[1]);
 486	sq->pending_tree = RB_ROOT_CACHED;
 487	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 488}
 489
 490static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
 491						struct request_queue *q,
 492						struct blkcg *blkcg)
 493{
 494	struct throtl_grp *tg;
 495	int rw;
 496
 497	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
 498	if (!tg)
 499		return NULL;
 500
 501	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
 502		goto err_free_tg;
 503
 504	if (blkg_rwstat_init(&tg->stat_ios, gfp))
 505		goto err_exit_stat_bytes;
 506
 507	throtl_service_queue_init(&tg->service_queue);
 508
 509	for (rw = READ; rw <= WRITE; rw++) {
 510		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 511		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 512	}
 513
 514	RB_CLEAR_NODE(&tg->rb_node);
 515	tg->bps[READ][LIMIT_MAX] = U64_MAX;
 516	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 517	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 518	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 519	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 520	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 521	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 522	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 523	/* LIMIT_LOW will have default value 0 */
 524
 525	tg->latency_target = DFL_LATENCY_TARGET;
 526	tg->latency_target_conf = DFL_LATENCY_TARGET;
 527	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 528	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 529
 530	return &tg->pd;
 531
 532err_exit_stat_bytes:
 533	blkg_rwstat_exit(&tg->stat_bytes);
 534err_free_tg:
 535	kfree(tg);
 536	return NULL;
 537}
 538
 539static void throtl_pd_init(struct blkg_policy_data *pd)
 
 540{
 541	struct throtl_grp *tg = pd_to_tg(pd);
 542	struct blkcg_gq *blkg = tg_to_blkg(tg);
 543	struct throtl_data *td = blkg->q->td;
 544	struct throtl_service_queue *sq = &tg->service_queue;
 545
 546	/*
 547	 * If on the default hierarchy, we switch to properly hierarchical
 548	 * behavior where limits on a given throtl_grp are applied to the
 549	 * whole subtree rather than just the group itself.  e.g. If 16M
 550	 * read_bps limit is set on the root group, the whole system can't
 551	 * exceed 16M for the device.
 552	 *
 553	 * If not on the default hierarchy, the broken flat hierarchy
 554	 * behavior is retained where all throtl_grps are treated as if
 555	 * they're all separate root groups right below throtl_data.
 556	 * Limits of a group don't interact with limits of other groups
 557	 * regardless of the position of the group in the hierarchy.
 558	 */
 559	sq->parent_sq = &td->service_queue;
 560	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 561		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 562	tg->td = td;
 563}
 564
 565/*
 566 * Set has_rules[] if @tg or any of its parents have limits configured.
 567 * This doesn't require walking up to the top of the hierarchy as the
 568 * parent's has_rules[] is guaranteed to be correct.
 569 */
 570static void tg_update_has_rules(struct throtl_grp *tg)
 571{
 572	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 573	struct throtl_data *td = tg->td;
 574	int rw;
 
 
 
 
 
 
 
 
 575
 576	for (rw = READ; rw <= WRITE; rw++)
 577		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 578			(td->limit_valid[td->limit_index] &&
 579			 (tg_bps_limit(tg, rw) != U64_MAX ||
 580			  tg_iops_limit(tg, rw) != UINT_MAX));
 581}
 
 
 
 
 
 582
 583static void throtl_pd_online(struct blkg_policy_data *pd)
 584{
 585	struct throtl_grp *tg = pd_to_tg(pd);
 586	/*
 587	 * We don't want new groups to escape the limits of its ancestors.
 588	 * Update has_rules[] after a new group is brought online.
 589	 */
 590	tg_update_has_rules(tg);
 591}
 
 
 
 
 
 
 592
 593#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 594static void blk_throtl_update_limit_valid(struct throtl_data *td)
 595{
 596	struct cgroup_subsys_state *pos_css;
 597	struct blkcg_gq *blkg;
 598	bool low_valid = false;
 599
 
 
 
 600	rcu_read_lock();
 601	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 602		struct throtl_grp *tg = blkg_to_tg(blkg);
 
 
 
 
 
 
 
 
 
 
 
 603
 604		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 605		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
 606			low_valid = true;
 607			break;
 608		}
 609	}
 
 
 610	rcu_read_unlock();
 611
 612	td->limit_valid[LIMIT_LOW] = low_valid;
 613}
 614#else
 615static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
 616{
 617}
 618#endif
 619
 620static void throtl_upgrade_state(struct throtl_data *td);
 621static void throtl_pd_offline(struct blkg_policy_data *pd)
 622{
 623	struct throtl_grp *tg = pd_to_tg(pd);
 
 
 624
 625	tg->bps[READ][LIMIT_LOW] = 0;
 626	tg->bps[WRITE][LIMIT_LOW] = 0;
 627	tg->iops[READ][LIMIT_LOW] = 0;
 628	tg->iops[WRITE][LIMIT_LOW] = 0;
 629
 630	blk_throtl_update_limit_valid(tg->td);
 
 631
 632	if (!tg->td->limit_valid[tg->td->limit_index])
 633		throtl_upgrade_state(tg->td);
 634}
 635
 636static void throtl_pd_free(struct blkg_policy_data *pd)
 637{
 638	struct throtl_grp *tg = pd_to_tg(pd);
 639
 640	del_timer_sync(&tg->service_queue.pending_timer);
 641	blkg_rwstat_exit(&tg->stat_bytes);
 642	blkg_rwstat_exit(&tg->stat_ios);
 643	kfree(tg);
 644}
 645
 646static struct throtl_grp *
 647throtl_rb_first(struct throtl_service_queue *parent_sq)
 648{
 649	struct rb_node *n;
 650
 651	n = rb_first_cached(&parent_sq->pending_tree);
 652	WARN_ON_ONCE(!n);
 653	if (!n)
 654		return NULL;
 655	return rb_entry_tg(n);
 656}
 657
 658static void throtl_rb_erase(struct rb_node *n,
 659			    struct throtl_service_queue *parent_sq)
 660{
 661	rb_erase_cached(n, &parent_sq->pending_tree);
 662	RB_CLEAR_NODE(n);
 663	--parent_sq->nr_pending;
 664}
 665
 666static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 667{
 668	struct throtl_grp *tg;
 669
 670	tg = throtl_rb_first(parent_sq);
 671	if (!tg)
 672		return;
 673
 674	parent_sq->first_pending_disptime = tg->disptime;
 675}
 676
 677static void tg_service_queue_add(struct throtl_grp *tg)
 
 678{
 679	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 680	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
 681	struct rb_node *parent = NULL;
 682	struct throtl_grp *__tg;
 683	unsigned long key = tg->disptime;
 684	bool leftmost = true;
 685
 686	while (*node != NULL) {
 687		parent = *node;
 688		__tg = rb_entry_tg(parent);
 689
 690		if (time_before(key, __tg->disptime))
 691			node = &parent->rb_left;
 692		else {
 693			node = &parent->rb_right;
 694			leftmost = false;
 695		}
 696	}
 697
 
 
 
 698	rb_link_node(&tg->rb_node, parent, node);
 699	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
 700			       leftmost);
 701}
 702
 703static void throtl_enqueue_tg(struct throtl_grp *tg)
 704{
 705	if (!(tg->flags & THROTL_TG_PENDING)) {
 706		tg_service_queue_add(tg);
 707		tg->flags |= THROTL_TG_PENDING;
 708		tg->service_queue.parent_sq->nr_pending++;
 709	}
 710}
 711
 712static void throtl_dequeue_tg(struct throtl_grp *tg)
 713{
 714	if (tg->flags & THROTL_TG_PENDING) {
 715		throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 716		tg->flags &= ~THROTL_TG_PENDING;
 717	}
 718}
 719
 720/* Call with queue lock held */
 721static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 722					  unsigned long expires)
 723{
 724	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 725
 726	/*
 727	 * Since we are adjusting the throttle limit dynamically, the sleep
 728	 * time calculated according to previous limit might be invalid. It's
 729	 * possible the cgroup sleep time is very long and no other cgroups
 730	 * have IO running so notify the limit changes. Make sure the cgroup
 731	 * doesn't sleep too long to avoid the missed notification.
 732	 */
 733	if (time_after(expires, max_expire))
 734		expires = max_expire;
 735	mod_timer(&sq->pending_timer, expires);
 736	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 737		   expires - jiffies, jiffies);
 738}
 739
 740/**
 741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 742 * @sq: the service_queue to schedule dispatch for
 743 * @force: force scheduling
 744 *
 745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 746 * dispatch time of the first pending child.  Returns %true if either timer
 747 * is armed or there's no pending child left.  %false if the current
 748 * dispatch window is still open and the caller should continue
 749 * dispatching.
 750 *
 751 * If @force is %true, the dispatch timer is always scheduled and this
 752 * function is guaranteed to return %true.  This is to be used when the
 753 * caller can't dispatch itself and needs to invoke pending_timer
 754 * unconditionally.  Note that forced scheduling is likely to induce short
 755 * delay before dispatch starts even if @sq->first_pending_disptime is not
 756 * in the future and thus shouldn't be used in hot paths.
 757 */
 758static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 759					  bool force)
 760{
 761	/* any pending children left? */
 762	if (!sq->nr_pending)
 763		return true;
 764
 765	update_min_dispatch_time(sq);
 766
 767	/* is the next dispatch time in the future? */
 768	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 769		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 770		return true;
 771	}
 772
 773	/* tell the caller to continue dispatching */
 774	return false;
 775}
 776
 777static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 778		bool rw, unsigned long start)
 779{
 780	tg->bytes_disp[rw] = 0;
 781	tg->io_disp[rw] = 0;
 782
 783	atomic_set(&tg->io_split_cnt[rw], 0);
 784
 785	/*
 786	 * Previous slice has expired. We must have trimmed it after last
 787	 * bio dispatch. That means since start of last slice, we never used
 788	 * that bandwidth. Do try to make use of that bandwidth while giving
 789	 * credit.
 790	 */
 791	if (time_after_eq(start, tg->slice_start[rw]))
 792		tg->slice_start[rw] = start;
 
 
 
 
 793
 794	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 795	throtl_log(&tg->service_queue,
 796		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 797		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 798		   tg->slice_end[rw], jiffies);
 799}
 800
 801static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 
 802{
 803	tg->bytes_disp[rw] = 0;
 804	tg->io_disp[rw] = 0;
 805	tg->slice_start[rw] = jiffies;
 806	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 807
 808	atomic_set(&tg->io_split_cnt[rw], 0);
 809
 810	throtl_log(&tg->service_queue,
 811		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 812		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 813		   tg->slice_end[rw], jiffies);
 814}
 815
 816static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 817					unsigned long jiffy_end)
 818{
 819	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 820}
 821
 822static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 823				       unsigned long jiffy_end)
 824{
 825	throtl_set_slice_end(tg, rw, jiffy_end);
 826	throtl_log(&tg->service_queue,
 827		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 828		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 829		   tg->slice_end[rw], jiffies);
 830}
 831
 832/* Determine if previously allocated or extended slice is complete or not */
 833static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 
 834{
 835	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 836		return false;
 837
 838	return true;
 839}
 840
 841/* Trim the used slices and adjust slice start accordingly */
 842static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 
 843{
 844	unsigned long nr_slices, time_elapsed, io_trim;
 845	u64 bytes_trim, tmp;
 846
 847	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 848
 849	/*
 850	 * If bps are unlimited (-1), then time slice don't get
 851	 * renewed. Don't try to trim the slice if slice is used. A new
 852	 * slice will start when appropriate.
 853	 */
 854	if (throtl_slice_used(tg, rw))
 855		return;
 856
 857	/*
 858	 * A bio has been dispatched. Also adjust slice_end. It might happen
 859	 * that initially cgroup limit was very low resulting in high
 860	 * slice_end, but later limit was bumped up and bio was dispatched
 861	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 862	 * is bad because it does not allow new slice to start.
 863	 */
 864
 865	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 866
 867	time_elapsed = jiffies - tg->slice_start[rw];
 868
 869	nr_slices = time_elapsed / tg->td->throtl_slice;
 870
 871	if (!nr_slices)
 872		return;
 873	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 874	do_div(tmp, HZ);
 875	bytes_trim = tmp;
 876
 877	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 878		HZ;
 879
 880	if (!bytes_trim && !io_trim)
 881		return;
 882
 883	if (tg->bytes_disp[rw] >= bytes_trim)
 884		tg->bytes_disp[rw] -= bytes_trim;
 885	else
 886		tg->bytes_disp[rw] = 0;
 887
 888	if (tg->io_disp[rw] >= io_trim)
 889		tg->io_disp[rw] -= io_trim;
 890	else
 891		tg->io_disp[rw] = 0;
 892
 893	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 894
 895	throtl_log(&tg->service_queue,
 896		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 897		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 898		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 899}
 900
 901static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 902				  u32 iops_limit, unsigned long *wait)
 903{
 904	bool rw = bio_data_dir(bio);
 905	unsigned int io_allowed;
 906	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 907	u64 tmp;
 908
 909	if (iops_limit == UINT_MAX) {
 910		if (wait)
 911			*wait = 0;
 912		return true;
 913	}
 914
 915	jiffy_elapsed = jiffies - tg->slice_start[rw];
 
 
 916
 917	/* Round up to the next throttle slice, wait time must be nonzero */
 918	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
 919
 920	/*
 921	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 922	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 923	 * will allow dispatch after 1 second and after that slice should
 924	 * have been trimmed.
 925	 */
 926
 927	tmp = (u64)iops_limit * jiffy_elapsed_rnd;
 928	do_div(tmp, HZ);
 929
 930	if (tmp > UINT_MAX)
 931		io_allowed = UINT_MAX;
 932	else
 933		io_allowed = tmp;
 934
 935	if (tg->io_disp[rw] + 1 <= io_allowed) {
 936		if (wait)
 937			*wait = 0;
 938		return true;
 939	}
 940
 941	/* Calc approx time to dispatch */
 942	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
 
 
 
 
 
 943
 944	if (wait)
 945		*wait = jiffy_wait;
 946	return false;
 947}
 948
 949static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 950				 u64 bps_limit, unsigned long *wait)
 951{
 952	bool rw = bio_data_dir(bio);
 953	u64 bytes_allowed, extra_bytes, tmp;
 954	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 955	unsigned int bio_size = throtl_bio_data_size(bio);
 956
 957	if (bps_limit == U64_MAX) {
 958		if (wait)
 959			*wait = 0;
 960		return true;
 961	}
 962
 963	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 964
 965	/* Slice has just started. Consider one slice interval */
 966	if (!jiffy_elapsed)
 967		jiffy_elapsed_rnd = tg->td->throtl_slice;
 968
 969	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 970
 971	tmp = bps_limit * jiffy_elapsed_rnd;
 972	do_div(tmp, HZ);
 973	bytes_allowed = tmp;
 974
 975	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 976		if (wait)
 977			*wait = 0;
 978		return true;
 979	}
 980
 981	/* Calc approx time to dispatch */
 982	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 983	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
 984
 985	if (!jiffy_wait)
 986		jiffy_wait = 1;
 987
 988	/*
 989	 * This wait time is without taking into consideration the rounding
 990	 * up we did. Add that time also.
 991	 */
 992	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 993	if (wait)
 994		*wait = jiffy_wait;
 995	return false;
 
 
 
 
 
 
 996}
 997
 998/*
 999 * Returns whether one can dispatch a bio or not. Also returns approx number
1000 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
1001 */
1002static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
1003			    unsigned long *wait)
1004{
1005	bool rw = bio_data_dir(bio);
1006	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1007	u64 bps_limit = tg_bps_limit(tg, rw);
1008	u32 iops_limit = tg_iops_limit(tg, rw);
1009
1010	/*
1011 	 * Currently whole state machine of group depends on first bio
1012	 * queued in the group bio list. So one should not be calling
1013	 * this function with a different bio if there are other bios
1014	 * queued.
1015	 */
1016	BUG_ON(tg->service_queue.nr_queued[rw] &&
1017	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1018
1019	/* If tg->bps = -1, then BW is unlimited */
1020	if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1021		if (wait)
1022			*wait = 0;
1023		return true;
1024	}
1025
1026	/*
1027	 * If previous slice expired, start a new one otherwise renew/extend
1028	 * existing slice to make sure it is at least throtl_slice interval
1029	 * long since now. New slice is started only for empty throttle group.
1030	 * If there is queued bio, that means there should be an active
1031	 * slice and it should be extended instead.
1032	 */
1033	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1034		throtl_start_new_slice(tg, rw);
1035	else {
1036		if (time_before(tg->slice_end[rw],
1037		    jiffies + tg->td->throtl_slice))
1038			throtl_extend_slice(tg, rw,
1039				jiffies + tg->td->throtl_slice);
1040	}
1041
1042	if (iops_limit != UINT_MAX)
1043		tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1044
1045	if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1046	    tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1047		if (wait)
1048			*wait = 0;
1049		return true;
1050	}
1051
1052	max_wait = max(bps_wait, iops_wait);
1053
1054	if (wait)
1055		*wait = max_wait;
1056
1057	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1058		throtl_extend_slice(tg, rw, jiffies + max_wait);
1059
1060	return false;
1061}
1062
1063static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1064{
1065	bool rw = bio_data_dir(bio);
1066	unsigned int bio_size = throtl_bio_data_size(bio);
1067
1068	/* Charge the bio to the group */
1069	tg->bytes_disp[rw] += bio_size;
1070	tg->io_disp[rw]++;
1071	tg->last_bytes_disp[rw] += bio_size;
1072	tg->last_io_disp[rw]++;
1073
1074	/*
1075	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1076	 * more than once as a throttled bio will go through blk-throtl the
1077	 * second time when it eventually gets issued.  Set it when a bio
1078	 * is being charged to a tg.
1079	 */
1080	if (!bio_flagged(bio, BIO_THROTTLED))
1081		bio_set_flag(bio, BIO_THROTTLED);
1082}
1083
1084/**
1085 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1086 * @bio: bio to add
1087 * @qn: qnode to use
1088 * @tg: the target throtl_grp
1089 *
1090 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1091 * tg->qnode_on_self[] is used.
1092 */
1093static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1094			      struct throtl_grp *tg)
1095{
1096	struct throtl_service_queue *sq = &tg->service_queue;
1097	bool rw = bio_data_dir(bio);
1098
1099	if (!qn)
1100		qn = &tg->qnode_on_self[rw];
1101
1102	/*
1103	 * If @tg doesn't currently have any bios queued in the same
1104	 * direction, queueing @bio can change when @tg should be
1105	 * dispatched.  Mark that @tg was empty.  This is automatically
1106	 * cleared on the next tg_update_disptime().
1107	 */
1108	if (!sq->nr_queued[rw])
1109		tg->flags |= THROTL_TG_WAS_EMPTY;
1110
1111	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1112
1113	sq->nr_queued[rw]++;
1114	throtl_enqueue_tg(tg);
1115}
1116
1117static void tg_update_disptime(struct throtl_grp *tg)
1118{
1119	struct throtl_service_queue *sq = &tg->service_queue;
1120	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1121	struct bio *bio;
1122
1123	bio = throtl_peek_queued(&sq->queued[READ]);
1124	if (bio)
1125		tg_may_dispatch(tg, bio, &read_wait);
1126
1127	bio = throtl_peek_queued(&sq->queued[WRITE]);
1128	if (bio)
1129		tg_may_dispatch(tg, bio, &write_wait);
1130
1131	min_wait = min(read_wait, write_wait);
1132	disptime = jiffies + min_wait;
1133
1134	/* Update dispatch time */
1135	throtl_dequeue_tg(tg);
1136	tg->disptime = disptime;
1137	throtl_enqueue_tg(tg);
1138
1139	/* see throtl_add_bio_tg() */
1140	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1141}
1142
1143static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1144					struct throtl_grp *parent_tg, bool rw)
1145{
1146	if (throtl_slice_used(parent_tg, rw)) {
1147		throtl_start_new_slice_with_credit(parent_tg, rw,
1148				child_tg->slice_start[rw]);
1149	}
1150
1151}
 
 
 
1152
1153static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1154{
1155	struct throtl_service_queue *sq = &tg->service_queue;
1156	struct throtl_service_queue *parent_sq = sq->parent_sq;
1157	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1158	struct throtl_grp *tg_to_put = NULL;
1159	struct bio *bio;
1160
1161	/*
1162	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1163	 * from @tg may put its reference and @parent_sq might end up
1164	 * getting released prematurely.  Remember the tg to put and put it
1165	 * after @bio is transferred to @parent_sq.
1166	 */
1167	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1168	sq->nr_queued[rw]--;
1169
1170	throtl_charge_bio(tg, bio);
 
 
1171
1172	/*
1173	 * If our parent is another tg, we just need to transfer @bio to
1174	 * the parent using throtl_add_bio_tg().  If our parent is
1175	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1176	 * bio_lists[] and decrease total number queued.  The caller is
1177	 * responsible for issuing these bios.
1178	 */
1179	if (parent_tg) {
1180		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1181		start_parent_slice_with_credit(tg, parent_tg, rw);
1182	} else {
1183		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1184				     &parent_sq->queued[rw]);
1185		BUG_ON(tg->td->nr_queued[rw] <= 0);
1186		tg->td->nr_queued[rw]--;
1187	}
1188
1189	throtl_trim_slice(tg, rw);
1190
1191	if (tg_to_put)
1192		blkg_put(tg_to_blkg(tg_to_put));
1193}
1194
1195static int throtl_dispatch_tg(struct throtl_grp *tg)
 
1196{
1197	struct throtl_service_queue *sq = &tg->service_queue;
1198	unsigned int nr_reads = 0, nr_writes = 0;
1199	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1200	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1201	struct bio *bio;
1202
1203	/* Try to dispatch 75% READS and 25% WRITES */
1204
1205	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1206	       tg_may_dispatch(tg, bio, NULL)) {
1207
1208		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1209		nr_reads++;
1210
1211		if (nr_reads >= max_nr_reads)
1212			break;
1213	}
1214
1215	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1216	       tg_may_dispatch(tg, bio, NULL)) {
1217
1218		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1219		nr_writes++;
1220
1221		if (nr_writes >= max_nr_writes)
1222			break;
1223	}
1224
1225	return nr_reads + nr_writes;
1226}
1227
1228static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1229{
1230	unsigned int nr_disp = 0;
 
 
1231
1232	while (1) {
1233		struct throtl_grp *tg;
1234		struct throtl_service_queue *sq;
1235
1236		if (!parent_sq->nr_pending)
1237			break;
1238
1239		tg = throtl_rb_first(parent_sq);
1240		if (!tg)
1241			break;
1242
1243		if (time_before(jiffies, tg->disptime))
1244			break;
1245
1246		throtl_dequeue_tg(tg);
1247
1248		nr_disp += throtl_dispatch_tg(tg);
1249
1250		sq = &tg->service_queue;
1251		if (sq->nr_queued[0] || sq->nr_queued[1])
1252			tg_update_disptime(tg);
 
1253
1254		if (nr_disp >= THROTL_QUANTUM)
1255			break;
1256	}
1257
1258	return nr_disp;
1259}
1260
1261static bool throtl_can_upgrade(struct throtl_data *td,
1262	struct throtl_grp *this_tg);
1263/**
1264 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1265 * @t: the pending_timer member of the throtl_service_queue being serviced
1266 *
1267 * This timer is armed when a child throtl_grp with active bio's become
1268 * pending and queued on the service_queue's pending_tree and expires when
1269 * the first child throtl_grp should be dispatched.  This function
1270 * dispatches bio's from the children throtl_grps to the parent
1271 * service_queue.
1272 *
1273 * If the parent's parent is another throtl_grp, dispatching is propagated
1274 * by either arming its pending_timer or repeating dispatch directly.  If
1275 * the top-level service_tree is reached, throtl_data->dispatch_work is
1276 * kicked so that the ready bio's are issued.
1277 */
1278static void throtl_pending_timer_fn(struct timer_list *t)
1279{
1280	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1281	struct throtl_grp *tg = sq_to_tg(sq);
1282	struct throtl_data *td = sq_to_td(sq);
1283	struct request_queue *q = td->queue;
1284	struct throtl_service_queue *parent_sq;
1285	bool dispatched;
1286	int ret;
 
 
 
 
 
 
 
 
 
1287
1288	spin_lock_irq(&q->queue_lock);
1289	if (throtl_can_upgrade(td, NULL))
1290		throtl_upgrade_state(td);
1291
1292again:
1293	parent_sq = sq->parent_sq;
1294	dispatched = false;
1295
1296	while (true) {
1297		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1298			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1299			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1300
1301		ret = throtl_select_dispatch(sq);
1302		if (ret) {
1303			throtl_log(sq, "bios disp=%u", ret);
1304			dispatched = true;
1305		}
1306
1307		if (throtl_schedule_next_dispatch(sq, false))
1308			break;
 
 
 
 
 
 
1309
1310		/* this dispatch windows is still open, relax and repeat */
1311		spin_unlock_irq(&q->queue_lock);
1312		cpu_relax();
1313		spin_lock_irq(&q->queue_lock);
1314	}
1315
1316	if (!dispatched)
1317		goto out_unlock;
1318
1319	if (parent_sq) {
1320		/* @parent_sq is another throl_grp, propagate dispatch */
1321		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1322			tg_update_disptime(tg);
1323			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1324				/* window is already open, repeat dispatching */
1325				sq = parent_sq;
1326				tg = sq_to_tg(sq);
1327				goto again;
1328			}
1329		}
1330	} else {
1331		/* reached the top-level, queue issuing */
1332		queue_work(kthrotld_workqueue, &td->dispatch_work);
1333	}
1334out_unlock:
1335	spin_unlock_irq(&q->queue_lock);
1336}
1337
1338/**
1339 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1340 * @work: work item being executed
1341 *
1342 * This function is queued for execution when bios reach the bio_lists[]
1343 * of throtl_data->service_queue.  Those bios are ready and issued by this
1344 * function.
1345 */
1346static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1347{
1348	struct throtl_data *td = container_of(work, struct throtl_data,
1349					      dispatch_work);
1350	struct throtl_service_queue *td_sq = &td->service_queue;
1351	struct request_queue *q = td->queue;
1352	struct bio_list bio_list_on_stack;
1353	struct bio *bio;
1354	struct blk_plug plug;
1355	int rw;
 
 
 
 
 
 
1356
1357	bio_list_init(&bio_list_on_stack);
1358
1359	spin_lock_irq(&q->queue_lock);
1360	for (rw = READ; rw <= WRITE; rw++)
1361		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1362			bio_list_add(&bio_list_on_stack, bio);
1363	spin_unlock_irq(&q->queue_lock);
 
 
 
 
 
 
 
1364
1365	if (!bio_list_empty(&bio_list_on_stack)) {
 
 
 
 
1366		blk_start_plug(&plug);
1367		while ((bio = bio_list_pop(&bio_list_on_stack)))
1368			submit_bio_noacct(bio);
1369		blk_finish_plug(&plug);
1370	}
 
1371}
1372
1373static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1374			      int off)
1375{
1376	struct throtl_grp *tg = pd_to_tg(pd);
1377	u64 v = *(u64 *)((void *)tg + off);
 
1378
1379	if (v == U64_MAX)
1380		return 0;
1381	return __blkg_prfill_u64(sf, pd, v);
1382}
1383
1384static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1385			       int off)
 
1386{
1387	struct throtl_grp *tg = pd_to_tg(pd);
1388	unsigned int v = *(unsigned int *)((void *)tg + off);
1389
1390	if (v == UINT_MAX)
1391		return 0;
1392	return __blkg_prfill_u64(sf, pd, v);
1393}
1394
1395static int tg_print_conf_u64(struct seq_file *sf, void *v)
1396{
1397	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1398			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1399	return 0;
 
 
 
 
 
 
1400}
1401
1402static int tg_print_conf_uint(struct seq_file *sf, void *v)
 
1403{
1404	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1405			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1406	return 0;
1407}
1408
1409static void tg_conf_updated(struct throtl_grp *tg, bool global)
1410{
1411	struct throtl_service_queue *sq = &tg->service_queue;
1412	struct cgroup_subsys_state *pos_css;
1413	struct blkcg_gq *blkg;
1414
1415	throtl_log(&tg->service_queue,
1416		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1417		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1418		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1419
1420	/*
1421	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1422	 * considered to have rules if either the tg itself or any of its
1423	 * ancestors has rules.  This identifies groups without any
1424	 * restrictions in the whole hierarchy and allows them to bypass
1425	 * blk-throttle.
1426	 */
1427	blkg_for_each_descendant_pre(blkg, pos_css,
1428			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1429		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1430		struct throtl_grp *parent_tg;
1431
1432		tg_update_has_rules(this_tg);
1433		/* ignore root/second level */
1434		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1435		    !blkg->parent->parent)
1436			continue;
1437		parent_tg = blkg_to_tg(blkg->parent);
1438		/*
1439		 * make sure all children has lower idle time threshold and
1440		 * higher latency target
1441		 */
1442		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1443				parent_tg->idletime_threshold);
1444		this_tg->latency_target = max(this_tg->latency_target,
1445				parent_tg->latency_target);
1446	}
1447
1448	/*
1449	 * We're already holding queue_lock and know @tg is valid.  Let's
1450	 * apply the new config directly.
1451	 *
1452	 * Restart the slices for both READ and WRITES. It might happen
1453	 * that a group's limit are dropped suddenly and we don't want to
1454	 * account recently dispatched IO with new low rate.
1455	 */
1456	throtl_start_new_slice(tg, READ);
1457	throtl_start_new_slice(tg, WRITE);
1458
1459	if (tg->flags & THROTL_TG_PENDING) {
1460		tg_update_disptime(tg);
1461		throtl_schedule_next_dispatch(sq->parent_sq, true);
1462	}
1463}
1464
1465static ssize_t tg_set_conf(struct kernfs_open_file *of,
1466			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1467{
1468	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1469	struct blkg_conf_ctx ctx;
1470	struct throtl_grp *tg;
1471	int ret;
1472	u64 v;
1473
1474	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1475	if (ret)
1476		return ret;
1477
1478	ret = -EINVAL;
1479	if (sscanf(ctx.body, "%llu", &v) != 1)
1480		goto out_finish;
1481	if (!v)
1482		v = U64_MAX;
1483
1484	tg = blkg_to_tg(ctx.blkg);
1485
1486	if (is_u64)
1487		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1488	else
1489		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1490
1491	tg_conf_updated(tg, false);
1492	ret = 0;
1493out_finish:
1494	blkg_conf_finish(&ctx);
1495	return ret ?: nbytes;
1496}
1497
1498static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1499			       char *buf, size_t nbytes, loff_t off)
1500{
1501	return tg_set_conf(of, buf, nbytes, off, true);
1502}
1503
1504static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1505				char *buf, size_t nbytes, loff_t off)
 
 
 
 
 
 
 
 
 
 
 
 
 
1506{
1507	return tg_set_conf(of, buf, nbytes, off, false);
 
 
 
 
 
1508}
1509
1510static int tg_print_rwstat(struct seq_file *sf, void *v)
 
1511{
1512	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1513			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1514			  seq_cft(sf)->private, true);
1515	return 0;
1516}
1517
1518static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1519				      struct blkg_policy_data *pd, int off)
 
 
 
 
 
 
 
 
 
1520{
1521	struct blkg_rwstat_sample sum;
 
1522
1523	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1524				  &sum);
1525	return __blkg_prfill_rwstat(sf, pd, &sum);
1526}
1527
1528static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
 
1529{
1530	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1531			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1532			  seq_cft(sf)->private, true);
1533	return 0;
 
1534}
1535
1536static struct cftype throtl_legacy_files[] = {
1537	{
1538		.name = "throttle.read_bps_device",
1539		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1540		.seq_show = tg_print_conf_u64,
1541		.write = tg_set_conf_u64,
1542	},
1543	{
1544		.name = "throttle.write_bps_device",
1545		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1546		.seq_show = tg_print_conf_u64,
1547		.write = tg_set_conf_u64,
1548	},
1549	{
1550		.name = "throttle.read_iops_device",
1551		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1552		.seq_show = tg_print_conf_uint,
1553		.write = tg_set_conf_uint,
1554	},
1555	{
1556		.name = "throttle.write_iops_device",
1557		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1558		.seq_show = tg_print_conf_uint,
1559		.write = tg_set_conf_uint,
1560	},
1561	{
1562		.name = "throttle.io_service_bytes",
1563		.private = offsetof(struct throtl_grp, stat_bytes),
1564		.seq_show = tg_print_rwstat,
1565	},
1566	{
1567		.name = "throttle.io_service_bytes_recursive",
1568		.private = offsetof(struct throtl_grp, stat_bytes),
1569		.seq_show = tg_print_rwstat_recursive,
1570	},
1571	{
1572		.name = "throttle.io_serviced",
1573		.private = offsetof(struct throtl_grp, stat_ios),
1574		.seq_show = tg_print_rwstat,
1575	},
1576	{
1577		.name = "throttle.io_serviced_recursive",
1578		.private = offsetof(struct throtl_grp, stat_ios),
1579		.seq_show = tg_print_rwstat_recursive,
1580	},
1581	{ }	/* terminate */
1582};
1583
1584static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1585			 int off)
1586{
1587	struct throtl_grp *tg = pd_to_tg(pd);
1588	const char *dname = blkg_dev_name(pd->blkg);
1589	char bufs[4][21] = { "max", "max", "max", "max" };
1590	u64 bps_dft;
1591	unsigned int iops_dft;
1592	char idle_time[26] = "";
1593	char latency_time[26] = "";
1594
1595	if (!dname)
1596		return 0;
1597
1598	if (off == LIMIT_LOW) {
1599		bps_dft = 0;
1600		iops_dft = 0;
1601	} else {
1602		bps_dft = U64_MAX;
1603		iops_dft = UINT_MAX;
1604	}
1605
1606	if (tg->bps_conf[READ][off] == bps_dft &&
1607	    tg->bps_conf[WRITE][off] == bps_dft &&
1608	    tg->iops_conf[READ][off] == iops_dft &&
1609	    tg->iops_conf[WRITE][off] == iops_dft &&
1610	    (off != LIMIT_LOW ||
1611	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1612	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1613		return 0;
1614
1615	if (tg->bps_conf[READ][off] != U64_MAX)
1616		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1617			tg->bps_conf[READ][off]);
1618	if (tg->bps_conf[WRITE][off] != U64_MAX)
1619		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1620			tg->bps_conf[WRITE][off]);
1621	if (tg->iops_conf[READ][off] != UINT_MAX)
1622		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1623			tg->iops_conf[READ][off]);
1624	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1625		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1626			tg->iops_conf[WRITE][off]);
1627	if (off == LIMIT_LOW) {
1628		if (tg->idletime_threshold_conf == ULONG_MAX)
1629			strcpy(idle_time, " idle=max");
1630		else
1631			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1632				tg->idletime_threshold_conf);
1633
1634		if (tg->latency_target_conf == ULONG_MAX)
1635			strcpy(latency_time, " latency=max");
1636		else
1637			snprintf(latency_time, sizeof(latency_time),
1638				" latency=%lu", tg->latency_target_conf);
1639	}
1640
1641	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1642		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1643		   latency_time);
1644	return 0;
1645}
1646
1647static int tg_print_limit(struct seq_file *sf, void *v)
 
1648{
1649	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1650			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1651	return 0;
 
 
1652}
1653
1654static ssize_t tg_set_limit(struct kernfs_open_file *of,
1655			  char *buf, size_t nbytes, loff_t off)
1656{
1657	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1658	struct blkg_conf_ctx ctx;
1659	struct throtl_grp *tg;
1660	u64 v[4];
1661	unsigned long idle_time;
1662	unsigned long latency_time;
1663	int ret;
1664	int index = of_cft(of)->private;
1665
1666	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1667	if (ret)
1668		return ret;
1669
1670	tg = blkg_to_tg(ctx.blkg);
1671
1672	v[0] = tg->bps_conf[READ][index];
1673	v[1] = tg->bps_conf[WRITE][index];
1674	v[2] = tg->iops_conf[READ][index];
1675	v[3] = tg->iops_conf[WRITE][index];
1676
1677	idle_time = tg->idletime_threshold_conf;
1678	latency_time = tg->latency_target_conf;
1679	while (true) {
1680		char tok[27];	/* wiops=18446744073709551616 */
1681		char *p;
1682		u64 val = U64_MAX;
1683		int len;
1684
1685		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1686			break;
1687		if (tok[0] == '\0')
1688			break;
1689		ctx.body += len;
1690
1691		ret = -EINVAL;
1692		p = tok;
1693		strsep(&p, "=");
1694		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1695			goto out_finish;
1696
1697		ret = -ERANGE;
1698		if (!val)
1699			goto out_finish;
1700
1701		ret = -EINVAL;
1702		if (!strcmp(tok, "rbps") && val > 1)
1703			v[0] = val;
1704		else if (!strcmp(tok, "wbps") && val > 1)
1705			v[1] = val;
1706		else if (!strcmp(tok, "riops") && val > 1)
1707			v[2] = min_t(u64, val, UINT_MAX);
1708		else if (!strcmp(tok, "wiops") && val > 1)
1709			v[3] = min_t(u64, val, UINT_MAX);
1710		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1711			idle_time = val;
1712		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1713			latency_time = val;
1714		else
1715			goto out_finish;
1716	}
1717
1718	tg->bps_conf[READ][index] = v[0];
1719	tg->bps_conf[WRITE][index] = v[1];
1720	tg->iops_conf[READ][index] = v[2];
1721	tg->iops_conf[WRITE][index] = v[3];
1722
1723	if (index == LIMIT_MAX) {
1724		tg->bps[READ][index] = v[0];
1725		tg->bps[WRITE][index] = v[1];
1726		tg->iops[READ][index] = v[2];
1727		tg->iops[WRITE][index] = v[3];
1728	}
1729	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1730		tg->bps_conf[READ][LIMIT_MAX]);
1731	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1732		tg->bps_conf[WRITE][LIMIT_MAX]);
1733	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1734		tg->iops_conf[READ][LIMIT_MAX]);
1735	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1736		tg->iops_conf[WRITE][LIMIT_MAX]);
1737	tg->idletime_threshold_conf = idle_time;
1738	tg->latency_target_conf = latency_time;
1739
1740	/* force user to configure all settings for low limit  */
1741	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1742	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1743	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1744	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1745		tg->bps[READ][LIMIT_LOW] = 0;
1746		tg->bps[WRITE][LIMIT_LOW] = 0;
1747		tg->iops[READ][LIMIT_LOW] = 0;
1748		tg->iops[WRITE][LIMIT_LOW] = 0;
1749		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1750		tg->latency_target = DFL_LATENCY_TARGET;
1751	} else if (index == LIMIT_LOW) {
1752		tg->idletime_threshold = tg->idletime_threshold_conf;
1753		tg->latency_target = tg->latency_target_conf;
1754	}
1755
1756	blk_throtl_update_limit_valid(tg->td);
1757	if (tg->td->limit_valid[LIMIT_LOW]) {
1758		if (index == LIMIT_LOW)
1759			tg->td->limit_index = LIMIT_LOW;
1760	} else
1761		tg->td->limit_index = LIMIT_MAX;
1762	tg_conf_updated(tg, index == LIMIT_LOW &&
1763		tg->td->limit_valid[LIMIT_LOW]);
1764	ret = 0;
1765out_finish:
1766	blkg_conf_finish(&ctx);
1767	return ret ?: nbytes;
1768}
1769
1770static struct cftype throtl_files[] = {
1771#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1772	{
1773		.name = "low",
1774		.flags = CFTYPE_NOT_ON_ROOT,
1775		.seq_show = tg_print_limit,
1776		.write = tg_set_limit,
1777		.private = LIMIT_LOW,
1778	},
1779#endif
1780	{
1781		.name = "max",
1782		.flags = CFTYPE_NOT_ON_ROOT,
1783		.seq_show = tg_print_limit,
1784		.write = tg_set_limit,
1785		.private = LIMIT_MAX,
1786	},
1787	{ }	/* terminate */
1788};
1789
1790static void throtl_shutdown_wq(struct request_queue *q)
1791{
1792	struct throtl_data *td = q->td;
1793
1794	cancel_work_sync(&td->dispatch_work);
1795}
1796
1797static struct blkcg_policy blkcg_policy_throtl = {
1798	.dfl_cftypes		= throtl_files,
1799	.legacy_cftypes		= throtl_legacy_files,
1800
1801	.pd_alloc_fn		= throtl_pd_alloc,
1802	.pd_init_fn		= throtl_pd_init,
1803	.pd_online_fn		= throtl_pd_online,
1804	.pd_offline_fn		= throtl_pd_offline,
1805	.pd_free_fn		= throtl_pd_free,
 
 
 
 
1806};
1807
1808static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1809{
1810	unsigned long rtime = jiffies, wtime = jiffies;
 
 
 
 
1811
1812	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1813		rtime = tg->last_low_overflow_time[READ];
1814	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1815		wtime = tg->last_low_overflow_time[WRITE];
1816	return min(rtime, wtime);
1817}
1818
1819/* tg should not be an intermediate node */
1820static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1821{
1822	struct throtl_service_queue *parent_sq;
1823	struct throtl_grp *parent = tg;
1824	unsigned long ret = __tg_last_low_overflow_time(tg);
1825
1826	while (true) {
1827		parent_sq = parent->service_queue.parent_sq;
1828		parent = sq_to_tg(parent_sq);
1829		if (!parent)
1830			break;
1831
1832		/*
1833		 * The parent doesn't have low limit, it always reaches low
1834		 * limit. Its overflow time is useless for children
1835		 */
1836		if (!parent->bps[READ][LIMIT_LOW] &&
1837		    !parent->iops[READ][LIMIT_LOW] &&
1838		    !parent->bps[WRITE][LIMIT_LOW] &&
1839		    !parent->iops[WRITE][LIMIT_LOW])
1840			continue;
1841		if (time_after(__tg_last_low_overflow_time(parent), ret))
1842			ret = __tg_last_low_overflow_time(parent);
1843	}
1844	return ret;
1845}
1846
1847static bool throtl_tg_is_idle(struct throtl_grp *tg)
1848{
1849	/*
1850	 * cgroup is idle if:
1851	 * - single idle is too long, longer than a fixed value (in case user
1852	 *   configure a too big threshold) or 4 times of idletime threshold
1853	 * - average think time is more than threshold
1854	 * - IO latency is largely below threshold
1855	 */
1856	unsigned long time;
1857	bool ret;
1858
1859	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1860	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1861	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1862	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1863	      tg->avg_idletime > tg->idletime_threshold ||
1864	      (tg->latency_target && tg->bio_cnt &&
1865		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1866	throtl_log(&tg->service_queue,
1867		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1868		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1869		tg->bio_cnt, ret, tg->td->scale);
1870	return ret;
1871}
1872
1873static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1874{
1875	struct throtl_service_queue *sq = &tg->service_queue;
1876	bool read_limit, write_limit;
1877
1878	/*
1879	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1880	 * reaches), it's ok to upgrade to next limit
 
1881	 */
1882	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1883	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1884	if (!read_limit && !write_limit)
1885		return true;
1886	if (read_limit && sq->nr_queued[READ] &&
1887	    (!write_limit || sq->nr_queued[WRITE]))
1888		return true;
1889	if (write_limit && sq->nr_queued[WRITE] &&
1890	    (!read_limit || sq->nr_queued[READ]))
1891		return true;
1892
1893	if (time_after_eq(jiffies,
1894		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1895	    throtl_tg_is_idle(tg))
1896		return true;
1897	return false;
1898}
1899
1900static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1901{
1902	while (true) {
1903		if (throtl_tg_can_upgrade(tg))
1904			return true;
1905		tg = sq_to_tg(tg->service_queue.parent_sq);
1906		if (!tg || !tg_to_blkg(tg)->parent)
1907			return false;
1908	}
1909	return false;
1910}
1911
1912static bool throtl_can_upgrade(struct throtl_data *td,
1913	struct throtl_grp *this_tg)
1914{
1915	struct cgroup_subsys_state *pos_css;
1916	struct blkcg_gq *blkg;
1917
1918	if (td->limit_index != LIMIT_LOW)
1919		return false;
1920
1921	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1922		return false;
1923
1924	rcu_read_lock();
1925	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1926		struct throtl_grp *tg = blkg_to_tg(blkg);
1927
1928		if (tg == this_tg)
1929			continue;
1930		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1931			continue;
1932		if (!throtl_hierarchy_can_upgrade(tg)) {
1933			rcu_read_unlock();
1934			return false;
1935		}
1936	}
1937	rcu_read_unlock();
1938	return true;
1939}
1940
1941static void throtl_upgrade_check(struct throtl_grp *tg)
1942{
1943	unsigned long now = jiffies;
1944
1945	if (tg->td->limit_index != LIMIT_LOW)
1946		return;
1947
1948	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1949		return;
1950
1951	tg->last_check_time = now;
1952
1953	if (!time_after_eq(now,
1954	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1955		return;
1956
1957	if (throtl_can_upgrade(tg->td, NULL))
1958		throtl_upgrade_state(tg->td);
1959}
1960
1961static void throtl_upgrade_state(struct throtl_data *td)
1962{
1963	struct cgroup_subsys_state *pos_css;
1964	struct blkcg_gq *blkg;
1965
1966	throtl_log(&td->service_queue, "upgrade to max");
1967	td->limit_index = LIMIT_MAX;
1968	td->low_upgrade_time = jiffies;
1969	td->scale = 0;
1970	rcu_read_lock();
1971	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1972		struct throtl_grp *tg = blkg_to_tg(blkg);
1973		struct throtl_service_queue *sq = &tg->service_queue;
1974
1975		tg->disptime = jiffies - 1;
1976		throtl_select_dispatch(sq);
1977		throtl_schedule_next_dispatch(sq, true);
1978	}
1979	rcu_read_unlock();
1980	throtl_select_dispatch(&td->service_queue);
1981	throtl_schedule_next_dispatch(&td->service_queue, true);
1982	queue_work(kthrotld_workqueue, &td->dispatch_work);
1983}
1984
1985static void throtl_downgrade_state(struct throtl_data *td)
1986{
1987	td->scale /= 2;
1988
1989	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1990	if (td->scale) {
1991		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1992		return;
1993	}
1994
1995	td->limit_index = LIMIT_LOW;
1996	td->low_downgrade_time = jiffies;
1997}
1998
1999static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2000{
2001	struct throtl_data *td = tg->td;
2002	unsigned long now = jiffies;
2003
2004	/*
2005	 * If cgroup is below low limit, consider downgrade and throttle other
2006	 * cgroups
2007	 */
2008	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2009	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2010					td->throtl_slice) &&
2011	    (!throtl_tg_is_idle(tg) ||
2012	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2013		return true;
2014	return false;
2015}
2016
2017static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2018{
2019	while (true) {
2020		if (!throtl_tg_can_downgrade(tg))
2021			return false;
2022		tg = sq_to_tg(tg->service_queue.parent_sq);
2023		if (!tg || !tg_to_blkg(tg)->parent)
2024			break;
2025	}
2026	return true;
2027}
2028
2029static void throtl_downgrade_check(struct throtl_grp *tg)
2030{
2031	uint64_t bps;
2032	unsigned int iops;
2033	unsigned long elapsed_time;
2034	unsigned long now = jiffies;
2035
2036	if (tg->td->limit_index != LIMIT_MAX ||
2037	    !tg->td->limit_valid[LIMIT_LOW])
2038		return;
2039	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2040		return;
2041	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2042		return;
2043
2044	elapsed_time = now - tg->last_check_time;
2045	tg->last_check_time = now;
2046
2047	if (time_before(now, tg_last_low_overflow_time(tg) +
2048			tg->td->throtl_slice))
2049		return;
2050
2051	if (tg->bps[READ][LIMIT_LOW]) {
2052		bps = tg->last_bytes_disp[READ] * HZ;
2053		do_div(bps, elapsed_time);
2054		if (bps >= tg->bps[READ][LIMIT_LOW])
2055			tg->last_low_overflow_time[READ] = now;
2056	}
2057
2058	if (tg->bps[WRITE][LIMIT_LOW]) {
2059		bps = tg->last_bytes_disp[WRITE] * HZ;
2060		do_div(bps, elapsed_time);
2061		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2062			tg->last_low_overflow_time[WRITE] = now;
2063	}
2064
2065	if (tg->iops[READ][LIMIT_LOW]) {
2066		tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2067		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2068		if (iops >= tg->iops[READ][LIMIT_LOW])
2069			tg->last_low_overflow_time[READ] = now;
2070	}
2071
2072	if (tg->iops[WRITE][LIMIT_LOW]) {
2073		tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2074		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2075		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2076			tg->last_low_overflow_time[WRITE] = now;
2077	}
2078
2079	/*
2080	 * If cgroup is below low limit, consider downgrade and throttle other
2081	 * cgroups
2082	 */
2083	if (throtl_hierarchy_can_downgrade(tg))
2084		throtl_downgrade_state(tg->td);
2085
2086	tg->last_bytes_disp[READ] = 0;
2087	tg->last_bytes_disp[WRITE] = 0;
2088	tg->last_io_disp[READ] = 0;
2089	tg->last_io_disp[WRITE] = 0;
2090}
2091
2092static void blk_throtl_update_idletime(struct throtl_grp *tg)
2093{
2094	unsigned long now;
2095	unsigned long last_finish_time = tg->last_finish_time;
2096
2097	if (last_finish_time == 0)
2098		return;
2099
2100	now = ktime_get_ns() >> 10;
2101	if (now <= last_finish_time ||
2102	    last_finish_time == tg->checked_last_finish_time)
2103		return;
2104
2105	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2106	tg->checked_last_finish_time = last_finish_time;
2107}
2108
2109#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2110static void throtl_update_latency_buckets(struct throtl_data *td)
2111{
2112	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2113	int i, cpu, rw;
2114	unsigned long last_latency[2] = { 0 };
2115	unsigned long latency[2];
2116
2117	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2118		return;
2119	if (time_before(jiffies, td->last_calculate_time + HZ))
2120		return;
2121	td->last_calculate_time = jiffies;
2122
2123	memset(avg_latency, 0, sizeof(avg_latency));
2124	for (rw = READ; rw <= WRITE; rw++) {
2125		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2126			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2127
2128			for_each_possible_cpu(cpu) {
2129				struct latency_bucket *bucket;
2130
2131				/* this isn't race free, but ok in practice */
2132				bucket = per_cpu_ptr(td->latency_buckets[rw],
2133					cpu);
2134				tmp->total_latency += bucket[i].total_latency;
2135				tmp->samples += bucket[i].samples;
2136				bucket[i].total_latency = 0;
2137				bucket[i].samples = 0;
2138			}
2139
2140			if (tmp->samples >= 32) {
2141				int samples = tmp->samples;
2142
2143				latency[rw] = tmp->total_latency;
2144
2145				tmp->total_latency = 0;
2146				tmp->samples = 0;
2147				latency[rw] /= samples;
2148				if (latency[rw] == 0)
2149					continue;
2150				avg_latency[rw][i].latency = latency[rw];
2151			}
2152		}
2153	}
2154
2155	for (rw = READ; rw <= WRITE; rw++) {
2156		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2157			if (!avg_latency[rw][i].latency) {
2158				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2159					td->avg_buckets[rw][i].latency =
2160						last_latency[rw];
2161				continue;
2162			}
2163
2164			if (!td->avg_buckets[rw][i].valid)
2165				latency[rw] = avg_latency[rw][i].latency;
2166			else
2167				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2168					avg_latency[rw][i].latency) >> 3;
2169
2170			td->avg_buckets[rw][i].latency = max(latency[rw],
2171				last_latency[rw]);
2172			td->avg_buckets[rw][i].valid = true;
2173			last_latency[rw] = td->avg_buckets[rw][i].latency;
2174		}
2175	}
2176
2177	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2178		throtl_log(&td->service_queue,
2179			"Latency bucket %d: read latency=%ld, read valid=%d, "
2180			"write latency=%ld, write valid=%d", i,
2181			td->avg_buckets[READ][i].latency,
2182			td->avg_buckets[READ][i].valid,
2183			td->avg_buckets[WRITE][i].latency,
2184			td->avg_buckets[WRITE][i].valid);
2185}
2186#else
2187static inline void throtl_update_latency_buckets(struct throtl_data *td)
2188{
2189}
2190#endif
2191
2192void blk_throtl_charge_bio_split(struct bio *bio)
2193{
2194	struct blkcg_gq *blkg = bio->bi_blkg;
2195	struct throtl_grp *parent = blkg_to_tg(blkg);
2196	struct throtl_service_queue *parent_sq;
2197	bool rw = bio_data_dir(bio);
2198
2199	do {
2200		if (!parent->has_rules[rw])
2201			break;
2202
2203		atomic_inc(&parent->io_split_cnt[rw]);
2204		atomic_inc(&parent->last_io_split_cnt[rw]);
2205
2206		parent_sq = parent->service_queue.parent_sq;
2207		parent = sq_to_tg(parent_sq);
2208	} while (parent);
2209}
2210
2211bool blk_throtl_bio(struct bio *bio)
2212{
2213	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2214	struct blkcg_gq *blkg = bio->bi_blkg;
2215	struct throtl_qnode *qn = NULL;
2216	struct throtl_grp *tg = blkg_to_tg(blkg);
2217	struct throtl_service_queue *sq;
2218	bool rw = bio_data_dir(bio);
2219	bool throttled = false;
2220	struct throtl_data *td = tg->td;
2221
2222	rcu_read_lock();
2223
2224	/* see throtl_charge_bio() */
2225	if (bio_flagged(bio, BIO_THROTTLED))
2226		goto out;
2227
2228	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2229		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2230				bio->bi_iter.bi_size);
2231		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2232	}
2233
2234	if (!tg->has_rules[rw])
2235		goto out;
2236
2237	spin_lock_irq(&q->queue_lock);
2238
2239	throtl_update_latency_buckets(td);
2240
2241	blk_throtl_update_idletime(tg);
2242
2243	sq = &tg->service_queue;
2244
2245again:
2246	while (true) {
2247		if (tg->last_low_overflow_time[rw] == 0)
2248			tg->last_low_overflow_time[rw] = jiffies;
2249		throtl_downgrade_check(tg);
2250		throtl_upgrade_check(tg);
2251		/* throtl is FIFO - if bios are already queued, should queue */
2252		if (sq->nr_queued[rw])
2253			break;
2254
2255		/* if above limits, break to queue */
2256		if (!tg_may_dispatch(tg, bio, NULL)) {
2257			tg->last_low_overflow_time[rw] = jiffies;
2258			if (throtl_can_upgrade(td, tg)) {
2259				throtl_upgrade_state(td);
2260				goto again;
2261			}
2262			break;
2263		}
2264
2265		/* within limits, let's charge and dispatch directly */
2266		throtl_charge_bio(tg, bio);
2267
2268		/*
2269		 * We need to trim slice even when bios are not being queued
2270		 * otherwise it might happen that a bio is not queued for
2271		 * a long time and slice keeps on extending and trim is not
2272		 * called for a long time. Now if limits are reduced suddenly
2273		 * we take into account all the IO dispatched so far at new
2274		 * low rate and * newly queued IO gets a really long dispatch
2275		 * time.
2276		 *
2277		 * So keep on trimming slice even if bio is not queued.
2278		 */
2279		throtl_trim_slice(tg, rw);
2280
2281		/*
2282		 * @bio passed through this layer without being throttled.
2283		 * Climb up the ladder.  If we're already at the top, it
2284		 * can be executed directly.
2285		 */
2286		qn = &tg->qnode_on_parent[rw];
2287		sq = sq->parent_sq;
2288		tg = sq_to_tg(sq);
2289		if (!tg)
2290			goto out_unlock;
2291	}
2292
2293	/* out-of-limit, queue to @tg */
2294	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2295		   rw == READ ? 'R' : 'W',
2296		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2297		   tg_bps_limit(tg, rw),
2298		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2299		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2300
2301	tg->last_low_overflow_time[rw] = jiffies;
2302
2303	td->nr_queued[rw]++;
2304	throtl_add_bio_tg(bio, qn, tg);
2305	throttled = true;
2306
2307	/*
2308	 * Update @tg's dispatch time and force schedule dispatch if @tg
2309	 * was empty before @bio.  The forced scheduling isn't likely to
2310	 * cause undue delay as @bio is likely to be dispatched directly if
2311	 * its @tg's disptime is not in the future.
2312	 */
2313	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2314		tg_update_disptime(tg);
2315		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2316	}
2317
2318out_unlock:
2319	spin_unlock_irq(&q->queue_lock);
2320out:
2321	bio_set_flag(bio, BIO_THROTTLED);
2322
2323#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2324	if (throttled || !td->track_bio_latency)
2325		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2326#endif
2327	rcu_read_unlock();
2328	return throttled;
2329}
2330
2331#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2332static void throtl_track_latency(struct throtl_data *td, sector_t size,
2333	int op, unsigned long time)
2334{
2335	struct latency_bucket *latency;
2336	int index;
2337
2338	if (!td || td->limit_index != LIMIT_LOW ||
2339	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2340	    !blk_queue_nonrot(td->queue))
2341		return;
2342
2343	index = request_bucket_index(size);
2344
2345	latency = get_cpu_ptr(td->latency_buckets[op]);
2346	latency[index].total_latency += time;
2347	latency[index].samples++;
2348	put_cpu_ptr(td->latency_buckets[op]);
2349}
2350
2351void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2352{
2353	struct request_queue *q = rq->q;
2354	struct throtl_data *td = q->td;
2355
2356	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2357			     time_ns >> 10);
2358}
2359
2360void blk_throtl_bio_endio(struct bio *bio)
2361{
2362	struct blkcg_gq *blkg;
2363	struct throtl_grp *tg;
2364	u64 finish_time_ns;
2365	unsigned long finish_time;
2366	unsigned long start_time;
2367	unsigned long lat;
2368	int rw = bio_data_dir(bio);
2369
2370	blkg = bio->bi_blkg;
2371	if (!blkg)
2372		return;
2373	tg = blkg_to_tg(blkg);
2374	if (!tg->td->limit_valid[LIMIT_LOW])
2375		return;
2376
2377	finish_time_ns = ktime_get_ns();
2378	tg->last_finish_time = finish_time_ns >> 10;
2379
2380	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2381	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2382	if (!start_time || finish_time <= start_time)
2383		return;
2384
2385	lat = finish_time - start_time;
2386	/* this is only for bio based driver */
2387	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2388		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2389				     bio_op(bio), lat);
2390
2391	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2392		int bucket;
2393		unsigned int threshold;
2394
2395		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2396		threshold = tg->td->avg_buckets[rw][bucket].latency +
2397			tg->latency_target;
2398		if (lat > threshold)
2399			tg->bad_bio_cnt++;
2400		/*
2401		 * Not race free, could get wrong count, which means cgroups
2402		 * will be throttled
2403		 */
2404		tg->bio_cnt++;
2405	}
2406
2407	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2408		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2409		tg->bio_cnt /= 2;
2410		tg->bad_bio_cnt /= 2;
2411	}
2412}
2413#endif
2414
2415int blk_throtl_init(struct request_queue *q)
2416{
2417	struct throtl_data *td;
2418	int ret;
2419
2420	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2421	if (!td)
2422		return -ENOMEM;
2423	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2424		LATENCY_BUCKET_SIZE, __alignof__(u64));
2425	if (!td->latency_buckets[READ]) {
2426		kfree(td);
2427		return -ENOMEM;
2428	}
2429	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2430		LATENCY_BUCKET_SIZE, __alignof__(u64));
2431	if (!td->latency_buckets[WRITE]) {
2432		free_percpu(td->latency_buckets[READ]);
 
2433		kfree(td);
2434		return -ENOMEM;
2435	}
2436
2437	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2438	throtl_service_queue_init(&td->service_queue);
 
 
 
2439
 
2440	q->td = td;
2441	td->queue = q;
2442
2443	td->limit_valid[LIMIT_MAX] = true;
2444	td->limit_index = LIMIT_MAX;
2445	td->low_upgrade_time = jiffies;
2446	td->low_downgrade_time = jiffies;
2447
2448	/* activate policy */
2449	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2450	if (ret) {
2451		free_percpu(td->latency_buckets[READ]);
2452		free_percpu(td->latency_buckets[WRITE]);
2453		kfree(td);
2454	}
2455	return ret;
2456}
2457
2458void blk_throtl_exit(struct request_queue *q)
2459{
2460	BUG_ON(!q->td);
2461	del_timer_sync(&q->td->service_queue.pending_timer);
2462	throtl_shutdown_wq(q);
2463	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2464	free_percpu(q->td->latency_buckets[READ]);
2465	free_percpu(q->td->latency_buckets[WRITE]);
2466	kfree(q->td);
2467}
2468
2469void blk_throtl_register_queue(struct request_queue *q)
2470{
2471	struct throtl_data *td;
2472	int i;
2473
2474	td = q->td;
2475	BUG_ON(!td);
2476
2477	if (blk_queue_nonrot(q)) {
2478		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2479		td->filtered_latency = LATENCY_FILTERED_SSD;
2480	} else {
2481		td->throtl_slice = DFL_THROTL_SLICE_HD;
2482		td->filtered_latency = LATENCY_FILTERED_HD;
2483		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2484			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2485			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2486		}
2487	}
2488#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2489	/* if no low limit, use previous default */
2490	td->throtl_slice = DFL_THROTL_SLICE_HD;
2491#endif
2492
2493	td->track_bio_latency = !queue_is_mq(q);
2494	if (!td->track_bio_latency)
2495		blk_stat_enable_accounting(q);
2496}
2497
2498#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2499ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2500{
2501	if (!q->td)
2502		return -EINVAL;
2503	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2504}
2505
2506ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2507	const char *page, size_t count)
2508{
2509	unsigned long v;
2510	unsigned long t;
 
 
 
 
 
 
 
 
2511
2512	if (!q->td)
2513		return -EINVAL;
2514	if (kstrtoul(page, 10, &v))
2515		return -EINVAL;
2516	t = msecs_to_jiffies(v);
2517	if (t == 0 || t > MAX_THROTL_SLICE)
2518		return -EINVAL;
2519	q->td->throtl_slice = t;
2520	return count;
2521}
2522#endif
2523
2524static int __init throtl_init(void)
2525{
2526	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2527	if (!kthrotld_workqueue)
2528		panic("Failed to create kthrotld\n");
2529
2530	return blkcg_policy_register(&blkcg_policy_throtl);
 
2531}
2532
2533module_init(throtl_init);