Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
  3 */
  4
  5#include <linux/string.h>
  6#include <linux/random.h>
  7#include <linux/time.h>
  8#include <linux/reiserfs_fs.h>
  9#include <linux/reiserfs_fs_sb.h>
 10
 11// find where objectid map starts
 12#define objectid_map(s,rs) (old_format_only (s) ? \
 13                         (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
 14			 (__le32 *)((rs) + 1))
 15
 16#ifdef CONFIG_REISERFS_CHECK
 17
 18static void check_objectid_map(struct super_block *s, __le32 * map)
 19{
 20	if (le32_to_cpu(map[0]) != 1)
 21		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
 22			       (long unsigned int)le32_to_cpu(map[0]));
 23
 24	// FIXME: add something else here
 25}
 26
 27#else
 28static void check_objectid_map(struct super_block *s, __le32 * map)
 29{;
 30}
 31#endif
 32
 33/* When we allocate objectids we allocate the first unused objectid.
 34   Each sequence of objectids in use (the odd sequences) is followed
 35   by a sequence of objectids not in use (the even sequences).  We
 36   only need to record the last objectid in each of these sequences
 37   (both the odd and even sequences) in order to fully define the
 38   boundaries of the sequences.  A consequence of allocating the first
 39   objectid not in use is that under most conditions this scheme is
 40   extremely compact.  The exception is immediately after a sequence
 41   of operations which deletes a large number of objects of
 42   non-sequential objectids, and even then it will become compact
 43   again as soon as more objects are created.  Note that many
 44   interesting optimizations of layout could result from complicating
 45   objectid assignment, but we have deferred making them for now. */
 
 
 46
 47/* get unique object identifier */
 48__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
 49{
 50	struct super_block *s = th->t_super;
 51	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 52	__le32 *map = objectid_map(s, rs);
 53	__u32 unused_objectid;
 54
 55	BUG_ON(!th->t_trans_id);
 56
 57	check_objectid_map(s, map);
 58
 59	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
 60	/* comment needed -Hans */
 61	unused_objectid = le32_to_cpu(map[1]);
 62	if (unused_objectid == U32_MAX) {
 63		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
 64		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
 65		return 0;
 66	}
 67
 68	/* This incrementation allocates the first unused objectid. That
 69	   is to say, the first entry on the objectid map is the first
 70	   unused objectid, and by incrementing it we use it.  See below
 71	   where we check to see if we eliminated a sequence of unused
 72	   objectids.... */
 
 
 73	map[1] = cpu_to_le32(unused_objectid + 1);
 74
 75	/* Now we check to see if we eliminated the last remaining member of
 76	   the first even sequence (and can eliminate the sequence by
 77	   eliminating its last objectid from oids), and can collapse the
 78	   first two odd sequences into one sequence.  If so, then the net
 79	   result is to eliminate a pair of objectids from oids.  We do this
 80	   by shifting the entire map to the left. */
 
 
 81	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
 82		memmove(map + 1, map + 3,
 83			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
 84		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
 85	}
 86
 87	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
 88	return unused_objectid;
 89}
 90
 91/* makes object identifier unused */
 92void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
 93			       __u32 objectid_to_release)
 94{
 95	struct super_block *s = th->t_super;
 96	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 97	__le32 *map = objectid_map(s, rs);
 98	int i = 0;
 99
100	BUG_ON(!th->t_trans_id);
101	//return;
102	check_objectid_map(s, map);
103
104	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
105	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
106
107	/* start at the beginning of the objectid map (i = 0) and go to
108	   the end of it (i = disk_sb->s_oid_cursize).  Linear search is
109	   what we use, though it is possible that binary search would be
110	   more efficient after performing lots of deletions (which is
111	   when oids is large.)  We only check even i's. */
 
 
112	while (i < sb_oid_cursize(rs)) {
113		if (objectid_to_release == le32_to_cpu(map[i])) {
114			/* This incrementation unallocates the objectid. */
115			//map[i]++;
116			le32_add_cpu(&map[i], 1);
117
118			/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
 
 
 
119			if (map[i] == map[i + 1]) {
120				/* shrink objectid map */
121				memmove(map + i, map + i + 2,
122					(sb_oid_cursize(rs) - i -
123					 2) * sizeof(__u32));
124				//disk_sb->s_oid_cursize -= 2;
125				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
126
127				RFALSE(sb_oid_cursize(rs) < 2 ||
128				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
129				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
130				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
131			}
132			return;
133		}
134
135		if (objectid_to_release > le32_to_cpu(map[i]) &&
136		    objectid_to_release < le32_to_cpu(map[i + 1])) {
137			/* size of objectid map is not changed */
138			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
139				//objectid_map[i+1]--;
140				le32_add_cpu(&map[i + 1], -1);
141				return;
142			}
143
144			/* JDM comparing two little-endian values for equality -- safe */
 
 
 
 
 
 
 
145			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
146				/* objectid map must be expanded, but there is no space */
147				PROC_INFO_INC(s, leaked_oid);
148				return;
149			}
150
151			/* expand the objectid map */
152			memmove(map + i + 3, map + i + 1,
153				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
154			map[i + 1] = cpu_to_le32(objectid_to_release);
155			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
156			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
157			return;
158		}
159		i += 2;
160	}
161
162	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
163		       (long unsigned)objectid_to_release);
164}
165
166int reiserfs_convert_objectid_map_v1(struct super_block *s)
167{
168	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
169	int cur_size = sb_oid_cursize(disk_sb);
170	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
171	int old_max = sb_oid_maxsize(disk_sb);
172	struct reiserfs_super_block_v1 *disk_sb_v1;
173	__le32 *objectid_map, *new_objectid_map;
174	int i;
175
176	disk_sb_v1 =
177	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
178	objectid_map = (__le32 *) (disk_sb_v1 + 1);
179	new_objectid_map = (__le32 *) (disk_sb + 1);
180
181	if (cur_size > new_size) {
182		/* mark everyone used that was listed as free at the end of the objectid
183		 ** map
 
184		 */
185		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
186		set_sb_oid_cursize(disk_sb, new_size);
187	}
188	/* move the smaller objectid map past the end of the new super */
189	for (i = new_size - 1; i >= 0; i--) {
190		objectid_map[i + (old_max - new_size)] = objectid_map[i];
191	}
192
193	/* set the max size so we don't overflow later */
194	set_sb_oid_maxsize(disk_sb, new_size);
195
196	/* Zero out label and generate random UUID */
197	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
198	generate_random_uuid(disk_sb->s_uuid);
199
200	/* finally, zero out the unused chunk of the new super */
201	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
202	return 0;
203}
v4.6
  1/*
  2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
  3 */
  4
  5#include <linux/string.h>
  6#include <linux/random.h>
  7#include <linux/time.h>
  8#include "reiserfs.h"
 
  9
 10/* find where objectid map starts */
 11#define objectid_map(s,rs) (old_format_only (s) ? \
 12                         (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
 13			 (__le32 *)((rs) + 1))
 14
 15#ifdef CONFIG_REISERFS_CHECK
 16
 17static void check_objectid_map(struct super_block *s, __le32 * map)
 18{
 19	if (le32_to_cpu(map[0]) != 1)
 20		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
 21			       (long unsigned int)le32_to_cpu(map[0]));
 22
 23	/* FIXME: add something else here */
 24}
 25
 26#else
 27static void check_objectid_map(struct super_block *s, __le32 * map)
 28{;
 29}
 30#endif
 31
 32/*
 33 * When we allocate objectids we allocate the first unused objectid.
 34 * Each sequence of objectids in use (the odd sequences) is followed
 35 * by a sequence of objectids not in use (the even sequences).  We
 36 * only need to record the last objectid in each of these sequences
 37 * (both the odd and even sequences) in order to fully define the
 38 * boundaries of the sequences.  A consequence of allocating the first
 39 * objectid not in use is that under most conditions this scheme is
 40 * extremely compact.  The exception is immediately after a sequence
 41 * of operations which deletes a large number of objects of
 42 * non-sequential objectids, and even then it will become compact
 43 * again as soon as more objects are created.  Note that many
 44 * interesting optimizations of layout could result from complicating
 45 * objectid assignment, but we have deferred making them for now.
 46 */
 47
 48/* get unique object identifier */
 49__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
 50{
 51	struct super_block *s = th->t_super;
 52	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
 53	__le32 *map = objectid_map(s, rs);
 54	__u32 unused_objectid;
 55
 56	BUG_ON(!th->t_trans_id);
 57
 58	check_objectid_map(s, map);
 59
 60	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
 61	/* comment needed -Hans */
 62	unused_objectid = le32_to_cpu(map[1]);
 63	if (unused_objectid == U32_MAX) {
 64		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
 65		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
 66		return 0;
 67	}
 68
 69	/*
 70	 * This incrementation allocates the first unused objectid. That
 71	 * is to say, the first entry on the objectid map is the first
 72	 * unused objectid, and by incrementing it we use it.  See below
 73	 * where we check to see if we eliminated a sequence of unused
 74	 * objectids....
 75	 */
 76	map[1] = cpu_to_le32(unused_objectid + 1);
 77
 78	/*
 79	 * Now we check to see if we eliminated the last remaining member of
 80	 * the first even sequence (and can eliminate the sequence by
 81	 * eliminating its last objectid from oids), and can collapse the
 82	 * first two odd sequences into one sequence.  If so, then the net
 83	 * result is to eliminate a pair of objectids from oids.  We do this
 84	 * by shifting the entire map to the left.
 85	 */
 86	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
 87		memmove(map + 1, map + 3,
 88			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
 89		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
 90	}
 91
 92	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
 93	return unused_objectid;
 94}
 95
 96/* makes object identifier unused */
 97void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
 98			       __u32 objectid_to_release)
 99{
100	struct super_block *s = th->t_super;
101	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
102	__le32 *map = objectid_map(s, rs);
103	int i = 0;
104
105	BUG_ON(!th->t_trans_id);
106	/*return; */
107	check_objectid_map(s, map);
108
109	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
110	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
111
112	/*
113	 * start at the beginning of the objectid map (i = 0) and go to
114	 * the end of it (i = disk_sb->s_oid_cursize).  Linear search is
115	 * what we use, though it is possible that binary search would be
116	 * more efficient after performing lots of deletions (which is
117	 * when oids is large.)  We only check even i's.
118	 */
119	while (i < sb_oid_cursize(rs)) {
120		if (objectid_to_release == le32_to_cpu(map[i])) {
121			/* This incrementation unallocates the objectid. */
 
122			le32_add_cpu(&map[i], 1);
123
124			/*
125			 * Did we unallocate the last member of an
126			 * odd sequence, and can shrink oids?
127			 */
128			if (map[i] == map[i + 1]) {
129				/* shrink objectid map */
130				memmove(map + i, map + i + 2,
131					(sb_oid_cursize(rs) - i -
132					 2) * sizeof(__u32));
 
133				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
134
135				RFALSE(sb_oid_cursize(rs) < 2 ||
136				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
137				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
138				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
139			}
140			return;
141		}
142
143		if (objectid_to_release > le32_to_cpu(map[i]) &&
144		    objectid_to_release < le32_to_cpu(map[i + 1])) {
145			/* size of objectid map is not changed */
146			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
 
147				le32_add_cpu(&map[i + 1], -1);
148				return;
149			}
150
151			/*
152			 * JDM comparing two little-endian values for
153			 * equality -- safe
154			 */
155			/*
156			 * objectid map must be expanded, but
157			 * there is no space
158			 */
159			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
 
160				PROC_INFO_INC(s, leaked_oid);
161				return;
162			}
163
164			/* expand the objectid map */
165			memmove(map + i + 3, map + i + 1,
166				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
167			map[i + 1] = cpu_to_le32(objectid_to_release);
168			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
169			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
170			return;
171		}
172		i += 2;
173	}
174
175	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
176		       (long unsigned)objectid_to_release);
177}
178
179int reiserfs_convert_objectid_map_v1(struct super_block *s)
180{
181	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
182	int cur_size = sb_oid_cursize(disk_sb);
183	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
184	int old_max = sb_oid_maxsize(disk_sb);
185	struct reiserfs_super_block_v1 *disk_sb_v1;
186	__le32 *objectid_map, *new_objectid_map;
187	int i;
188
189	disk_sb_v1 =
190	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
191	objectid_map = (__le32 *) (disk_sb_v1 + 1);
192	new_objectid_map = (__le32 *) (disk_sb + 1);
193
194	if (cur_size > new_size) {
195		/*
196		 * mark everyone used that was listed as free at
197		 * the end of the objectid map
198		 */
199		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
200		set_sb_oid_cursize(disk_sb, new_size);
201	}
202	/* move the smaller objectid map past the end of the new super */
203	for (i = new_size - 1; i >= 0; i--) {
204		objectid_map[i + (old_max - new_size)] = objectid_map[i];
205	}
206
207	/* set the max size so we don't overflow later */
208	set_sb_oid_maxsize(disk_sb, new_size);
209
210	/* Zero out label and generate random UUID */
211	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
212	generate_random_uuid(disk_sb->s_uuid);
213
214	/* finally, zero out the unused chunk of the new super */
215	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
216	return 0;
217}