Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
 
  1/*
  2 * Functions related to segment and merge handling
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/bio.h>
  7#include <linux/blkdev.h>
  8#include <linux/scatterlist.h>
  9
 
 
 10#include "blk.h"
 
 11
 12static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
 13					     struct bio *bio)
 14{
 15	struct bio_vec *bv, *bvprv = NULL;
 16	int cluster, i, high, highprv = 1;
 17	unsigned int seg_size, nr_phys_segs;
 18	struct bio *fbio, *bbio;
 19
 20	if (!bio)
 21		return 0;
 22
 23	fbio = bio;
 24	cluster = blk_queue_cluster(q);
 25	seg_size = 0;
 26	nr_phys_segs = 0;
 27	for_each_bio(bio) {
 28		bio_for_each_segment(bv, bio, i) {
 29			/*
 30			 * the trick here is making sure that a high page is
 31			 * never considered part of another segment, since that
 32			 * might change with the bounce page.
 33			 */
 34			high = page_to_pfn(bv->bv_page) > queue_bounce_pfn(q);
 35			if (high || highprv)
 36				goto new_segment;
 37			if (cluster) {
 38				if (seg_size + bv->bv_len
 39				    > queue_max_segment_size(q))
 40					goto new_segment;
 41				if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
 42					goto new_segment;
 43				if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
 44					goto new_segment;
 45
 46				seg_size += bv->bv_len;
 47				bvprv = bv;
 48				continue;
 49			}
 50new_segment:
 51			if (nr_phys_segs == 1 && seg_size >
 52			    fbio->bi_seg_front_size)
 53				fbio->bi_seg_front_size = seg_size;
 54
 55			nr_phys_segs++;
 56			bvprv = bv;
 57			seg_size = bv->bv_len;
 58			highprv = high;
 59		}
 60		bbio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61	}
 62
 63	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
 64		fbio->bi_seg_front_size = seg_size;
 65	if (seg_size > bbio->bi_seg_back_size)
 66		bbio->bi_seg_back_size = seg_size;
 67
 68	return nr_phys_segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70
 71void blk_recalc_rq_segments(struct request *rq)
 
 72{
 73	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
 
 
 
 
 
 
 
 
 74}
 75
 76void blk_recount_segments(struct request_queue *q, struct bio *bio)
 
 
 
 77{
 78	struct bio *nxt = bio->bi_next;
 
 
 
 79
 80	bio->bi_next = NULL;
 81	bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
 82	bio->bi_next = nxt;
 83	bio->bi_flags |= (1 << BIO_SEG_VALID);
 84}
 85EXPORT_SYMBOL(blk_recount_segments);
 86
 87static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
 88				   struct bio *nxt)
 
 
 
 
 
 
 
 
 89{
 90	if (!blk_queue_cluster(q))
 91		return 0;
 
 
 
 
 
 
 
 
 92
 93	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
 94	    queue_max_segment_size(q))
 95		return 0;
 96
 97	if (!bio_has_data(bio))
 98		return 1;
 
 
 
 99
100	if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
101		return 0;
102
103	/*
104	 * bio and nxt are contiguous in memory; check if the queue allows
105	 * these two to be merged into one
106	 */
107	if (BIO_SEG_BOUNDARY(q, bio, nxt))
108		return 1;
 
109
110	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111}
112
113/*
114 * map a request to scatterlist, return number of sg entries setup. Caller
115 * must make sure sg can hold rq->nr_phys_segments entries
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116 */
117int blk_rq_map_sg(struct request_queue *q, struct request *rq,
118		  struct scatterlist *sglist)
 
 
119{
120	struct bio_vec *bvec, *bvprv;
121	struct req_iterator iter;
122	struct scatterlist *sg;
123	int nsegs, cluster;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125	nsegs = 0;
126	cluster = blk_queue_cluster(q);
 
 
127
128	/*
129	 * for each bio in rq
 
 
130	 */
131	bvprv = NULL;
132	sg = NULL;
133	rq_for_each_segment(bvec, rq, iter) {
134		int nbytes = bvec->bv_len;
135
136		if (bvprv && cluster) {
137			if (sg->length + nbytes > queue_max_segment_size(q))
138				goto new_segment;
139
140			if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
141				goto new_segment;
142			if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
143				goto new_segment;
144
145			sg->length += nbytes;
146		} else {
147new_segment:
148			if (!sg)
149				sg = sglist;
150			else {
151				/*
152				 * If the driver previously mapped a shorter
153				 * list, we could see a termination bit
154				 * prematurely unless it fully inits the sg
155				 * table on each mapping. We KNOW that there
156				 * must be more entries here or the driver
157				 * would be buggy, so force clear the
158				 * termination bit to avoid doing a full
159				 * sg_init_table() in drivers for each command.
160				 */
161				sg->page_link &= ~0x02;
162				sg = sg_next(sg);
163			}
164
165			sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
166			nsegs++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167		}
168		bvprv = bvec;
169	} /* segments in rq */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
 
 
 
171
172	if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
173	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
174		unsigned int pad_len =
175			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
 
 
176
177		sg->length += pad_len;
178		rq->extra_len += pad_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179	}
180
181	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
182		if (rq->cmd_flags & REQ_WRITE)
183			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185		sg->page_link &= ~0x02;
186		sg = sg_next(sg);
187		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
188			    q->dma_drain_size,
189			    ((unsigned long)q->dma_drain_buffer) &
190			    (PAGE_SIZE - 1));
191		nsegs++;
192		rq->extra_len += q->dma_drain_size;
193	}
194
195	if (sg)
196		sg_mark_end(sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198	return nsegs;
199}
200EXPORT_SYMBOL(blk_rq_map_sg);
201
202static inline int ll_new_hw_segment(struct request_queue *q,
203				    struct request *req,
204				    struct bio *bio)
 
 
 
205{
206	int nr_phys_segs = bio_phys_segments(q, bio);
207
208	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209		goto no_merge;
210
211	if (bio_integrity(bio) && blk_integrity_merge_bio(q, req, bio))
 
 
 
 
212		goto no_merge;
213
214	/*
215	 * This will form the start of a new hw segment.  Bump both
216	 * counters.
217	 */
218	req->nr_phys_segments += nr_phys_segs;
219	return 1;
220
221no_merge:
222	req->cmd_flags |= REQ_NOMERGE;
223	if (req == q->last_merge)
224		q->last_merge = NULL;
225	return 0;
226}
227
228int ll_back_merge_fn(struct request_queue *q, struct request *req,
229		     struct bio *bio)
230{
231	unsigned short max_sectors;
232
233	if (unlikely(req->cmd_type == REQ_TYPE_BLOCK_PC))
234		max_sectors = queue_max_hw_sectors(q);
235	else
236		max_sectors = queue_max_sectors(q);
237
238	if (blk_rq_sectors(req) + bio_sectors(bio) > max_sectors) {
239		req->cmd_flags |= REQ_NOMERGE;
240		if (req == q->last_merge)
241			q->last_merge = NULL;
242		return 0;
243	}
244	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
245		blk_recount_segments(q, req->biotail);
246	if (!bio_flagged(bio, BIO_SEG_VALID))
247		blk_recount_segments(q, bio);
248
249	return ll_new_hw_segment(q, req, bio);
250}
251
252int ll_front_merge_fn(struct request_queue *q, struct request *req,
253		      struct bio *bio)
254{
255	unsigned short max_sectors;
 
 
 
 
 
 
 
 
 
 
 
256
257	if (unlikely(req->cmd_type == REQ_TYPE_BLOCK_PC))
258		max_sectors = queue_max_hw_sectors(q);
259	else
260		max_sectors = queue_max_sectors(q);
261
 
 
 
 
262
263	if (blk_rq_sectors(req) + bio_sectors(bio) > max_sectors) {
264		req->cmd_flags |= REQ_NOMERGE;
265		if (req == q->last_merge)
266			q->last_merge = NULL;
267		return 0;
268	}
269	if (!bio_flagged(bio, BIO_SEG_VALID))
270		blk_recount_segments(q, bio);
271	if (!bio_flagged(req->bio, BIO_SEG_VALID))
272		blk_recount_segments(q, req->bio);
273
274	return ll_new_hw_segment(q, req, bio);
 
 
 
 
275}
276
277static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
278				struct request *next)
279{
280	int total_phys_segments;
281	unsigned int seg_size =
282		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
283
284	/*
285	 * First check if the either of the requests are re-queued
286	 * requests.  Can't merge them if they are.
287	 */
288	if (req->special || next->special)
289		return 0;
290
291	/*
292	 * Will it become too large?
293	 */
294	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > queue_max_sectors(q))
 
295		return 0;
296
297	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
298	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
299		if (req->nr_phys_segments == 1)
300			req->bio->bi_seg_front_size = seg_size;
301		if (next->nr_phys_segments == 1)
302			next->biotail->bi_seg_back_size = seg_size;
303		total_phys_segments--;
304	}
305
306	if (total_phys_segments > queue_max_segments(q))
307		return 0;
308
309	if (blk_integrity_rq(req) && blk_integrity_merge_rq(q, req, next))
310		return 0;
311
312	/* Merge is OK... */
313	req->nr_phys_segments = total_phys_segments;
314	return 1;
315}
316
317/**
318 * blk_rq_set_mixed_merge - mark a request as mixed merge
319 * @rq: request to mark as mixed merge
320 *
321 * Description:
322 *     @rq is about to be mixed merged.  Make sure the attributes
323 *     which can be mixed are set in each bio and mark @rq as mixed
324 *     merged.
325 */
326void blk_rq_set_mixed_merge(struct request *rq)
327{
328	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
329	struct bio *bio;
330
331	if (rq->cmd_flags & REQ_MIXED_MERGE)
332		return;
333
334	/*
335	 * @rq will no longer represent mixable attributes for all the
336	 * contained bios.  It will just track those of the first one.
337	 * Distributes the attributs to each bio.
338	 */
339	for (bio = rq->bio; bio; bio = bio->bi_next) {
340		WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
341			     (bio->bi_rw & REQ_FAILFAST_MASK) != ff);
342		bio->bi_rw |= ff;
343	}
344	rq->cmd_flags |= REQ_MIXED_MERGE;
345}
346
347static void blk_account_io_merge(struct request *req)
348{
349	if (blk_do_io_stat(req)) {
350		struct hd_struct *part;
351		int cpu;
352
353		cpu = part_stat_lock();
354		part = req->part;
355
356		part_round_stats(cpu, part);
357		part_dec_in_flight(part, rq_data_dir(req));
358
359		hd_struct_put(part);
360		part_stat_unlock();
361	}
362}
363
 
 
 
 
 
 
 
 
 
 
 
364/*
365 * Has to be called with the request spinlock acquired
 
366 */
367static int attempt_merge(struct request_queue *q, struct request *req,
368			  struct request *next)
369{
370	if (!rq_mergeable(req) || !rq_mergeable(next))
371		return 0;
372
373	/*
374	 * Don't merge file system requests and discard requests
375	 */
376	if ((req->cmd_flags & REQ_DISCARD) != (next->cmd_flags & REQ_DISCARD))
377		return 0;
378
379	/*
380	 * Don't merge discard requests and secure discard requests
381	 */
382	if ((req->cmd_flags & REQ_SECURE) != (next->cmd_flags & REQ_SECURE))
383		return 0;
 
 
384
385	/*
386	 * not contiguous
 
387	 */
388	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
389		return 0;
390
391	if (rq_data_dir(req) != rq_data_dir(next)
392	    || req->rq_disk != next->rq_disk
393	    || next->special)
394		return 0;
395
396	/*
397	 * If we are allowed to merge, then append bio list
398	 * from next to rq and release next. merge_requests_fn
399	 * will have updated segment counts, update sector
400	 * counts here.
 
401	 */
402	if (!ll_merge_requests_fn(q, req, next))
403		return 0;
 
 
 
 
 
 
 
 
 
 
 
404
405	/*
406	 * If failfast settings disagree or any of the two is already
407	 * a mixed merge, mark both as mixed before proceeding.  This
408	 * makes sure that all involved bios have mixable attributes
409	 * set properly.
410	 */
411	if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
412	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
413	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
414		blk_rq_set_mixed_merge(req);
415		blk_rq_set_mixed_merge(next);
416	}
417
418	/*
419	 * At this point we have either done a back merge
420	 * or front merge. We need the smaller start_time of
421	 * the merged requests to be the current request
422	 * for accounting purposes.
423	 */
424	if (time_after(req->start_time, next->start_time))
425		req->start_time = next->start_time;
426
427	req->biotail->bi_next = next->bio;
428	req->biotail = next->biotail;
429
430	req->__data_len += blk_rq_bytes(next);
431
432	elv_merge_requests(q, req, next);
 
433
434	/*
435	 * 'next' is going away, so update stats accordingly
436	 */
437	blk_account_io_merge(next);
438
439	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
440	if (blk_rq_cpu_valid(next))
441		req->cpu = next->cpu;
442
443	/* owner-ship of bio passed from next to req */
 
 
 
444	next->bio = NULL;
445	__blk_put_request(q, next);
446	return 1;
447}
448
449int attempt_back_merge(struct request_queue *q, struct request *rq)
 
450{
451	struct request *next = elv_latter_request(q, rq);
452
453	if (next)
454		return attempt_merge(q, rq, next);
455
456	return 0;
457}
458
459int attempt_front_merge(struct request_queue *q, struct request *rq)
 
460{
461	struct request *prev = elv_former_request(q, rq);
462
463	if (prev)
464		return attempt_merge(q, prev, rq);
465
466	return 0;
467}
468
469int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
470			  struct request *next)
 
 
 
 
 
471{
472	return attempt_merge(q, rq, next);
473}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to segment and merge handling
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/scatterlist.h>
  10
  11#include <trace/events/block.h>
  12
  13#include "blk.h"
  14#include "blk-rq-qos.h"
  15
  16static inline bool bio_will_gap(struct request_queue *q,
  17		struct request *prev_rq, struct bio *prev, struct bio *next)
  18{
  19	struct bio_vec pb, nb;
 
 
 
  20
  21	if (!bio_has_data(prev) || !queue_virt_boundary(q))
  22		return false;
  23
  24	/*
  25	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
  26	 * is quite difficult to respect the sg gap limit.  We work hard to
  27	 * merge a huge number of small single bios in case of mkfs.
  28	 */
  29	if (prev_rq)
  30		bio_get_first_bvec(prev_rq->bio, &pb);
  31	else
  32		bio_get_first_bvec(prev, &pb);
  33	if (pb.bv_offset & queue_virt_boundary(q))
  34		return true;
  35
  36	/*
  37	 * We don't need to worry about the situation that the merged segment
  38	 * ends in unaligned virt boundary:
  39	 *
  40	 * - if 'pb' ends aligned, the merged segment ends aligned
  41	 * - if 'pb' ends unaligned, the next bio must include
  42	 *   one single bvec of 'nb', otherwise the 'nb' can't
  43	 *   merge with 'pb'
  44	 */
  45	bio_get_last_bvec(prev, &pb);
  46	bio_get_first_bvec(next, &nb);
  47	if (biovec_phys_mergeable(q, &pb, &nb))
  48		return false;
  49	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
  50}
  51
  52static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
  53{
  54	return bio_will_gap(req->q, req, req->biotail, bio);
  55}
  56
  57static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
  58{
  59	return bio_will_gap(req->q, NULL, bio, req->bio);
  60}
  61
  62static struct bio *blk_bio_discard_split(struct request_queue *q,
  63					 struct bio *bio,
  64					 struct bio_set *bs,
  65					 unsigned *nsegs)
  66{
  67	unsigned int max_discard_sectors, granularity;
  68	int alignment;
  69	sector_t tmp;
  70	unsigned split_sectors;
  71
  72	*nsegs = 1;
  73
  74	/* Zero-sector (unknown) and one-sector granularities are the same.  */
  75	granularity = max(q->limits.discard_granularity >> 9, 1U);
  76
  77	max_discard_sectors = min(q->limits.max_discard_sectors,
  78			bio_allowed_max_sectors(q));
  79	max_discard_sectors -= max_discard_sectors % granularity;
  80
  81	if (unlikely(!max_discard_sectors)) {
  82		/* XXX: warn */
  83		return NULL;
  84	}
  85
  86	if (bio_sectors(bio) <= max_discard_sectors)
  87		return NULL;
 
 
  88
  89	split_sectors = max_discard_sectors;
  90
  91	/*
  92	 * If the next starting sector would be misaligned, stop the discard at
  93	 * the previous aligned sector.
  94	 */
  95	alignment = (q->limits.discard_alignment >> 9) % granularity;
  96
  97	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
  98	tmp = sector_div(tmp, granularity);
  99
 100	if (split_sectors > tmp)
 101		split_sectors -= tmp;
 102
 103	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 104}
 105
 106static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
 107		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
 108{
 109	*nsegs = 0;
 110
 111	if (!q->limits.max_write_zeroes_sectors)
 112		return NULL;
 113
 114	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
 115		return NULL;
 116
 117	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
 118}
 119
 120static struct bio *blk_bio_write_same_split(struct request_queue *q,
 121					    struct bio *bio,
 122					    struct bio_set *bs,
 123					    unsigned *nsegs)
 124{
 125	*nsegs = 1;
 126
 127	if (!q->limits.max_write_same_sectors)
 128		return NULL;
 129
 130	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 131		return NULL;
 132
 133	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 134}
 
 135
 136/*
 137 * Return the maximum number of sectors from the start of a bio that may be
 138 * submitted as a single request to a block device. If enough sectors remain,
 139 * align the end to the physical block size. Otherwise align the end to the
 140 * logical block size. This approach minimizes the number of non-aligned
 141 * requests that are submitted to a block device if the start of a bio is not
 142 * aligned to a physical block boundary.
 143 */
 144static inline unsigned get_max_io_size(struct request_queue *q,
 145				       struct bio *bio)
 146{
 147	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
 148	unsigned max_sectors = sectors;
 149	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
 150	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
 151	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
 152
 153	max_sectors += start_offset;
 154	max_sectors &= ~(pbs - 1);
 155	if (max_sectors > start_offset)
 156		return max_sectors - start_offset;
 157
 158	return sectors & ~(lbs - 1);
 159}
 
 160
 161static inline unsigned get_max_segment_size(const struct request_queue *q,
 162					    struct page *start_page,
 163					    unsigned long offset)
 164{
 165	unsigned long mask = queue_segment_boundary(q);
 166
 167	offset = mask & (page_to_phys(start_page) + offset);
 
 168
 169	/*
 170	 * overflow may be triggered in case of zero page physical address
 171	 * on 32bit arch, use queue's max segment size when that happens.
 172	 */
 173	return min_not_zero(mask - offset + 1,
 174			(unsigned long)queue_max_segment_size(q));
 175}
 176
 177/**
 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 179 * @q:        [in] request queue associated with the bio associated with @bv
 180 * @bv:       [in] bvec to examine
 181 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 182 *            by the number of segments from @bv that may be appended to that
 183 *            bio without exceeding @max_segs
 184 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
 185 *            by the number of sectors from @bv that may be appended to that
 186 *            bio without exceeding @max_sectors
 187 * @max_segs: [in] upper bound for *@nsegs
 188 * @max_sectors: [in] upper bound for *@sectors
 189 *
 190 * When splitting a bio, it can happen that a bvec is encountered that is too
 191 * big to fit in a single segment and hence that it has to be split in the
 192 * middle. This function verifies whether or not that should happen. The value
 193 * %true is returned if and only if appending the entire @bv to a bio with
 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 195 * the block driver.
 196 */
 197static bool bvec_split_segs(const struct request_queue *q,
 198			    const struct bio_vec *bv, unsigned *nsegs,
 199			    unsigned *sectors, unsigned max_segs,
 200			    unsigned max_sectors)
 201{
 202	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
 203	unsigned len = min(bv->bv_len, max_len);
 204	unsigned total_len = 0;
 205	unsigned seg_size = 0;
 206
 207	while (len && *nsegs < max_segs) {
 208		seg_size = get_max_segment_size(q, bv->bv_page,
 209						bv->bv_offset + total_len);
 210		seg_size = min(seg_size, len);
 211
 212		(*nsegs)++;
 213		total_len += seg_size;
 214		len -= seg_size;
 215
 216		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
 217			break;
 218	}
 219
 220	*sectors += total_len >> 9;
 221
 222	/* tell the caller to split the bvec if it is too big to fit */
 223	return len > 0 || bv->bv_len > max_len;
 224}
 225
 226/**
 227 * blk_bio_segment_split - split a bio in two bios
 228 * @q:    [in] request queue pointer
 229 * @bio:  [in] bio to be split
 230 * @bs:	  [in] bio set to allocate the clone from
 231 * @segs: [out] number of segments in the bio with the first half of the sectors
 232 *
 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 235 * following is guaranteed for the cloned bio:
 236 * - That it has at most get_max_io_size(@q, @bio) sectors.
 237 * - That it has at most queue_max_segments(@q) segments.
 238 *
 239 * Except for discard requests the cloned bio will point at the bi_io_vec of
 240 * the original bio. It is the responsibility of the caller to ensure that the
 241 * original bio is not freed before the cloned bio. The caller is also
 242 * responsible for ensuring that @bs is only destroyed after processing of the
 243 * split bio has finished.
 244 */
 245static struct bio *blk_bio_segment_split(struct request_queue *q,
 246					 struct bio *bio,
 247					 struct bio_set *bs,
 248					 unsigned *segs)
 249{
 250	struct bio_vec bv, bvprv, *bvprvp = NULL;
 251	struct bvec_iter iter;
 252	unsigned nsegs = 0, sectors = 0;
 253	const unsigned max_sectors = get_max_io_size(q, bio);
 254	const unsigned max_segs = queue_max_segments(q);
 255
 256	bio_for_each_bvec(bv, bio, iter) {
 257		/*
 258		 * If the queue doesn't support SG gaps and adding this
 259		 * offset would create a gap, disallow it.
 260		 */
 261		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
 262			goto split;
 263
 264		if (nsegs < max_segs &&
 265		    sectors + (bv.bv_len >> 9) <= max_sectors &&
 266		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 267			nsegs++;
 268			sectors += bv.bv_len >> 9;
 269		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
 270					 max_sectors)) {
 271			goto split;
 272		}
 273
 274		bvprv = bv;
 275		bvprvp = &bvprv;
 276	}
 277
 278	*segs = nsegs;
 279	return NULL;
 280split:
 281	*segs = nsegs;
 282
 283	/*
 284	 * Bio splitting may cause subtle trouble such as hang when doing sync
 285	 * iopoll in direct IO routine. Given performance gain of iopoll for
 286	 * big IO can be trival, disable iopoll when split needed.
 287	 */
 288	bio->bi_opf &= ~REQ_HIPRI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290	return bio_split(bio, sectors, GFP_NOIO, bs);
 291}
 292
 293/**
 294 * __blk_queue_split - split a bio and submit the second half
 295 * @bio:     [in, out] bio to be split
 296 * @nr_segs: [out] number of segments in the first bio
 297 *
 298 * Split a bio into two bios, chain the two bios, submit the second half and
 299 * store a pointer to the first half in *@bio. If the second bio is still too
 300 * big it will be split by a recursive call to this function. Since this
 301 * function may allocate a new bio from q->bio_split, it is the responsibility
 302 * of the caller to ensure that q->bio_split is only released after processing
 303 * of the split bio has finished.
 304 */
 305void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
 306{
 307	struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
 308	struct bio *split = NULL;
 309
 310	switch (bio_op(*bio)) {
 311	case REQ_OP_DISCARD:
 312	case REQ_OP_SECURE_ERASE:
 313		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
 314		break;
 315	case REQ_OP_WRITE_ZEROES:
 316		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
 317				nr_segs);
 318		break;
 319	case REQ_OP_WRITE_SAME:
 320		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
 321				nr_segs);
 322		break;
 323	default:
 324		/*
 325		 * All drivers must accept single-segments bios that are <=
 326		 * PAGE_SIZE.  This is a quick and dirty check that relies on
 327		 * the fact that bi_io_vec[0] is always valid if a bio has data.
 328		 * The check might lead to occasional false negatives when bios
 329		 * are cloned, but compared to the performance impact of cloned
 330		 * bios themselves the loop below doesn't matter anyway.
 331		 */
 332		if (!q->limits.chunk_sectors &&
 333		    (*bio)->bi_vcnt == 1 &&
 334		    ((*bio)->bi_io_vec[0].bv_len +
 335		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
 336			*nr_segs = 1;
 337			break;
 338		}
 339		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
 340		break;
 341	}
 342
 343	if (split) {
 344		/* there isn't chance to merge the splitted bio */
 345		split->bi_opf |= REQ_NOMERGE;
 346
 347		bio_chain(split, *bio);
 348		trace_block_split(split, (*bio)->bi_iter.bi_sector);
 349		submit_bio_noacct(*bio);
 350		*bio = split;
 351
 352		blk_throtl_charge_bio_split(*bio);
 353	}
 354}
 355
 356/**
 357 * blk_queue_split - split a bio and submit the second half
 358 * @bio: [in, out] bio to be split
 359 *
 360 * Split a bio into two bios, chains the two bios, submit the second half and
 361 * store a pointer to the first half in *@bio. Since this function may allocate
 362 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
 363 * that q->bio_split is only released after processing of the split bio has
 364 * finished.
 365 */
 366void blk_queue_split(struct bio **bio)
 367{
 368	unsigned int nr_segs;
 369
 370	__blk_queue_split(bio, &nr_segs);
 371}
 372EXPORT_SYMBOL(blk_queue_split);
 373
 374unsigned int blk_recalc_rq_segments(struct request *rq)
 375{
 376	unsigned int nr_phys_segs = 0;
 377	unsigned int nr_sectors = 0;
 378	struct req_iterator iter;
 379	struct bio_vec bv;
 380
 381	if (!rq->bio)
 382		return 0;
 383
 384	switch (bio_op(rq->bio)) {
 385	case REQ_OP_DISCARD:
 386	case REQ_OP_SECURE_ERASE:
 387		if (queue_max_discard_segments(rq->q) > 1) {
 388			struct bio *bio = rq->bio;
 389
 390			for_each_bio(bio)
 391				nr_phys_segs++;
 392			return nr_phys_segs;
 393		}
 394		return 1;
 395	case REQ_OP_WRITE_ZEROES:
 396		return 0;
 397	case REQ_OP_WRITE_SAME:
 398		return 1;
 399	}
 400
 401	rq_for_each_bvec(bv, rq, iter)
 402		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
 403				UINT_MAX, UINT_MAX);
 404	return nr_phys_segs;
 405}
 406
 407static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 408		struct scatterlist *sglist)
 409{
 410	if (!*sg)
 411		return sglist;
 412
 413	/*
 414	 * If the driver previously mapped a shorter list, we could see a
 415	 * termination bit prematurely unless it fully inits the sg table
 416	 * on each mapping. We KNOW that there must be more entries here
 417	 * or the driver would be buggy, so force clear the termination bit
 418	 * to avoid doing a full sg_init_table() in drivers for each command.
 419	 */
 420	sg_unmark_end(*sg);
 421	return sg_next(*sg);
 422}
 423
 424static unsigned blk_bvec_map_sg(struct request_queue *q,
 425		struct bio_vec *bvec, struct scatterlist *sglist,
 426		struct scatterlist **sg)
 427{
 428	unsigned nbytes = bvec->bv_len;
 429	unsigned nsegs = 0, total = 0;
 430
 431	while (nbytes > 0) {
 432		unsigned offset = bvec->bv_offset + total;
 433		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
 434					offset), nbytes);
 435		struct page *page = bvec->bv_page;
 436
 437		/*
 438		 * Unfortunately a fair number of drivers barf on scatterlists
 439		 * that have an offset larger than PAGE_SIZE, despite other
 440		 * subsystems dealing with that invariant just fine.  For now
 441		 * stick to the legacy format where we never present those from
 442		 * the block layer, but the code below should be removed once
 443		 * these offenders (mostly MMC/SD drivers) are fixed.
 444		 */
 445		page += (offset >> PAGE_SHIFT);
 446		offset &= ~PAGE_MASK;
 447
 448		*sg = blk_next_sg(sg, sglist);
 449		sg_set_page(*sg, page, len, offset);
 450
 451		total += len;
 452		nbytes -= len;
 
 453		nsegs++;
 
 454	}
 455
 456	return nsegs;
 457}
 458
 459static inline int __blk_bvec_map_sg(struct bio_vec bv,
 460		struct scatterlist *sglist, struct scatterlist **sg)
 461{
 462	*sg = blk_next_sg(sg, sglist);
 463	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 464	return 1;
 465}
 466
 467/* only try to merge bvecs into one sg if they are from two bios */
 468static inline bool
 469__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 470			   struct bio_vec *bvprv, struct scatterlist **sg)
 471{
 472
 473	int nbytes = bvec->bv_len;
 474
 475	if (!*sg)
 476		return false;
 477
 478	if ((*sg)->length + nbytes > queue_max_segment_size(q))
 479		return false;
 480
 481	if (!biovec_phys_mergeable(q, bvprv, bvec))
 482		return false;
 483
 484	(*sg)->length += nbytes;
 485
 486	return true;
 487}
 488
 489static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 490			     struct scatterlist *sglist,
 491			     struct scatterlist **sg)
 492{
 493	struct bio_vec bvec, bvprv = { NULL };
 494	struct bvec_iter iter;
 495	int nsegs = 0;
 496	bool new_bio = false;
 497
 498	for_each_bio(bio) {
 499		bio_for_each_bvec(bvec, bio, iter) {
 500			/*
 501			 * Only try to merge bvecs from two bios given we
 502			 * have done bio internal merge when adding pages
 503			 * to bio
 504			 */
 505			if (new_bio &&
 506			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 507				goto next_bvec;
 508
 509			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 510				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 511			else
 512				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 513 next_bvec:
 514			new_bio = false;
 515		}
 516		if (likely(bio->bi_iter.bi_size)) {
 517			bvprv = bvec;
 518			new_bio = true;
 519		}
 520	}
 521
 522	return nsegs;
 523}
 
 524
 525/*
 526 * map a request to scatterlist, return number of sg entries setup. Caller
 527 * must make sure sg can hold rq->nr_phys_segments entries
 528 */
 529int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
 530		struct scatterlist *sglist, struct scatterlist **last_sg)
 531{
 532	int nsegs = 0;
 533
 534	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 535		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
 536	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
 537		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
 538	else if (rq->bio)
 539		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 540
 541	if (*last_sg)
 542		sg_mark_end(*last_sg);
 543
 544	/*
 545	 * Something must have been wrong if the figured number of
 546	 * segment is bigger than number of req's physical segments
 547	 */
 548	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 549
 550	return nsegs;
 551}
 552EXPORT_SYMBOL(__blk_rq_map_sg);
 553
 554static inline unsigned int blk_rq_get_max_segments(struct request *rq)
 555{
 556	if (req_op(rq) == REQ_OP_DISCARD)
 557		return queue_max_discard_segments(rq->q);
 558	return queue_max_segments(rq->q);
 559}
 560
 561static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 562		unsigned int nr_phys_segs)
 563{
 564	if (blk_integrity_merge_bio(req->q, req, bio) == false)
 565		goto no_merge;
 566
 567	/* discard request merge won't add new segment */
 568	if (req_op(req) == REQ_OP_DISCARD)
 569		return 1;
 570
 571	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
 572		goto no_merge;
 573
 574	/*
 575	 * This will form the start of a new hw segment.  Bump both
 576	 * counters.
 577	 */
 578	req->nr_phys_segments += nr_phys_segs;
 579	return 1;
 580
 581no_merge:
 582	req_set_nomerge(req->q, req);
 
 
 583	return 0;
 584}
 585
 586int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
 587{
 588	if (req_gap_back_merge(req, bio))
 589		return 0;
 590	if (blk_integrity_rq(req) &&
 591	    integrity_req_gap_back_merge(req, bio))
 592		return 0;
 593	if (!bio_crypt_ctx_back_mergeable(req, bio))
 594		return 0;
 595	if (blk_rq_sectors(req) + bio_sectors(bio) >
 596	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 597		req_set_nomerge(req->q, req);
 
 598		return 0;
 599	}
 
 
 
 
 600
 601	return ll_new_hw_segment(req, bio, nr_segs);
 602}
 603
 604static int ll_front_merge_fn(struct request *req, struct bio *bio,
 605		unsigned int nr_segs)
 606{
 607	if (req_gap_front_merge(req, bio))
 608		return 0;
 609	if (blk_integrity_rq(req) &&
 610	    integrity_req_gap_front_merge(req, bio))
 611		return 0;
 612	if (!bio_crypt_ctx_front_mergeable(req, bio))
 613		return 0;
 614	if (blk_rq_sectors(req) + bio_sectors(bio) >
 615	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 616		req_set_nomerge(req->q, req);
 617		return 0;
 618	}
 619
 620	return ll_new_hw_segment(req, bio, nr_segs);
 621}
 
 
 622
 623static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 624		struct request *next)
 625{
 626	unsigned short segments = blk_rq_nr_discard_segments(req);
 627
 628	if (segments >= queue_max_discard_segments(q))
 629		goto no_merge;
 630	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 631	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 632		goto no_merge;
 
 
 
 
 
 633
 634	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 635	return true;
 636no_merge:
 637	req_set_nomerge(q, req);
 638	return false;
 639}
 640
 641static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 642				struct request *next)
 643{
 644	int total_phys_segments;
 
 
 645
 646	if (req_gap_back_merge(req, next->bio))
 
 
 
 
 647		return 0;
 648
 649	/*
 650	 * Will it become too large?
 651	 */
 652	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 653	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 654		return 0;
 655
 656	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 657	if (total_phys_segments > blk_rq_get_max_segments(req))
 658		return 0;
 
 
 
 
 
 659
 660	if (blk_integrity_merge_rq(q, req, next) == false)
 661		return 0;
 662
 663	if (!bio_crypt_ctx_merge_rq(req, next))
 664		return 0;
 665
 666	/* Merge is OK... */
 667	req->nr_phys_segments = total_phys_segments;
 668	return 1;
 669}
 670
 671/**
 672 * blk_rq_set_mixed_merge - mark a request as mixed merge
 673 * @rq: request to mark as mixed merge
 674 *
 675 * Description:
 676 *     @rq is about to be mixed merged.  Make sure the attributes
 677 *     which can be mixed are set in each bio and mark @rq as mixed
 678 *     merged.
 679 */
 680void blk_rq_set_mixed_merge(struct request *rq)
 681{
 682	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 683	struct bio *bio;
 684
 685	if (rq->rq_flags & RQF_MIXED_MERGE)
 686		return;
 687
 688	/*
 689	 * @rq will no longer represent mixable attributes for all the
 690	 * contained bios.  It will just track those of the first one.
 691	 * Distributes the attributs to each bio.
 692	 */
 693	for (bio = rq->bio; bio; bio = bio->bi_next) {
 694		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 695			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 696		bio->bi_opf |= ff;
 697	}
 698	rq->rq_flags |= RQF_MIXED_MERGE;
 699}
 700
 701static void blk_account_io_merge_request(struct request *req)
 702{
 703	if (blk_do_io_stat(req)) {
 704		part_stat_lock();
 705		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 
 
 
 
 
 
 
 
 706		part_stat_unlock();
 707	}
 708}
 709
 710static enum elv_merge blk_try_req_merge(struct request *req,
 711					struct request *next)
 712{
 713	if (blk_discard_mergable(req))
 714		return ELEVATOR_DISCARD_MERGE;
 715	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 716		return ELEVATOR_BACK_MERGE;
 717
 718	return ELEVATOR_NO_MERGE;
 719}
 720
 721/*
 722 * For non-mq, this has to be called with the request spinlock acquired.
 723 * For mq with scheduling, the appropriate queue wide lock should be held.
 724 */
 725static struct request *attempt_merge(struct request_queue *q,
 726				     struct request *req, struct request *next)
 727{
 728	if (!rq_mergeable(req) || !rq_mergeable(next))
 729		return NULL;
 730
 731	if (req_op(req) != req_op(next))
 732		return NULL;
 
 
 
 733
 734	if (rq_data_dir(req) != rq_data_dir(next)
 735	    || req->rq_disk != next->rq_disk)
 736		return NULL;
 737
 738	if (req_op(req) == REQ_OP_WRITE_SAME &&
 739	    !blk_write_same_mergeable(req->bio, next->bio))
 740		return NULL;
 741
 742	/*
 743	 * Don't allow merge of different write hints, or for a hint with
 744	 * non-hint IO.
 745	 */
 746	if (req->write_hint != next->write_hint)
 747		return NULL;
 748
 749	if (req->ioprio != next->ioprio)
 750		return NULL;
 
 
 751
 752	/*
 753	 * If we are allowed to merge, then append bio list
 754	 * from next to rq and release next. merge_requests_fn
 755	 * will have updated segment counts, update sector
 756	 * counts here. Handle DISCARDs separately, as they
 757	 * have separate settings.
 758	 */
 759
 760	switch (blk_try_req_merge(req, next)) {
 761	case ELEVATOR_DISCARD_MERGE:
 762		if (!req_attempt_discard_merge(q, req, next))
 763			return NULL;
 764		break;
 765	case ELEVATOR_BACK_MERGE:
 766		if (!ll_merge_requests_fn(q, req, next))
 767			return NULL;
 768		break;
 769	default:
 770		return NULL;
 771	}
 772
 773	/*
 774	 * If failfast settings disagree or any of the two is already
 775	 * a mixed merge, mark both as mixed before proceeding.  This
 776	 * makes sure that all involved bios have mixable attributes
 777	 * set properly.
 778	 */
 779	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 780	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
 781	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
 782		blk_rq_set_mixed_merge(req);
 783		blk_rq_set_mixed_merge(next);
 784	}
 785
 786	/*
 787	 * At this point we have either done a back merge or front merge. We
 788	 * need the smaller start_time_ns of the merged requests to be the
 789	 * current request for accounting purposes.
 
 790	 */
 791	if (next->start_time_ns < req->start_time_ns)
 792		req->start_time_ns = next->start_time_ns;
 793
 794	req->biotail->bi_next = next->bio;
 795	req->biotail = next->biotail;
 796
 797	req->__data_len += blk_rq_bytes(next);
 798
 799	if (!blk_discard_mergable(req))
 800		elv_merge_requests(q, req, next);
 801
 802	/*
 803	 * 'next' is going away, so update stats accordingly
 804	 */
 805	blk_account_io_merge_request(next);
 806
 807	trace_block_rq_merge(next);
 
 
 808
 809	/*
 810	 * ownership of bio passed from next to req, return 'next' for
 811	 * the caller to free
 812	 */
 813	next->bio = NULL;
 814	return next;
 
 815}
 816
 817static struct request *attempt_back_merge(struct request_queue *q,
 818		struct request *rq)
 819{
 820	struct request *next = elv_latter_request(q, rq);
 821
 822	if (next)
 823		return attempt_merge(q, rq, next);
 824
 825	return NULL;
 826}
 827
 828static struct request *attempt_front_merge(struct request_queue *q,
 829		struct request *rq)
 830{
 831	struct request *prev = elv_former_request(q, rq);
 832
 833	if (prev)
 834		return attempt_merge(q, prev, rq);
 835
 836	return NULL;
 837}
 838
 839/*
 840 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 841 * otherwise. The caller is responsible for freeing 'next' if the merge
 842 * happened.
 843 */
 844bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 845			   struct request *next)
 846{
 847	return attempt_merge(q, rq, next);
 848}
 849
 850bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 851{
 852	if (!rq_mergeable(rq) || !bio_mergeable(bio))
 853		return false;
 854
 855	if (req_op(rq) != bio_op(bio))
 856		return false;
 857
 858	/* different data direction or already started, don't merge */
 859	if (bio_data_dir(bio) != rq_data_dir(rq))
 860		return false;
 861
 862	/* must be same device */
 863	if (rq->rq_disk != bio->bi_bdev->bd_disk)
 864		return false;
 865
 866	/* only merge integrity protected bio into ditto rq */
 867	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 868		return false;
 869
 870	/* Only merge if the crypt contexts are compatible */
 871	if (!bio_crypt_rq_ctx_compatible(rq, bio))
 872		return false;
 873
 874	/* must be using the same buffer */
 875	if (req_op(rq) == REQ_OP_WRITE_SAME &&
 876	    !blk_write_same_mergeable(rq->bio, bio))
 877		return false;
 878
 879	/*
 880	 * Don't allow merge of different write hints, or for a hint with
 881	 * non-hint IO.
 882	 */
 883	if (rq->write_hint != bio->bi_write_hint)
 884		return false;
 885
 886	if (rq->ioprio != bio_prio(bio))
 887		return false;
 888
 889	return true;
 890}
 891
 892enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 893{
 894	if (blk_discard_mergable(rq))
 895		return ELEVATOR_DISCARD_MERGE;
 896	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 897		return ELEVATOR_BACK_MERGE;
 898	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 899		return ELEVATOR_FRONT_MERGE;
 900	return ELEVATOR_NO_MERGE;
 901}
 902
 903static void blk_account_io_merge_bio(struct request *req)
 904{
 905	if (!blk_do_io_stat(req))
 906		return;
 907
 908	part_stat_lock();
 909	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 910	part_stat_unlock();
 911}
 912
 913enum bio_merge_status {
 914	BIO_MERGE_OK,
 915	BIO_MERGE_NONE,
 916	BIO_MERGE_FAILED,
 917};
 918
 919static enum bio_merge_status bio_attempt_back_merge(struct request *req,
 920		struct bio *bio, unsigned int nr_segs)
 921{
 922	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 923
 924	if (!ll_back_merge_fn(req, bio, nr_segs))
 925		return BIO_MERGE_FAILED;
 926
 927	trace_block_bio_backmerge(bio);
 928	rq_qos_merge(req->q, req, bio);
 929
 930	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 931		blk_rq_set_mixed_merge(req);
 932
 933	req->biotail->bi_next = bio;
 934	req->biotail = bio;
 935	req->__data_len += bio->bi_iter.bi_size;
 936
 937	bio_crypt_free_ctx(bio);
 938
 939	blk_account_io_merge_bio(req);
 940	return BIO_MERGE_OK;
 941}
 942
 943static enum bio_merge_status bio_attempt_front_merge(struct request *req,
 944		struct bio *bio, unsigned int nr_segs)
 945{
 946	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 947
 948	if (!ll_front_merge_fn(req, bio, nr_segs))
 949		return BIO_MERGE_FAILED;
 950
 951	trace_block_bio_frontmerge(bio);
 952	rq_qos_merge(req->q, req, bio);
 953
 954	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 955		blk_rq_set_mixed_merge(req);
 956
 957	bio->bi_next = req->bio;
 958	req->bio = bio;
 959
 960	req->__sector = bio->bi_iter.bi_sector;
 961	req->__data_len += bio->bi_iter.bi_size;
 962
 963	bio_crypt_do_front_merge(req, bio);
 964
 965	blk_account_io_merge_bio(req);
 966	return BIO_MERGE_OK;
 967}
 968
 969static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
 970		struct request *req, struct bio *bio)
 971{
 972	unsigned short segments = blk_rq_nr_discard_segments(req);
 973
 974	if (segments >= queue_max_discard_segments(q))
 975		goto no_merge;
 976	if (blk_rq_sectors(req) + bio_sectors(bio) >
 977	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 978		goto no_merge;
 979
 980	rq_qos_merge(q, req, bio);
 981
 982	req->biotail->bi_next = bio;
 983	req->biotail = bio;
 984	req->__data_len += bio->bi_iter.bi_size;
 985	req->nr_phys_segments = segments + 1;
 986
 987	blk_account_io_merge_bio(req);
 988	return BIO_MERGE_OK;
 989no_merge:
 990	req_set_nomerge(q, req);
 991	return BIO_MERGE_FAILED;
 992}
 993
 994static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
 995						   struct request *rq,
 996						   struct bio *bio,
 997						   unsigned int nr_segs,
 998						   bool sched_allow_merge)
 999{
1000	if (!blk_rq_merge_ok(rq, bio))
1001		return BIO_MERGE_NONE;
1002
1003	switch (blk_try_merge(rq, bio)) {
1004	case ELEVATOR_BACK_MERGE:
1005		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1006			return bio_attempt_back_merge(rq, bio, nr_segs);
1007		break;
1008	case ELEVATOR_FRONT_MERGE:
1009		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1010			return bio_attempt_front_merge(rq, bio, nr_segs);
1011		break;
1012	case ELEVATOR_DISCARD_MERGE:
1013		return bio_attempt_discard_merge(q, rq, bio);
1014	default:
1015		return BIO_MERGE_NONE;
1016	}
1017
1018	return BIO_MERGE_FAILED;
1019}
1020
1021/**
1022 * blk_attempt_plug_merge - try to merge with %current's plugged list
1023 * @q: request_queue new bio is being queued at
1024 * @bio: new bio being queued
1025 * @nr_segs: number of segments in @bio
1026 * @same_queue_rq: pointer to &struct request that gets filled in when
1027 * another request associated with @q is found on the plug list
1028 * (optional, may be %NULL)
1029 *
1030 * Determine whether @bio being queued on @q can be merged with a request
1031 * on %current's plugged list.  Returns %true if merge was successful,
1032 * otherwise %false.
1033 *
1034 * Plugging coalesces IOs from the same issuer for the same purpose without
1035 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1036 * than scheduling, and the request, while may have elvpriv data, is not
1037 * added on the elevator at this point.  In addition, we don't have
1038 * reliable access to the elevator outside queue lock.  Only check basic
1039 * merging parameters without querying the elevator.
1040 *
1041 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1042 */
1043bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1044		unsigned int nr_segs, struct request **same_queue_rq)
1045{
1046	struct blk_plug *plug;
1047	struct request *rq;
1048	struct list_head *plug_list;
1049
1050	plug = blk_mq_plug(q, bio);
1051	if (!plug)
1052		return false;
1053
1054	plug_list = &plug->mq_list;
1055
1056	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1057		if (rq->q == q && same_queue_rq) {
1058			/*
1059			 * Only blk-mq multiple hardware queues case checks the
1060			 * rq in the same queue, there should be only one such
1061			 * rq in a queue
1062			 **/
1063			*same_queue_rq = rq;
1064		}
1065
1066		if (rq->q != q)
1067			continue;
1068
1069		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1070		    BIO_MERGE_OK)
1071			return true;
1072	}
1073
1074	return false;
1075}
1076
1077/*
1078 * Iterate list of requests and see if we can merge this bio with any
1079 * of them.
1080 */
1081bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1082			struct bio *bio, unsigned int nr_segs)
1083{
1084	struct request *rq;
1085	int checked = 8;
1086
1087	list_for_each_entry_reverse(rq, list, queuelist) {
1088		if (!checked--)
1089			break;
1090
1091		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1092		case BIO_MERGE_NONE:
1093			continue;
1094		case BIO_MERGE_OK:
1095			return true;
1096		case BIO_MERGE_FAILED:
1097			return false;
1098		}
1099
1100	}
1101
1102	return false;
1103}
1104EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1105
1106bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1107		unsigned int nr_segs, struct request **merged_request)
1108{
1109	struct request *rq;
1110
1111	switch (elv_merge(q, &rq, bio)) {
1112	case ELEVATOR_BACK_MERGE:
1113		if (!blk_mq_sched_allow_merge(q, rq, bio))
1114			return false;
1115		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1116			return false;
1117		*merged_request = attempt_back_merge(q, rq);
1118		if (!*merged_request)
1119			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1120		return true;
1121	case ELEVATOR_FRONT_MERGE:
1122		if (!blk_mq_sched_allow_merge(q, rq, bio))
1123			return false;
1124		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1125			return false;
1126		*merged_request = attempt_front_merge(q, rq);
1127		if (!*merged_request)
1128			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1129		return true;
1130	case ELEVATOR_DISCARD_MERGE:
1131		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1132	default:
1133		return false;
1134	}
1135}
1136EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);