Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Support of MSI, HPET and DMAR interrupts.
  4 *
  5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
  6 *	Moved from arch/x86/kernel/apic/io_apic.c.
  7 * Jiang Liu <jiang.liu@linux.intel.com>
  8 *	Convert to hierarchical irqdomain
  9 */
 10#include <linux/mm.h>
 11#include <linux/interrupt.h>
 12#include <linux/irq.h>
 13#include <linux/pci.h>
 14#include <linux/dmar.h>
 15#include <linux/hpet.h>
 16#include <linux/msi.h>
 17#include <asm/irqdomain.h>
 18#include <asm/hpet.h>
 19#include <asm/hw_irq.h>
 20#include <asm/apic.h>
 21#include <asm/irq_remapping.h>
 22
 23struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
 24
 25static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
 26{
 27	struct msi_msg msg[2] = { [1] = { }, };
 28
 29	__irq_msi_compose_msg(cfg, msg, false);
 30	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
 31}
 32
 33static int
 34msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
 35{
 36	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
 37	struct irq_data *parent = irqd->parent_data;
 38	unsigned int cpu;
 39	int ret;
 40
 41	/* Save the current configuration */
 42	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
 43	old_cfg = *cfg;
 44
 45	/* Allocate a new target vector */
 46	ret = parent->chip->irq_set_affinity(parent, mask, force);
 47	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
 48		return ret;
 49
 50	/*
 51	 * For non-maskable and non-remapped MSI interrupts the migration
 52	 * to a different destination CPU and a different vector has to be
 53	 * done careful to handle the possible stray interrupt which can be
 54	 * caused by the non-atomic update of the address/data pair.
 55	 *
 56	 * Direct update is possible when:
 57	 * - The MSI is maskable (remapped MSI does not use this code path)).
 58	 *   The quirk bit is not set in this case.
 59	 * - The new vector is the same as the old vector
 60	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
 61	 * - The interrupt is not yet started up
 62	 * - The new destination CPU is the same as the old destination CPU
 63	 */
 64	if (!irqd_msi_nomask_quirk(irqd) ||
 65	    cfg->vector == old_cfg.vector ||
 66	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
 67	    !irqd_is_started(irqd) ||
 68	    cfg->dest_apicid == old_cfg.dest_apicid) {
 69		irq_msi_update_msg(irqd, cfg);
 70		return ret;
 71	}
 72
 73	/*
 74	 * Paranoia: Validate that the interrupt target is the local
 75	 * CPU.
 76	 */
 77	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
 78		irq_msi_update_msg(irqd, cfg);
 79		return ret;
 80	}
 81
 82	/*
 83	 * Redirect the interrupt to the new vector on the current CPU
 84	 * first. This might cause a spurious interrupt on this vector if
 85	 * the device raises an interrupt right between this update and the
 86	 * update to the final destination CPU.
 87	 *
 88	 * If the vector is in use then the installed device handler will
 89	 * denote it as spurious which is no harm as this is a rare event
 90	 * and interrupt handlers have to cope with spurious interrupts
 91	 * anyway. If the vector is unused, then it is marked so it won't
 92	 * trigger the 'No irq handler for vector' warning in
 93	 * common_interrupt().
 94	 *
 95	 * This requires to hold vector lock to prevent concurrent updates to
 96	 * the affected vector.
 97	 */
 98	lock_vector_lock();
 99
100	/*
101	 * Mark the new target vector on the local CPU if it is currently
102	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
103	 * the CPU hotplug path for a similar purpose. This cannot be
104	 * undone here as the current CPU has interrupts disabled and
105	 * cannot handle the interrupt before the whole set_affinity()
106	 * section is done. In the CPU unplug case, the current CPU is
107	 * about to vanish and will not handle any interrupts anymore. The
108	 * vector is cleaned up when the CPU comes online again.
109	 */
110	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
111		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
112
113	/* Redirect it to the new vector on the local CPU temporarily */
114	old_cfg.vector = cfg->vector;
115	irq_msi_update_msg(irqd, &old_cfg);
116
117	/* Now transition it to the target CPU */
118	irq_msi_update_msg(irqd, cfg);
119
120	/*
121	 * All interrupts after this point are now targeted at the new
122	 * vector/CPU.
123	 *
124	 * Drop vector lock before testing whether the temporary assignment
125	 * to the local CPU was hit by an interrupt raised in the device,
126	 * because the retrigger function acquires vector lock again.
127	 */
128	unlock_vector_lock();
129
130	/*
131	 * Check whether the transition raced with a device interrupt and
132	 * is pending in the local APICs IRR. It is safe to do this outside
133	 * of vector lock as the irq_desc::lock of this interrupt is still
134	 * held and interrupts are disabled: The check is not accessing the
135	 * underlying vector store. It's just checking the local APIC's
136	 * IRR.
137	 */
138	if (lapic_vector_set_in_irr(cfg->vector))
139		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
140
141	return ret;
142}
143
144/*
145 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
146 * which implement the MSI or MSI-X Capability Structure.
147 */
148static struct irq_chip pci_msi_controller = {
149	.name			= "PCI-MSI",
150	.irq_unmask		= pci_msi_unmask_irq,
151	.irq_mask		= pci_msi_mask_irq,
152	.irq_ack		= irq_chip_ack_parent,
153	.irq_retrigger		= irq_chip_retrigger_hierarchy,
154	.irq_set_affinity	= msi_set_affinity,
155	.flags			= IRQCHIP_SKIP_SET_WAKE |
156				  IRQCHIP_AFFINITY_PRE_STARTUP,
157};
158
159int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
160		    msi_alloc_info_t *arg)
161{
162	struct pci_dev *pdev = to_pci_dev(dev);
163	struct msi_desc *desc = first_pci_msi_entry(pdev);
164
165	init_irq_alloc_info(arg, NULL);
166	if (desc->msi_attrib.is_msix) {
167		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
168	} else {
169		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
170		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
171	}
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(pci_msi_prepare);
176
177static struct msi_domain_ops pci_msi_domain_ops = {
178	.msi_prepare	= pci_msi_prepare,
179};
180
181static struct msi_domain_info pci_msi_domain_info = {
182	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
183			  MSI_FLAG_PCI_MSIX,
184	.ops		= &pci_msi_domain_ops,
185	.chip		= &pci_msi_controller,
186	.handler	= handle_edge_irq,
187	.handler_name	= "edge",
188};
189
190struct irq_domain * __init native_create_pci_msi_domain(void)
191{
192	struct fwnode_handle *fn;
193	struct irq_domain *d;
194
195	if (disable_apic)
196		return NULL;
197
198	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
199	if (!fn)
200		return NULL;
201
202	d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
203				      x86_vector_domain);
204	if (!d) {
205		irq_domain_free_fwnode(fn);
206		pr_warn("Failed to initialize PCI-MSI irqdomain.\n");
207	} else {
208		d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
209	}
210	return d;
211}
212
213void __init x86_create_pci_msi_domain(void)
214{
215	x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
216}
217
218#ifdef CONFIG_IRQ_REMAP
219static struct irq_chip pci_msi_ir_controller = {
220	.name			= "IR-PCI-MSI",
221	.irq_unmask		= pci_msi_unmask_irq,
222	.irq_mask		= pci_msi_mask_irq,
223	.irq_ack		= irq_chip_ack_parent,
224	.irq_retrigger		= irq_chip_retrigger_hierarchy,
225	.flags			= IRQCHIP_SKIP_SET_WAKE |
226				  IRQCHIP_AFFINITY_PRE_STARTUP,
227};
228
229static struct msi_domain_info pci_msi_ir_domain_info = {
230	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
231			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
232	.ops		= &pci_msi_domain_ops,
233	.chip		= &pci_msi_ir_controller,
234	.handler	= handle_edge_irq,
235	.handler_name	= "edge",
236};
237
238struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
239						    const char *name, int id)
240{
241	struct fwnode_handle *fn;
242	struct irq_domain *d;
243
244	fn = irq_domain_alloc_named_id_fwnode(name, id);
245	if (!fn)
246		return NULL;
247	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
248	if (!d)
249		irq_domain_free_fwnode(fn);
250	return d;
251}
252#endif
253
254#ifdef CONFIG_DMAR_TABLE
255/*
256 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
257 * high bits of the destination APIC ID. This can't be done in the general
258 * case for MSIs as it would be targeting real memory above 4GiB not the
259 * APIC.
260 */
261static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
262{
263	__irq_msi_compose_msg(irqd_cfg(data), msg, true);
264}
265
266static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
267{
268	dmar_msi_write(data->irq, msg);
269}
270
271static struct irq_chip dmar_msi_controller = {
272	.name			= "DMAR-MSI",
273	.irq_unmask		= dmar_msi_unmask,
274	.irq_mask		= dmar_msi_mask,
275	.irq_ack		= irq_chip_ack_parent,
276	.irq_set_affinity	= msi_domain_set_affinity,
277	.irq_retrigger		= irq_chip_retrigger_hierarchy,
278	.irq_compose_msi_msg	= dmar_msi_compose_msg,
279	.irq_write_msi_msg	= dmar_msi_write_msg,
280	.flags			= IRQCHIP_SKIP_SET_WAKE |
281				  IRQCHIP_AFFINITY_PRE_STARTUP,
282};
283
284static int dmar_msi_init(struct irq_domain *domain,
285			 struct msi_domain_info *info, unsigned int virq,
286			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
287{
288	irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
289			    handle_edge_irq, arg->data, "edge");
290
291	return 0;
292}
293
294static struct msi_domain_ops dmar_msi_domain_ops = {
295	.msi_init	= dmar_msi_init,
296};
297
298static struct msi_domain_info dmar_msi_domain_info = {
299	.ops		= &dmar_msi_domain_ops,
300	.chip		= &dmar_msi_controller,
301	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
302};
303
304static struct irq_domain *dmar_get_irq_domain(void)
305{
306	static struct irq_domain *dmar_domain;
307	static DEFINE_MUTEX(dmar_lock);
308	struct fwnode_handle *fn;
309
310	mutex_lock(&dmar_lock);
311	if (dmar_domain)
312		goto out;
313
314	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
315	if (fn) {
316		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
317						    x86_vector_domain);
318		if (!dmar_domain)
319			irq_domain_free_fwnode(fn);
320	}
321out:
322	mutex_unlock(&dmar_lock);
323	return dmar_domain;
324}
325
326int dmar_alloc_hwirq(int id, int node, void *arg)
327{
328	struct irq_domain *domain = dmar_get_irq_domain();
329	struct irq_alloc_info info;
330
331	if (!domain)
332		return -1;
333
334	init_irq_alloc_info(&info, NULL);
335	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
336	info.devid = id;
337	info.hwirq = id;
338	info.data = arg;
339
340	return irq_domain_alloc_irqs(domain, 1, node, &info);
341}
342
343void dmar_free_hwirq(int irq)
344{
345	irq_domain_free_irqs(irq, 1);
346}
347#endif