Loading...
1/*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_HASH_H
14#define _CRYPTO_HASH_H
15
16#include <linux/crypto.h>
17
18struct crypto_ahash;
19
20struct hash_alg_common {
21 unsigned int digestsize;
22 unsigned int statesize;
23
24 struct crypto_alg base;
25};
26
27struct ahash_request {
28 struct crypto_async_request base;
29
30 unsigned int nbytes;
31 struct scatterlist *src;
32 u8 *result;
33
34 /* This field may only be used by the ahash API code. */
35 void *priv;
36
37 void *__ctx[] CRYPTO_MINALIGN_ATTR;
38};
39
40struct ahash_alg {
41 int (*init)(struct ahash_request *req);
42 int (*update)(struct ahash_request *req);
43 int (*final)(struct ahash_request *req);
44 int (*finup)(struct ahash_request *req);
45 int (*digest)(struct ahash_request *req);
46 int (*export)(struct ahash_request *req, void *out);
47 int (*import)(struct ahash_request *req, const void *in);
48 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
49 unsigned int keylen);
50
51 struct hash_alg_common halg;
52};
53
54struct shash_desc {
55 struct crypto_shash *tfm;
56 u32 flags;
57
58 void *__ctx[] CRYPTO_MINALIGN_ATTR;
59};
60
61struct shash_alg {
62 int (*init)(struct shash_desc *desc);
63 int (*update)(struct shash_desc *desc, const u8 *data,
64 unsigned int len);
65 int (*final)(struct shash_desc *desc, u8 *out);
66 int (*finup)(struct shash_desc *desc, const u8 *data,
67 unsigned int len, u8 *out);
68 int (*digest)(struct shash_desc *desc, const u8 *data,
69 unsigned int len, u8 *out);
70 int (*export)(struct shash_desc *desc, void *out);
71 int (*import)(struct shash_desc *desc, const void *in);
72 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
73 unsigned int keylen);
74
75 unsigned int descsize;
76
77 /* These fields must match hash_alg_common. */
78 unsigned int digestsize
79 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
80 unsigned int statesize;
81
82 struct crypto_alg base;
83};
84
85struct crypto_ahash {
86 int (*init)(struct ahash_request *req);
87 int (*update)(struct ahash_request *req);
88 int (*final)(struct ahash_request *req);
89 int (*finup)(struct ahash_request *req);
90 int (*digest)(struct ahash_request *req);
91 int (*export)(struct ahash_request *req, void *out);
92 int (*import)(struct ahash_request *req, const void *in);
93 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
94 unsigned int keylen);
95
96 unsigned int reqsize;
97 struct crypto_tfm base;
98};
99
100struct crypto_shash {
101 unsigned int descsize;
102 struct crypto_tfm base;
103};
104
105static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
106{
107 return container_of(tfm, struct crypto_ahash, base);
108}
109
110struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
111 u32 mask);
112
113static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
114{
115 return &tfm->base;
116}
117
118static inline void crypto_free_ahash(struct crypto_ahash *tfm)
119{
120 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
121}
122
123static inline unsigned int crypto_ahash_alignmask(
124 struct crypto_ahash *tfm)
125{
126 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
127}
128
129static inline struct hash_alg_common *__crypto_hash_alg_common(
130 struct crypto_alg *alg)
131{
132 return container_of(alg, struct hash_alg_common, base);
133}
134
135static inline struct hash_alg_common *crypto_hash_alg_common(
136 struct crypto_ahash *tfm)
137{
138 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
139}
140
141static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
142{
143 return crypto_hash_alg_common(tfm)->digestsize;
144}
145
146static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
147{
148 return crypto_hash_alg_common(tfm)->statesize;
149}
150
151static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
152{
153 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
154}
155
156static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
157{
158 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
159}
160
161static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
162{
163 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
164}
165
166static inline struct crypto_ahash *crypto_ahash_reqtfm(
167 struct ahash_request *req)
168{
169 return __crypto_ahash_cast(req->base.tfm);
170}
171
172static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
173{
174 return tfm->reqsize;
175}
176
177static inline void *ahash_request_ctx(struct ahash_request *req)
178{
179 return req->__ctx;
180}
181
182int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
183 unsigned int keylen);
184int crypto_ahash_finup(struct ahash_request *req);
185int crypto_ahash_final(struct ahash_request *req);
186int crypto_ahash_digest(struct ahash_request *req);
187
188static inline int crypto_ahash_export(struct ahash_request *req, void *out)
189{
190 return crypto_ahash_reqtfm(req)->export(req, out);
191}
192
193static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
194{
195 return crypto_ahash_reqtfm(req)->import(req, in);
196}
197
198static inline int crypto_ahash_init(struct ahash_request *req)
199{
200 return crypto_ahash_reqtfm(req)->init(req);
201}
202
203static inline int crypto_ahash_update(struct ahash_request *req)
204{
205 return crypto_ahash_reqtfm(req)->update(req);
206}
207
208static inline void ahash_request_set_tfm(struct ahash_request *req,
209 struct crypto_ahash *tfm)
210{
211 req->base.tfm = crypto_ahash_tfm(tfm);
212}
213
214static inline struct ahash_request *ahash_request_alloc(
215 struct crypto_ahash *tfm, gfp_t gfp)
216{
217 struct ahash_request *req;
218
219 req = kmalloc(sizeof(struct ahash_request) +
220 crypto_ahash_reqsize(tfm), gfp);
221
222 if (likely(req))
223 ahash_request_set_tfm(req, tfm);
224
225 return req;
226}
227
228static inline void ahash_request_free(struct ahash_request *req)
229{
230 kzfree(req);
231}
232
233static inline struct ahash_request *ahash_request_cast(
234 struct crypto_async_request *req)
235{
236 return container_of(req, struct ahash_request, base);
237}
238
239static inline void ahash_request_set_callback(struct ahash_request *req,
240 u32 flags,
241 crypto_completion_t complete,
242 void *data)
243{
244 req->base.complete = complete;
245 req->base.data = data;
246 req->base.flags = flags;
247}
248
249static inline void ahash_request_set_crypt(struct ahash_request *req,
250 struct scatterlist *src, u8 *result,
251 unsigned int nbytes)
252{
253 req->src = src;
254 req->nbytes = nbytes;
255 req->result = result;
256}
257
258struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
259 u32 mask);
260
261static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
262{
263 return &tfm->base;
264}
265
266static inline void crypto_free_shash(struct crypto_shash *tfm)
267{
268 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
269}
270
271static inline unsigned int crypto_shash_alignmask(
272 struct crypto_shash *tfm)
273{
274 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
275}
276
277static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
278{
279 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
280}
281
282static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
283{
284 return container_of(alg, struct shash_alg, base);
285}
286
287static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
288{
289 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
290}
291
292static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
293{
294 return crypto_shash_alg(tfm)->digestsize;
295}
296
297static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
298{
299 return crypto_shash_alg(tfm)->statesize;
300}
301
302static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
303{
304 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
305}
306
307static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
308{
309 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
310}
311
312static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
313{
314 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
315}
316
317static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
318{
319 return tfm->descsize;
320}
321
322static inline void *shash_desc_ctx(struct shash_desc *desc)
323{
324 return desc->__ctx;
325}
326
327int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
328 unsigned int keylen);
329int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
330 unsigned int len, u8 *out);
331
332static inline int crypto_shash_export(struct shash_desc *desc, void *out)
333{
334 return crypto_shash_alg(desc->tfm)->export(desc, out);
335}
336
337static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
338{
339 return crypto_shash_alg(desc->tfm)->import(desc, in);
340}
341
342static inline int crypto_shash_init(struct shash_desc *desc)
343{
344 return crypto_shash_alg(desc->tfm)->init(desc);
345}
346
347int crypto_shash_update(struct shash_desc *desc, const u8 *data,
348 unsigned int len);
349int crypto_shash_final(struct shash_desc *desc, u8 *out);
350int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
351 unsigned int len, u8 *out);
352
353#endif /* _CRYPTO_HASH_H */
1/*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_HASH_H
14#define _CRYPTO_HASH_H
15
16#include <linux/crypto.h>
17#include <linux/string.h>
18
19struct crypto_ahash;
20
21/**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30/**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
50
51 struct crypto_alg base;
52};
53
54struct ahash_request {
55 struct crypto_async_request base;
56
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
60
61 /* This field may only be used by the ahash API code. */
62 void *priv;
63
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
65};
66
67#define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
71
72/**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point.
91 * @finup: Combination of @update and @final. This function is effectively a
92 * combination of @update and @final calls issued in sequence. As some
93 * hardware cannot do @update and @final separately, this callback was
94 * added to allow such hardware to be used at least by IPsec. Data
95 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
96 * at this point.
97 * @digest: Combination of @init and @update and @final. This function
98 * effectively behaves as the entire chain of operations, @init,
99 * @update and @final issued in sequence. Just like @finup, this was
100 * added for hardware which cannot do even the @finup, but can only do
101 * the whole transformation in one run. Data processing can happen
102 * synchronously [SHASH] or asynchronously [AHASH] at this point.
103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
104 * optional key used by the hashing algorithm from upper layers into
105 * the driver. This function can store the key in the transformation
106 * context or can outright program it into the hardware. In the former
107 * case, one must be careful to program the key into the hardware at
108 * appropriate time and one must be careful that .setkey() can be
109 * called multiple times during the existence of the transformation
110 * object. Not all hashing algorithms do implement this function as it
111 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
112 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
113 * this function. This function must be called before any other of the
114 * @init, @update, @final, @finup, @digest is called. No data
115 * processing happens at this point.
116 * @export: Export partial state of the transformation. This function dumps the
117 * entire state of the ongoing transformation into a provided block of
118 * data so it can be @import 'ed back later on. This is useful in case
119 * you want to save partial result of the transformation after
120 * processing certain amount of data and reload this partial result
121 * multiple times later on for multiple re-use. No data processing
122 * happens at this point.
123 * @import: Import partial state of the transformation. This function loads the
124 * entire state of the ongoing transformation from a provided block of
125 * data so the transformation can continue from this point onward. No
126 * data processing happens at this point.
127 * @halg: see struct hash_alg_common
128 */
129struct ahash_alg {
130 int (*init)(struct ahash_request *req);
131 int (*update)(struct ahash_request *req);
132 int (*final)(struct ahash_request *req);
133 int (*finup)(struct ahash_request *req);
134 int (*digest)(struct ahash_request *req);
135 int (*export)(struct ahash_request *req, void *out);
136 int (*import)(struct ahash_request *req, const void *in);
137 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
138 unsigned int keylen);
139
140 struct hash_alg_common halg;
141};
142
143struct shash_desc {
144 struct crypto_shash *tfm;
145 u32 flags;
146
147 void *__ctx[] CRYPTO_MINALIGN_ATTR;
148};
149
150#define SHASH_DESC_ON_STACK(shash, ctx) \
151 char __##shash##_desc[sizeof(struct shash_desc) + \
152 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
153 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
154
155/**
156 * struct shash_alg - synchronous message digest definition
157 * @init: see struct ahash_alg
158 * @update: see struct ahash_alg
159 * @final: see struct ahash_alg
160 * @finup: see struct ahash_alg
161 * @digest: see struct ahash_alg
162 * @export: see struct ahash_alg
163 * @import: see struct ahash_alg
164 * @setkey: see struct ahash_alg
165 * @digestsize: see struct ahash_alg
166 * @statesize: see struct ahash_alg
167 * @descsize: Size of the operational state for the message digest. This state
168 * size is the memory size that needs to be allocated for
169 * shash_desc.__ctx
170 * @base: internally used
171 */
172struct shash_alg {
173 int (*init)(struct shash_desc *desc);
174 int (*update)(struct shash_desc *desc, const u8 *data,
175 unsigned int len);
176 int (*final)(struct shash_desc *desc, u8 *out);
177 int (*finup)(struct shash_desc *desc, const u8 *data,
178 unsigned int len, u8 *out);
179 int (*digest)(struct shash_desc *desc, const u8 *data,
180 unsigned int len, u8 *out);
181 int (*export)(struct shash_desc *desc, void *out);
182 int (*import)(struct shash_desc *desc, const void *in);
183 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
184 unsigned int keylen);
185
186 unsigned int descsize;
187
188 /* These fields must match hash_alg_common. */
189 unsigned int digestsize
190 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
191 unsigned int statesize;
192
193 struct crypto_alg base;
194};
195
196struct crypto_ahash {
197 int (*init)(struct ahash_request *req);
198 int (*update)(struct ahash_request *req);
199 int (*final)(struct ahash_request *req);
200 int (*finup)(struct ahash_request *req);
201 int (*digest)(struct ahash_request *req);
202 int (*export)(struct ahash_request *req, void *out);
203 int (*import)(struct ahash_request *req, const void *in);
204 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
205 unsigned int keylen);
206
207 unsigned int reqsize;
208 bool has_setkey;
209 struct crypto_tfm base;
210};
211
212struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
215};
216
217/**
218 * DOC: Asynchronous Message Digest API
219 *
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
222 *
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
225 */
226
227static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
228{
229 return container_of(tfm, struct crypto_ahash, base);
230}
231
232/**
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
238 *
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
242 *
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
245 */
246struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
248
249static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
250{
251 return &tfm->base;
252}
253
254/**
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
257 */
258static inline void crypto_free_ahash(struct crypto_ahash *tfm)
259{
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
261}
262
263/**
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
269 *
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
272 */
273int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
274
275static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
276{
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
278}
279
280static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
281{
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
283}
284
285static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
287{
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
289}
290
291/**
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
294 *
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
297 *
298 * Return: block size of cipher
299 */
300static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
301{
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
303}
304
305static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
307{
308 return container_of(alg, struct hash_alg_common, base);
309}
310
311static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
313{
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
315}
316
317/**
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
320 *
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
323 *
324 *
325 * Return: message digest size of cipher
326 */
327static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
328{
329 return crypto_hash_alg_common(tfm)->digestsize;
330}
331
332static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
333{
334 return crypto_hash_alg_common(tfm)->statesize;
335}
336
337static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
338{
339 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
340}
341
342static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
343{
344 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
345}
346
347static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
348{
349 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
350}
351
352/**
353 * crypto_ahash_reqtfm() - obtain cipher handle from request
354 * @req: asynchronous request handle that contains the reference to the ahash
355 * cipher handle
356 *
357 * Return the ahash cipher handle that is registered with the asynchronous
358 * request handle ahash_request.
359 *
360 * Return: ahash cipher handle
361 */
362static inline struct crypto_ahash *crypto_ahash_reqtfm(
363 struct ahash_request *req)
364{
365 return __crypto_ahash_cast(req->base.tfm);
366}
367
368/**
369 * crypto_ahash_reqsize() - obtain size of the request data structure
370 * @tfm: cipher handle
371 *
372 * Return the size of the ahash state size. With the crypto_ahash_export
373 * function, the caller can export the state into a buffer whose size is
374 * defined with this function.
375 *
376 * Return: size of the ahash state
377 */
378static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
379{
380 return tfm->reqsize;
381}
382
383static inline void *ahash_request_ctx(struct ahash_request *req)
384{
385 return req->__ctx;
386}
387
388/**
389 * crypto_ahash_setkey - set key for cipher handle
390 * @tfm: cipher handle
391 * @key: buffer holding the key
392 * @keylen: length of the key in bytes
393 *
394 * The caller provided key is set for the ahash cipher. The cipher
395 * handle must point to a keyed hash in order for this function to succeed.
396 *
397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
398 */
399int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
400 unsigned int keylen);
401
402static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
403{
404 return tfm->has_setkey;
405}
406
407/**
408 * crypto_ahash_finup() - update and finalize message digest
409 * @req: reference to the ahash_request handle that holds all information
410 * needed to perform the cipher operation
411 *
412 * This function is a "short-hand" for the function calls of
413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
414 * meaning as discussed for those separate functions.
415 *
416 * Return: 0 if the message digest creation was successful; < 0 if an error
417 * occurred
418 */
419int crypto_ahash_finup(struct ahash_request *req);
420
421/**
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
425 *
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
429 *
430 * Return: 0 if the message digest creation was successful; < 0 if an error
431 * occurred
432 */
433int crypto_ahash_final(struct ahash_request *req);
434
435/**
436 * crypto_ahash_digest() - calculate message digest for a buffer
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
439 *
440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate three functions.
443 *
444 * Return: 0 if the message digest creation was successful; < 0 if an error
445 * occurred
446 */
447int crypto_ahash_digest(struct ahash_request *req);
448
449/**
450 * crypto_ahash_export() - extract current message digest state
451 * @req: reference to the ahash_request handle whose state is exported
452 * @out: output buffer of sufficient size that can hold the hash state
453 *
454 * This function exports the hash state of the ahash_request handle into the
455 * caller-allocated output buffer out which must have sufficient size (e.g. by
456 * calling crypto_ahash_reqsize).
457 *
458 * Return: 0 if the export was successful; < 0 if an error occurred
459 */
460static inline int crypto_ahash_export(struct ahash_request *req, void *out)
461{
462 return crypto_ahash_reqtfm(req)->export(req, out);
463}
464
465/**
466 * crypto_ahash_import() - import message digest state
467 * @req: reference to ahash_request handle the state is imported into
468 * @in: buffer holding the state
469 *
470 * This function imports the hash state into the ahash_request handle from the
471 * input buffer. That buffer should have been generated with the
472 * crypto_ahash_export function.
473 *
474 * Return: 0 if the import was successful; < 0 if an error occurred
475 */
476static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
477{
478 return crypto_ahash_reqtfm(req)->import(req, in);
479}
480
481/**
482 * crypto_ahash_init() - (re)initialize message digest handle
483 * @req: ahash_request handle that already is initialized with all necessary
484 * data using the ahash_request_* API functions
485 *
486 * The call (re-)initializes the message digest referenced by the ahash_request
487 * handle. Any potentially existing state created by previous operations is
488 * discarded.
489 *
490 * Return: 0 if the message digest initialization was successful; < 0 if an
491 * error occurred
492 */
493static inline int crypto_ahash_init(struct ahash_request *req)
494{
495 return crypto_ahash_reqtfm(req)->init(req);
496}
497
498/**
499 * crypto_ahash_update() - add data to message digest for processing
500 * @req: ahash_request handle that was previously initialized with the
501 * crypto_ahash_init call.
502 *
503 * Updates the message digest state of the &ahash_request handle. The input data
504 * is pointed to by the scatter/gather list registered in the &ahash_request
505 * handle
506 *
507 * Return: 0 if the message digest update was successful; < 0 if an error
508 * occurred
509 */
510static inline int crypto_ahash_update(struct ahash_request *req)
511{
512 return crypto_ahash_reqtfm(req)->update(req);
513}
514
515/**
516 * DOC: Asynchronous Hash Request Handle
517 *
518 * The &ahash_request data structure contains all pointers to data
519 * required for the asynchronous cipher operation. This includes the cipher
520 * handle (which can be used by multiple &ahash_request instances), pointer
521 * to plaintext and the message digest output buffer, asynchronous callback
522 * function, etc. It acts as a handle to the ahash_request_* API calls in a
523 * similar way as ahash handle to the crypto_ahash_* API calls.
524 */
525
526/**
527 * ahash_request_set_tfm() - update cipher handle reference in request
528 * @req: request handle to be modified
529 * @tfm: cipher handle that shall be added to the request handle
530 *
531 * Allow the caller to replace the existing ahash handle in the request
532 * data structure with a different one.
533 */
534static inline void ahash_request_set_tfm(struct ahash_request *req,
535 struct crypto_ahash *tfm)
536{
537 req->base.tfm = crypto_ahash_tfm(tfm);
538}
539
540/**
541 * ahash_request_alloc() - allocate request data structure
542 * @tfm: cipher handle to be registered with the request
543 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
544 *
545 * Allocate the request data structure that must be used with the ahash
546 * message digest API calls. During
547 * the allocation, the provided ahash handle
548 * is registered in the request data structure.
549 *
550 * Return: allocated request handle in case of success; IS_ERR() is true in case
551 * of an error, PTR_ERR() returns the error code.
552 */
553static inline struct ahash_request *ahash_request_alloc(
554 struct crypto_ahash *tfm, gfp_t gfp)
555{
556 struct ahash_request *req;
557
558 req = kmalloc(sizeof(struct ahash_request) +
559 crypto_ahash_reqsize(tfm), gfp);
560
561 if (likely(req))
562 ahash_request_set_tfm(req, tfm);
563
564 return req;
565}
566
567/**
568 * ahash_request_free() - zeroize and free the request data structure
569 * @req: request data structure cipher handle to be freed
570 */
571static inline void ahash_request_free(struct ahash_request *req)
572{
573 kzfree(req);
574}
575
576static inline void ahash_request_zero(struct ahash_request *req)
577{
578 memzero_explicit(req, sizeof(*req) +
579 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
580}
581
582static inline struct ahash_request *ahash_request_cast(
583 struct crypto_async_request *req)
584{
585 return container_of(req, struct ahash_request, base);
586}
587
588/**
589 * ahash_request_set_callback() - set asynchronous callback function
590 * @req: request handle
591 * @flags: specify zero or an ORing of the flags
592 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
593 * increase the wait queue beyond the initial maximum size;
594 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
595 * @compl: callback function pointer to be registered with the request handle
596 * @data: The data pointer refers to memory that is not used by the kernel
597 * crypto API, but provided to the callback function for it to use. Here,
598 * the caller can provide a reference to memory the callback function can
599 * operate on. As the callback function is invoked asynchronously to the
600 * related functionality, it may need to access data structures of the
601 * related functionality which can be referenced using this pointer. The
602 * callback function can access the memory via the "data" field in the
603 * &crypto_async_request data structure provided to the callback function.
604 *
605 * This function allows setting the callback function that is triggered once
606 * the cipher operation completes.
607 *
608 * The callback function is registered with the &ahash_request handle and
609 * must comply with the following template
610 *
611 * void callback_function(struct crypto_async_request *req, int error)
612 */
613static inline void ahash_request_set_callback(struct ahash_request *req,
614 u32 flags,
615 crypto_completion_t compl,
616 void *data)
617{
618 req->base.complete = compl;
619 req->base.data = data;
620 req->base.flags = flags;
621}
622
623/**
624 * ahash_request_set_crypt() - set data buffers
625 * @req: ahash_request handle to be updated
626 * @src: source scatter/gather list
627 * @result: buffer that is filled with the message digest -- the caller must
628 * ensure that the buffer has sufficient space by, for example, calling
629 * crypto_ahash_digestsize()
630 * @nbytes: number of bytes to process from the source scatter/gather list
631 *
632 * By using this call, the caller references the source scatter/gather list.
633 * The source scatter/gather list points to the data the message digest is to
634 * be calculated for.
635 */
636static inline void ahash_request_set_crypt(struct ahash_request *req,
637 struct scatterlist *src, u8 *result,
638 unsigned int nbytes)
639{
640 req->src = src;
641 req->nbytes = nbytes;
642 req->result = result;
643}
644
645/**
646 * DOC: Synchronous Message Digest API
647 *
648 * The synchronous message digest API is used with the ciphers of type
649 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
650 *
651 * The message digest API is able to maintain state information for the
652 * caller.
653 *
654 * The synchronous message digest API can store user-related context in in its
655 * shash_desc request data structure.
656 */
657
658/**
659 * crypto_alloc_shash() - allocate message digest handle
660 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
661 * message digest cipher
662 * @type: specifies the type of the cipher
663 * @mask: specifies the mask for the cipher
664 *
665 * Allocate a cipher handle for a message digest. The returned &struct
666 * crypto_shash is the cipher handle that is required for any subsequent
667 * API invocation for that message digest.
668 *
669 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
670 * of an error, PTR_ERR() returns the error code.
671 */
672struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
673 u32 mask);
674
675static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
676{
677 return &tfm->base;
678}
679
680/**
681 * crypto_free_shash() - zeroize and free the message digest handle
682 * @tfm: cipher handle to be freed
683 */
684static inline void crypto_free_shash(struct crypto_shash *tfm)
685{
686 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
687}
688
689static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
690{
691 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
692}
693
694static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
695{
696 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
697}
698
699static inline unsigned int crypto_shash_alignmask(
700 struct crypto_shash *tfm)
701{
702 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
703}
704
705/**
706 * crypto_shash_blocksize() - obtain block size for cipher
707 * @tfm: cipher handle
708 *
709 * The block size for the message digest cipher referenced with the cipher
710 * handle is returned.
711 *
712 * Return: block size of cipher
713 */
714static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
715{
716 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
717}
718
719static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
720{
721 return container_of(alg, struct shash_alg, base);
722}
723
724static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
725{
726 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
727}
728
729/**
730 * crypto_shash_digestsize() - obtain message digest size
731 * @tfm: cipher handle
732 *
733 * The size for the message digest created by the message digest cipher
734 * referenced with the cipher handle is returned.
735 *
736 * Return: digest size of cipher
737 */
738static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
739{
740 return crypto_shash_alg(tfm)->digestsize;
741}
742
743static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
744{
745 return crypto_shash_alg(tfm)->statesize;
746}
747
748static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
749{
750 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
751}
752
753static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
754{
755 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
756}
757
758static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
759{
760 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
761}
762
763/**
764 * crypto_shash_descsize() - obtain the operational state size
765 * @tfm: cipher handle
766 *
767 * The size of the operational state the cipher needs during operation is
768 * returned for the hash referenced with the cipher handle. This size is
769 * required to calculate the memory requirements to allow the caller allocating
770 * sufficient memory for operational state.
771 *
772 * The operational state is defined with struct shash_desc where the size of
773 * that data structure is to be calculated as
774 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
775 *
776 * Return: size of the operational state
777 */
778static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
779{
780 return tfm->descsize;
781}
782
783static inline void *shash_desc_ctx(struct shash_desc *desc)
784{
785 return desc->__ctx;
786}
787
788/**
789 * crypto_shash_setkey() - set key for message digest
790 * @tfm: cipher handle
791 * @key: buffer holding the key
792 * @keylen: length of the key in bytes
793 *
794 * The caller provided key is set for the keyed message digest cipher. The
795 * cipher handle must point to a keyed message digest cipher in order for this
796 * function to succeed.
797 *
798 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
799 */
800int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
801 unsigned int keylen);
802
803/**
804 * crypto_shash_digest() - calculate message digest for buffer
805 * @desc: see crypto_shash_final()
806 * @data: see crypto_shash_update()
807 * @len: see crypto_shash_update()
808 * @out: see crypto_shash_final()
809 *
810 * This function is a "short-hand" for the function calls of crypto_shash_init,
811 * crypto_shash_update and crypto_shash_final. The parameters have the same
812 * meaning as discussed for those separate three functions.
813 *
814 * Return: 0 if the message digest creation was successful; < 0 if an error
815 * occurred
816 */
817int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
818 unsigned int len, u8 *out);
819
820/**
821 * crypto_shash_export() - extract operational state for message digest
822 * @desc: reference to the operational state handle whose state is exported
823 * @out: output buffer of sufficient size that can hold the hash state
824 *
825 * This function exports the hash state of the operational state handle into the
826 * caller-allocated output buffer out which must have sufficient size (e.g. by
827 * calling crypto_shash_descsize).
828 *
829 * Return: 0 if the export creation was successful; < 0 if an error occurred
830 */
831static inline int crypto_shash_export(struct shash_desc *desc, void *out)
832{
833 return crypto_shash_alg(desc->tfm)->export(desc, out);
834}
835
836/**
837 * crypto_shash_import() - import operational state
838 * @desc: reference to the operational state handle the state imported into
839 * @in: buffer holding the state
840 *
841 * This function imports the hash state into the operational state handle from
842 * the input buffer. That buffer should have been generated with the
843 * crypto_ahash_export function.
844 *
845 * Return: 0 if the import was successful; < 0 if an error occurred
846 */
847static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
848{
849 return crypto_shash_alg(desc->tfm)->import(desc, in);
850}
851
852/**
853 * crypto_shash_init() - (re)initialize message digest
854 * @desc: operational state handle that is already filled
855 *
856 * The call (re-)initializes the message digest referenced by the
857 * operational state handle. Any potentially existing state created by
858 * previous operations is discarded.
859 *
860 * Return: 0 if the message digest initialization was successful; < 0 if an
861 * error occurred
862 */
863static inline int crypto_shash_init(struct shash_desc *desc)
864{
865 return crypto_shash_alg(desc->tfm)->init(desc);
866}
867
868/**
869 * crypto_shash_update() - add data to message digest for processing
870 * @desc: operational state handle that is already initialized
871 * @data: input data to be added to the message digest
872 * @len: length of the input data
873 *
874 * Updates the message digest state of the operational state handle.
875 *
876 * Return: 0 if the message digest update was successful; < 0 if an error
877 * occurred
878 */
879int crypto_shash_update(struct shash_desc *desc, const u8 *data,
880 unsigned int len);
881
882/**
883 * crypto_shash_final() - calculate message digest
884 * @desc: operational state handle that is already filled with data
885 * @out: output buffer filled with the message digest
886 *
887 * Finalize the message digest operation and create the message digest
888 * based on all data added to the cipher handle. The message digest is placed
889 * into the output buffer. The caller must ensure that the output buffer is
890 * large enough by using crypto_shash_digestsize.
891 *
892 * Return: 0 if the message digest creation was successful; < 0 if an error
893 * occurred
894 */
895int crypto_shash_final(struct shash_desc *desc, u8 *out);
896
897/**
898 * crypto_shash_finup() - calculate message digest of buffer
899 * @desc: see crypto_shash_final()
900 * @data: see crypto_shash_update()
901 * @len: see crypto_shash_update()
902 * @out: see crypto_shash_final()
903 *
904 * This function is a "short-hand" for the function calls of
905 * crypto_shash_update and crypto_shash_final. The parameters have the same
906 * meaning as discussed for those separate functions.
907 *
908 * Return: 0 if the message digest creation was successful; < 0 if an error
909 * occurred
910 */
911int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
912 unsigned int len, u8 *out);
913
914static inline void shash_desc_zero(struct shash_desc *desc)
915{
916 memzero_explicit(desc,
917 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
918}
919
920#endif /* _CRYPTO_HASH_H */